Instructional control of reinforcement learning: A behavioral and neurocomputational investigation

Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cogn...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1299; pp. 74 - 94
Main Authors Doll, Bradley B., Jacobs, W. Jake, Sanfey, Alan G., Frank, Michael J.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier B.V 03.11.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0006-8993
1872-6240
1872-6240
DOI10.1016/j.brainres.2009.07.007

Cover

Abstract Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
AbstractList Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989 . Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is ''overridden'' at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract ''Q-learning'' and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a ''confirmation bias'' in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
AbstractHumans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.
Author Doll, Bradley B.
Sanfey, Alan G.
Jacobs, W. Jake
Frank, Michael J.
AuthorAffiliation b Department of Psychology and Program in Neuroscience, University of Arizona, USA
a Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA
AuthorAffiliation_xml – name: b Department of Psychology and Program in Neuroscience, University of Arizona, USA
– name: a Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA
Author_xml – sequence: 1
  givenname: Bradley B.
  surname: Doll
  fullname: Doll, Bradley B.
  email: bradley_doll@brown.edu
  organization: Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA
– sequence: 2
  givenname: W. Jake
  surname: Jacobs
  fullname: Jacobs, W. Jake
  organization: Department of Psychology and Program in Neuroscience, University of Arizona, USA
– sequence: 3
  givenname: Alan G.
  surname: Sanfey
  fullname: Sanfey, Alan G.
  organization: Department of Psychology and Program in Neuroscience, University of Arizona, USA
– sequence: 4
  givenname: Michael J.
  surname: Frank
  fullname: Frank, Michael J.
  email: michael_frank@brown.edu
  organization: Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22352881$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19595993$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxSNURLeFr1DlArcsYzuxE4SqVhV_KlXiAJwtZzLZesnai52s1G-Pt7st0AOLfLAsv_npzcw7yY6cd5RlZwzmDJh8u5y3wVgXKM45QDMHNQdQz7IZqxUvJC_hKJsBgCzqphHH2UmMy_QUooEX2TFrqnQaMcvaaxfHMOFovTNDjt6NwQ-57_NA1vU-IK3IjflAJjjrFu_yy7ylW7OxPiS9cV3uaAoe_Wo9jWaPsW5DcbSL-_fL7Hlvhkiv9vdp9v3jh29Xn4ubL5-ury5vCpQljIXinGroJKKkSmLNJcoKkbUCZSfLUqqWNaZqVKlQikoAlUp1xtS1YayXjTjNznfc9dSuqMNkO1nU62BXJtxpb6z--8fZW73wGy2ggrJmCfBmDwj-55Qa0CsbkYbBOPJT1FLJulFCHRRyxkBVcis8-9PSo5eH-SfB673ARDRDH4xDGx91nIuK1_fW5E6HwccYqP-NAr0NhF7qh0DobSA0KJ0CkQrfPylEu1tTGoEdDpdf7MopLW5jKeiIlhxSZwPhqDtvDyPOnyBwsM6mbn_QHcWln0KKTNRMR65Bf92GdptZaICJWsG_Af_j4Be_5ALt
CODEN BRREAP
CitedBy_id crossref_primary_10_1155_2013_149329
crossref_primary_10_3390_brainsci12010090
crossref_primary_10_3758_s13415_018_0591_7
crossref_primary_10_3389_fpsyg_2022_967467
crossref_primary_10_1016_j_bpsc_2024_07_015
crossref_primary_10_2139_ssrn_3201162
crossref_primary_10_1016_j_nlm_2018_03_022
crossref_primary_10_1038_s41583_020_0276_4
crossref_primary_10_1101_lm_053595_122
crossref_primary_10_1007_s00213_021_06017_0
crossref_primary_10_1016_j_neuroimage_2018_02_011
crossref_primary_10_1162_jocn_a_01329
crossref_primary_10_1016_j_jphysparis_2011_07_017
crossref_primary_10_1371_journal_pbio_1001089
crossref_primary_10_1016_j_eswa_2016_01_030
crossref_primary_10_7554_eLife_73353
crossref_primary_10_1523_JNEUROSCI_2036_14_2015
crossref_primary_10_1523_JNEUROSCI_3086_12_2013
crossref_primary_10_1038_s41539_024_00214_0
crossref_primary_10_1523_JNEUROSCI_2701_11_2011
crossref_primary_10_1523_JNEUROSCI_1418_22_2023
crossref_primary_10_1007_s12304_020_09390_z
crossref_primary_10_1162_jocn_a_00365
crossref_primary_10_1038_s41562_024_01894_9
crossref_primary_10_1016_j_conb_2011_04_002
crossref_primary_10_1016_j_actpsy_2019_102956
crossref_primary_10_1016_j_conb_2011_02_013
crossref_primary_10_1038_nrn3976
crossref_primary_10_1016_j_brainres_2011_12_025
crossref_primary_10_1371_journal_pone_0135226
crossref_primary_10_1016_j_neuron_2011_02_027
crossref_primary_10_1073_pnas_1810180116
crossref_primary_10_1016_j_evalprogplan_2011_12_002
crossref_primary_10_1016_j_jcbs_2016_09_002
crossref_primary_10_3389_fpsyt_2017_00182
crossref_primary_10_1038_s41467_023_44632_x
crossref_primary_10_1098_rstb_2013_0478
crossref_primary_10_1038_s41467_019_11934_y
crossref_primary_10_1002_wcs_1217
crossref_primary_10_2139_ssrn_3201149
crossref_primary_10_1162_jocn_a_00333
crossref_primary_10_1162_jocn_a_00971
crossref_primary_10_1016_j_jmp_2019_102276
crossref_primary_10_1146_annurev_neuro_072116_031132
crossref_primary_10_1017_S0140525X10003134
crossref_primary_10_1016_j_cortex_2023_04_017
crossref_primary_10_1007_s12311_010_0192_7
crossref_primary_10_1016_j_bandc_2017_03_008
crossref_primary_10_1080_13546805_2015_1136206
crossref_primary_10_1016_j_neubiorev_2024_105737
crossref_primary_10_1038_s41562_018_0455_8
crossref_primary_10_1162_NECO_a_00270
crossref_primary_10_1162_netn_a_00136
crossref_primary_10_7554_eLife_15192
crossref_primary_10_1111_psyp_14235
crossref_primary_10_3758_s13415_014_0325_4
crossref_primary_10_1016_j_neuroimage_2017_05_041
crossref_primary_10_1016_j_neuron_2018_03_042
crossref_primary_10_1002_aur_177
crossref_primary_10_1371_journal_pone_0072508
crossref_primary_10_3758_s13415_014_0332_5
