A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection
SARS-CoV-2, the causative agent of COVID-19 1 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein 1 – 6 . Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics 7 – 17 . Llama-derived single-domain antibodi...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 4635 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-24905-z |
Cover
Loading…
Abstract | SARS-CoV-2, the causative agent of COVID-19
1
, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein
1
–
6
. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics
7
–
17
. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (
K
D
= 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC
50
= 0.42 μg mL
−1
). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log
10
. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.
Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic activity against SARS-CoV-2 infection in animal models via targeting the virus receptor-binding domain. |
---|---|
AbstractList | SARS-CoV-2, the causative agent of COVID-19
1
, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein
1–6
. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics
7–17
. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (
K
D
= 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC
50
= 0.42 μg mL
−1
). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log
10
. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak. SARS-CoV-2, the causative agent of COVID-19 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein . Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics . Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (K = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC = 0.42 μg mL ). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log . Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak. SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1–6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7–17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 μg mL−1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic activity against SARS-CoV-2 infection in animal models via targeting the virus receptor-binding domain. SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 μg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 μg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak. SARS-CoV-2, the causative agent of COVID-19 1 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein 1 – 6 . Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics 7 – 17 . Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity ( K D = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC 50 = 0.42 μg mL −1 ). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log 10 . Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak. Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic activity against SARS-CoV-2 infection in animal models via targeting the virus receptor-binding domain. Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic activity against SARS-CoV-2 infection in animal models via targeting the virus receptor-binding domain. SARS-CoV-2, the causative agent of COVID-19 1 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein 1-6 . Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics 7-17 . Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (K D = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC 50 = 0.42 μg mL -1 ). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log 10 . Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak. |
ArticleNumber | 4635 |
Author | Raoul, Hervé Yao, Hebang Rockx, Barry Lan, Jiaming Seeger, Markus A. Li, Tingting van Vlissingen, Martje Fentener Bi, Yuhai Cong, Yao Wong, Gary Zhou, Bingjie Shen, Quan Li, Dianfan Wang, Yanxing Zhang, Ning Tian, Xiao-Xu Kuo, Shu-Ming Liu, Caixuan Cai, Hongmin Kuiken, Thijs Richard, Audrey S. Gong, Yuhuan Lai, Yanling GeurtsvanKessel, Corine H. Hutter, Cedric A. J. Han, Wenyu Zhao, Yapei Qin, Wenming Bao, Juan Lavillette, Dimitri Peng, Chao Wang, Yifan |
Author_xml | – sequence: 1 givenname: Tingting orcidid: 0000-0003-3146-2761 surname: Li fullname: Li, Tingting organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 2 givenname: Hongmin orcidid: 0000-0001-7221-8330 surname: Cai fullname: Cai, Hongmin organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Hebang orcidid: 0000-0002-8588-5877 surname: Yao fullname: Yao, Hebang organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 4 givenname: Bingjie orcidid: 0000-0002-7753-4065 surname: Zhou fullname: Zhou, Bingjie organization: University of CAS, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS – sequence: 5 givenname: Ning surname: Zhang fullname: Zhang, Ning organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS – sequence: 6 givenname: Martje Fentener orcidid: 0000-0003-2213-5910 surname: van Vlissingen fullname: van Vlissingen, Martje Fentener organization: Erasmus Laboratory Animal Science Center, Erasmus University Medical Center, European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL) – sequence: 7 givenname: Thijs orcidid: 0000-0001-5501-9049 surname: Kuiken fullname: Kuiken, Thijs organization: European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Department of Viroscience, Erasmus University Medical Center – sequence: 8 givenname: Wenyu surname: Han fullname: Han, Wenyu organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS – sequence: 9 givenname: Corine H. orcidid: 0000-0002-7678-314X surname: GeurtsvanKessel fullname: GeurtsvanKessel, Corine H. organization: European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Department of Viroscience, Erasmus University Medical Center – sequence: 10 givenname: Yuhuan surname: Gong fullname: Gong, Yuhuan organization: University of CAS, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS – sequence: 11 givenname: Yapei orcidid: 0000-0001-7738-6181 surname: Zhao fullname: Zhao, Yapei organization: University of CAS, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS – sequence: 12 givenname: Quan surname: Shen fullname: Shen, Quan organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS – sequence: 13 givenname: Wenming surname: Qin fullname: Qin, Wenming organization: National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS – sequence: 14 givenname: Xiao-Xu surname: Tian fullname: Tian, Xiao-Xu organization: National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS – sequence: 15 givenname: Chao orcidid: 0000-0002-6814-2676 surname: Peng fullname: Peng, Chao organization: National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), CAS – sequence: 16 givenname: Yanling surname: Lai fullname: Lai, Yanling organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS – sequence: 17 givenname: Yanxing surname: Wang fullname: Wang, Yanxing organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 18 givenname: Cedric A. J. orcidid: 0000-0002-8920-3343 surname: Hutter fullname: Hutter, Cedric A. J. organization: Institute of Medical Microbiology, University of Zurich – sequence: 19 givenname: Shu-Ming orcidid: 0000-0002-4437-689X surname: Kuo fullname: Kuo, Shu-Ming organization: CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS – sequence: 20 givenname: Juan surname: Bao fullname: Bao, Juan organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 21 givenname: Caixuan surname: Liu fullname: Liu, Caixuan organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS – sequence: 22 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS – sequence: 23 givenname: Audrey S. orcidid: 0000-0002-0207-0139 surname: Richard fullname: Richard, Audrey S. organization: European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL) – sequence: 24 givenname: Hervé orcidid: 0000-0002-4241-3255 surname: Raoul fullname: Raoul, Hervé organization: European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL) – sequence: 25 givenname: Jiaming surname: Lan fullname: Lan, Jiaming organization: CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS – sequence: 26 givenname: Markus A. orcidid: 0000-0003-1761-8571 surname: Seeger fullname: Seeger, Markus A. organization: Institute of Medical Microbiology, University of Zurich – sequence: 27 givenname: Yao orcidid: 0000-0002-7164-8694 surname: Cong fullname: Cong, Yao organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) – sequence: 28 givenname: Barry orcidid: 0000-0003-2463-027X surname: Rockx fullname: Rockx, Barry organization: European Research Infrastructure on Highly Pathogenic Agents (ERINHA-AISBL), Department of Viroscience, Erasmus University Medical Center – sequence: 29 givenname: Gary orcidid: 0000-0002-9044-8153 surname: Wong fullname: Wong, Gary email: garyckwong@ips.ac.cn organization: CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Département de microbiologie-infectiologie et d’immunologie, Université Laval – sequence: 30 givenname: Yuhai orcidid: 0000-0002-5595-363X surname: Bi fullname: Bi, Yuhai email: beeyh@im.ac.cn organization: University of CAS, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), CAS – sequence: 31 givenname: Dimitri orcidid: 0000-0002-4706-1519 surname: Lavillette fullname: Lavillette, Dimitri email: dlaville@ips.ac.cn organization: CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, Pasteurien College, Soochow University – sequence: 32 givenname: Dianfan orcidid: 0000-0003-4729-4678 surname: Li fullname: Li, Dianfan email: dianfan.li@sibcb.ac.cn organization: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34330908$$D View this record in MEDLINE/PubMed https://hal.science/hal-05023823$$DView record in HAL |
BookMark | eNp9kk1v1DAQhiNURD_oH-CAInGBQ8DfSS5Iy_LRSiuQWuBqOfYkm1XW3treSttfX6dpod1D52Jr_LyvPZ45zg6ss5BlbzD6iBGtPgWGmSgLRHBBWI14cfMiOyKI4QKXhB482h9mpyGsUApa44qxV9khZZSiGlVH2c9ZHnY2LiH2OrfKusaZXR6V71LGdvnFl6_5xrsIOoZ8qdYhgg956906v5xdXBZz97cgeW_bBPTOvs5etmoIcHq_nmR_vn_7PT8rFr9-nM9ni0ILhmJR4koT0VYUM0ORbgUXjQaKQZRE8Ebomiima6UwtFyIujScYNwaUaZ9TQg9yc4nX-PUSm58v1Z-J53q5V3C-U4qn0oaQAIxBNraNKVGjBiuABmmKAfCKqZMk7w-T16bbbMGo8FGr4Ynpk9PbL-UnbuWFU0WFCeDD5PBck92NlvIMYc4IrQi9Hpk399f5t3VFkKU6z5oGAZlwW2DJJynlqUQCX23h67c1tv0rSMlOEPp2xL19vHr_93_0OIEVBOgvQvBQyt1H9XYrFRMP0iM5DhQchoomQZK3g2UvElSsid9cH9WRCdRSLDtwP9_9jOqW0u_24M |
