Instructional control of reinforcement learning: A behavioral and neurocomputational investigation
Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cogn...
Saved in:
Published in | Brain research Vol. 1299; pp. 74 - 94 |
---|---|
Main Authors | , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
03.11.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 1872-6240 |
DOI | 10.1016/j.brainres.2009.07.007 |
Cover
Abstract | Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (
Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. |
---|---|
AbstractList | Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (
Hayes, S. (Ed.). 1989
. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is ''overridden'' at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract ''Q-learning'' and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a ''confirmation bias'' in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. AbstractHumans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes ( Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes. |
Author | Doll, Bradley B. Sanfey, Alan G. Jacobs, W. Jake Frank, Michael J. |
AuthorAffiliation | b Department of Psychology and Program in Neuroscience, University of Arizona, USA a Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA |
AuthorAffiliation_xml | – name: b Department of Psychology and Program in Neuroscience, University of Arizona, USA – name: a Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA |
Author_xml | – sequence: 1 givenname: Bradley B. surname: Doll fullname: Doll, Bradley B. email: bradley_doll@brown.edu organization: Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA – sequence: 2 givenname: W. Jake surname: Jacobs fullname: Jacobs, W. Jake organization: Department of Psychology and Program in Neuroscience, University of Arizona, USA – sequence: 3 givenname: Alan G. surname: Sanfey fullname: Sanfey, Alan G. organization: Department of Psychology and Program in Neuroscience, University of Arizona, USA – sequence: 4 givenname: Michael J. surname: Frank fullname: Frank, Michael J. email: michael_frank@brown.edu organization: Department of Cognitive and Linguistic Sciences, Department of Psychology, Brown University, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22352881$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19595993$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxSNURLeFr1DlArcsYzuxE4SqVhV_KlXiAJwtZzLZesnai52s1G-Pt7st0AOLfLAsv_npzcw7yY6cd5RlZwzmDJh8u5y3wVgXKM45QDMHNQdQz7IZqxUvJC_hKJsBgCzqphHH2UmMy_QUooEX2TFrqnQaMcvaaxfHMOFovTNDjt6NwQ-57_NA1vU-IK3IjflAJjjrFu_yy7ylW7OxPiS9cV3uaAoe_Wo9jWaPsW5DcbSL-_fL7Hlvhkiv9vdp9v3jh29Xn4ubL5-ury5vCpQljIXinGroJKKkSmLNJcoKkbUCZSfLUqqWNaZqVKlQikoAlUp1xtS1YayXjTjNznfc9dSuqMNkO1nU62BXJtxpb6z--8fZW73wGy2ggrJmCfBmDwj-55Qa0CsbkYbBOPJT1FLJulFCHRRyxkBVcis8-9PSo5eH-SfB673ARDRDH4xDGx91nIuK1_fW5E6HwccYqP-NAr0NhF7qh0DobSA0KJ0CkQrfPylEu1tTGoEdDpdf7MopLW5jKeiIlhxSZwPhqDtvDyPOnyBwsM6mbn_QHcWln0KKTNRMR65Bf92GdptZaICJWsG_Af_j4Be_5ALt |
CODEN | BRREAP |
CitedBy_id | crossref_primary_10_1155_2013_149329 crossref_primary_10_3390_brainsci12010090 crossref_primary_10_3758_s13415_018_0591_7 crossref_primary_10_3389_fpsyg_2022_967467 crossref_primary_10_1016_j_bpsc_2024_07_015 crossref_primary_10_2139_ssrn_3201162 crossref_primary_10_1016_j_nlm_2018_03_022 crossref_primary_10_1038_s41583_020_0276_4 crossref_primary_10_1101_lm_053595_122 crossref_primary_10_1007_s00213_021_06017_0 crossref_primary_10_1016_j_neuroimage_2018_02_011 crossref_primary_10_1162_jocn_a_01329 crossref_primary_10_1016_j_jphysparis_2011_07_017 crossref_primary_10_1371_journal_pbio_1001089 crossref_primary_10_1016_j_eswa_2016_01_030 crossref_primary_10_7554_eLife_73353 crossref_primary_10_1523_JNEUROSCI_2036_14_2015 crossref_primary_10_1523_JNEUROSCI_3086_12_2013 crossref_primary_10_1038_s41539_024_00214_0 crossref_primary_10_1523_JNEUROSCI_2701_11_2011 crossref_primary_10_1523_JNEUROSCI_1418_22_2023 crossref_primary_10_1007_s12304_020_09390_z crossref_primary_10_1162_jocn_a_00365 crossref_primary_10_1038_s41562_024_01894_9 crossref_primary_10_1016_j_conb_2011_04_002 crossref_primary_10_1016_j_actpsy_2019_102956 crossref_primary_10_1016_j_conb_2011_02_013 crossref_primary_10_1038_nrn3976 crossref_primary_10_1016_j_brainres_2011_12_025 crossref_primary_10_1371_journal_pone_0135226 crossref_primary_10_1016_j_neuron_2011_02_027 crossref_primary_10_1073_pnas_1810180116 crossref_primary_10_1016_j_evalprogplan_2011_12_002 crossref_primary_10_1016_j_jcbs_2016_09_002 crossref_primary_10_3389_fpsyt_2017_00182 crossref_primary_10_1038_s41467_023_44632_x crossref_primary_10_1098_rstb_2013_0478 crossref_primary_10_1038_s41467_019_11934_y crossref_primary_10_1002_wcs_1217 crossref_primary_10_2139_ssrn_3201149 crossref_primary_10_1162_jocn_a_00333 crossref_primary_10_1162_jocn_a_00971 crossref_primary_10_1016_j_jmp_2019_102276 crossref_primary_10_1146_annurev_neuro_072116_031132 crossref_primary_10_1017_S0140525X10003134 crossref_primary_10_1016_j_cortex_2023_04_017 crossref_primary_10_1007_s12311_010_0192_7 crossref_primary_10_1016_j_bandc_2017_03_008 crossref_primary_10_1080_13546805_2015_1136206 crossref_primary_10_1016_j_neubiorev_2024_105737 crossref_primary_10_1038_s41562_018_0455_8 crossref_primary_10_1162_NECO_a_00270 crossref_primary_10_1162_netn_a_00136 crossref_primary_10_7554_eLife_15192 crossref_primary_10_1111_psyp_14235 crossref_primary_10_3758_s13415_014_0325_4 crossref_primary_10_1016_j_neuroimage_2017_05_041 crossref_primary_10_1016_j_neuron_2018_03_042 crossref_primary_10_1002_aur_177 crossref_primary_10_1371_journal_pone_0072508 crossref_primary_10_3758_s13415_014_0332_5 crossref_primary_10_1093_scan_nsq041 crossref_primary_10_1093_cercor_bhr114 crossref_primary_10_3758_s13415_023_01099_z crossref_primary_10_1016_j_cobeha_2018_12_008 crossref_primary_10_1016_j_neuroscience_2016_07_025 crossref_primary_10_3758_s13415_011_0040_3 crossref_primary_10_1016_j_tics_2022_04_005 crossref_primary_10_3389_fnhum_2019_00271 crossref_primary_10_3758_s13415_014_0277_8 crossref_primary_10_1523_JNEUROSCI_6486_10_2011 crossref_primary_10_1016_j_conb_2012_05_011 crossref_primary_10_1007_s10539_012_9346_y crossref_primary_10_1111_psyp_13399 crossref_primary_10_1093_cercor_bht293 crossref_primary_10_1371_journal_pone_0210597 crossref_primary_10_1177_1088868313495594 crossref_primary_10_1038_s41467_017_01703_0 crossref_primary_10_3389_fpsyg_2017_02048 crossref_primary_10_7554_eLife_67778 crossref_primary_10_1016_j_cogpsych_2010_03_001 crossref_primary_10_1097_SIH_0b013e3182a86165 crossref_primary_10_7554_eLife_12029 crossref_primary_10_1093_cercor_bhab205 crossref_primary_10_3389_fnhum_2018_00472 crossref_primary_10_1523_ENEURO_0151_18_2018 