crossref_primary_10_1093_scan_nsq041
crossref_primary_10_1093_cercor_bhr114
crossref_primary_10_3758_s13415_023_01099_z
crossref_primary_10_1016_j_cobeha_2018_12_008
crossref_primary_10_1016_j_neuroscience_2016_07_025
crossref_primary_10_3758_s13415_011_0040_3
crossref_primary_10_1016_j_tics_2022_04_005
crossref_primary_10_3389_fnhum_2019_00271
crossref_primary_10_3758_s13415_014_0277_8
crossref_primary_10_1523_JNEUROSCI_6486_10_2011
crossref_primary_10_1016_j_conb_2012_05_011
crossref_primary_10_1007_s10539_012_9346_y
crossref_primary_10_1111_psyp_13399
crossref_primary_10_1093_cercor_bht293
crossref_primary_10_1371_journal_pone_0210597
crossref_primary_10_1177_1088868313495594
crossref_primary_10_1038_s41467_017_01703_0
crossref_primary_10_3389_fpsyg_2017_02048
crossref_primary_10_7554_eLife_67778
crossref_primary_10_1016_j_cogpsych_2010_03_001
crossref_primary_10_1097_SIH_0b013e3182a86165
crossref_primary_10_7554_eLife_12029
crossref_primary_10_1093_cercor_bhab205
crossref_primary_10_3389_fnhum_2018_00472
crossref_primary_10_1523_ENEURO_0151_18_2018
crossref_primary_10_1016_j_neuroimage_2016_06_006
crossref_primary_10_1523_JNEUROSCI_1101_17_2017
crossref_primary_10_1098_rstb_2018_0133
crossref_primary_10_3758_s13415_013_0220_4
crossref_primary_10_1111_psyp_12911
crossref_primary_10_3390_brainsci12020262
crossref_primary_10_1016_j_neubiorev_2017_02_014
crossref_primary_10_1016_j_neuron_2013_09_007
crossref_primary_10_3389_fnins_2020_00647
crossref_primary_10_1162_jocn_a_01777
crossref_primary_10_1073_pnas_1014938108
crossref_primary_10_1016_j_conb_2012_08_003
crossref_primary_10_1016_j_psychres_2014_08_013
crossref_primary_10_1371_journal_pone_0255430
crossref_primary_10_1038_srep43119
crossref_primary_10_1093_cercor_bhv216
crossref_primary_10_1007_s00422_013_0571_5
crossref_primary_10_1038_npp_2010_96
crossref_primary_10_3758_s13415_014_0250_6
crossref_primary_10_1007_s40616_014_0015_x
crossref_primary_10_7717_peerj_1631
crossref_primary_10_1177_0145445514521630
crossref_primary_10_1111_psyp_13979
crossref_primary_10_1016_j_neuroimage_2012_12_003
crossref_primary_10_1007_s10539_013_9385_z
crossref_primary_10_1177_0145445517730830
crossref_primary_10_1007_s00213_019_5165_z
crossref_primary_10_3389_fpsyg_2014_01108
crossref_primary_10_1002_jeab_680
crossref_primary_10_3758_s13415_012_0125_7
crossref_primary_10_1073_pnas_1117189108
crossref_primary_10_1016_j_cognition_2020_104448
crossref_primary_10_1073_pnas_1506367112
crossref_primary_10_1111_j_1460_9568_2011_07920_x
crossref_primary_10_1523_JNEUROSCI_6316_10_2011
crossref_primary_10_1098_rsos_202002
crossref_primary_10_1371_journal_pcbi_1010751
crossref_primary_10_1016_j_jecp_2021_105230
crossref_primary_10_1523_JNEUROSCI_4775_14_2015
crossref_primary_10_1523_ENEURO_0126_20_2020
crossref_primary_10_1016_j_neuroimage_2013_02_074
crossref_primary_10_7554_eLife_48293
crossref_primary_10_5334_joc_53
crossref_primary_10_1111_cros_12290
crossref_primary_10_1016_j_actpsy_2017_04_006
crossref_primary_10_1016_j_actpsy_2017_04_005
crossref_primary_10_1016_j_cognition_2023_105468
crossref_primary_10_1073_pnas_2414518121
crossref_primary_10_1016_j_neuron_2012_03_042
crossref_primary_10_1093_cercor_bht218
crossref_primary_10_1162_jocn_a_01117
crossref_primary_10_1016_j_neuron_2015_03_015
crossref_primary_10_1146_annurev_neuro_101822_122427
crossref_primary_10_1371_journal_pcbi_1005684
crossref_primary_10_1111_cogs_12688
crossref_primary_10_1523_JNEUROSCI_2344_12_2012
crossref_primary_10_1371_journal_pone_0128047
crossref_primary_10_1016_j_bbr_2016_08_023
crossref_primary_10_1016_j_biopsych_2017_05_025
crossref_primary_10_1016_j_biopsych_2012_01_023
crossref_primary_10_1016_j_procs_2021_08_029
crossref_primary_10_1038_s41562_022_01346_2
Cites_doi 10.1038/nn1560
10.1016/S0028-3932(02)00157-4
10.1037/0096-3445.120.1.3
10.1073/pnas.0706111104
10.1037/0735-7044.120.3.497
10.1523/JNEUROSCI.1010-06.2006
10.1093/cercor/bhj122
10.1007/BF00992698
10.1901/jeab.2005.110-04
10.3758/CABN.1.2.137
10.1016/j.neuron.2005.06.020
10.1152/jn.00086.2003
10.1523/JNEUROSCI.17-21-08147.1997
10.3758/CABN.3.1.27
10.1111/j.1467-9280.2006.01769.x
10.1097/00001756-200502080-00007
10.1037/0033-295X.113.2.300
10.1152/jn.00910.2002
10.1126/science.1115270
10.1016/j.tics.2006.01.009
10.1006/nlme.1998.3843
10.1126/science.275.5306.1593
10.1901/jeab.1986.45-237
10.1523/JNEUROSCI.4421-06.2007
10.1016/j.neuropsychologia.2006.03.030
10.1038/sj.npp.1301278
10.1038/81460
10.1037/0003-066X.58.9.697
10.1038/nrn1919
10.1523/JNEUROSCI.16-05-01936.1996
10.1016/S0896-6273(03)00169-7
10.1037/h0062555
10.1093/comjnl/7.4.308
10.1037/0033-295X.105.3.442
10.1016/j.neunet.2006.03.006
10.1109/TAC.1974.1100705
10.1093/brain/awh043
10.1146/annurev.neuro.24.1.167
10.1037/0278-7393.15.2.282
10.1037/0033-295X.108.2.311
10.1038/nature03287
10.1038/nature04766
10.1111/1468-0262.00054
10.1073/pnas.0608842104
10.1126/science.1146157
10.1162/089976606775093909
10.3758/BF03197224
10.1523/JNEUROSCI.2496-07.2007
10.1146/annurev.neuro.28.061604.135722
10.1126/science.1100907
10.1111/1467-8721.ep10769746
10.1016/S0896-6273(03)00154-5
10.1016/j.nlm.2004.06.004
10.1037/0033-2909.119.1.3
10.1196/annals.1390.022
10.1126/science.1102941
10.3758/LB.36.3.210
10.1901/jeab.1979.31-53
10.1126/science.1145044
10.1073/pnas.0502455102
10.1111/j.1551-6709.2009.01010.x
10.1162/0898929052880093
10.1111/j.0956-7976.2004.00715.x
10.1126/science.1094285
10.1126/science.1082976
ContentType Journal Article
Conference Proceeding
Copyright 2009 Elsevier B.V.
Elsevier B.V.