CitedBy_id | crossref_primary_10_1080_14712598_2023_2279644 crossref_primary_10_1007_s11030_022_10570_x crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_1016_j_bbrc_2025_151480 crossref_primary_10_3892_ijmm_2023_5336 crossref_primary_10_1002_ctm2_1016 crossref_primary_10_31083_j_fbl2804067 crossref_primary_10_1128_jvi_01833_22 crossref_primary_10_1016_j_isci_2022_105259 crossref_primary_10_1038_s41422_022_00700_3 crossref_primary_10_26508_lsa_202101322 crossref_primary_10_1080_19420862_2022_2047144 crossref_primary_10_1371_journal_pcbi_1009675 crossref_primary_10_3390_ijms231810904 crossref_primary_10_1186_s12859_023_05389_8 crossref_primary_10_1186_s12951_024_02573_7 crossref_primary_10_1021_acs_jcim_1c01523 crossref_primary_10_3390_v14071507 crossref_primary_10_1186_s12951_022_01619_y crossref_primary_10_3389_fimmu_2022_995412 crossref_primary_10_1039_D4SC07379G crossref_primary_10_1007_s11274_024_03990_4 crossref_primary_10_3389_fmicb_2022_875840 crossref_primary_10_1002_ange_202313640 crossref_primary_10_3390_medicina58121733 crossref_primary_10_1039_D3SC01921G crossref_primary_10_1128_spectrum_04199_22 crossref_primary_10_1021_acsami_3c06073 crossref_primary_10_3390_biom15010111 crossref_primary_10_1002_smtd_202200932 crossref_primary_10_3390_app142210548 crossref_primary_10_1073_pnas_2205412119 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_1016_j_chempr_2024_02_010 crossref_primary_10_3390_ijms23062928 crossref_primary_10_3724_abbs_2024233 crossref_primary_10_17116_molgen20234102128 crossref_primary_10_3389_fddsv_2022_927164 crossref_primary_10_1016_j_bios_2024_116785 crossref_primary_10_1021_acsnano_4c09127 crossref_primary_10_3390_v15010139 crossref_primary_10_1007_s43440_022_00425_5 crossref_primary_10_1002_anie_202313640 crossref_primary_10_1016_j_sbi_2023_102664 crossref_primary_10_1007_s44307_024_00013_z crossref_primary_10_1007_s00253_022_11857_7 crossref_primary_10_1016_j_pep_2022_106071 crossref_primary_10_3390_v16040566 crossref_primary_10_1002_smtd_202200387 crossref_primary_10_1021_acs_jcim_4c01023 crossref_primary_10_1038_s42003_022_03866_z crossref_primary_10_1007_s40291_022_00634_x crossref_primary_10_1007_s12560_023_09556_1 crossref_primary_10_1007_s44307_024_00011_1 crossref_primary_10_3389_fimmu_2022_965446 crossref_primary_10_3390_cells11213355 crossref_primary_10_3390_v13112214 crossref_primary_10_3389_fphar_2022_963978 crossref_primary_10_1002_2211_5463_13754 crossref_primary_10_1016_j_xcrm_2023_100918 crossref_primary_10_3390_v14061162 crossref_primary_10_1038_s41392_023_01414_7 crossref_primary_10_15252_emmm_202114544 crossref_primary_10_3389_fimmu_2022_1014377 crossref_primary_10_1021_acsestwater_1c00208 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_1128_jvi_00707_24 crossref_primary_10_3103_S0891416823020052 crossref_primary_10_1016_j_isci_2023_107085 |
Cites_doi | 10.1038/s41594-020-0469-6 10.1016/j.cell.2020.05.025 10.1038/s41594-020-0480-y 10.1038/s41586-020-2380-z 10.1158/1535-7163.MCT-07-2384 10.3201/eid2607.200841 10.1038/s41598-018-37212-3 10.1126/sciadv.abe5575 10.1016/j.cell.2020.02.052 10.7554/eLife.42166 10.1038/s41586-020-2456-9 10.1101/2020.04.16.045419 10.1371/journal.ppat.1006271 10.1038/s41596-020-0304-x 10.1038/s41467-018-03665-3 10.1038/s41586-020-2179-y 10.1126/science.abd0827 10.1016/j.cell.2020.04.031 10.1038/s41467-020-19204-y 10.1038/s41467-020-18174-5 10.1126/science.abb7269 10.1016/j.jsb.2015.08.008 10.1107/S0907444913000061 10.1038/s41586-020-2180-5 10.1126/science.abb7314 10.1002/pro.3235 10.1038/s41586-020-2349-y 10.7554/eLife.16228 10.1007/s41365-019-0683-2 10.1146/annurev-biochem-063011-092449 10.1126/science.abc7520 10.1038/s41467-020-19231-9 10.1038/nmeth.4193 10.1371/journal.pmed.0030237 10.1038/nmeth.1318 10.1038/nmeth.4169 10.1016/j.jmb.2007.05.022 10.1016/j.cell.2020.03.045 10.1074/jbc.M806889200 10.1186/2043-9113-2-5 10.1107/S0907444909047337 10.1371/journal.ppat.1009328 10.1128/JVI.02377-07 10.1016/j.cell.2020.06.043 10.1002/jcc.20084 10.1126/science.abc2241 10.1016/j.ijsu.2020.04.018 10.1038/s41586-020-2381-y 10.1126/science.abb2762 10.1038/s41594-018-0028-6 10.1016/j.jsb.2005.07.007 10.1107/S0907444910007493 10.7554/eLife.34317 10.1007/s40259-019-00392-z 10.1016/j.cell.2020.02.058 10.1107/S0021889807021206 10.1016/j.cell.2020.06.025 10.1126/science.abb2507 10.1093/protein/gzv040 10.1073/pnas.2003138117 10.1107/S0907444909052925 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2022 2021. The Author(s). The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2021, corrected publication 2022 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2022 – notice: 2021. The Author(s). – notice: The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2021, corrected publication 2022 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
DOI | 10.1038/s41467-021-24905-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_e2d2ef9db7c042d5ae0d4a35e2484adb PMC8324831 oai_HAL_hal_05023823v1 34330908 10_1038_s41467_021_24905_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31870726 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 31870726 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 1XC 4.4 ABAWZ BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c640t-718c26f8314d30cf656bce31e67265b6c92a4c9aa1ef56697d5211fd676979223 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Thu Aug 21 18:30:03 EDT 2025 Fri May 09 12:19:58 EDT 2025 Mon Jul 21 10:21:52 EDT 2025 Wed Aug 13 04:04:34 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 04:17:32 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-718c26f8314d30cf656bce31e67265b6c92a4c9aa1ef56697d5211fd676979223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9044-8153 0000-0002-0207-0139 0000-0001-7221-8330 0000-0002-7678-314X 0000-0002-8920-3343 0000-0002-5595-363X 0000-0002-4437-689X 0000-0003-4729-4678 0000-0002-8588-5877 0000-0002-6814-2676 0000-0002-4241-3255 0000-0001-7738-6181 0000-0002-4706-1519 0000-0003-3146-2761 0000-0001-5501-9049 0000-0002-7753-4065 0000-0003-1761-8571 0000-0002-7164-8694 0000-0003-2213-5910 0000-0003-2463-027X |