crossref_primary_10_1016_j_neuroimage_2016_06_006 crossref_primary_10_1523_JNEUROSCI_1101_17_2017 crossref_primary_10_1098_rstb_2018_0133 crossref_primary_10_3758_s13415_013_0220_4 crossref_primary_10_1111_psyp_12911 crossref_primary_10_3390_brainsci12020262 crossref_primary_10_1016_j_neubiorev_2017_02_014 crossref_primary_10_1016_j_neuron_2013_09_007 crossref_primary_10_3389_fnins_2020_00647 crossref_primary_10_1162_jocn_a_01777 crossref_primary_10_1073_pnas_1014938108 crossref_primary_10_1016_j_conb_2012_08_003 crossref_primary_10_1016_j_psychres_2014_08_013 crossref_primary_10_1371_journal_pone_0255430 crossref_primary_10_1038_srep43119 crossref_primary_10_1093_cercor_bhv216 crossref_primary_10_1007_s00422_013_0571_5 crossref_primary_10_1038_npp_2010_96 crossref_primary_10_3758_s13415_014_0250_6 crossref_primary_10_1007_s40616_014_0015_x crossref_primary_10_7717_peerj_1631 crossref_primary_10_1177_0145445514521630 crossref_primary_10_1111_psyp_13979 crossref_primary_10_1016_j_neuroimage_2012_12_003 crossref_primary_10_1007_s10539_013_9385_z crossref_primary_10_1177_0145445517730830 crossref_primary_10_1007_s00213_019_5165_z crossref_primary_10_3389_fpsyg_2014_01108 crossref_primary_10_1002_jeab_680 crossref_primary_10_3758_s13415_012_0125_7 crossref_primary_10_1073_pnas_1117189108 crossref_primary_10_1016_j_cognition_2020_104448 crossref_primary_10_1073_pnas_1506367112 crossref_primary_10_1111_j_1460_9568_2011_07920_x crossref_primary_10_1523_JNEUROSCI_6316_10_2011 crossref_primary_10_1098_rsos_202002 crossref_primary_10_1371_journal_pcbi_1010751 crossref_primary_10_1016_j_jecp_2021_105230 crossref_primary_10_1523_JNEUROSCI_4775_14_2015 crossref_primary_10_1523_ENEURO_0126_20_2020 crossref_primary_10_1016_j_neuroimage_2013_02_074 crossref_primary_10_7554_eLife_48293 crossref_primary_10_5334_joc_53 crossref_primary_10_1111_cros_12290 crossref_primary_10_1016_j_actpsy_2017_04_006 crossref_primary_10_1016_j_actpsy_2017_04_005 crossref_primary_10_1016_j_cognition_2023_105468 crossref_primary_10_1073_pnas_2414518121 crossref_primary_10_1016_j_neuron_2012_03_042 crossref_primary_10_1093_cercor_bht218 crossref_primary_10_1162_jocn_a_01117 crossref_primary_10_1016_j_neuron_2015_03_015 crossref_primary_10_1146_annurev_neuro_101822_122427 crossref_primary_10_1371_journal_pcbi_1005684 crossref_primary_10_1111_cogs_12688 crossref_primary_10_1523_JNEUROSCI_2344_12_2012 crossref_primary_10_1371_journal_pone_0128047 crossref_primary_10_1016_j_bbr_2016_08_023 crossref_primary_10_1016_j_biopsych_2017_05_025 crossref_primary_10_1016_j_biopsych_2012_01_023 crossref_primary_10_1016_j_procs_2021_08_029 crossref_primary_10_1038_s41562_022_01346_2 |
Cites_doi | 10.1038/nn1560 10.1016/S0028-3932(02)00157-4 10.1037/0096-3445.120.1.3 10.1073/pnas.0706111104 10.1037/0735-7044.120.3.497 10.1523/JNEUROSCI.1010-06.2006 10.1093/cercor/bhj122 10.1007/BF00992698 10.1901/jeab.2005.110-04 10.3758/CABN.1.2.137 10.1016/j.neuron.2005.06.020 10.1152/jn.00086.2003 10.1523/JNEUROSCI.17-21-08147.1997 10.3758/CABN.3.1.27 10.1111/j.1467-9280.2006.01769.x 10.1097/00001756-200502080-00007 10.1037/0033-295X.113.2.300 10.1152/jn.00910.2002 10.1126/science.1115270 10.1016/j.tics.2006.01.009 10.1006/nlme.1998.3843 10.1126/science.275.5306.1593 10.1901/jeab.1986.45-237 10.1523/JNEUROSCI.4421-06.2007 10.1016/j.neuropsychologia.2006.03.030 10.1038/sj.npp.1301278 10.1038/81460 10.1037/0003-066X.58.9.697 10.1038/nrn1919 10.1523/JNEUROSCI.16-05-01936.1996 10.1016/S0896-6273(03)00169-7 10.1037/h0062555 10.1093/comjnl/7.4.308 10.1037/0033-295X.105.3.442 10.1016/j.neunet.2006.03.006 10.1109/TAC.1974.1100705 10.1093/brain/awh043 10.1146/annurev.neuro.24.1.167 10.1037/0278-7393.15.2.282 10.1037/0033-295X.108.2.311 10.1038/nature03287 10.1038/nature04766 10.1111/1468-0262.00054 10.1073/pnas.0608842104 10.1126/science.1146157 10.1162/089976606775093909 10.3758/BF03197224 10.1523/JNEUROSCI.2496-07.2007 10.1146/annurev.neuro.28.061604.135722 10.1126/science.1100907 10.1111/1467-8721.ep10769746 10.1016/S0896-6273(03)00154-5 10.1016/j.nlm.2004.06.004 10.1037/0033-2909.119.1.3 10.1196/annals.1390.022 10.1126/science.1102941 10.3758/LB.36.3.210 10.1901/jeab.1979.31-53 10.1126/science.1145044 10.1073/pnas.0502455102 10.1111/j.1551-6709.2009.01010.x 10.1162/0898929052880093 10.1111/j.0956-7976.2004.00715.x 10.1126/science.1094285 10.1126/science.1082976 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2009 Elsevier B.V. Elsevier B.V. 2015 INIST-CNRS 2009 Elsevier B.V. All rights reserved. 2009 |
Copyright_xml | – notice: 2009 Elsevier B.V. – notice: Elsevier B.V. – notice: 2015 INIST-CNRS – notice: 2009 Elsevier B.V. All rights reserved. 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QG 7QO 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1016/j.brainres.2009.07.007 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Animal Behavior Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 94 |
ExternalDocumentID | PMC3050481 19595993 22352881 10_1016_j_brainres_2009_07_007 S0006899309013870 1_s2_0_S0006899309013870 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH080066 |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYJJ AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SES SEW SNS SPCBC SSN SSZ T5K VH1 WUQ X7M XPP Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG AADPK AAIAV ABYKQ AFMIJ AHPSJ AJBFU EFLBG AAYXX AGRNS BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7QG 7QO 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c640t-722e80d6cc6e56c826c65cc1b3c6d64467b19a59747c63530e477daa88a11f693 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 1872-6240 |
IngestDate | Thu Aug 21 14:34:51 EDT 2025 Fri Sep 05 03:47:51 EDT 2025 Fri Sep 05 08:53:12 EDT 2025 Mon Jul 21 06:03:55 EDT 2025 Wed Apr 02 07:18:15 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 01:21:17 EDT 2025 Fri Feb 23 02:29:29 EST 2024 Sun Feb 23 10:19:32 EST 2025 Tue Aug 26 16:31:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rule-governance Basal ganglia Dopamine Reward Reinforcement learning Central nervous system Rule-govemance Basal ganglion Catecholamine Encephalon Learning Acquisition process Behavioral analysis Neurotransmitter Reinforcement Rule |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Computational Cognitive Neuroscience II |
MergedId | FETCHMERGED-LOGICAL-c640t-722e80d6cc6e56c826c65cc1b3c6d64467b19a59747c63530e477daa88a11f693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006899309013870 |
PMID | 19595993 |
PQID | 21107567 |
PQPubID | 23462 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3050481 proquest_miscellaneous_67689737 proquest_miscellaneous_21107567 pubmed_primary_19595993 pascalfrancis_primary_22352881 crossref_primary_10_1016_j_brainres_2009_07_007 crossref_citationtrail_10_1016_j_brainres_2009_07_007 elsevier_sciencedirect_doi_10_1016_j_brainres_2009_07_007 elsevier_clinicalkeyesjournals_1_s2_0_S0006899309013870 elsevier_clinicalkey_doi_10_1016_j_brainres_2009_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-03 |
PublicationDateYYYYMMDD | 2009-11-03 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Baum (bib5) 2004 Miller, Cohen (bib49) 2001 Watkins, Dayan (bib79) 1992 Frank, Samanta, Moustafa, Sherman (bib30) 2007 Hertwig, Barron, Weber, Erev (bib39) 2004 Noelle, Cottrell (bib56) 2000 Schultz, Dayan, Montague (bib73) 1997 Kaufman, Baron, Kopp (bib42) 1966 Biele, Rieskamp, Gonzalez (bib6) 2009; 33 Camerer, Ho (bib11) 1999 Schönberg, Daw, Joel, O'Doherty (bib71) 2007 Frank, Loughry, O'Reilly (bib25) 2001 Graybiel (bib34) 1998 Joel, Weiner (bib40) 1999 Bunge, Kahn, Wallis, Miller, Wagner (bib10) 2003 Wallis, Miller (bib78) 2003 Klein, Neumann, Reuter, Hennig, von Cramon, Ullsperger (bib43) 2007 O'Doherty, Hampton, Kim (bib61) 2007 Filoteo, Maddox, Simmons, Ing, Cagigas, Matthews, Paulus (bib20) 2005 Bunge, Souza (bib9) 2008 Atallah, Frank, O'Reilly (bib4) 2004 Schultz (bib72) 2007 O'Reilly, Munakata (bib63) 2000 Delgado, Locke, Stenger, Fiez (bib17) 2003 Rougier, Noelle, Braver, Cohen, O'Reilly (bib67) 2005 Frank, O'Reilly (bib24) 2006 Noelle, Cottrell (bib55) 1996 Goto, Grace (bib33) 2007 Thorndike (bib77) 1911 Braver, Gray, Burgess (bib8) 2007 Pasupathy, Miller (bib65) 2005 Hampton, Bossaerts, O'Doherty (bib35) 2006 McClure, Laibson, Loewenstein, Cohen (bib48) 2004 Seiss, Praamstra (bib74) 2004 O'Reilly, Rudy (bib64) 2001 Skinner (bib75) 1938 O'Doherty, Dayan, Schultz, Deichmann, Friston, Dolan (bib60) 2004 Sanfey, Loewenstein, McClure, Cohen (bib70) 2006 Frank, Claus (bib23) 2006 Frank (bib21) 2005 O'Reilly, Frank (bib62) 2006 Frank, Santamaria, O'Reilly, Willcutt (bib31) 2007 Montague, Dayan, Sejnowski (bib50) 1996 O'Doherty, Dayan, Friston, Critchley, Dolan (bib59) 2003 Yin, Knowlton (bib80) 2006 Lau, Glimcher (bib45) 2005 Hayes, Brownstein, Zettle, Rosenfarb, Korn (bib38) 1986 Cools, Altamirano, D'Esposito (bib13) 2006 Frank, Moustafa, Haughey, Curran, Hutchison (bib29) 2007 Frank (bib22) 2006 Durstewitz, Seamans, Sejnowski (bib18) 2000 Nomura, Maddox, Filoteo, Ing, Gitelman, Parrish, Mesulam, Reber (bib57) 2007 Noelle, Cottrell (bib54) 1995 Kruschke (bib44) 2008; 36 Sloman (bib76) 1996 Frank, Woroch, Curran (bib27) 2005 Ashby, Alfonso-Reese, Turken, Waldron (bib3) 1998 Nelder, Mead (bib52) 1965 Dearden, R., Friedman, N., Russell, S., 1998. Bayesian q-learning. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI). Frank, O' Reilly, Curran (bib28) 2006 Nishi, Snyder, Greengard (bib53) 1997 Akaike (bib1) 1974 Sanfey, Rilling, Aronson, Nystrom, Cohen (bib69) 2003 Nosofsky, Clark, Shin (bib58) 1989 (bib36) 1989 Cohen, Ranganath (bib12) 2007 Daw, Niv, Dayan (bib14) 2005 Daw, O'Doherty, Dayan, Seymour, Dolan (bib15) 2006 Kahneman (bib41) 2003 Hayes (bib37) 1993 Lohrenz, McCabe, Camerer, Montague (bib46) 2007 Galizio (bib32) 1979 Poldrack, Packard (bib66) 2003 Neal, Hesketh, Andrews (bib51) 1995 Allen, Brooks (bib2) 1991 McClure, Berns, Montague (bib47) 2003 Frank, Seeberger, O'Reilly (bib26) 2004 Samejima, Ueda, Doya, Kimura (bib68) 2005 Braver, Cohen (bib7) 2000 Estes (bib19) 1950 Rougier (10.1016/j.brainres.2009.07.007_bib67) 2005 Lohrenz (10.1016/j.brainres.2009.07.007_bib46) 2007 Schultz (10.1016/j.brainres.2009.07.007_bib73) 1997 Miller (10.1016/j.brainres.2009.07.007_bib49) 2001 Hertwig (10.1016/j.brainres.2009.07.007_bib39) 2004 Wallis (10.1016/j.brainres.2009.07.007_bib78) 2003 Frank (10.1016/j.brainres.2009.07.007_bib23) 2006 Nelder (10.1016/j.brainres.2009.07.007_bib52) 1965 Sloman (10.1016/j.brainres.2009.07.007_bib76) 1996 Daw (10.1016/j.brainres.2009.07.007_bib15) 2006 Galizio (10.1016/j.brainres.2009.07.007_bib32) 1979 Noelle (10.1016/j.brainres.2009.07.007_bib55) 1996 O'Doherty (10.1016/j.brainres.2009.07.007_bib60) 2004 Ashby (10.1016/j.brainres.2009.07.007_bib3) 1998 O'Reilly (10.1016/j.brainres.2009.07.007_bib63) 2000 Hayes (10.1016/j.brainres.2009.07.007_bib38) 1986 Sanfey (10.1016/j.brainres.2009.07.007_bib70) 2006 Kaufman (10.1016/j.brainres.2009.07.007_bib42) 1966 Atallah (10.1016/j.brainres.2009.07.007_bib4) 2004 Frank (10.1016/j.brainres.2009.07.007_bib30) 2007 Allen (10.1016/j.brainres.2009.07.007_bib2) 1991 Noelle (10.1016/j.brainres.2009.07.007_bib54) 1995 Hampton (10.1016/j.brainres.2009.07.007_bib35) 2006 Sanfey (10.1016/j.brainres.2009.07.007_bib69) 2003 Durstewitz (10.1016/j.brainres.2009.07.007_bib18) 2000 Poldrack (10.1016/j.brainres.2009.07.007_bib66) 2003 Baum (10.1016/j.brainres.2009.07.007_bib5) 2004 Cools (10.1016/j.brainres.2009.07.007_bib13) 2006 Frank (10.1016/j.brainres.2009.07.007_bib27) 2005 Delgado (10.1016/j.brainres.2009.07.007_bib17) 2003 Joel (10.1016/j.brainres.2009.07.007_bib40) 1999 Watkins (10.1016/j.brainres.2009.07.007_bib79) 1992 Frank (10.1016/j.brainres.2009.07.007_bib24) 2006 Goto (10.1016/j.brainres.2009.07.007_bib33) 2007 Braver (10.1016/j.brainres.2009.07.007_bib8) 2007 Cohen (10.1016/j.brainres.2009.07.007_bib12) 2007 Daw (10.1016/j.brainres.2009.07.007_bib14) 2005 McClure (10.1016/j.brainres.2009.07.007_bib47) 2003 Bunge (10.1016/j.brainres.2009.07.007_bib10) 2003 O'Reilly (10.1016/j.brainres.2009.07.007_bib64) 2001 Bunge (10.1016/j.brainres.2009.07.007_bib9) 2008 Seiss (10.1016/j.brainres.2009.07.007_bib74) 2004 Lau (10.1016/j.brainres.2009.07.007_bib45) 2005 Frank (10.1016/j.brainres.2009.07.007_bib28) 2006 Schönberg (10.1016/j.brainres.2009.07.007_bib71) 2007 Frank (10.1016/j.brainres.2009.07.007_bib21) 2005 Frank (10.1016/j.brainres.2009.07.007_bib31) 2007 Akaike (10.1016/j.brainres.2009.07.007_bib1) 1974 10.1016/j.brainres.2009.07.007_bib16 Kahneman (10.1016/j.brainres.2009.07.007_bib41) 2003 Hayes (10.1016/j.brainres.2009.07.007_bib37) 1993 Yin (10.1016/j.brainres.2009.07.007_bib80) 2006 Pasupathy (10.1016/j.brainres.2009.07.007_bib65) 2005 Neal (10.1016/j.brainres.2009.07.007_bib51) 1995 Nishi (10.1016/j.brainres.2009.07.007_bib53) 1997 Klein (10.1016/j.brainres.2009.07.007_bib43) 2007 Samejima (10.1016/j.brainres.2009.07.007_bib68) 2005 Montague (10.1016/j.brainres.2009.07.007_bib50) 1996 Braver (10.1016/j.brainres.2009.07.007_bib7) 2000 McClure (10.1016/j.brainres.2009.07.007_bib48) 2004 Thorndike (10.1016/j.brainres.2009.07.007_bib77) 1911 Biele (10.1016/j.brainres.2009.07.007_bib6) 2009; 33 Frank (10.1016/j.brainres.2009.07.007_bib25) 2001 Skinner (10.1016/j.brainres.2009.07.007_bib75) 1938 Nomura (10.1016/j.brainres.2009.07.007_bib57) 2007 Filoteo (10.1016/j.brainres.2009.07.007_bib20) 2005 Frank (10.1016/j.brainres.2009.07.007_bib22) 2006 Schultz (10.1016/j.brainres.2009.07.007_bib72) 2007 (10.1016/j.brainres.2009.07.007_bib36) 1989 Nosofsky (10.1016/j.brainres.2009.07.007_bib58) 1989 O'Doherty (10.1016/j.brainres.2009.07.007_bib59) 2003 O'Doherty (10.1016/j.brainres.2009.07.007_bib61) 2007 Noelle (10.1016/j.brainres.2009.07.007_bib56) 2000 Kruschke (10.1016/j.brainres.2009.07.007_bib44) 2008; 36 Camerer (10.1016/j.brainres.2009.07.007_bib11) 1999 Graybiel (10.1016/j.brainres.2009.07.007_bib34) 1998 Estes (10.1016/j.brainres.2009.07.007_bib19) 1950 Frank (10.1016/j.brainres.2009.07.007_bib26) 2004 O'Reilly (10.1016/j.brainres.2009.07.007_bib62) 2006 Frank (10.1016/j.brainres.2009.07.007_bib29) 2007 |
References_xml | – start-page: 108 year: 2006 end-page: 116 ident: bib70 article-title: Neuroeconomics: cross-currents in research on decision-making publication-title: Trends Cogn. Sci. – start-page: 876 year: 2006 end-page: 879 ident: bib15 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature – start-page: 329 year: 2003 end-page: 337 ident: bib59 article-title: Temporal difference models and reward-related learning in the human brain publication-title: Neuron – start-page: 27 year: 2003 end-page: 38 ident: bib17 article-title: Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations publication-title: Cogn., Affect. Behav. Neurosci. – start-page: 1120 year: 2006 end-page: 1136 ident: bib22 article-title: Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making publication-title: Neural Netw. – start-page: 497 year: 2006 end-page: 517 ident: bib24 article-title: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol publication-title: Behav. Neurosci. – start-page: 452 year: 2004 end-page: 454 ident: bib60 article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning publication-title: Science – start-page: 259 year: 2007 end-page: 288 ident: bib72 article-title: Multiple dopamine functions at different time courses publication-title: Ann. Rev. Neurosci. – start-page: 9493 year: 2007 end-page: 9498 ident: bib46 article-title: Neural signature of fictive learning signals in a sequential investment task publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 3419 year: 2003 end-page: 3428 ident: bib10 article-title: Neural circuits subserving the retrieval and maintenance of abstract rules publication-title: J. Neurophysiol. – start-page: 53 year: 1979 end-page: 70 ident: bib32 article-title: Contingency-shaped and rule-governed behavior: instructional control of human loss avoidance publication-title: J. Exp. Anal. Behav. – start-page: 7338 year: 2005 end-page: 7343 ident: bib67 article-title: Prefrontal cortex and the flexibility of cognitive control: rules without symbols publication-title: Proc. Natl. Acad. Sci. – start-page: 200 year: 1950 end-page: 205 ident: bib19 article-title: Effects of competing reactions on the conditioning curve for bar pressing publication-title: J. Exp. Psychol. – start-page: 111 year: 2005 end-page: 115 ident: bib20 article-title: Cortical and subcortical brain regions involved in rule-based category learning publication-title: Neuroreport – start-page: 330 year: 2004 end-page: 339 ident: bib74 article-title: The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson's disease publication-title: Brain – start-page: 76 year: 2007 end-page: 106 ident: bib8 article-title: Explaining the many varieties of working memory variation: dual mechanisms of cognitive control publication-title: Variation in Working Memory – year: 2007 ident: bib33 article-title: Dopamine modulation of hippocampal prefrontal cortical interaction drives memory-guided behavior publication-title: Cereb. Cortex – reference: Dearden, R., Friedman, N., Russell, S., 1998. Bayesian q-learning. Proceedings of the 15th National Conference on Artificial Intelligence (AAAI). – start-page: 873 year: 2005 end-page: 876 ident: bib65 article-title: Different time courses for learning-related activity in the prefrontal cortex and striatum publication-title: Nature – start-page: 35 year: 2007 end-page: 53 ident: bib61 article-title: Model-based fmri and its application to reward learning and decision making publication-title: Ann. N. Y. Acad. Sci. – start-page: 369 year: 1995 end-page: 374 ident: bib54 article-title: A connectionist model of instruction following publication-title: Proceedings of the 17th Annual Conference of the Cognitive Science Society – start-page: 1940 year: 2004 end-page: 1943 ident: bib26 article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism publication-title: Science – start-page: 827 year: 1999 end-page: 874 ident: bib11 article-title: Experienced-weighted attraction learning in normal form games publication-title: Econometrica – start-page: 12860 year: 2007 end-page: 12867 ident: bib71 article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making publication-title: J. Neurosci. – start-page: 3 year: 1996 end-page: 22 ident: bib76 article-title: The empirical case for two systems of reasoning publication-title: Pscyhological Bulletin – start-page: 1790 year: 2003 end-page: 1806 ident: bib78 article-title: From rule to response: neuronal processes in the premotor and prefrontal cortex publication-title: J. Neurophysiol. – start-page: 1309 year: 2007 end-page: 1312 ident: bib30 article-title: Hold your horses: impulsivity, deep brain stimulation and medication in parkinsonism publication-title: Science – start-page: 279 year: 1992 ident: bib79 article-title: Technical note: Q-learning publication-title: Mach. Learn. – year: 2004 ident: bib5 article-title: Understanding Behaviorism: Behavior, Culture, and Evolution – start-page: 8147 year: 1997 end-page: 8155 ident: bib53 article-title: Bidirectional regulation of DARPP-32 phosphorylation by dopamine publication-title: J. Neurosci. – start-page: 716 year: 1974 end-page: 723 ident: bib1 article-title: A new look at the statistical mode identification publication-title: IEEE Trans. Automat. Contr. – start-page: 700 year: 2006 end-page: 707 ident: bib28 article-title: When memory fails, intuition reigns: midazolam enhances implicit inference in humans publication-title: Psychol. Sci. – start-page: 1755 year: 2003 end-page: 1757 ident: bib69 article-title: The neural basis of economic decision-making in the ultimatum game publication-title: Science – start-page: 237 year: 1986 end-page: 256 ident: bib38 article-title: Rule-governed behavior and sensitivity to changing consequences of responding publication-title: J. Exp. Anal. Behav. – year: 1938 ident: bib75 article-title: The Behavior of Organisms – start-page: 1337 year: 2005 end-page: 1340 ident: bib68 article-title: Representation of action-specific reward values in the striatum publication-title: Science – start-page: 1184 year: 2000 end-page: 1191 ident: bib18 article-title: Neurocomputational models of working memory publication-title: Nat. Neurosci., (suppl. 3) – start-page: 1583 year: 2007 end-page: 1599 ident: bib31 article-title: Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder publication-title: Neuropsychopharmacology – start-page: 1642 year: 2007 end-page: 1645 ident: bib43 article-title: Genetically determined differences in learning from errors publication-title: Science – start-page: 713 year: 2000 end-page: 737 ident: bib7 article-title: On the control of control: the role of dopamine in regulating prefrontal function and working memory publication-title: Control of Cognitive Processes: Attention and Performance XVIII – year: 1989 ident: bib36 publication-title: Rule-governed Behavior: Cognition, Contingencies, and Instructional Control – start-page: 283 year: 2006 end-page: 328 ident: bib62 article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia publication-title: Neural Computat. – start-page: 534 year: 2004 end-page: 539 ident: bib39 article-title: Decisions from experience and the effect of rare events in risky choice publication-title: Psychol. Sci. – volume: 36 start-page: 210 year: 2008 end-page: 226 ident: bib44 article-title: Bayesian approaches to associative learning: From passive to active learning publication-title: Learning and Behavior. – start-page: 311 year: 2001 end-page: 345 ident: bib64 article-title: Conjunctive representations in learning and memory: principles of cortical and hippocampal function publication-title: Psychol. Rev. – start-page: 503 year: 2004 end-page: 507 ident: bib48 article-title: Separate neural systems value immediate and delayed rewards publication-title: Science – start-page: 253 year: 2004 end-page: 267 ident: bib4 article-title: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems publication-title: Neurobiol. Learn. Mem. – start-page: 697 year: 2003 end-page: 720 ident: bib41 article-title: A perspective on judgment and choice: mapping bounded rationality publication-title: Am. Psychol. – start-page: 37 year: 2007 end-page: 43 ident: bib57 article-title: Neural correlates of rule-based and information-integration visual category learning publication-title: Cereb. Cortex – start-page: 245 year: 2003 end-page: 251 ident: bib66 article-title: Competition among multiple memory systems: converging evidence from animal and human brain studies publication-title: Neuropsychologia – start-page: 442 year: 1998 end-page: 481 ident: bib3 article-title: A neuropsychological theory of multiple systems in category learning publication-title: Psychol. Rev. – volume: 33 start-page: 206 year: 2009 end-page: 242 ident: bib6 article-title: Computational models for the combination of advice and individual learning publication-title: Cognitive Science – start-page: 51 year: 2005 end-page: 72 ident: bib21 article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism publication-title: J. Cogn. Neurosci. – start-page: 3 year: 1991 end-page: 19 ident: bib2 article-title: Specializing the operation of an explicit rule publication-title: J. Exp. Psychol.: Gen. – start-page: 1663 year: 2006 end-page: 1673 ident: bib13 article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence publication-title: Neuropsychologia – start-page: 167 year: 2001 end-page: 202 ident: bib49 article-title: An integrative theory of prefrontal cortex function publication-title: Ann. Rev. Neurosci. – start-page: 555 year: 2005 end-page: 579 ident: bib45 article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys publication-title: J. Exp. Anal. Behav. – start-page: 339 year: 2003 end-page: 346 ident: bib47 article-title: Temporal prediction errors in a passive learning task activate human striatum publication-title: Neuron – start-page: 464 year: 2006 end-page: 476 ident: bib80 article-title: The role of the basal ganglia in habit formation publication-title: Nat. Rev. Neurosci. – start-page: 1936 year: 1996 end-page: 1947 ident: bib50 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J. Neurosci. – start-page: 329 year: 1996 end-page: 334 ident: bib55 article-title: In search of articulated attractors publication-title: Proceedings of the 18th Annual Conference of the Cognitive Science Society – start-page: 227 year: 1995 end-page: 242 ident: bib51 article-title: Instance-based categorization: automatic versus intentional forms of retrieval publication-title: Mem. Cognit. – start-page: 16311 year: 2007 end-page: 16316 ident: bib29 article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning publication-title: Proc. Natl. Acad. Sci. – start-page: 193 year: 1993 end-page: 197 ident: bib37 article-title: Rule governance: basic behavioral research and applied implications publication-title: Curr. Dir. Psychol. Sci. – year: 1911 ident: bib77 article-title: Animal Intelligence: Experimental Studies – start-page: 1704 year: 2005 end-page: 1711 ident: bib14 article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. – start-page: 243 year: 1966 end-page: 250 ident: bib42 article-title: Some effects of instructions on human operant behavior publication-title: Psychonomic Monograph Supplements – start-page: 308 year: 1965 end-page: 313 ident: bib52 article-title: A simplex method for function minimization publication-title: Computer Journal – start-page: 495 year: 2005 end-page: 501 ident: bib27 article-title: Error-related negativity predicts reinforcement learning and conflict biases publication-title: Neuron – start-page: 1593 year: 1997 ident: bib73 article-title: A neural substrate of prediction and reward publication-title: Science – start-page: 45 year: 2008 end-page: 65 ident: bib9 article-title: Neuroscience of rule-guided behavior publication-title: Chap. Neural Representations Used to Specify Action – start-page: 300 year: 2006 end-page: 326 ident: bib23 article-title: Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal publication-title: Psychol. Rev. – start-page: 358 year: 2000 end-page: 363 ident: bib56 article-title: Individual differences in exemplar-based interference during instructed category learning publication-title: Proceedings of the Twenty-second Annual Conference of the Cognitive Science Society – year: 2000 ident: bib63 article-title: Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain – start-page: 282 year: 1989 end-page: 304 ident: bib58 article-title: Rules and exemplars in categorization, identification, and recognition publication-title: J. Exper. Psychol., Learn., Mem., Cogn. – start-page: 137 year: 2001 end-page: 160 ident: bib25 article-title: Interactions between the frontal cortex and basal ganglia in working memory: a computational model publication-title: Cogn., Affect. Behav. Neurosci. – start-page: 119 year: 1998 end-page: 136 ident: bib34 article-title: The basal ganglia and chunking of action repertoires publication-title: Neurobiol. Learn Mem. – start-page: 209 year: 1999 end-page: 236 ident: bib40 article-title: Striatal contention scheduling and the split circuit scheme of basal ganglia-thalamocortical circuitry: from anatomy to behaviour publication-title: Conceptual Advances in Brain Research: Brain Dynamics and the Striatal Complex – start-page: 371 year: 2007 end-page: 378 ident: bib12 article-title: Reinforcement learning signals predict future decisions publication-title: J. Neurosci. – start-page: 8360 year: 2006 end-page: 8367 ident: bib35 article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans publication-title: J. Neurosci. – start-page: 1704 issue: 12 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib14 article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. doi: 10.1038/nn1560 – start-page: 245 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib66 article-title: Competition among multiple memory systems: converging evidence from animal and human brain studies publication-title: Neuropsychologia doi: 10.1016/S0028-3932(02)00157-4 – start-page: 3 issue: 1 year: 1991 ident: 10.1016/j.brainres.2009.07.007_bib2 article-title: Specializing the operation of an explicit rule publication-title: J. Exp. Psychol.: Gen. doi: 10.1037/0096-3445.120.1.3 – start-page: 16311 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib29 article-title: Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706111104 – start-page: 497 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib24 article-title: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.120.3.497 – start-page: 329 year: 1996 ident: 10.1016/j.brainres.2009.07.007_bib55 article-title: In search of articulated attractors – start-page: 8360 issue: 32 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib35 article-title: The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1010-06.2006 – start-page: 37 issue: 1 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib57 article-title: Neural correlates of rule-based and information-integration visual category learning publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj122 – year: 1911 ident: 10.1016/j.brainres.2009.07.007_bib77 – start-page: 279 year: 1992 ident: 10.1016/j.brainres.2009.07.007_bib79 article-title: Technical note: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 – start-page: 555 issue: 3 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib45 article-title: Dynamic response-by-response models of matching behavior in rhesus monkeys publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.2005.110-04 – start-page: 137 year: 2001 ident: 10.1016/j.brainres.2009.07.007_bib25 article-title: Interactions between the frontal cortex and basal ganglia in working memory: a computational model publication-title: Cogn., Affect. Behav. Neurosci. doi: 10.3758/CABN.1.2.137 – start-page: 495 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib27 article-title: Error-related negativity predicts reinforcement learning and conflict biases publication-title: Neuron doi: 10.1016/j.neuron.2005.06.020 – start-page: 369 year: 1995 ident: 10.1016/j.brainres.2009.07.007_bib54 article-title: A connectionist model of instruction following – start-page: 1790 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib78 article-title: From rule to response: neuronal processes in the premotor and prefrontal cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00086.2003 – start-page: 8147 year: 1997 ident: 10.1016/j.brainres.2009.07.007_bib53 article-title: Bidirectional regulation of DARPP-32 phosphorylation by dopamine publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-21-08147.1997 – start-page: 27 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib17 article-title: Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations publication-title: Cogn., Affect. Behav. Neurosci. doi: 10.3758/CABN.3.1.27 – start-page: 700 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib28 article-title: When memory fails, intuition reigns: midazolam enhances implicit inference in humans publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.2006.01769.x – start-page: 111 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib20 article-title: Cortical and subcortical brain regions involved in rule-based category learning publication-title: Neuroreport doi: 10.1097/00001756-200502080-00007 – start-page: 300 issue: 2 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib23 article-title: Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal publication-title: Psychol. Rev. doi: 10.1037/0033-295X.113.2.300 – start-page: 3419 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib10 article-title: Neural circuits subserving the retrieval and maintenance of abstract rules publication-title: J. Neurophysiol. doi: 10.1152/jn.00910.2002 – start-page: 1337 issue: 5752 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib68 article-title: Representation of action-specific reward values in the striatum publication-title: Science doi: 10.1126/science.1115270 – start-page: 108 issue: 3 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib70 article-title: Neuroeconomics: cross-currents in research on decision-making publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.01.009 – start-page: 119 issue: 1–2 year: 1998 ident: 10.1016/j.brainres.2009.07.007_bib34 article-title: The basal ganglia and chunking of action repertoires publication-title: Neurobiol. Learn Mem. doi: 10.1006/nlme.1998.3843 – start-page: 1593 year: 1997 ident: 10.1016/j.brainres.2009.07.007_bib73 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – start-page: 713 year: 2000 ident: 10.1016/j.brainres.2009.07.007_bib7 article-title: On the control of control: the role of dopamine in regulating prefrontal function and working memory – start-page: 237 issue: 3 year: 1986 ident: 10.1016/j.brainres.2009.07.007_bib38 article-title: Rule-governed behavior and sensitivity to changing consequences of responding publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.1986.45-237 – start-page: 371 issue: 2 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib12 article-title: Reinforcement learning signals predict future decisions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4421-06.2007 – start-page: 243 year: 1966 ident: 10.1016/j.brainres.2009.07.007_bib42 article-title: Some effects of instructions on human operant behavior publication-title: Psychonomic Monograph Supplements – start-page: 1663 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib13 article-title: Reversal learning in Parkinson's disease depends on medication status and outcome valence publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2006.03.030 – start-page: 1583 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib31 article-title: Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1301278 – start-page: 1184 year: 2000 ident: 10.1016/j.brainres.2009.07.007_bib18 article-title: Neurocomputational models of working memory publication-title: Nat. Neurosci., (suppl. 3) doi: 10.1038/81460 – start-page: 697 issue: 9 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib41 article-title: A perspective on judgment and choice: mapping bounded rationality publication-title: Am. Psychol. doi: 10.1037/0003-066X.58.9.697 – start-page: 464 issue: 6 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib80 article-title: The role of the basal ganglia in habit formation publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1919 – year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib5 – start-page: 1936 year: 1996 ident: 10.1016/j.brainres.2009.07.007_bib50 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-05-01936.1996 – start-page: 329 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib59 article-title: Temporal difference models and reward-related learning in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(03)00169-7 – start-page: 200 year: 1950 ident: 10.1016/j.brainres.2009.07.007_bib19 article-title: Effects of competing reactions on the conditioning curve for bar pressing publication-title: J. Exp. Psychol. doi: 10.1037/h0062555 – start-page: 308 year: 1965 ident: 10.1016/j.brainres.2009.07.007_bib52 article-title: A simplex method for function minimization publication-title: Computer Journal doi: 10.1093/comjnl/7.4.308 – start-page: 442 issue: 3 year: 1998 ident: 10.1016/j.brainres.2009.07.007_bib3 article-title: A neuropsychological theory of multiple systems in category learning publication-title: Psychol. Rev. doi: 10.1037/0033-295X.105.3.442 – start-page: 1120 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib22 article-title: Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.03.006 – start-page: 716 year: 1974 ident: 10.1016/j.brainres.2009.07.007_bib1 article-title: A new look at the statistical mode identification publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.1974.1100705 – start-page: 330 issue: 2 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib74 article-title: The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson's disease publication-title: Brain doi: 10.1093/brain/awh043 – year: 2000 ident: 10.1016/j.brainres.2009.07.007_bib63 – start-page: 167 year: 2001 ident: 10.1016/j.brainres.2009.07.007_bib49 article-title: An integrative theory of prefrontal cortex function publication-title: Ann. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.167 – start-page: 282 issue: 2 year: 1989 ident: 10.1016/j.brainres.2009.07.007_bib58 article-title: Rules and exemplars in categorization, identification, and recognition publication-title: J. Exper. Psychol., Learn., Mem., Cogn. doi: 10.1037/0278-7393.15.2.282 – start-page: 311 year: 2001 ident: 10.1016/j.brainres.2009.07.007_bib64 article-title: Conjunctive representations in learning and memory: principles of cortical and hippocampal function publication-title: Psychol. Rev. doi: 10.1037/0033-295X.108.2.311 – start-page: 76 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib8 article-title: Explaining the many varieties of working memory variation: dual mechanisms of cognitive control – start-page: 873 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib65 article-title: Different time courses for learning-related activity in the prefrontal cortex and striatum publication-title: Nature doi: 10.1038/nature03287 – start-page: 876 issue: 7095 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib15 article-title: Cortical substrates for exploratory decisions in humans publication-title: Nature doi: 10.1038/nature04766 – start-page: 827 year: 1999 ident: 10.1016/j.brainres.2009.07.007_bib11 article-title: Experienced-weighted attraction learning in normal form games publication-title: Econometrica doi: 10.1111/1468-0262.00054 – start-page: 9493 issue: 22 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib46 article-title: Neural signature of fictive learning signals in a sequential investment task publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608842104 – start-page: 1309 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib30 article-title: Hold your horses: impulsivity, deep brain stimulation and medication in parkinsonism publication-title: Science doi: 10.1126/science.1146157 – ident: 10.1016/j.brainres.2009.07.007_bib16 – start-page: 283 year: 2006 ident: 10.1016/j.brainres.2009.07.007_bib62 article-title: Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia publication-title: Neural Computat. doi: 10.1162/089976606775093909 – start-page: 358 year: 2000 ident: 10.1016/j.brainres.2009.07.007_bib56 article-title: Individual differences in exemplar-based interference during instructed category learning – start-page: 209 year: 1999 ident: 10.1016/j.brainres.2009.07.007_bib40 article-title: Striatal contention scheduling and the split circuit scheme of basal ganglia-thalamocortical circuitry: from anatomy to behaviour – start-page: 227 issue: 2 year: 1995 ident: 10.1016/j.brainres.2009.07.007_bib51 article-title: Instance-based categorization: automatic versus intentional forms of retrieval publication-title: Mem. Cognit. doi: 10.3758/BF03197224 – start-page: 12860 issue: 47 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib71 article-title: Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2496-07.2007 – start-page: 259 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib72 article-title: Multiple dopamine functions at different time courses publication-title: Ann. Rev. Neurosci. doi: 10.1146/annurev.neuro.28.061604.135722 – start-page: 503 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib48 article-title: Separate neural systems value immediate and delayed rewards publication-title: Science doi: 10.1126/science.1100907 – start-page: 193 year: 1993 ident: 10.1016/j.brainres.2009.07.007_bib37 article-title: Rule governance: basic behavioral research and applied implications publication-title: Curr. Dir. Psychol. Sci. doi: 10.1111/1467-8721.ep10769746 – start-page: 339 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib47 article-title: Temporal prediction errors in a passive learning task activate human striatum publication-title: Neuron doi: 10.1016/S0896-6273(03)00154-5 – start-page: 253 issue: 3 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib4 article-title: Hippocampus cortex and basal ganglia: insights from computational models of complementary learning systems publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2004.06.004 – start-page: 3 year: 1996 ident: 10.1016/j.brainres.2009.07.007_bib76 article-title: The empirical case for two systems of reasoning publication-title: Pscyhological Bulletin doi: 10.1037/0033-2909.119.1.3 – year: 1989 ident: 10.1016/j.brainres.2009.07.007_bib36 – start-page: 35 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib61 article-title: Model-based fmri and its application to reward learning and decision making publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1390.022 – start-page: 1940 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib26 article-title: By carrot or by stick: cognitive reinforcement learning in Parkinsonism publication-title: Science doi: 10.1126/science.1102941 – volume: 36 start-page: 210 year: 2008 ident: 10.1016/j.brainres.2009.07.007_bib44 article-title: Bayesian approaches to associative learning: From passive to active learning publication-title: Learning and Behavior. doi: 10.3758/LB.36.3.210 – start-page: 53 issue: 1 year: 1979 ident: 10.1016/j.brainres.2009.07.007_bib32 article-title: Contingency-shaped and rule-governed behavior: instructional control of human loss avoidance publication-title: J. Exp. Anal. Behav. doi: 10.1901/jeab.1979.31-53 – start-page: 45 year: 2008 ident: 10.1016/j.brainres.2009.07.007_bib9 article-title: Neuroscience of rule-guided behavior – year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib33 article-title: Dopamine modulation of hippocampal prefrontal cortical interaction drives memory-guided behavior publication-title: Cereb. Cortex – start-page: 1642 issue: 5856 year: 2007 ident: 10.1016/j.brainres.2009.07.007_bib43 article-title: Genetically determined differences in learning from errors publication-title: Science doi: 10.1126/science.1145044 – year: 1938 ident: 10.1016/j.brainres.2009.07.007_bib75 – start-page: 7338 issue: 20 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib67 article-title: Prefrontal cortex and the flexibility of cognitive control: rules without symbols publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0502455102 – volume: 33 start-page: 206 year: 2009 ident: 10.1016/j.brainres.2009.07.007_bib6 article-title: Computational models for the combination of advice and individual learning publication-title: Cognitive Science doi: 10.1111/j.1551-6709.2009.01010.x – start-page: 51 year: 2005 ident: 10.1016/j.brainres.2009.07.007_bib21 article-title: Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism publication-title: J. Cogn. Neurosci. doi: 10.1162/0898929052880093 – start-page: 534 issue: 8 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib39 article-title: Decisions from experience and the effect of rare events in risky choice publication-title: Psychol. Sci. doi: 10.1111/j.0956-7976.2004.00715.x – start-page: 452 issue: 5669 year: 2004 ident: 10.1016/j.brainres.2009.07.007_bib60 article-title: Dissociable roles of ventral and dorsal striatum in instrumental conditioning publication-title: Science doi: 10.1126/science.1094285 – start-page: 1755 year: 2003 ident: 10.1016/j.brainres.2009.07.007_bib69 article-title: The neural basis of economic decision-making in the ultimatum game publication-title: Science doi: 10.1126/science.1082976 |
SSID | ssj0003390 |
Score | 2.3898976 |
Snippet | Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that... AbstractHumans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 74 |
SubjectTerms | Basal ganglia Basal Ganglia - physiology Biological and medical sciences Choice Behavior - physiology Computer Simulation Dopamine Dopamine - physiology Fundamental and applied biological sciences. Psychology Hippocampus - physiology Humans Models, Neurological Nerve Net - physiology Neural Networks, Computer Neurology Prefrontal Cortex - physiology Psychomotor Performance - physiology Reinforcement learning Reinforcement, Psychology Reward Rule-governance Vertebrates: nervous system and sense organs |
Title | Instructional control of reinforcement learning: A behavioral and neurocomputational investigation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899309013870 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899309013870 https://dx.doi.org/10.1016/j.brainres.2009.07.007 https://www.ncbi.nlm.nih.gov/pubmed/19595993 https://www.proquest.com/docview/21107567 https://www.proquest.com/docview/67689737 https://pubmed.ncbi.nlm.nih.gov/PMC3050481 |
Volume | 1299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqckFCCCiP8Ag-IG7b7K7Xj-UWRVQpjwohKvVm-bU0FWyipj1w4bcz4_VmG6ACgXKIlMwksnc8ns-e-YaQFxAFNMqEJlOB86xSwWZWCA_LveRGcFn52Ovw_ZGYH1dvTvjJDpn1tTCYVpl8f-fTo7dOn0zSbE5WiwXW-OYC0ALLa7xtk4jbq0qire9_H9I8GOvOWRA5o_SVKuGzfYttGADWJt5KZDOU121Qt1ZmDdPWdP0ufheQ_pxXeWWjOrhDbqcIk067QdwlO6G9R_amLaDrr9_oSxpzPuNh-h6xhwOBLOikvHW6bOh5iJSqLp4e0tRb4vMrOqVDYT81raeRENPF3hDpXJEuBu6OZXufHB-8_jSbZ6nrQuZElV9ksiyDyr1wTgQuHMAPJ7hzhWVOeIiehLRFbSIOcRCtsDxUUnpjlDJF0YiaPSC77bINjwi13DCAR1467sEkrJIWBBsrPAZurhoR3k-1domSHDtjfNF97tmZ7h8R9susdY635XJEJhu9VUfK8UcN2T9J3ZecgpPUsG_8m2ZYp7W-1oVelzrXv9jjiNQbzS2T_qt_HW-Z22aYEM3xUqliRJ739qfBIeAtj2nD8hJ-BRE9F_J6CQEQs5YMJB529jpMYs3hVTMY9JYlbwSQjHz7m3ZxGknJYd9A6qHH_zHoJ-RmvKvDQ3v2lOyC_YdnEPJd2HFc02NyYzr7-O4Dvh--nR_9AEPtXPI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N3QNIaAIGrDA2PyDeQpM4_hHeqmlTy7Y-bdLeLNtxoBOk1bo98N9zdpx0BSYQqG-pr5Wd8_m-8913AO_QC6ildnUiHWNJIZ1JDOcVbvecac5EUYVeh-czPrksPl2xqy046mphfFpltP2tTQ_WOj4ZxdUcLedzX-ObckQLNC39bZtA3L5dMER7A9geT08ns94gU9qGWjx49gL3CoWvPxjfiQGRbaSu9ISG4qEz6slSr3Dl6rblxe980p9TK--dVSdPYSc6mWTczuMZbLnmOeyOGwTY376T9ySkfYZ4-i6Y6ZpDFmVi6jpZ1OTGBVZVGwKIJLaX-PyRjMm6tp_opiKBE9OG9hAxtEjma_qORfMCLk-OL44mSWy8kFhepLeJyHMn04pbyx3jFhGI5czazFDLK3SguDBZqQMUseiw0NQVQlRaS6mzrOYlfQmDZtG4PSCGaYoIqRKWVagVRgqDA2vDK--72WIIrFtqZSMruW-O8VV16WfXqntFvmVmqVJ_YS6GMOrlli0vxx8lRPcmVVd1inZS4dHxb5JuFbf7SmVqlatU_aKSQyh7yQ2t_qt_PdhQt36a6NCxXMpsCIed_im0Cf6iRzducYe_4kE94-LhERxRZikojnjV6ut6EUuGn5LipDc0uR_g-cg3v2nmXwIvOR4dnn3o9X9M-hAeTS7Oz9TZdHb6Bh6Hqzsfw6f7MMC94N6iB3hrDuIO_wElK14U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Brain+research&rft.atitle=Instructional+control+of+reinforcement+learning%3A+A+behavioral+and+neurocomputational+investigation&rft.au=DOLL%2C+Bradley+B&rft.au=JACOBS%2C+W.+Jake&rft.au=SANFEY%2C+Alan+G&rft.au=FRANK%2C+Michael+J&rft.date=2009-11-03&rft.pub=Elsevier&rft.issn=0006-8993&rft.volume=1299&rft.spage=74&rft.epage=94&rft_id=info:doi/10.1016%2Fj.brainres.2009.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=22352881 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899309X0048X%2Fcov150h.gif |