2015 INIST-CNRS
2009 Elsevier B.V. All rights reserved. 2009
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: 2009 Elsevier B.V. All rights reserved. 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QO
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1016/j.brainres.2009.07.007
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Animal Behavior Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-6240
EndPage 94
ExternalDocumentID PMC3050481
19595993
22352881
10_1016_j_brainres_2009_07_007
S0006899309013870
1_s2_0_S0006899309013870
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH080066
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYJJ
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
VH1
WUQ
X7M
XPP
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AADPK
AAIAV
ABYKQ
AFMIJ
AHPSJ
AJBFU
EFLBG
AAYXX
AGRNS
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QO
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c640t-722e80d6cc6e56c826c65cc1b3c6d64467b19a59747c63530e477daa88a11f693
IEDL.DBID .~1
ISSN 0006-8993
1872-6240
IngestDate Thu Aug 21 14:34:51 EDT 2025
Fri Sep 05 03:47:51 EDT 2025
Fri Sep 05 08:53:12 EDT 2025
Mon Jul 21 06:03:55 EDT 2025
Wed Apr 02 07:18:15 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 01:21:17 EDT 2025
Fri Feb 23 02:29:29 EST 2024
Sun Feb 23 10:19:32 EST 2025
Tue Aug 26 16:31:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Rule-governance
Basal ganglia
Dopamine
Reward
Reinforcement learning
Central nervous system
Rule-govemance
Basal ganglion
Catecholamine
Encephalon
Learning
Acquisition process
Behavioral analysis
Neurotransmitter
Reinforcement
Rule
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Computational Cognitive Neuroscience II
MergedId FETCHMERGED-LOGICAL-c640t-722e80d6cc6e56c826c65cc1b3c6d64467b19a59747c63530e477daa88a11f693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006899309013870
PMID 19595993
PQID 21107567
PQPubID 23462
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3050481
proquest_miscellaneous_67689737
proquest_miscellaneous_21107567
pubmed_primary_19595993
pascalfrancis_primary_22352881
crossref_primary_10_1016_j_brainres_2009_07_007
crossref_citationtrail_10_1016_j_brainres_2009_07_007
elsevier_sciencedirect_doi_10_1016_j_brainres_2009_07_007
elsevier_clinicalkeyesjournals_1_s2_0_S0006899309013870
elsevier_clinicalkey_doi_10_1016_j_brainres_2009_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-03
PublicationDateYYYYMMDD 2009-11-03
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-03
  day: 03
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Baum (bib5) 2004
Miller, Cohen (bib49) 2001
Watkins, Dayan (bib79) 1992
Frank, Samanta, Moustafa, Sherman (bib30) 2007
Hertwig, Barron, Weber, Erev (bib39) 2004
Noelle, Cottrell (bib56) 2000
Schultz, Dayan, Montague (bib73) 1997
Kaufman, Baron, Kopp (bib42) 1966
Biele, Rieskamp, Gonzalez (bib6) 2009; 33
Camerer, Ho (bib11) 1999
Schönberg, Daw, Joel, O'Doherty (bib71) 2007
Frank, Loughry, O'Reilly (bib25) 2001
Graybiel (bib34) 1998
Joel, Weiner (bib40) 1999
Bunge, Kahn, Wallis, Miller, Wagner (bib10) 2003
Wallis, Miller (bib78) 2003
Klein, Neumann, Reuter, Hennig, von Cramon, Ullsperger (bib43) 2007
O'Doherty, Hampton, Kim (bib61) 2007
Filoteo, Maddox, Simmons, Ing, Cagigas, Matthews, Paulus (bib20) 2005
Bunge, Souza (bib9) 2008
Atallah, Frank, O'Reilly (bib4) 2004
Schultz (bib72) 2007
O'Reilly, Munakata (bib63) 2000
Delgado, Locke, Stenger, Fiez (bib17) 2003
Rougier, Noelle, Braver, Cohen, O'Reilly (bib67) 2005
Frank, O'Reilly (bib24) 2006
Noelle, Cottrell (bib55) 1996
Goto, Grace (bib33) 2007
Thorndike (bib77) 1911
Braver, Gray, Burgess (bib8) 2007
Pasupathy, Miller (bib65) 2005
Hampton, Bossaerts, O'Doherty (bib35) 2006
McClure, Laibson, Loewenstein, Cohen (bib48) 2004
Seiss, Praamstra (bib74) 2004
O'Reilly, Rudy (bib64) 2001
Skinner (bib75) 1938
O'Doherty, Dayan, Schultz, Deichmann, Friston, Dolan (bib60) 2004
Sanfey, Loewenstein, McClure, Cohen (bib70) 2006
Frank, Claus (bib23) 2006
Frank (bib21) 2005
O'Reilly, Frank (bib62) 2006
Frank, Santamaria, O'Reilly, Willcutt (bib31) 2007
Montague, Dayan, Sejnowski (bib50) 1996
O'Doherty, Dayan, Friston, Critchley, Dolan (bib59) 2003
Yin, Knowlton (bib80) 2006
Lau, Glimcher (bib45) 2005
Hayes, Brownstein, Zettle, Rosenfarb, Korn (bib38) 1986
Cools, Altamirano, D'Esposito (bib13) 2006
Frank, Moustafa, Haughey, Curran, Hutchison (bib29) 2007
Frank (bib22) 2006
Durstewitz, Seamans, Sejnowski (bib18) 2000
Nomura, Maddox, Filoteo, Ing, Gitelman, Parrish, Mesulam, Reber (bib57) 2007
Noelle, Cottrell (bib54) 1995
Kruschke (bib44) 2008; 36
Sloman (bib76) 1996
Frank, Woroch, Curran (bib27) 2005
Ashby, Alfonso-Reese, Turken, Waldron (bib3) 1998
Nelder, Mead (bib52) 1965
Dearden, R., Friedman, N., Russell, S., 1998. Bayesian q-learning. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI).