OpenAccessLink | https://doaj.org/article/e2d2ef9db7c042d5ae0d4a35e2484adb |
PMID | 34330908 |
PQID | 2556540656 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2d2ef9db7c042d5ae0d4a35e2484adb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8324831 hal_primary_oai_HAL_hal_05023823v1 proquest_miscellaneous_2557233336 proquest_journals_2556540656 pubmed_primary_34330908 crossref_citationtrail_10_1038_s41467_021_24905_z crossref_primary_10_1038_s41467_021_24905_z springer_journals_10_1038_s41467_021_24905_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-30 |
PublicationDateYYYYMMDD | 2021-07-30 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Barnes (CR34) 2020; 182 Emsley, Lohkamp, Scott, Cowtan (CR54) 2010; 66 Sun (CR45) 2020; 182 Corman (CR65) 2020; 25 Hansen (CR12) 2020; 369 Muyldermans (CR22) 2013; 82 Moutel (CR26) 2016; 5 Korber (CR42) 2020; 182 Punjani, Rubinstein, Fleet, Brubaker (CR61) 2017; 14 Evans, Murshudov (CR52) 2013; 69 Yuan (CR30) 2020; 368 Uchański (CR27) 2019; 9 McMahon (CR23) 2018; 25 Okba (CR49) 2020; 26 Doud, Lee, Bloom (CR39) 2018; 9 Vincke (CR10) 2009; 284 CR7 Rohou, Grigorieff (CR60) 2015; 192 Yao (CR37) 2021; 17 CR44 Zivanov (CR58) 2018; 7 Mastronarde (CR57) 2005; 152 Zimmermann (CR25) 2020; 15 Zheng (CR59) 2017; 14 Hoffmann (CR20) 2020; 181 Shang (CR4) 2020; 581 Jovčevska, Muyldermans (CR28) 2020; 34 Wulff, Tzatzaris, Young (CR64) 2012; 2 CR17 CR16 Xu (CR48) 2021; 7 Hanke (CR13) 2020; 11 Doud, Hensley, Bloom (CR38) 2017; 13 Kabsch (CR51) 2010; 66 CR56 CR11 Tijink (CR43) 2008; 7 Wrapp (CR1) 2020; 367 Ju (CR9) 2020 Rockx (CR40) 2008; 82 Zhou (CR31) 2020 Pinto (CR29) 2020; 583 Cao (CR8) 2020 Nicola (CR18) 2020; 78 ter Meulen (CR41) 2006; 3 Zhang (CR50) 2019; 30 Robbiani (CR21) 2020; 584 Pettersen (CR62) 2004; 25 Gibson (CR47) 2009; 6 Huo (CR14) 2020 Lan (CR3) 2020; 581 Hurlburt (CR36) 2020; 11 Wrapp (CR32) 2020; 181 Wang (CR5) 2020; 181 Rockx (CR46) 2020; 368 Goddard (CR63) 2018; 27 Adams (CR55) 2010; 66 McCoy (CR53) 2007; 40 Custódio (CR15) 2020; 11 Zimmermann (CR24) 2018; 7 Shi (CR35) 2020; 584 Shang (CR19) 2020; 117 Krissinel, Henrick (CR33) 2007; 372 Walls (CR2) 2020; 181 Yan (CR6) 2020; 367 M Nicola (24905_CR18) 2020; 78 I Zimmermann (24905_CR25) 2020; 15 E Krissinel (24905_CR33) 2007; 372 C Xu (24905_CR48) 2021; 7 B Rockx (24905_CR46) 2020; 368 NK Hurlburt (24905_CR36) 2020; 11 VM Corman (24905_CR65) 2020; 25 T Uchański (24905_CR27) 2019; 9 R Yan (24905_CR6) 2020; 367 C McMahon (24905_CR23) 2018; 25 J Zivanov (24905_CR58) 2018; 7 DF Robbiani (24905_CR21) 2020; 584 Q Wang (24905_CR5) 2020; 181 PD Adams (24905_CR55) 2010; 66 H Yao (24905_CR37) 2021; 17 TD Goddard (24905_CR63) 2018; 27 B Korber (24905_CR42) 2020; 182 AC Walls (24905_CR2) 2020; 181 L Hanke (24905_CR13) 2020; 11 B Rockx (24905_CR40) 2008; 82 J ter Meulen (24905_CR41) 2006; 3 AJ McCoy (24905_CR53) 2007; 40 J Huo (24905_CR14) 2020 I Jovčevska (24905_CR28) 2020; 34 24905_CR7 D Zhou (24905_CR31) 2020 J Shang (24905_CR19) 2020; 117 I Zimmermann (24905_CR24) 2018; 7 J Shang (24905_CR4) 2020; 581 Y Cao (24905_CR8) 2020 M Hoffmann (24905_CR20) 2020; 181 24905_CR44 W-Z Zhang (24905_CR50) 2019; 30 NH Wulff (24905_CR64) 2012; 2 EF Pettersen (24905_CR62) 2004; 25 J Lan (24905_CR3) 2020; 581 24905_CR16 S Moutel (24905_CR26) 2016; 5 NMA Okba (24905_CR49) 2020; 26 A Punjani (24905_CR61) 2017; 14 J Sun (24905_CR45) 2020; 182 D Wrapp (24905_CR32) 2020; 181 24905_CR56 24905_CR11 CO Barnes (24905_CR34) 2020; 182 MB Doud (24905_CR39) 2018; 9 A Rohou (24905_CR60) 2015; 192 TF Custódio (24905_CR15) 2020; 11 DG Gibson (24905_CR47) 2009; 6 BM Tijink (24905_CR43) 2008; 7 P Emsley (24905_CR54) 2010; 66 DN Mastronarde (24905_CR57) 2005; 152 24905_CR17 M Yuan (24905_CR30) 2020; 368 D Wrapp (24905_CR1) 2020; 367 S Muyldermans (24905_CR22) 2013; 82 W Kabsch (24905_CR51) 2010; 66 MB Doud (24905_CR38) 2017; 13 J Hansen (24905_CR12) 2020; 369 SQ Zheng (24905_CR59) 2017; 14 C Vincke (24905_CR10) 2009; 284 R Shi (24905_CR35) 2020; 584 B Ju (24905_CR9) 2020 D Pinto (24905_CR29) 2020; 583 PR Evans (24905_CR52) 2013; 69 35896553 - Nat Commun. 2022 Jul 27;13(1):4359 |
References_xml | – volume: 25 start-page: 289 year: 2018 end-page: 296 ident: CR23 article-title: Yeast surface display platform for rapid discovery of conformationally selective nanobodies publication-title: Nat. Struct. Mol. Biol. – volume: 181 start-page: 1004.e15 year: 2020 end-page: 1015.e15 ident: CR32 article-title: Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies publication-title: Cell – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: CR60 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. – volume: 82 start-page: 3220 year: 2008 end-page: 3235 ident: CR40 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. – volume: 7 start-page: 2288 year: 2008 end-page: 2297 ident: CR43 article-title: Improved tumor targeting of anti-epidermal growth factor receptor nanobodies through albumin binding: taking advantage of modular nanobody technology publication-title: Mol. Cancer Ther. – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: CR33 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – ident: CR16 – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: CR51 article-title: XDS publication-title: Acta Crystallogr. D – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR62 article-title: UCSF