Frank, O' Reilly, Curran (bib28) 2006
Nishi, Snyder, Greengard (bib53) 1997
Akaike (bib1) 1974
Sanfey, Rilling, Aronson, Nystrom, Cohen (bib69) 2003
Nosofsky, Clark, Shin (bib58) 1989
(bib36) 1989
Cohen, Ranganath (bib12) 2007
Daw, Niv, Dayan (bib14) 2005
Daw, O'Doherty, Dayan, Seymour, Dolan (bib15) 2006
Kahneman (bib41) 2003
Hayes (bib37) 1993
Lohrenz, McCabe, Camerer, Montague (bib46) 2007
Galizio (bib32) 1979
Poldrack, Packard (bib66) 2003
Neal, Hesketh, Andrews (bib51) 1995
Allen, Brooks (bib2) 1991
McClure, Berns, Montague (bib47) 2003
Frank, Seeberger, O'Reilly (bib26) 2004
Samejima, Ueda, Doya, Kimura (bib68) 2005
Braver, Cohen (bib7) 2000
Estes (bib19) 1950
Rougier (10.1016/j.brainres.2009.07.007_bib67) 2005
Lohrenz (10.1016/j.brainres.2009.07.007_bib46) 2007
Schultz (10.1016/j.brainres.2009.07.007_bib73) 1997
Miller (10.1016/j.brainres.2009.07.007_bib49) 2001
Hertwig (10.1016/j.brainres.2009.07.007_bib39) 2004
Wallis (10.1016/j.brainres.2009.07.007_bib78) 2003
Frank (10.1016/j.brainres.2009.07.007_bib23) 2006
Nelder (10.1016/j.brainres.2009.07.007_bib52) 1965
Sloman (10.1016/j.brainres.2009.07.007_bib76) 1996
Daw (10.1016/j.brainres.2009.07.007_bib15) 2006
Galizio (10.1016/j.brainres.2009.07.007_bib32) 1979
Noelle (10.1016/j.brainres.2009.07.007_bib55) 1996
O'Doherty (10.1016/j.brainres.2009.07.007_bib60) 2004
Ashby (10.1016/j.brainres.2009.07.007_bib3) 1998
O'Reilly (10.1016/j.brainres.2009.07.007_bib63) 2000
Hayes (10.1016/j.brainres.2009.07.007_bib38) 1986
Sanfey (10.1016/j.brainres.2009.07.007_bib70) 2006
Kaufman (10.1016/j.brainres.2009.07.007_bib42) 1966
Atallah (10.1016/j.brainres.2009.07.007_bib4) 2004
Frank (10.1016/j.brainres.2009.07.007_bib30) 2007
Allen (10.1016/j.brainres.2009.07.007_bib2) 1991
Noelle (10.1016/j.brainres.2009.07.007_bib54) 1995
Hampton (10.1016/j.brainres.2009.07.007_bib35) 2006
Sanfey (10.1016/j.brainres.2009.07.007_bib69) 2003
Durstewitz (10.1016/j.brainres.2009.07.007_bib18) 2000
Poldrack (10.1016/j.brainres.2009.07.007_bib66) 2003
Baum (10.1016/j.brainres.2009.07.007_bib5) 2004
Cools (10.1016/j.brainres.2009.07.007_bib13) 2006
Frank (10.1016/j.brainres.2009.07.007_bib27) 2005
Delgado (10.1016/j.brainres.2009.07.007_bib17) 2003
Joel (10.1016/j.brainres.2009.07.007_bib40) 1999
Watkins (10.1016/j.brainres.2009.07.007_bib79) 1992
Frank (10.1016/j.brainres.2009.07.007_bib24) 2006
Goto (10.1016/j.brainres.2009.07.007_bib33) 2007
Braver (10.1016/j.brainres.2009.07.007_bib8) 2007
Cohen (10.1016/j.brainres.2009.07.007_bib12) 2007
Daw (10.1016/j.brainres.2009.07.007_bib14) 2005
McClure (10.1016/j.brainres.2009.07.007_bib47) 2003
Bunge (10.1016/j.brainres.2009.07.007_bib10) 2003
O'Reilly (10.1016/j.brainres.2009.07.007_bib64) 2001
Bunge (10.1016/j.brainres.2009.07.007_bib9) 2008
Seiss (10.1016/j.brainres.2009.07.007_bib74) 2004
Lau (10.1016/j.brainres.2009.07.007_bib45) 2005
Frank (10.1016/j.brainres.2009.07.007_bib28) 2006
Schönberg (10.1016/j.brainres.2009.07.007_bib71) 2007
Frank (10.1016/j.brainres.2009.07.007_bib21) 2005
Frank (10.1016/j.brainres.2009.07.007_bib31) 2007
Akaike (10.1016/j.brainres.2009.07.007_bib1) 1974
10.1016/j.brainres.2009.07.007_bib16
Kahneman (10.1016/j.brainres.2009.07.007_bib41) 2003
Hayes (10.1016/j.brainres.2009.07.007_bib37) 1993
Yin (10.1016/j.brainres.2009.07.007_bib80) 2006
Pasupathy (10.1016/j.brainres.2009.07.007_bib65) 2005
Neal (10.1016/j.brainres.2009.07.007_bib51) 1995
Nishi (10.1016/j.brainres.2009.07.007_bib53) 1997
Klein (10.1016/j.brainres.2009.07.007_bib43) 2007
Samejima (10.1016/j.brainres.2009.07.007_bib68) 2005
Montague (10.1016/j.brainres.2009.07.007_bib50) 1996
Braver (10.1016/j.brainres.2009.07.007_bib7) 2000
McClure (10.1016/j.brainres.2009.07.007_bib48) 2004
Thorndike (10.1016/j.brainres.2009.07.007_bib77) 1911
Biele (10.1016/j.brainres.2009.07.007_bib6) 2009; 33
Frank (10.1016/j.brainres.2009.07.007_bib25) 2001
Skinner (10.1016/j.brainres.2009.07.007_bib75) 1938
Nomura (10.1016/j.brainres.2009.07.007_bib57) 2007
Filoteo (10.1016/j.brainres.2009.07.007_bib20) 2005
Frank (10.1016/j.brainres.2009.07.007_bib22) 2006
Schultz (10.1016/j.brainres.2009.07.007_bib72) 2007
(10.1016/j.brainres.2009.07.007_bib36) 1989
Nosofsky (10.1016/j.brainres.2009.07.007_bib58) 1989
O'Doherty (10.1016/j.brainres.2009.07.007_bib59) 2003
O'Doherty (10.1016/j.brainres.2009.07.007_bib61) 2007
Noelle (10.1016/j.brainres.2009.07.007_bib56) 2000
Kruschke (10.1016/j.brainres.2009.07.007_bib44) 2008; 36
Camerer (10.1016/j.brainres.2009.07.007_bib11) 1999
Graybiel (10.1016/j.brainres.2009.07.007_bib34) 1998
Estes (10.1016/j.brainres.2009.07.007_bib19) 1950
Frank (10.1016/j.brainres.2009.07.007_bib26) 2004
O'Reilly (10.1016/j.brainres.2009.07.007_bib62) 2006
Frank (10.1016/j.brainres.2009.07.007_bib29) 2007
References_xml – start-page: 108
  year: 2006
  end-page: 116
  ident: bib70
  article-title: Neuroeconomics: cross-currents in research on decision-making
  publication-title: Trends Cogn. Sci.
– start-page: 876
  year: 2006
  end-page: 879
  ident: bib15
  article-title: Cortical substrates for exploratory decisions in humans
  publication-title: Nature
– start-page: 329
  year: 2003
  end-page: 337
  ident: bib59
  article-title: Temporal difference models and reward-related learning in the human brain
  publication-title: Neuron
– start-page: 27
  year: 2003
  end-page: 38
  ident: bib17
  article-title: Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations
  publication-title: Cogn., Affect. Behav. Neurosci.
– start-page: 1120
  year: 2006
  end-page: 1136
  ident: bib22
  article-title: Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making
  publication-title: Neural Netw.
– start-page: 497
  year: 2006
  end-page: 517
  ident: bib24
  article-title: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol
  publication-title: Behav. Neurosci.
– start-page: 452
  year: 2004
  end-page: 454
  ident: bib60
  article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning
  publication-title: Science
– start-page: 259
  year: 2007
  end-page: 288
  ident: bib72
  article-title: Multiple dopamine functions at different time courses
  publication-title: Ann. Rev. Neurosci.
– start-page: 9493
  year: 2007
  end-page: 9498
  ident: bib46
  article-title: Neural signature of fictive learning signals in a sequential investment task
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 3419
  year: 2003
  end-page: 3428
  ident: bib10
  article-title: Neural circuits subserving the retrieval and maintenance of abstract rules
  publication-title: J. Neurophysiol.
– start-page: 53
  year: 1979
  end-page: 70
  ident: bib32
  article-title: Contingency-shaped and rule-governed behavior: instructional control of human loss avoidance
  publication-title: J. Exp. Anal. Behav.
– start-page: 7338
  year: 2005
  end-page: 7343
  ident: bib67
  article-title: Prefrontal cortex and the flexibility of cognitive control: rules without symbols
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 200
  year: 1950
  end-page: 205
  ident: bib19
  article-title: Effects of competing reactions on the conditioning curve for bar pressing
  publication-title: J. Exp. Psychol.
– start-page: 111
  year: 2005
  end-page: 115
  ident: bib20
  article-title: Cortical and subcortical brain regions involved in rule-based category learning
  publication-title: Neuroreport
– start-page: 330
  year: 2004
  end-page: 339
  ident: bib74
  article-title: The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson's disease
  publication-title: Brain
– start-page: 76
  year: 2007
  end-page: 106
  ident: bib8
  article-title: Explaining the many varieties of working memory variation: dual mechanisms of cognitive control
  publication-title: Variation in Working Memory
– year: 2007
  ident: bib33
  article-title: Dopamine modulation of hippocampal prefrontal cortical interaction drives memory-guided behavior
  publication-title: Cereb. Cortex
– reference: Dearden, R., Friedman, N., Russell, S., 1998. Bayesian q-learning. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI).
– start-page: 873
  year: 2005
  end-page: 876
  ident: bib65
  article-title: Different time courses for learning-related activity in the prefrontal cortex and striatum
  publication-title: Nature
– start-page: 35
  year: 2007
  end-page: 53
  ident: bib61
  article-title: Model-based fmri and its application to reward learning and decision making
  publication-title: Ann. N. Y. Acad. Sci.
– start-page: 369
  year: 1995
  end-page: 374
  ident: bib54
  article-title: A connectionist model of instruction following
  publication-title: Proceedings of the 17th Annual Conference of the Cognitive Science Society
– start-page: 1940
  year: 2004
  end-page: 1943
  ident: bib26
  article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism
  publication-title: Science
– start-page: 827
  year: 1999
  end-page: 874
  ident: bib11
  article-title: Experienced-weighted attraction learning in normal form games
  publication-title: Econometrica
– start-page: 12860
  year: 2007
  end-page: 12867
  ident: bib71
  article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making
  publication-title: J. Neurosci.
– start-page: 3
  year: 1996
  end-page: 22
  ident: bib76
  article-title: The empirical case for two systems of reasoning
  publication-title: Pscyhological Bulletin
– start-page: 1790
  year: 2003
  end-page: 1806
  ident: bib78
  article-title: From rule to response: neuronal processes in the premotor and prefrontal cortex
  publication-title: J. Neurophysiol.
– start-page: 1309
  year: 2007
  end-page: 1312
  ident: bib30
  article-title: Hold your horses: impulsivity, deep brain stimulation and medication in parkinsonism
  publication-title: Science
– start-page: 279
  year: 1992
  ident: bib79
  article-title: Technical note: Q-learning
  publication-title: Mach. Learn.
– year: 2004
  ident: bib5
  article-title: Understanding Behaviorism: Behavior, Culture, and Evolution
– start-page: 8147
  year: 1997
  end-page: 8155
  ident: bib53
  article-title: Bidirectional regulation of DARPP-32 phosphorylation by dopamine
  publication-title: J. Neurosci.
– start-page: 716
  year: 1974
  end-page: 723
  ident: bib1
  article-title: A new look at the statistical mode identification
  publication-title: IEEE Trans. Automat. Contr.
– start-page: 700
  year: 2006
  end-page: 707
  ident: bib28
  article-title: When memory fails, intuition reigns: midazolam enhances implicit inference in humans
  publication-title: Psychol. Sci.
– start-page: 1755
  year: 2003
  end-page: 1757
  ident: bib69
  article-title: The neural basis of economic decision-making in the ultimatum game
  publication-title: Science
– start-page: 237
  year: 1986
  end-page: 256
  ident: bib38
  article-title: Rule-governed behavior and sensitivity to changing consequences of responding
  publication-title: J. Exp. Anal. Behav.
– year: 1938
  ident: bib75
  article-title: The Behavior of Organisms
– start-page: 1337
  year: 2005
  end-page: 1340
  ident: bib68
  article-title: Representation of action-specific reward values in the striatum
  publication-title: Science
– start-page: 1184
  year: 2000
  end-page: 1191
  ident: bib18
  article-title: Neurocomputational models of working memory
  publication-title: Nat. Neurosci., (suppl. 3)
– start-page: 1583
  year: 2007
  end-page: 1599
  ident: bib31
  article-title: Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder
  publication-title: Neuropsychopharmacology
– start-page: 1642
  year: 2007
  end-page: 1645
  ident: bib43
  article-title: Genetically determined differences in learning from errors
  publication-title: Science
– start-page: 713
  year: 2000
  end-page: 737
  ident: bib7
  article-title: On the control of control: the role of dopamine in regulating prefrontal function and working memory
  publication-title: Control of Cognitive Processes: Attention and Performance XVIII
– year: 1989
  ident: bib36
  publication-title: Rule-governed Behavior: Cognition, Contingencies, and Instructional Control
– start-page: 283
  year: 2006
  end-page: 328
  ident: bib62
  article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
  publication-title: Neural Computat.
– start-page: 534
  year: 2004
  end-page: 539
  ident: bib39
  article-title: Decisions from experience and the effect of rare events in risky choice
  publication-title: Psychol. Sci.
– volume: 36
  start-page: 210
  year: 2008
  end-page: 226
  ident: bib44
  article-title: Bayesian approaches to associative learning: From passive to active learning
  publication-title: Learning and Behavior.
– start-page: 311
  year: 2001
  end-page: 345
  ident: bib64
  article-title: Conjunctive representations in learning and memory: principles of cortical and hippocampal function
  publication-title: Psychol. Rev.
– start-page: 503
  year: 2004
  end-page: 507
  ident: bib48
  article-title: Separate neural systems value immediate and delayed rewards
  publication-title: Science
– start-page: 253
  year: 2004
  end-page: 267
  ident: bib4
  article-title: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems
  publication-title: Neurobiol. Learn. Mem.
– start-page: 697
  year: 2003
  end-page: 720
  ident: bib41
  article-title: A perspective on judgment and choice: mapping bounded rationality
  publication-title: Am. Psychol.
– start-page: 37
  year: 2007
  end-page: 43
  ident: bib57
  article-title: Neural correlates of rule-based and information-integration visual category learning
  publication-title: Cereb. Cortex
– start-page: 245
  year: 2003
  end-page: 251
  ident: bib66
  article-title: Competition among multiple memory systems: converging evidence from animal and human brain studies
  publication-title: Neuropsychologia
– start-page: 442
  year: 1998
  end-page: 481
  ident: bib3
  article-title: A neuropsychological theory of multiple systems in category learning
  publication-title: Psychol. Rev.
– volume: 33
  start-page: 206
  year: 2009
  end-page: 242
  ident: bib6
  article-title: Computational models for the combination of advice and individual learning
  publication-title: Cognitive Science
– start-page: 51
  year: 2005
  end-page: 72
  ident: bib21
  article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism
  publication-title: J. Cogn. Neurosci.
– start-page: 3
  year: 1991
  end-page: 19
  ident: bib2
  article-title: Specializing the operation of an explicit rule
  publication-title: J. Exp. Psychol.: Gen.