Chimera–a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – year: 2020 ident: CR14 article-title: Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0469-6 – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: CR53 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. – volume: 78 start-page: 185 year: 2020 end-page: 193 ident: CR18 article-title: The socio-economic implications of the coronavirus pandemic (COVID-19): a review publication-title: Int. J. Surg. – volume: 3 start-page: e237 year: 2006 ident: CR41 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. – year: 2020 ident: CR8 article-title: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR1 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 181 start-page: 894 year: 2020 end-page: 904.e899 ident: CR5 article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2 publication-title: Cell – volume: 13 start-page: e1006271 year: 2017 ident: CR38 article-title: Complete mapping of viral escape from neutralizing antibodies publication-title: PLoS Pathog. – volume: 2 start-page: 5 year: 2012 ident: CR64 article-title: Monte Carlo simulation of the Spearman-Kaerber TCID50 publication-title: J. Clin. Bioinform. – volume: 117 start-page: 11727 year: 2020 end-page: 11734 ident: CR19 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl Acad. Sci. USA – volume: 368 start-page: 630 year: 2020 end-page: 633 ident: CR30 article-title: A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV publication-title: Science – volume: 5 start-page: e16228 year: 2016 ident: CR26 article-title: NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies publication-title: eLife – volume: 26 start-page: 1478 year: 2020 end-page: 1488 ident: CR49 article-title: Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients publication-title: Emerg. Infect. Dis. – volume: 152 start-page: 36 year: 2005 end-page: 51 ident: CR57 article-title: Automated electron microscope tomography using robust prediction of specimen movements publication-title: J. Struct. Biol. – ident: CR11 – volume: 7 start-page: eabe5575 year: 2021 ident: CR48 article-title: Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM publication-title: Sci. Adv. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: CR54 article-title: Features and development of Coot publication-title: Acta Crystallogr. D – volume: 82 start-page: 775 year: 2013 end-page: 797 ident: CR22 article-title: Nanobodies: natural single-domain antibodies publication-title: Annu. Rev. Biochem. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR55 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: CR4 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR59 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 9 start-page: 1386 year: 2018 end-page: 1386 ident: CR39 article-title: How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin publication-title: Nat. Commun. – volume: 9 year: 2019 ident: CR27 article-title: An improved yeast surface display platform for the screening of nanobody immune libraries publication-title: Sci. Rep. – volume: 25 start-page: 2000045 year: 2020 ident: CR65 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eur. Surveill. – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: CR47 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods – volume: 584 start-page: 120 year: 2020 end-page: 124 ident: CR35 article-title: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 publication-title: Nature – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: CR61 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 11 year: 2020 ident: CR15 article-title: Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2 publication-title: Nat. Commun. – volume: 30 start-page: 170 year: 2019 ident: CR50 article-title: The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron Radiation Facility publication-title: Nucl. Sci. Tech. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: CR63 article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 34 start-page: 11 year: 2020 end-page: 26 ident: CR28 article-title: The therapeutic potential of nanobodies publication-title: BioDrugs – ident: CR56 – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: CR6 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science – volume: 181 start-page: 271.e8 year: 2020 end-page: 280.e8 ident: CR20 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – year: 2020 ident: CR31 article-title: Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0480-y – volume: 182 start-page: 734.e5 year: 2020 end-page: 743.e5 ident: CR45 article-title: Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment publication-title: Cell – volume: 7 start-page: e42166 year: 2018 ident: CR58 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – volume: 182 start-page: 812.e19 year: 2020 end-page: 827.e19 ident: CR42 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell – ident: CR44 – volume: 15 start-page: 1707 year: 2020 end-page: 1741 ident: CR25 article-title: Generation of synthetic nanobodies against delicate proteins publication-title: Nat. Protoc. – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: CR29 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 11 year: 2020 ident: CR13 article-title: An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction publication-title: Nat. Commun. – volume: 17 start-page: e1009328 year: 2021 ident: CR37 article-title: A high-affinity RBD-targeting nanobody improves fusion partner’s potency against SARS-CoV-2 publication-title: PLOS Pathog. – volume: 11 year: 2020 ident: CR36 article-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation publication-title: Nat. Commun. – volume: 368 start-page: 1012 year: 2020 end-page: 1015 ident: CR46 article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model publication-title: Science – ident: CR17 – year: 2020 ident: CR9 article-title: Human neutralizing antibodies elicited by SARS-CoV-2 infection publication-title: Nature doi: 10.1038/s41586-020-2380-z – ident: CR7 – volume: 284 start-page: 3273 year: 2009 end-page: 3284 ident: CR10 article-title: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold publication-title: J. Biol. Chem. – volume: 182 start-page: 828.e16 year: 2020 end-page: 842.e16 ident: CR34 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: CR52 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallgr. D – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: CR21 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 7 start-page: e34317 year: 2018 ident: CR24 article-title: Synthetic single domain antibodies for the conformational trapping of membrane proteins publication-title: eLife – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR3 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 369 start-page: 1010 year: 2020 end-page: 1014 ident: CR12 article-title: Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail publication-title: Science – volume: 181 start-page: 281.e6 year: 2020 end-page: 292.e6 ident: CR2 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 7 start-page: 2288 year: 2008 ident: 24905_CR43 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-07-2384 – volume: 26 start-page: 1478 year: 2020 ident: 24905_CR49 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200841 – volume: 9 year: 2019 ident: 24905_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37212-3 – volume: 7 start-page: eabe5575 year: 2021 ident: 24905_CR48 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe5575 – volume: 181 start-page: 271.e8 year: 2020 ident: 24905_CR20 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 7 start-page: e42166 year: 2018 ident: 24905_CR58 publication-title: eLife doi: 10.7554/eLife.42166 – volume: 584 start-page: 437 year: 2020 ident: 24905_CR21 publication-title: Nature doi: 10.1038/s41586-020-2456-9 – ident: 24905_CR16 doi: 10.1101/2020.04.16.045419 – year: 2020 ident: 24905_CR31 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0480-y – volume: 13 start-page: e1006271 year: 2017 ident: 24905_CR38 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006271 – volume: 15 start-page: 1707 year: 2020 ident: 24905_CR25 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0304-x – volume: 9 start-page: 1386 year: 2018 ident: 24905_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03665-3 – volume: 581 start-page: 221 year: 2020 ident: 24905_CR4 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 369 start-page: 1010 year: 2020 ident: 24905_CR12 publication-title: Science doi: 10.1126/science.abd0827 – volume: 181 start-page: 1004.e15 year: 2020 ident: 24905_CR32 publication-title: Cell doi: 10.1016/j.cell.2020.04.031 – year: 2020 ident: 24905_CR8 publication-title: Cell doi: 10.1016/j.cell.2020.05.025 – volume: 11 year: 2020 ident: 24905_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19204-y – volume: 11 year: 2020 ident: 24905_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18174-5 – volume: 368 start-page: 630 year: 2020 ident: 24905_CR30 publication-title: Science doi: 10.1126/science.abb7269 – volume: 192 start-page: 216 year: 2015 ident: 24905_CR60 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 69 start-page: 1204 year: 2013 ident: 24905_CR52 publication-title: Acta Crystallgr. D doi: 10.1107/S0907444913000061 – volume: 581 start-page: 215 year: 2020 ident: 24905_CR3 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 368 start-page: 1012 year: 2020 ident: 24905_CR46 publication-title: Science doi: 10.1126/science.abb7314 – volume: 27 start-page: 14 year: 2018 ident: 24905_CR63 publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 583 start-page: 290 year: 2020 ident: 24905_CR29 publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 5 start-page: e16228 year: 2016 ident: 24905_CR26 publication-title: eLife doi: 10.7554/eLife.16228 – volume: 30 start-page: 170 year: 2019 ident: 24905_CR50 publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-019-0683-2 – volume: 82 start-page: 775 year: 2013 ident: 24905_CR22 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-063011-092449 – ident: 24905_CR11 doi: 10.1126/science.abc7520 – volume: 11 year: 2020 ident: 24905_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19231-9 – volume: 14 start-page: 331 year: 2017 ident: 24905_CR59 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – ident: 24905_CR17 – volume: 3 start-page: e237 year: 2006 ident: 24905_CR41 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030237 – volume: 25 start-page: 2000045 year: 2020 ident: 24905_CR65 publication-title: Eur. Surveill. – volume: 6 start-page: 343 year: 2009 ident: 24905_CR47 publication-title: Nat. Methods doi: 10.1038/nmeth.1318 – volume: 14 start-page: 290 year: 2017 ident: 24905_CR61 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 372 start-page: 774 