– start-page: 1663
  year: 2006
  end-page: 1673
  ident: bib13
  article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence
  publication-title: Neuropsychologia
– start-page: 167
  year: 2001
  end-page: 202
  ident: bib49
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Ann. Rev. Neurosci.
– start-page: 555
  year: 2005
  end-page: 579
  ident: bib45
  article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys
  publication-title: J. Exp. Anal. Behav.
– start-page: 339
  year: 2003
  end-page: 346
  ident: bib47
  article-title: Temporal prediction errors in a passive learning task activate human striatum
  publication-title: Neuron
– start-page: 464
  year: 2006
  end-page: 476
  ident: bib80
  article-title: The role of the basal ganglia in habit formation
  publication-title: Nat. Rev. Neurosci.
– start-page: 1936
  year: 1996
  end-page: 1947
  ident: bib50
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J. Neurosci.
– start-page: 329
  year: 1996
  end-page: 334
  ident: bib55
  article-title: In search of articulated attractors
  publication-title: Proceedings of the 18th Annual Conference of the Cognitive Science Society
– start-page: 227
  year: 1995
  end-page: 242
  ident: bib51
  article-title: Instance-based categorization: automatic versus intentional forms of retrieval
  publication-title: Mem. Cognit.
– start-page: 16311
  year: 2007
  end-page: 16316
  ident: bib29
  article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 193
  year: 1993
  end-page: 197
  ident: bib37
  article-title: Rule governance: basic behavioral research and applied implications
  publication-title: Curr. Dir. Psychol. Sci.
– year: 1911
  ident: bib77
  article-title: Animal Intelligence: Experimental Studies
– start-page: 1704
  year: 2005
  end-page: 1711
  ident: bib14
  article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
– start-page: 243
  year: 1966
  end-page: 250
  ident: bib42
  article-title: Some effects of instructions on human operant behavior
  publication-title: Psychonomic Monograph Supplements
– start-page: 308
  year: 1965
  end-page: 313
  ident: bib52
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
– start-page: 495
  year: 2005
  end-page: 501
  ident: bib27
  article-title: Error-related negativity predicts reinforcement learning and conflict biases
  publication-title: Neuron
– start-page: 1593
  year: 1997
  ident: bib73
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– start-page: 45
  year: 2008
  end-page: 65
  ident: bib9
  article-title: Neuroscience of rule-guided behavior
  publication-title: Chap. Neural Representations Used to Specify Action
– start-page: 300
  year: 2006
  end-page: 326
  ident: bib23
  article-title: Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal
  publication-title: Psychol. Rev.
– start-page: 358
  year: 2000
  end-page: 363
  ident: bib56
  article-title: Individual differences in exemplar-based interference during instructed category learning
  publication-title: Proceedings of the Twenty-second Annual Conference of the Cognitive Science Society
– year: 2000
  ident: bib63
  article-title: Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain
– start-page: 282
  year: 1989
  end-page: 304
  ident: bib58
  article-title: Rules and exemplars in categorization, identification, and recognition
  publication-title: J. Exper. Psychol., Learn., Mem., Cogn.
– start-page: 137
  year: 2001
  end-page: 160
  ident: bib25
  article-title: Interactions between the frontal cortex and basal ganglia in working memory: a computational model
  publication-title: Cogn., Affect. Behav. Neurosci.
– start-page: 119
  year: 1998
  end-page: 136
  ident: bib34
  article-title: The basal ganglia and chunking of action repertoires
  publication-title: Neurobiol. Learn Mem.
– start-page: 209
  year: 1999
  end-page: 236
  ident: bib40
  article-title: Striatal contention scheduling and the split circuit scheme of basal ganglia-thalamocortical circuitry: from anatomy to behaviour
  publication-title: Conceptual Advances in Brain Research: Brain Dynamics and the Striatal Complex
– start-page: 371
  year: 2007
  end-page: 378
  ident: bib12
  article-title: Reinforcement learning signals predict future decisions
  publication-title: J. Neurosci.
– start-page: 8360
  year: 2006
  end-page: 8367
  ident: bib35
  article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans
  publication-title: J. Neurosci.
– start-page: 1704
  issue: 12
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib14
  article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1560
– start-page: 245
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib66
  article-title: Competition among multiple memory systems: converging evidence from animal and human brain studies
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(02)00157-4
– start-page: 3
  issue: 1
  year: 1991
  ident: 10.1016/j.brainres.2009.07.007_bib2
  article-title: Specializing the operation of an explicit rule
  publication-title: J. Exp. Psychol.: Gen.
  doi: 10.1037/0096-3445.120.1.3
– start-page: 16311
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib29
  article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706111104
– start-page: 497
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib24
  article-title: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.120.3.497
– start-page: 329
  year: 1996
  ident: 10.1016/j.brainres.2009.07.007_bib55
  article-title: In search of articulated attractors
– start-page: 8360
  issue: 32
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib35
  article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1010-06.2006
– start-page: 37
  issue: 1
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib57
  article-title: Neural correlates of rule-based and information-integration visual category learning
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj122
– year: 1911
  ident: 10.1016/j.brainres.2009.07.007_bib77
– start-page: 279
  year: 1992
  ident: 10.1016/j.brainres.2009.07.007_bib79
  article-title: Technical note: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
– start-page: 555
  issue: 3
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib45
  article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.2005.110-04
– start-page: 137
  year: 2001
  ident: 10.1016/j.brainres.2009.07.007_bib25
  article-title: Interactions between the frontal cortex and basal ganglia in working memory: a computational model
  publication-title: Cogn., Affect. Behav. Neurosci.
  doi: 10.3758/CABN.1.2.137
– start-page: 495
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib27
  article-title: Error-related negativity predicts reinforcement learning and conflict biases
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.06.020
– start-page: 369
  year: 1995
  ident: 10.1016/j.brainres.2009.07.007_bib54
  article-title: A connectionist model of instruction following
– start-page: 1790
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib78
  article-title: From rule to response: neuronal processes in the premotor and prefrontal cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00086.2003
– start-page: 8147
  year: 1997
  ident: 10.1016/j.brainres.2009.07.007_bib53
  article-title: Bidirectional regulation of DARPP-32 phosphorylation by dopamine
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-21-08147.1997
– start-page: 27
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib17
  article-title: Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations
  publication-title: Cogn., Affect. Behav. Neurosci.
  doi: 10.3758/CABN.3.1.27
– start-page: 700
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib28
  article-title: When memory fails, intuition reigns: midazolam enhances implicit inference in humans
  publication-title: Psychol. Sci.
  doi: 10.1111/j.1467-9280.2006.01769.x
– start-page: 111
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib20
  article-title: Cortical and subcortical brain regions involved in rule-based category learning
  publication-title: Neuroreport
  doi: 10.1097/00001756-200502080-00007
– start-page: 300
  issue: 2
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib23
  article-title: Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.113.2.300
– start-page: 3419
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib10
  article-title: Neural circuits subserving the retrieval and maintenance of abstract rules
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00910.2002
– start-page: 1337
  issue: 5752
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib68
  article-title: Representation of action-specific reward values in the striatum
  publication-title: Science
  doi: 10.1126/science.1115270
– start-page: 108
  issue: 3
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib70
  article-title: Neuroeconomics: cross-currents in research on decision-making
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.01.009
– start-page: 119
  issue: 1–2
  year: 1998
  ident: 10.1016/j.brainres.2009.07.007_bib34
  article-title: The basal ganglia and chunking of action repertoires
  publication-title: Neurobiol. Learn Mem.
  doi: 10.1006/nlme.1998.3843
– start-page: 1593
  year: 1997
  ident: 10.1016/j.brainres.2009.07.007_bib73
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– start-page: 713
  year: 2000
  ident: 10.1016/j.brainres.2009.07.007_bib7
  article-title: On the control of control: the role of dopamine in regulating prefrontal function and working memory
– start-page: 237
  issue: 3
  year: 1986
  ident: 10.1016/j.brainres.2009.07.007_bib38
  article-title: Rule-governed behavior and sensitivity to changing consequences of responding
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.1986.45-237
– start-page: 371
  issue: 2
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib12
  article-title: Reinforcement learning signals predict future decisions
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4421-06.2007
– start-page: 243
  year: 1966
  ident: 10.1016/j.brainres.2009.07.007_bib42
  article-title: Some effects of instructions on human operant behavior
  publication-title: Psychonomic Monograph Supplements
– start-page: 1663
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib13
  article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2006.03.030
– start-page: 1583
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib31
  article-title: Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301278
– start-page: 1184
  year: 2000
  ident: 10.1016/j.brainres.2009.07.007_bib18
  article-title: Neurocomputational models of working memory
  publication-title: Nat. Neurosci., (suppl. 3)
  doi: 10.1038/81460
– start-page: 697
  issue: 9
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib41
  article-title: A perspective on judgment and choice: mapping bounded rationality
  publication-title: Am. Psychol.
  doi: 10.1037/0003-066X.58.9.697
– start-page: 464
  issue: 6
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib80
  article-title: The role of the basal ganglia in habit formation
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1919
– year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib5
– start-page: 1936
  year: 1996
  ident: 10.1016/j.brainres.2009.07.007_bib50
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-05-01936.1996
– start-page: 329
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib59
  article-title: Temporal difference models and reward-related learning in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00169-7
– start-page: 200
  year: 1950
  ident: 10.1016/j.brainres.2009.07.007_bib19
  article-title: Effects of competing reactions on the conditioning curve for bar pressing
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0062555
– start-page: 308
  year: 1965
  ident: 10.1016/j.brainres.2009.07.007_bib52
  article-title: A simplex method for function minimization
  publication-title: Computer Journal
  doi: 10.1093/comjnl/7.4.308
– start-page: 442
  issue: 3
  year: 1998
  ident: 10.1016/j.brainres.2009.07.007_bib3
  article-title: A neuropsychological theory of multiple systems in category learning
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.105.3.442
– start-page: 1120
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib22
  article-title: Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.03.006
– start-page: 716
  year: 1974
  ident: 10.1016/j.brainres.2009.07.007_bib1
  article-title: A new look at the statistical mode identification
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.1974.1100705
– start-page: 330
  issue: 2
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib74
  article-title: The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awh043
– year: 2000
  ident: 10.1016/j.brainres.2009.07.007_bib63
– start-page: 167
  year: 2001
  ident: 10.1016/j.brainres.2009.07.007_bib49
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Ann. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.167
– start-page: 282
  issue: 2
  year: 1989
  ident: 10.1016/j.brainres.2009.07.007_bib58
  article-title: Rules and exemplars in categorization, identification, and recognition
  publication-title: J. Exper. Psychol., Learn., Mem., Cogn.
  doi: 10.1037/0278-7393.15.2.282
– start-page: 311
  year: 2001
  ident: 10.1016/j.brainres.2009.07.007_bib64
  article-title: Conjunctive representations in learning and memory: principles of cortical and hippocampal function
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.108.2.311
– start-page: 76
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib8
  article-title: Explaining the many varieties of working memory variation: dual mechanisms of cognitive control
– start-page: 873
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib65
  article-title: Different time courses for learning-related activity in the prefrontal cortex and striatum
  publication-title: Nature
  doi: 10.1038/nature03287
– start-page: 876
  issue: 7095
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib15
  article-title: Cortical substrates for exploratory decisions in humans
  publication-title: Nature
  doi: 10.1038/nature04766
– start-page: 827
  year: 1999
  ident: 10.1016/j.brainres.2009.07.007_bib11
  article-title: Experienced-weighted attraction learning in normal form games
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00054
– start-page: 9493
  issue: 22
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib46
  article-title: Neural signature of fictive learning signals in a sequential investment task
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608842104
– start-page: 1309
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib30
  article-title: Hold your horses: impulsivity, deep brain stimulation and medication in parkinsonism
  publication-title: Science
  doi: 10.1126/science.1146157
– ident: 10.1016/j.brainres.2009.07.007_bib16
– start-page: 283
  year: 2006
  ident: 10.1016/j.brainres.2009.07.007_bib62
  article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
  publication-title: Neural Computat.
  doi: 10.1162/089976606775093909
– start-page: 358
  year: 2000
  ident: 10.1016/j.brainres.2009.07.007_bib56
  article-title: Individual differences in exemplar-based interference during instructed category learning
– start-page: 209
  year: 1999
  ident: 10.1016/j.brainres.2009.07.007_bib40
  article-title: Striatal contention scheduling and the split circuit scheme of basal ganglia-thalamocortical circuitry: from anatomy to behaviour
– start-page: 227
  issue: 2
  year: 1995
  ident: 10.1016/j.brainres.2009.07.007_bib51
  article-title: Instance-based categorization: automatic versus intentional forms of retrieval
  publication-title: Mem. Cognit.
  doi: 10.3758/BF03197224
– start-page: 12860
  issue: 47
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib71
  article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2496-07.2007
– start-page: 259
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib72
  article-title: Multiple dopamine functions at different time courses
  publication-title: Ann. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.28.061604.135722
– start-page: 503
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib48
  article-title: Separate neural systems value immediate and delayed rewards
  publication-title: Science
  doi: 10.1126/science.1100907
– start-page: 193
  year: 1993
  ident: 10.1016/j.brainres.2009.07.007_bib37
  article-title: Rule governance: basic behavioral research and applied implications
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/1467-8721.ep10769746
– start-page: 339
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib47
  article-title: Temporal prediction errors in a passive learning task activate human striatum
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00154-5
– start-page: 253
  issue: 3
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib4
  article-title: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2004.06.004
– start-page: 3
  year: 1996
  ident: 10.1016/j.brainres.2009.07.007_bib76
  article-title: The empirical case for two systems of reasoning
  publication-title: Pscyhological Bulletin
  doi: 10.1037/0033-2909.119.1.3
– year: 1989
  ident: 10.1016/j.brainres.2009.07.007_bib36
– start-page: 35
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib61
  article-title: Model-based fmri and its application to reward learning and decision making
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1390.022
– start-page: 1940
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib26
  article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism
  publication-title: Science
  doi: 10.1126/science.1102941
– volume: 36
  start-page: 210
  year: 2008
  ident: 10.1016/j.brainres.2009.07.007_bib44
  article-title: Bayesian approaches to associative learning: From passive to active learning
  publication-title: Learning and Behavior.
  doi: 10.3758/LB.36.3.210
– start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.brainres.2009.07.007_bib32
  article-title: Contingency-shaped and rule-governed behavior: instructional control of human loss avoidance
  publication-title: J. Exp. Anal. Behav.
  doi: 10.1901/jeab.1979.31-53
– start-page: 45
  year: 2008
  ident: 10.1016/j.brainres.2009.07.007_bib9
  article-title: Neuroscience of rule-guided behavior
– year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib33
  article-title: Dopamine modulation of hippocampal prefrontal cortical interaction drives memory-guided behavior
  publication-title: Cereb. Cortex
– start-page: 1642
  issue: 5856
  year: 2007
  ident: 10.1016/j.brainres.2009.07.007_bib43
  article-title: Genetically determined differences in learning from errors
  publication-title: Science
  doi: 10.1126/science.1145044
– year: 1938
  ident: 10.1016/j.brainres.2009.07.007_bib75
– start-page: 7338
  issue: 20
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib67
  article-title: Prefrontal cortex and the flexibility of cognitive control: rules without symbols
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0502455102
– volume: 33
  start-page: 206
  year: 2009
  ident: 10.1016/j.brainres.2009.07.007_bib6
  article-title: Computational models for the combination of advice and individual learning
  publication-title: Cognitive Science
  doi: 10.1111/j.1551-6709.2009.01010.x
– start-page: 51
  year: 2005
  ident: 10.1016/j.brainres.2009.07.007_bib21
  article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/0898929052880093
– start-page: 534
  issue: 8
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib39
  article-title: Decisions from experience and the effect of rare events in risky choice
  publication-title: Psychol. Sci.
  doi: 10.1111/j.0956-7976.2004.00715.x
– start-page: 452
  issue: 5669
  year: 2004
  ident: 10.1016/j.brainres.2009.07.007_bib60
  article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning
  publication-title: Science
  doi: 10.1126/science.1094285
– start-page: 1755
  year: 2003
  ident: 10.1016/j.brainres.2009.07.007_bib69
  article-title: The neural basis of economic decision-making in the ultimatum game
  publication-title: Science
  doi: 10.1126/science.1082976
SSID ssj0003390
Score 2.3898976
Snippet Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that...
AbstractHumans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Basal ganglia
Basal Ganglia - physiology
Biological and medical sciences
Choice Behavior - physiology
Computer Simulation
Dopamine
Dopamine - physiology
Fundamental and applied biological sciences. Psychology
Hippocampus - physiology
Humans
Models, Neurological
Nerve Net - physiology
Neural Networks, Computer
Neurology
Prefrontal Cortex - physiology
Psychomotor Performance - physiology
Reinforcement learning
Reinforcement, Psychology
Reward
Rule-governance
Vertebrates: nervous system and sense organs
Title Instructional control of reinforcement learning: A behavioral and neurocomputational investigation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006899309013870
https://www.clinicalkey.es/playcontent/1-s2.0-S0006899309013870
https://dx.doi.org/10.1016/j.brainres.2009.07.007
https://www.ncbi.nlm.nih.gov/pubmed/19595993
https://www.proquest.com/docview/21107567
https://www.proquest.com/docview/67689737
https://pubmed.ncbi.nlm.nih.gov/PMC3050481
Volume 1299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqckFCCCiP8Ag-IG7b7K7Xj-UWRVQpjwohKvVm-bU0FWyipj1w4bcz4_VmG6ACgXKIlMwksnc8ns-e-YaQFxAFNMqEJlOB86xSwWZWCA_LveRGcFn52Ovw_ZGYH1dvTvjJDpn1tTCYVpl8f-fTo7dOn0zSbE5WiwXW-OYC0ALLa7xtk4jbq0qire9_H9I8GOvOWRA5o_SVKuGzfYttGADWJt5KZDOU121Qt1ZmDdPWdP0ufheQ_pxXeWWjOrhDbqcIk067QdwlO6G9R_amLaDrr9_oSxpzPuNh-h6xhwOBLOikvHW6bOh5iJSqLp4e0tRb4vMrOqVDYT81raeRENPF3hDpXJEuBu6OZXufHB-8_jSbZ6nrQuZElV9ksiyDyr1wTgQuHMAPJ7hzhWVOeIiehLRFbSIOcRCtsDxUUnpjlDJF0YiaPSC77bINjwi13DCAR1467sEkrJIWBBsrPAZurhoR3k-1domSHDtjfNF97tmZ7h8R9susdY635XJEJhu9VUfK8UcN2T9J3ZecgpPUsG_8m2ZYp7W-1oVelzrXv9jjiNQbzS2T_qt_HW-Z22aYEM3xUqliRJ739qfBIeAtj2nD8hJ-BRE9F_J6CQEQs5YMJB529jpMYs3hVTMY9JYlbwSQjHz7m3ZxGknJYd9A6qHH_zHoJ-RmvKvDQ3v2lOyC_YdnEPJd2HFc02NyYzr7-O4Dvh--nR_9AEPtXPI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N3QNIaAIGrDA2PyDeQpM4_hHeqmlTy7Y-bdLeLNtxoBOk1bo98N9zdpx0BSYQqG-pr5Wd8_m-8913AO_QC6ildnUiHWNJIZ1JDOcVbvecac5EUYVeh-czPrksPl2xqy046mphfFpltP2tTQ_WOj4ZxdUcLedzX-ObckQLNC39bZtA3L5dMER7A9geT08ns94gU9qGWjx49gL3CoWvPxjfiQGRbaSu9ISG4qEz6slSr3Dl6rblxe980p9TK--dVSdPYSc6mWTczuMZbLnmOeyOGwTY376T9ySkfYZ4-i6Y6ZpDFmVi6jpZ1OTGBVZVGwKIJLaX-PyRjMm6tp_opiKBE9OG9hAxtEjma_qORfMCLk-OL44mSWy8kFhepLeJyHMn04pbyx3jFhGI5czazFDLK3SguDBZqQMUseiw0NQVQlRaS6mzrOYlfQmDZtG4PSCGaYoIqRKWVagVRgqDA2vDK--72WIIrFtqZSMruW-O8VV16WfXqntFvmVmqVJ_YS6GMOrlli0vxx8lRPcmVVd1inZS4dHxb5JuFbf7SmVqlatU_aKSQyh7yQ2t_qt_PdhQt36a6NCxXMpsCIed_im0Cf6iRzducYe_4kE94-LhERxRZikojnjV6ut6EUuGn5LipDc0uR_g-cg3v2nmXwIvOR4dnn3o9X9M-hAeTS7Oz9TZdHb6Bh6Hqzsfw6f7MMC94N6iB3hrDuIO_wElK14U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Brain+research&rft.atitle=Instructional+control+of+reinforcement+learning%3A+A+behavioral+and+neurocomputational+investigation&rft.au=DOLL%2C+Bradley+B&rft.au=JACOBS%2C+W.+Jake&rft.au=SANFEY%2C+Alan+G&rft.au=FRANK%2C+Michael+J&rft.date=2009-11-03&rft.pub=Elsevier&rft.issn=0006-8993&rft.volume=1299&rft.spage=74&rft.epage=94&rft_id=info:doi/10.1016%2Fj.brainres.2009.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=22352881
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899309X0048X%2Fcov150h.gif