year: 2007 ident: 24905_CR33 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 181 start-page: 894 year: 2020 ident: 24905_CR5 publication-title: Cell doi: 10.1016/j.cell.2020.03.045 – volume: 284 start-page: 3273 year: 2009 ident: 24905_CR10 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806889200 – volume: 2 start-page: 5 year: 2012 ident: 24905_CR64 publication-title: J. Clin. Bioinform. doi: 10.1186/2043-9113-2-5 – volume: 66 start-page: 125 year: 2010 ident: 24905_CR51 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909047337 – volume: 17 start-page: e1009328 year: 2021 ident: 24905_CR37 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009328 – volume: 82 start-page: 3220 year: 2008 ident: 24905_CR40 publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 182 start-page: 812.e19 year: 2020 ident: 24905_CR42 publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 25 start-page: 1605 year: 2004 ident: 24905_CR62 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – ident: 24905_CR7 doi: 10.1126/science.abc2241 – volume: 78 start-page: 185 year: 2020 ident: 24905_CR18 publication-title: Int. J. Surg. doi: 10.1016/j.ijsu.2020.04.018 – year: 2020 ident: 24905_CR14 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0469-6 – volume: 584 start-page: 120 year: 2020 ident: 24905_CR35 publication-title: Nature doi: 10.1038/s41586-020-2381-y – volume: 367 start-page: 1444 year: 2020 ident: 24905_CR6 publication-title: Science doi: 10.1126/science.abb2762 – volume: 25 start-page: 289 year: 2018 ident: 24905_CR23 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0028-6 – volume: 152 start-page: 36 year: 2005 ident: 24905_CR57 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 66 start-page: 486 year: 2010 ident: 24905_CR54 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 7 start-page: e34317 year: 2018 ident: 24905_CR24 publication-title: eLife doi: 10.7554/eLife.34317 – volume: 34 start-page: 11 year: 2020 ident: 24905_CR28 publication-title: BioDrugs doi: 10.1007/s40259-019-00392-z – ident: 24905_CR56 – volume: 181 start-page: 281.e6 year: 2020 ident: 24905_CR2 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 182 start-page: 734.e5 year: 2020 ident: 24905_CR45 publication-title: Cell – volume: 40 start-page: 658 year: 2007 ident: 24905_CR53 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 182 start-page: 828.e16 year: 2020 ident: 24905_CR34 publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 367 start-page: 1260 year: 2020 ident: 24905_CR1 publication-title: Science doi: 10.1126/science.abb2507 – ident: 24905_CR44 doi: 10.1093/protein/gzv040 – year: 2020 ident: 24905_CR9 publication-title: Nature doi: 10.1038/s41586-020-2380-z – volume: 117 start-page: 11727 year: 2020 ident: 24905_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2003138117 – volume: 66 start-page: 213 year: 2010 ident: 24905_CR55 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – reference: 35896553 - Nat Commun. 2022 Jul 27;13(1):4359 |
SSID | ssj0000391844 |
Score | 2.5940247 |
Snippet | SARS-CoV-2, the causative agent of COVID-19
1
, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein
1
–
6
. Neutralizing... SARS-CoV-2, the causative agent of COVID-19 1 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein 1–6 . Neutralizing... SARS-CoV-2, the causative agent of COVID-19 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein . Neutralizing antibodies that... SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1–6. Neutralizing antibodies... SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies... SARS-CoV-2, the causative agent of COVID-19 1 , features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein 1-6 . Neutralizing... Here, the authors report the engineering, structural and biological characterization of synthetic nanobodies (sybodies) that display potent therapeutic... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4635 |
SubjectTerms | 631/326/596/4130 631/45/535/1266 82/1 82/80 82/83 ACE2 Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - metabolism Animal models Animals Antibodies Antibodies, Neutralizing - immunology Antibodies, Neutralizing - pharmacology Antibodies, Neutralizing - ultrastructure Antibodies, Viral - immunology Antibodies, Viral - pharmacology Antibodies, Viral - ultrastructure Binding Binding Sites - immunology Bioavailability COVID-19 COVID-19 - immunology COVID-19 - prevention & control COVID-19 - virology Cryoelectron Microscopy Crystallography, X-Ray Emerging diseases Female Hamsters Human health and pathology Humanities and Social Sciences Humans Immunology Immunotherapy Infectious diseases Life Sciences Mass Spectrometry - methods Mesocricetus Mice Mice, Inbred C57BL Microbiology and Parasitology multidisciplinary Nanobodies Neutralization Neutralization Tests Neutralizing Protein Binding - drug effects Receptors Receptors, Virus - metabolism SARS-CoV-2 - immunology SARS-CoV-2 - metabolism SARS-CoV-2 - physiology Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Single-Domain Antibodies - chemistry Single-Domain Antibodies - immunology Single-Domain Antibodies - metabolism Structural analysis Viral diseases Virology Viruses |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL4pvAQAZxg2iO7STOCXWDUiHYYWNoN8uxnRUJkrF0SN1fz3uOk6lMrMfYTd33-Yv98nuEvJF1br2TVZojz5AsbJUa7G9SyKpRpSltHjrPfd0vFkfy83F-HDfc-lhWOcbEEKhdZ3GPfAepsgBdAPx4f_o7xa5ReLoaW2jcJLcyyDRo4Wr-adpjQfZzJWV8V4YJtdPLEBmwLgGeO1ieXmzko0DbD1lmiUWRVxHn1cLJf05PQ1Ka3yN3I5qks0H998kN3z4gt4f-kuuHZH9G-3ULEA-GaWvaru7cmg7F33A_erD7gUaihp4uzS8kTegpvnFCD2cHh-le9z3ldKzXah-Ro_nHb3uLNDZQSG0h2SqFvGN50SiRSSeYbUB4tfUi80XJi7wGxXAjbWVM5huAdVXpIJlnjcOy17IC4PCYbLVd658S6px0oDlZcwvPVIUysuDGM6cca4SQIiHZKEZtI7s4Nrn4qcMpt1B6EL0G0esgen2RkLfTd04Hbo1rZ--idqaZyIsdLnRnJzq6mfbccd9Uri4tRCOX4xKlEbnnUknj6oS8Bt1u3GMx-6LxGssRvnDxJ0vI9qh6HT2615f2l5BX0zD4Ih6wmNZ352FOyQV8YM6TwVKmnwIZCVYxlZByw4Y21rI50v5YBr5vCLoSdJiQd6O1XS7r__J6dv2_eE7ucHQD3KZm22RrdXbuXwC-WtUvgxP9BQ2jIA8 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIiQuiPJqoEUGcYNAYjuvA0LbQrVCtIeWRb1Zju2wSCWBzRax_fXMOMmi0MKJHGMnsb6Z8XyOxzMAz2SZGGdlESaUZ0impgg11TdJZVHlmc5M4ivPHR6l05l8f5qcbsBQ7qgHsL1yaUf1pGaLs5c_v6_eoMG_7o6M569a6c2dgg1wMREl4cU1uI6eKaNSDoc93fczsyhwQSP7szNXPzryTz6NP3qdOQVJXmaglwMp_9hN9U7q4Dbc6tklm3TqsAUbrr4DN7p6k6u7cDRh7apGyofNrNZ1UzZ2xbpgcHwfO957y_rEDS2b66-URKFldAKFnUyOT8L95lPI2RC_Vd-D2cG7j_vTsC-oEJpURssQ_ZDhaZWLWFoRmQq5XGmciF2a8TQpUVBcS1NoHbsKaV6RWXTucWUpDDYrkEjch826qd02MGulRUnKkhtcY6W5linXLrK5jSohpAggHmBUps82TkUvzpTf9Ra56qBXCL3y0KuLAJ6vn_nW5dr4Z-89ks66J-XJ9jeaxWfVm51y3HJXFbbMDM5ONqEhSi0Sx2UutS0DeIqyHb1jOvmg6F6UEJ3h4kccwM4gejUoqKLUbch2EcIAnqyb0TZpw0XXrjn3fTIu8MI-DzpNWX8KMRJREeUBZCMdGo1l3FJ_mfv83zgJS5RhAC8Gbfs9rL_j9fB_4PUIbnIyFvq5He3A5nJx7naRlS3Lx97UfgFpmTE9 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBggziBhGJ7TjJcbtQrRD00FLUm-XYThcJEtRskba_nhnngUIBiRzjSWLNeDyf4_E3AC9llVnvZBlnxDMklS1jQ_VNlCzrIje5zULluY-HanUi359mpzvAx7MwIWk_UFqGaXrMDnvTyeDSlFCAC4Ykiy-vwXWibqc0vqVaTv9ViPG8kHI4H5OI4g-PzmJQoOrHyLKmRMirKPNqsuRvO6YhEB3chlsDgmSLvs93YMc3d-FGX1Nyew8OF6zbNgjrsJk1pmmr1m1Zn_CN72NH-2_ZQM7QsbX5RkQJHaNTJux4cXQcL9vPMWdjjlZzH04O3n1aruKhaEJslUw2McYay1VdiFQ6kdga8VplvUi9yrnKKjQGN9KWxqS-RihX5g4DeFo7SnXNSwQLD2C3aRv_CJhz0qG1ZMUtrqNUYaTixieucEkthBQRpKMatR0YxamwxVcddrZFoXvVa1S9DqrXlxG8mp753vNp_FN6n6wzSRIXdrjRnp_pYWxozx33demq3OIM5DLqojQi81wW0rgqghdo29k7VosPmu4lGUEWLn6kEeyNpteDF3ea6NkQ0aIKI3g-NaP_0aaKaXx7EWRyLvBCmYf9SJk-hToSSZkUEeSzMTTry7yl-bIOHN840Uq0YQSvx9H2q1t_19fj_xN_Ajc5uQX9qk72YHdzfuGfIsbaVM-CU_0EARYeXQ priority: 102 providerName: Springer Nature |
Title | A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection |
URI | https://link.springer.com/article/10.1038/s41467-021-24905-z https://www.ncbi.nlm.nih.gov/pubmed/34330908 https://www.proquest.com/docview/2556540656 https://www.proquest.com/docview/2557233336 https://hal.science/hal-05023823 https://pubmed.ncbi.nlm.nih.gov/PMC8324831 https://doaj.org/article/e2d2ef9db7c042d5ae0d4a35e2484adb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCIkXxO9ljMog3iCaYzuO85iWlapiFWoZ6pvl2I6KBAmi3aTur-fspGVhAl7IQyLZTmJ9d_ad48t3CL3mZWqc5Xmcep4hLkwea5_fRPC8kpnOTBoyz53NxOScT5fp8lqqLx8T1tIDt8CdOGqpq3JbZgb0y6baEcs1Sx3lkmtb-tkXbN61xVSYg1kOSxfe_SVDmDxZ8zAn-IgEWHGQNL7qWaJA2A_2ZeXDIW_6mjdDJn_bNw3maPwA3e_8SFy0_X-Ibrn6EbrbZpbcPkazAq-3NTh3UI1rXTdlY7e4DfuG5-H58B3uKBrWeKW_ebqENfb_muBFMV_Eo-ZzTPEuUqt-gs7Hp59Gk7hLnRAbwckmBotjqKgkS7hlxFTgtZXGscSJjIq0BJFQzU2udeIqcOjyzIIZTyrrA16zHFyGp-igbmp3iLC13ILMeEkNrKaE1FxQLwRpScUYZxFKdjAq0_GK-_QWX1XY32ZStdArgF4F6NVVhN7s7_nesmr8tfXQS2ff0jNihwLQE9XpifqXnkToFci294xJ8UH5MpJ6x4WyyyRCxzvRq24sr5UnaQO_FiCM0Mt9NYxCv7Wia9dchDYZZXBAm2etpuxfBRgxkhMZoaynQ72-9GvqL6vA9A3TLQcZRujtTtt-devPeB39D7yeo3vUDxb_GZsco4PNjwv3AvyvTTlAt7NlBmc5fj9Ad4piupjCdXg6-ziH0pEYDcJghPMZlz8BzecwtQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAAYPgBFEd23kdENq2VFu63UMfaG-uYzssEiSl2YK2P4rfyIyTbLVU9NYcY6_jnbft8TeEvJFFbJyVeRgjzpBMTB5qrG-SyLzMUp2a2Fee2xsnwyP5eRJPVsif_i4MplX2NtEbalsb3CNfR6gsiC4g_Ph48jPEqlF4utqX0GjFYtfNf8OSrfmwswX8fcv59qfDzWHYVRUITSLZLARjbHhSZiKSVjBTwoiFcSJyScqTuIDZci1NrnXkSoh18tSCh4tKi7mgac4R6ABM_g1wvAxTCNNJutjTQbT1TMrubg4T2XojvSXCPAhY57A4PF_yf75MAHi1KSZhXo5wLydq_nNa653g9l1yp4te6aAVt3tkxVX3yc22nuX8ARkPaDOvIKSEZlrpqi5qO6dtsjmMR_c3tmgHDNHQqf6BIA0NxRsu9GCwfxBu1l9CTvv8sOohOboW0j4iq1VduSeEWistSIosuIE1XJJpmXDtmM0sK4WQIiBRT0ZlOjRzLKrxXflTdZGplvQKSK886dV5QN4tfnPSYnlc2XsDubPoiTjc_kV9-lV1aq0ct9yVuS1SA9bPxjhFqUXsuMyktkVAXgNvl8YYDkYK37EYwyUufkUBWetZrzoL0qgLeQ_Iq0Uz6D4e6OjK1We-T8oFPNDncSspi08BjQTLWRaQdEmGluay3FJ9m3p8cTDyEngYkPe9tF1M6__0enr1v3hJbg0P90ZqtDPefUZuc1QJ3CJna2R1dnrmnkNsNyteeIWi5Pi6NfgvIlFbXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemIRAXxDeBAQbBCaImthMnB4S6lapjY0IbQ70Zx3YoEiRj6UDdn8Zfx3tO0qlM7LYcY9dx37ft598j5IUoEuOsyMMEcYZEavJQY32TVORlJrU0ia8892EvnRyK99Nkukb-9HdhMK2yt4neUNva4B75AKGyILqA8GNQdmkRH0fjt0c_Q6wghSetfTmNVkR23OI3LN-aN9sj4PVLxsbvPm1Nwq7CQGhSEc1DMMyGpWXGY2F5ZEoYvTCOxy6VLE0KmDnTwuRax66EuCeXFrxdXFrMC5U5Q9ADMP9XJAe3Cbokp3K5v4PI65kQ3T2diGeDRnirhDkRsOaJkvB0xRf6kgHg4WaYkHk-2j2ftPnPya13iOOb5EYXydJhK3q3yJqrbpOrbW3LxR2yN6TNooLwEppppau6qO2CtonnMB7d3xzRDiSioTP9AwEbGoq3XejBcP8g3Ko_h4z2uWLVXXJ4KaS9R9arunIPCLVWWJAaUTAD67k00yJl2kU2s1HJueABiXsyKtMhm2OBje_Kn7DzTLWkV0B65UmvTgPyavmboxbX48Lem8idZU_E5PYv6uOvqlNx5ZhlrsxtIQ1YQpvgFIXmiWMiE9oWAXkOvF0ZYzLcVfguSjB0YvxXHJCNnvWqsyaNOpP9gDxbNoMdwMMdXbn6xPeRjMMDfe63krL8FNCIR3mUBUSuyNDKXFZbqm8zjzUOBl8ADwPyupe2s2n9n14PL_4XT8k10F21u72384hcZ6gRuFsebZD1-fGJewxh3rx44vWJki-XrcB_AZzmX5I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synthetic+nanobody+targeting+RBD+protects+hamsters+from+SARS-CoV-2+infection&rft.jtitle=Nature+communications&rft.au=Tingting+Li&rft.au=Hongmin+Cai&rft.au=Hebang+Yao&rft.au=Bingjie+Zhou&rft.date=2021-07-30&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-021-24905-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e2d2ef9db7c042d5ae0d4a35e2484adb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |