The impact of artificial intelligence on learner–instructor interaction in online learning

Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on t...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Educational Technology in Higher Education Vol. 18; no. 1; pp. 54 - 23
Main Authors Seo, Kyoungwon, Tang, Joice, Roll, Ido, Fels, Sidney, Yoon, Dongwook
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 26.10.2021
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.
AbstractList Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors' routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner-instructor interaction (inter alia, communication, support, and presence) has a profound impact on students' satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner-instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner-instructor interaction, capturing students' and instructors' concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors' routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner-instructor interaction (inter alia, communication, support, and presence) has a profound impact on students' satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner-instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner-instructor interaction, capturing students' and instructors' concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.
Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.
Abstract Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.
ArticleNumber 54
Audience Higher Education
Postsecondary Education
Author Seo, Kyoungwon
Roll, Ido
Fels, Sidney
Yoon, Dongwook
Tang, Joice
Author_xml – sequence: 1
  givenname: Kyoungwon
  orcidid: 0000-0003-3435-0685
  surname: Seo
  fullname: Seo, Kyoungwon
  email: kwseo@seoultech.ac.kr
  organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology
– sequence: 2
  givenname: Joice
  surname: Tang
  fullname: Tang, Joice
  organization: Department of Computer Science, The University of British Columbia
– sequence: 3
  givenname: Ido
  surname: Roll
  fullname: Roll, Ido
  organization: Faculty of Education in Science and Technology, Technion-Israel Institute of Technology
– sequence: 4
  givenname: Sidney
  surname: Fels
  fullname: Fels, Sidney
  organization: Department of Electrical and Computer Engineering, The University of British Columbia
– sequence: 5
  givenname: Dongwook
  surname: Yoon
  fullname: Yoon, Dongwook
  organization: Department of Computer Science, The University of British Columbia
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315865$$DView record in ERIC
BookMark eNp9kstq3TAQhk1JadI0L1AoGLrpxq2utrQplJC0KYFuzrIg5PHY0cFHOpXsQnd9h75hnyTycXpJFoEBCc3_fxqN5nlx5IPHonhJyVtKVf0uCcq4rgijFSFMs0o_KU4Yr2WlhSBH_-2Pi7OUtoQQqhnjij0rjrloGiUFOSm-bm6wdLu9hakMfWnj5HoHzo6l8xOOoxvQA5bBlyPa6DH-_vnL-TTFGaYQD6KYvS4LnM-y0Xlcpc4PL4qnvR0Tnt2tp8Xm8mJz_qm6_vLx6vzDdQW1IFMlbEcRlKK9rBsOioIErVXDJGoCnLJeISW1bdFiSznUTaO7pregbdeonp8WVyu2C3Zr9tHtbPxhgnXmcBDiYJZ3wYiGQ2ubrsvR9UJCbwm0iuiWKaa5AJlZ71fWfm532AH6KdrxHvR-xrsbM4TvJrdTilpkwJs7QAzfZkyT2bkEuZPWY5iTYVI3ikitl7teP5Buwxx97lRWKVnzHAvw1arC6OBvIRefKadS1QtFrXmIIaWIvQE32eVHcn1uNJSYZWDMOjAmD4w5DIzR2coeWP_gHzXx1ZSy2A8Y_1X9iOsWlQPVcA
CitedBy_id crossref_primary_10_1007_s10639_021_10866_9
crossref_primary_10_18009_jcer_1477709
crossref_primary_10_59231_SARI7600
crossref_primary_10_1007_s10758_024_09780_z
crossref_primary_10_1177_02704676231224705
crossref_primary_10_1016_j_ssaho_2024_101035
crossref_primary_10_32329_uad_1609305
crossref_primary_10_22610_imbr_v16i3S_I_a_4178
crossref_primary_10_1016_j_acalib_2024_102885
crossref_primary_10_1016_j_caeai_2024_100306
crossref_primary_10_1007_s10639_024_12523_3
crossref_primary_10_24093_awej_call10_11
crossref_primary_10_1007_s10639_024_13270_1
crossref_primary_10_1080_10447318_2024_2443263
crossref_primary_10_5937_ptp2404165G
crossref_primary_10_1007_s10462_023_10508_1
crossref_primary_10_1080_0886022X_2023_2274507
crossref_primary_10_1016_j_caeai_2025_100380
crossref_primary_10_1109_ACCESS_2024_3369901
crossref_primary_10_1016_j_chb_2025_108600
crossref_primary_10_7759_cureus_69332
crossref_primary_10_1016_j_heliyon_2023_e21019
crossref_primary_10_3389_frai_2024_1377938
crossref_primary_10_3390_educsci14070742
crossref_primary_10_1007_s43621_025_00809_6
crossref_primary_10_1007_s44217_024_00252_1
crossref_primary_10_1057_s41599_024_04168_x
crossref_primary_10_3389_feduc_2024_1323898
crossref_primary_10_1080_08839514_2023_2261730
crossref_primary_10_3390_educsci14090974
crossref_primary_10_3390_educsci13070632
crossref_primary_10_56741_jpes_v3i02_515
crossref_primary_10_1016_j_bushor_2023_11_003
crossref_primary_10_17984_adyuebd_1463794
crossref_primary_10_2196_49964
crossref_primary_10_1080_10999922_2024_2414957
crossref_primary_10_3390_systems12050176
crossref_primary_10_31757_euer_811
crossref_primary_10_3389_feduc_2024_1487882
crossref_primary_10_1016_j_heliyon_2024_e40025
crossref_primary_10_1007_s10956_024_10186_w
crossref_primary_10_1016_j_caeai_2024_100287
crossref_primary_10_1007_s44217_024_00173_z
crossref_primary_10_1016_j_joitmc_2024_100278
crossref_primary_10_3390_educsci13121216
crossref_primary_10_1007_s43681_025_00686_9
crossref_primary_10_1080_23311983_2024_2392388
crossref_primary_10_3389_feduc_2025_1522905
crossref_primary_10_61927_igmin151
crossref_primary_10_1080_10447318_2024_2400396
crossref_primary_10_1155_2024_8713718
crossref_primary_10_32329_uad_1557111
crossref_primary_10_30935_ojcmt_14485
crossref_primary_10_1080_10447318_2024_2359222
crossref_primary_10_1177_02666669241283790
crossref_primary_10_4018_IJKM_356493
crossref_primary_10_7906_indecs_22_1_1
crossref_primary_10_1007_s44217_024_00297_2
crossref_primary_10_1016_j_caeai_2024_100330
crossref_primary_10_1016_j_caeai_2023_100156
crossref_primary_10_1007_s11423_023_10203_6
crossref_primary_10_4236_jilsa_2023_154009
crossref_primary_10_3390_educsci13090963
crossref_primary_10_1051_e3sconf_202345002010
crossref_primary_10_1016_j_chbah_2025_100137
crossref_primary_10_3390_mti8040028
crossref_primary_10_59324_ejceel_2024_2_3__04
crossref_primary_10_3390_electronics11091487
crossref_primary_10_1007_s10639_024_12594_2
crossref_primary_10_30935_cedtech_15688
crossref_primary_10_1080_10447318_2023_2278283
crossref_primary_10_1016_j_actpsy_2024_104677
crossref_primary_10_32628_IJSRST2411424
crossref_primary_10_58567_jie01020002
crossref_primary_10_18184_2079_4665_2024_15_1_8_26
crossref_primary_10_3390_bs14111008
crossref_primary_10_1177_02666669241304407
crossref_primary_10_1016_j_caeai_2023_100188
crossref_primary_10_1007_s44163_024_00147_y
crossref_primary_10_3390_su15043507
crossref_primary_10_1016_j_caeai_2024_100346
crossref_primary_10_1111_jcal_12988
crossref_primary_10_1108_K_03_2024_0613
crossref_primary_10_1007_s10639_025_13347_5
crossref_primary_10_1038_s41598_024_52549_8
crossref_primary_10_12973_ijem_10_2_997
crossref_primary_10_1080_2331186X_2023_2287917
crossref_primary_10_1016_j_tate_2024_104736
crossref_primary_10_1007_s10639_023_12315_1
crossref_primary_10_1016_j_heliyon_2024_e37238
crossref_primary_10_4236_jss_2024_1210025
crossref_primary_10_1007_s10639_024_12916_4
crossref_primary_10_30738_union_v12i2_17548
crossref_primary_10_54097_ijeh_v11i2_13753
crossref_primary_10_1177_07356331241278636
crossref_primary_10_1057_s41599_024_03432_4
crossref_primary_10_30935_cedtech_14250
crossref_primary_10_1016_j_compedu_2023_104967
crossref_primary_10_51531_korkutataturkiyat_1361112
crossref_primary_10_1016_j_cptl_2023_10_001
crossref_primary_10_1016_j_caeai_2024_100358
crossref_primary_10_37843_rted_v17i2_539
crossref_primary_10_59652_jetm_v3i1_404
crossref_primary_10_1007_s44322_025_00028_x
crossref_primary_10_23887_jisd_v8i2_58854
crossref_primary_10_14686_buefad_1416087
crossref_primary_10_21833_ijaas_2024_11_003
crossref_primary_10_1080_03075079_2024_2326956
crossref_primary_10_1108_JWL_02_2022_0023
crossref_primary_10_23887_jipp_v7i1_59718
crossref_primary_10_1186_s40561_024_00350_5
crossref_primary_10_1177_21582440241242188
crossref_primary_10_3390_electronics13142808
crossref_primary_10_57175_evsos_v2i4_157
crossref_primary_10_32457_scr_v4i1_2826
crossref_primary_10_24018_ejeng_2023_1_CIE_3133
crossref_primary_10_30935_jdet_15809
crossref_primary_10_1108_JME_09_2024_0119
crossref_primary_10_1080_10447318_2024_2307692
crossref_primary_10_1021_acs_jchemed_4c00138
crossref_primary_10_1080_1475939X_2024_2337924
crossref_primary_10_1016_j_caeo_2024_100191
crossref_primary_10_21511_ppm_23_1__2025_08
crossref_primary_10_33516_rb_v49i4_140_150p
crossref_primary_10_3389_fpsyg_2025_1498132
crossref_primary_10_1186_s41239_022_00341_x
crossref_primary_10_3390_app142411612
crossref_primary_10_1080_10447318_2024_2430433
crossref_primary_10_1007_s10639_023_12371_7
crossref_primary_10_47836_pjssh_32_3_02
crossref_primary_10_4236_ce_2024_1512157
crossref_primary_10_1111_bjet_13544
crossref_primary_10_3390_electronics13173424
crossref_primary_10_1016_j_caeai_2025_100392
crossref_primary_10_1016_j_caeai_2025_100398
crossref_primary_10_3390_educsci14121386
crossref_primary_10_5861_ijrsm_2024_1037
crossref_primary_10_62273_GKZI2477
crossref_primary_10_1177_21582440241310644
crossref_primary_10_21834_e_bpj_v9i28_5787
crossref_primary_10_4018_IJeC_356491
crossref_primary_10_1007_s10639_024_12452_1
crossref_primary_10_1016_j_heliyon_2024_e25896
crossref_primary_10_1186_s41239_023_00406_5
crossref_primary_10_19126_suje_1447044
crossref_primary_10_1007_s10639_024_12743_7
crossref_primary_10_3390_app14093672
crossref_primary_10_1007_s10639_025_13337_7
crossref_primary_10_3390_educsci13060580
crossref_primary_10_55982_openpraxis_16_1_618
crossref_primary_10_1177_20965311251319049
crossref_primary_10_1007_s10639_024_13143_7
Cites_doi 10.1109/3DUI.2017.7893357
10.1016/j.iheduc.2018.01.003
10.1145/3375462.3375536
10.1145/3170358.3170377
10.1007/978-3-030-52237-7_20
10.1016/j.compedu.2021.104132
10.1145/1142405.1142410
10.24059/olj.v21i4.1240
10.1145/3311927.3323139
10.18608/jla.2015.21.2
10.1007/s40593-018-0170-7
10.1145/3330430.3333618
10.1080/00220671.2016.1220359
10.1186/s41239-018-0113-2
10.1007/978-3-540-74853-3_25
10.1145/3313831.3376311
10.1080/08923648909526659
10.7249/PE315
10.1080/00461520.2011.611369
10.1007/s40593-016-0122-z
10.1145/3386527.3405937
10.1007/978-3-642-13388-6_37
10.1177/1609406917733847
10.1186/s41239-019-0171-0
10.1016/j.compedu.2017.08.006
10.24059/olj.v22i1.1092
10.1080/07370024.2020.1744145
10.1080/13644360903086554
10.4018/JGIM.2018070108
10.1191/1478088706qp063oa
10.1007/s40593-016-0110-3
10.1038/538311a
10.1007/978-3-030-21814-0_2
10.1007/978-0-85729-224-7_22
10.1016/j.chb.2017.02.001
10.1145/3290605.3300534
10.1080/10494820.2014.961485
10.1111/jcal.12005
10.1038/s41562-016-0028
10.1186/s41039-017-0062-8
10.1609/aaai.v33i01.33019795
10.1108/S2055-364120200000033003
10.1007/s00146-017-0693-8
10.17232/KSET.26.2.187
10.1145/3313129
10.1038/538020a
10.1080/17439884.2020.1798995
10.1126/science.228.4698.456
10.1145/3313831.3376727
10.1145/3301019.3320000
10.1007/s40593-016-0105-0
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021.
DBID C6C
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
0-V
3V.
7XB
88B
89V
8BY
8FE
8FG
8FK
8G5
ABUWG
AFKRA
AHOVV
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJNVE
CLZPN
COVID
DPSOV
DWQXO
GNUQQ
GUQSH
HCIFZ
KC-
M0P
M2L
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
7X8
5PM
DOA
DOI 10.1186/s41239-021-00292-9
DatabaseName Springer Nature OA/Free Journals
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
PRISMA Database
PRISMA Database with HAPI Index
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Education Research Index
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Education Collection
Latin America & Iberia Database
Coronavirus Research Database
Politics Collection
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Politics Collection
Education Database
Political Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ERIC
Publicly Available Content Database
ProQuest One Education
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
PRISMA (without HAPI)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Politics Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Political Science
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Latin America & Iberian Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
PRISMA (with HAPI)
ProQuest Politics Collection
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef
ERIC


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
Law
Computer Science
EISSN 2365-9440
ERIC EJ1315865
EndPage 23
ExternalDocumentID oai_doaj_org_article_3cba7dd7dddf45cfa0cb809b282934c5
PMC8545464
EJ1315865
10_1186_s41239_021_00292_9
GrantInformation_xml – fundername: seoul national university of science and technology
– fundername: ;
GroupedDBID -W8
0R~
5VS
89V
8BY
8G5
AAFWJ
AAHSB
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADUOI
AFGXO
AFKRA
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARAPS
ASPBG
AZQEC
B14
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CJNVE
CLZPN
DPSOV
DWQXO
EBS
EDJ
EJD
FAEIB
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HISYW
IAO
IER
INF
ITC
KC-
KPI
M0P
M2L
M2O
M~E
OK1
PIMPY
PQEDU
PQQKQ
PROAC
RHO
RSV
SOJ
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7SW
AHSBF
BJH
BNH
BNI
BNJ
BNO
ERI
H13
PET
PQGLB
PRQQA
REK
WWN
0-V
3V.
7XB
8FE
8FG
8FK
AHOVV
COVID
MBDVC
P62
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c640t-4ad1ec881f5673c81c5c998725e90c312f8e106abeaeb13c6779d7fac9ad78f3
IEDL.DBID DOA
ISSN 2365-9440
IngestDate Wed Aug 27 01:24:07 EDT 2025
Thu Aug 21 13:51:18 EDT 2025
Fri Jul 11 15:37:32 EDT 2025
Sat Aug 23 14:34:26 EDT 2025
Fri Aug 01 12:14:15 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Tue Jul 01 04:32:45 EDT 2025
Fri Feb 21 02:47:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Learner–instructor interaction
Speed dating
Artificial intelligence
Online learning
Boundary
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-4ad1ec881f5673c81c5c998725e90c312f8e106abeaeb13c6779d7fac9ad78f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3435-0685
OpenAccessLink https://doaj.org/article/3cba7dd7dddf45cfa0cb809b282934c5
PMID 34778540
PQID 2585635634
PQPubID 396499
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_3cba7dd7dddf45cfa0cb809b282934c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545464
proquest_miscellaneous_2597805995
proquest_journals_2585635634
eric_primary_EJ1315865
crossref_citationtrail_10_1186_s41239_021_00292_9
crossref_primary_10_1186_s41239_021_00292_9
springer_journals_10_1186_s41239_021_00292_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle International Journal of Educational Technology in Higher Education
PublicationTitleAbbrev Int J Educ Technol High Educ
PublicationYear 2021
Publisher Springer International Publishing
BioMed Central, Ltd
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: BioMed Central, Ltd
– name: Springer Nature B.V
– name: SpringerOpen
References PopeniciSAKerrSExploring the impact of artificial intelligence on teaching and learning in higher educationResearch and Practice in Technology Enhanced Learning20171212210.1186/s41039-017-0062-8
Aslan, S., Alyuz, N., Tanriover, C., Mete, S. E., Okur, E., D'Mello, S. K., & Arslan Esme, A. (2019). Investigating the impact of a real-time, multimodal student engagement analytics technology in authentic classrooms. In: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–12).
GoelAKPolepeddiLJill Watson: A virtual teaching assistant for online education2016Georgia Institute of Technology
KangMImTFactors of learner–instructor interaction which predict perceived learning outcomes in online learning environmentJournal of Computer Assisted Learning201329329230110.1111/jcal.12005
McArthur, A. (2020). Students struggle with online test proctoring systems. Retrieved January 10, 2021, from https://universe.byu.edu/2020/12/17/students-struggle-with-online-test-proctoring-systems
Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599.
LuckinRTowards artificial intelligence-based assessment systemsNature Human Behaviour2017131310.1038/s41562-016-0028
Loi, D., Wolf, C. T., Blomberg, J. L., Arar, R., & Brereton, M. (2019). Co-designing AI futures: Integrating AI ethics, social computing, and design. In: Companion publication of the 2019 on designing interactive systems conference 2019 companion (pp. 381–384).
ShackelfordJLMaxwellMContribution of learner–instructor interaction to sense of community in graduate online educationMERLOT Journal of Online Learning and Teaching201284248260
MurphyRFArtificial intelligence applications to support K–12 teachers and teachingRAND Corporation201910.7249/PE315
HwangGJXieHWahBWGaševićDVision, challenges, roles and research issues of Artificial Intelligence in EducationComputers and Education: Artificial Intelligence20201
MartinFWangCSadafAStudent perception of helpfulness of facilitation strategies that enhance instructor presence, connectedness, engagement and learning in online coursesThe Internet and Higher Education201837526510.1016/j.iheduc.2018.01.003
CastelvecchiDCan we open the black box of AI?Nature News201653876232010.1038/538020a
NguyenTDCannataMMillerJUnderstanding student behavioral engagement: Importance of student interaction with peers and teachersThe Journal of Educational Research2018111216317410.1080/00220671.2016.1220359
Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7–12.
Bajaj, M., & Li, J. (2020). Students, faculty express concerns about online exam invigilation amidst COVID-19 outbreak. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/Students-express-concerns-about-online-exams
RossBChaseAMRobbieDOatesGAbsalomYAdaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unitInternational Journal of Educational Technology in Higher Education20181513010.1186/s41239-018-0113-2
Kang, M. S. (2010). Development of learners’ perceived interaction model and scale between learner and instructor in e-learning environments. Doctoral dissertation. Korea University, Korea.
MartinFBolligerDUEngagement matters: Student perceptions on the importance of engagement strategies in the online learning environmentOnline Learning201822120522210.24059/olj.v22i1.1092
Walker, C. H. (2016). The correlation between types of instructor-student communication in online graduate courses and student satisfaction levels in the private university setting. Doctoral dissertation. Carson-Newman University, Tennessee.
WilliamsonBEynonRHistorical threads, missing links, and future directions in AI in educationLearning, Media and Technology202045322323510.1080/17439884.2020.1798995
GuilhermeAAI and education: The importance of teacher and student relationsAI & Society2019341475410.1007/s00146-017-0693-8
Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM international conference on interaction design and children (pp. 121–132).
Felix, C. V. (2020). The role of the teacher and AI in education. In: International perspectives on the role of technology in humanizing higher education. Emerald Publishing Limited.
RichardsonJCMaedaYLvJCaskurluSSocial presence in relation to students' satisfaction and learning in the online environment: A meta-analysisComputers in Human Behavior20177140241710.1016/j.chb.2017.02.001
RobinsonHKilgoreWWarrenSCare, communication, support: Core for designing meaningful online collaborative learningOnline Learning Journal.201710.24059/olj.v21i4.1240
ZhangCChenHPhangCWRole of instructors' forum interactions with students in promoting MOOC continuanceJournal of Global Information Management (JGIM)201826310512010.4018/JGIM.2018070108
Luria, M., Zheng, R., Huffman, B., Huang, S., Zimmerman, J., & Forlizzi, J. (2020). Social boundaries for personal agents in the interpersonal space of the home. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–12).
NowellLSNorrisJMWhiteDEMoulesNJThematic analysis: Striving to meet the trustworthiness criteriaInternational Journal of Qualitative Methods2017161160940691773384710.1177/1609406917733847
Fong, M., Dodson, S., Harandi, N. M., Seo, K., Yoon, D., Roll, I., & Fels, S. (2019). Instructors desire student activity, literacy, and video quality analytics to improve video-based blended courses. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale (pp. 1–10).
Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16).
MooreMGThree types of interactionAmerican Journal of Distance Education1989321710.1080/08923648909526659
Davidoff, S., Lee, M. K., Dey, A. K., & Zimmerman, J. (2007). Rapidly exploring application design through speed dating. In: International conference on ubiquitous computing (pp. 429–446). Springer, Berlin, Heidelberg.
LuoNZhangMQiDEffects of different interactions on students' sense of community in e-learning environmentComputers & Education201711515316010.1016/j.compedu.2017.08.006
Andersen, J. C. (2013). Learner satisfaction in online learning: An analysis of the perceived impact of learner-social media and learner–instructor interaction. Doctoral dissertation. East Tennessee State University, Tennessee.
Roll, I., Russell, D. M., & Gašević, D. (2018). Learning at scale. International Journal of Artificial Intelligence in Education, 28(4), 471–477.
Lee, S. (2020). Proctorio CEO releases student’s chat logs, sparking renewed privacy concerns. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/proctorio-chat-logs
Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid adaptivity in education. In: International conference on artificial intelligence in education (pp. 240–254). Springer, Cham.
Tsai, Y. S., Whitelock-Wainwright, A., & Gašević, D. (2020). The privacy paradox and its implications for learning analytics. In: Proceedings of the tenth international conference on learning analytics & knowledge (pp. 230–239).
Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2).
Truong, K. N., Hayes, G. R., & Abowd, G. D. (2006). Storyboarding: an empirical determination of best practices and effective guidelines. In: Proceedings of the 6th conference on designing interactive systems (pp. 12–21).
CrawfordKCaloRThere is a blind spot in AI researchNature2016538762531131310.1038/538311a
Chan, R. (2019). The Cambridge Analytica whistleblower explains how the firm used Facebook data to sway elections. Business Insider. Retrieved from https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
ZimmermanJForlizziJSpeed dating: Providing a menu of possible futuresShe Ji: THe Journal of Design, Economics, and Innovation2017313050
Heidicker, P., Langbehn, E., & Steinicke, F. (2017). Influence of avatar appearance on presence in social VR. In: 2017 IEEE symposium on 3D user interfaces (3DUI) (pp. 233–234). IEEE.
WoguIAPMisraSOlu-OwolabiEFAssibongPAUdohODOgiriSODamaseviciusRArtificial intelligence, artificial teachers and the fate of learners in the 21st century education sector: Implications for theory and practiceInternational Journal of Pure and Applied Mathematics20181191622452259
BannaJLinMFGStewartMFialkowskiMKInteraction matters: Strategies to promote engaged learning in an online introductory nutrition courseJournal of Online Learning and Teaching/MERLOT2015112249
Seo, K., Fels, S., Kang, M., Jung, C., & Ryu, H. (2020a). Goldilocks conditions for workplace gamification: How narrative persuasion helps manufacturing workers create self-directed behaviors. Human–Computer Interaction. 1–38.
Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What should every child know about AI?. In: Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 9795–9799).
JouMLinYTWuDWEffect of a blended learning environment on student critical thinking and knowledge transformationInteractive Learning Environments20162461131114710.1080/10494820.2014.961485
Seo, K., Fels, S., Yoon, D., Roll, I., Dodson, S., & Fong, M. (2020b). Artificial intelligence for video-based learning at scale. In Proceedings of the Seventh ACM Conference on Learning@ Scale (pp. 215–217).
LauraRSChapmanAThe technologisation of education: Philosophical reflections on being too plugged inInternational Journal of Children's Spirituality200914328929810.1080/13644360903086554
Linsey, J. S., & Becker, B. (2011)
292_CR27
292_CR28
292_CR1
JR Anderson (292_CR2) 1985; 228
292_CR21
MG Moore (292_CR45) 1989; 3
292_CR63
292_CR20
292_CR25
LS Nowell (292_CR48) 2017; 16
292_CR26
D Perin (292_CR49) 2018; 28
292_CR67
V Braun (292_CR15) 2006; 3
GJ Hwang (292_CR29) 2020; 1
292_CR3
292_CR4
292_CR7
292_CR8
292_CR9
RS Baker (292_CR5) 2016; 26
292_CR19
M Kang (292_CR32) 2013; 29
292_CR17
TD Nguyen (292_CR47) 2018; 111
C Zhang (292_CR65) 2018; 26
292_CR10
292_CR11
O Zawacki-Richter (292_CR64) 2019; 16
292_CR14
292_CR58
292_CR12
292_CR56
292_CR13
292_CR57
A Guilherme (292_CR24) 2019; 34
292_CR60
K VanLehn (292_CR59) 2011; 46
J Zimmerman (292_CR66) 2017; 3
JC Richardson (292_CR51) 2017; 71
N Luo (292_CR39) 2017; 115
B Ross (292_CR53) 2018; 15
292_CR43
292_CR44
RS Laura (292_CR33) 2009; 14
JL Shackelford (292_CR54) 2012; 8
F Martin (292_CR42) 2018; 37
RF Murphy (292_CR46) 2019
R Luckin (292_CR38) 2017; 1
K Crawford (292_CR18) 2016; 538
L Stark (292_CR55) 2019; 25
M Jou (292_CR30) 2016; 24
D Castelvecchi (292_CR16) 2016; 538
R Ferguson (292_CR22) 2019; 6
292_CR31
H Robinson (292_CR52) 2017
292_CR36
292_CR37
292_CR34
292_CR35
F Martin (292_CR41) 2018; 22
AK Goel (292_CR23) 2016
292_CR40
SA Popenici (292_CR50) 2017; 12
B Williamson (292_CR61) 2020; 45
J Banna (292_CR6) 2015; 11
IAP Wogu (292_CR62) 2018; 119
References_xml – reference: PerinDLauterbachMAssessing text-based writing of low-skilled college studentsInternational Journal of Artificial Intelligence in Education2018281567810.1007/s40593-016-0122-z
– reference: Aslan, S., Alyuz, N., Tanriover, C., Mete, S. E., Okur, E., D'Mello, S. K., & Arslan Esme, A. (2019). Investigating the impact of a real-time, multimodal student engagement analytics technology in authentic classrooms. In: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–12).
– reference: Davidoff, S., Lee, M. K., Dey, A. K., & Zimmerman, J. (2007). Rapidly exploring application design through speed dating. In: International conference on ubiquitous computing (pp. 429–446). Springer, Berlin, Heidelberg.
– reference: Chan, R. (2019). The Cambridge Analytica whistleblower explains how the firm used Facebook data to sway elections. Business Insider. Retrieved from https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10
– reference: McArthur, A. (2020). Students struggle with online test proctoring systems. Retrieved January 10, 2021, from https://universe.byu.edu/2020/12/17/students-struggle-with-online-test-proctoring-systems/
– reference: ZimmermanJForlizziJSpeed dating: Providing a menu of possible futuresShe Ji: THe Journal of Design, Economics, and Innovation2017313050
– reference: BannaJLinMFGStewartMFialkowskiMKInteraction matters: Strategies to promote engaged learning in an online introductory nutrition courseJournal of Online Learning and Teaching/MERLOT2015112249
– reference: Felix, C. V. (2020). The role of the teacher and AI in education. In: International perspectives on the role of technology in humanizing higher education. Emerald Publishing Limited.
– reference: Walker, C. H. (2016). The correlation between types of instructor-student communication in online graduate courses and student satisfaction levels in the private university setting. Doctoral dissertation. Carson-Newman University, Tennessee.
– reference: Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7–12.
– reference: Andersen, J. C. (2013). Learner satisfaction in online learning: An analysis of the perceived impact of learner-social media and learner–instructor interaction. Doctoral dissertation. East Tennessee State University, Tennessee.
– reference: CastelvecchiDCan we open the black box of AI?Nature News201653876232010.1038/538020a
– reference: NguyenTDCannataMMillerJUnderstanding student behavioral engagement: Importance of student interaction with peers and teachersThe Journal of Educational Research2018111216317410.1080/00220671.2016.1220359
– reference: GoelAKPolepeddiLJill Watson: A virtual teaching assistant for online education2016Georgia Institute of Technology
– reference: StarkLFacial recognition is the plutonium of AIXRDS: Crossroads, the ACM Magazine for Students2019253505510.1145/3313129
– reference: Bajaj, M., & Li, J. (2020). Students, faculty express concerns about online exam invigilation amidst COVID-19 outbreak. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/Students-express-concerns-about-online-exams/
– reference: Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What should every child know about AI?. In: Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 9795–9799).
– reference: WilliamsonBEynonRHistorical threads, missing links, and future directions in AI in educationLearning, Media and Technology202045322323510.1080/17439884.2020.1798995
– reference: Lee, S. (2020). Proctorio CEO releases student’s chat logs, sparking renewed privacy concerns. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/proctorio-chat-logs/
– reference: Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599.
– reference: Roll, I., Russell, D. M., & Gašević, D. (2018). Learning at scale. International Journal of Artificial Intelligence in Education, 28(4), 471–477.
– reference: Kang, M. S. (2010). Development of learners’ perceived interaction model and scale between learner and instructor in e-learning environments. Doctoral dissertation. Korea University, Korea.
– reference: Misiejuk, K., & Wasson, B. (2017). State of the field report on learning analytics. Centre for the Science of Learning & Technology (SLATE), University of Bergen.
– reference: PopeniciSAKerrSExploring the impact of artificial intelligence on teaching and learning in higher educationResearch and Practice in Technology Enhanced Learning20171212210.1186/s41039-017-0062-8
– reference: Beard, A. (2020). Can computers ever replace the classroom?. Retrieved January 10, 2021, from https://www.theguardian.com/technology/2020/mar/19/can-computers-ever-replace-the-classroom
– reference: Loi, D., Wolf, C. T., Blomberg, J. L., Arar, R., & Brereton, M. (2019). Co-designing AI futures: Integrating AI ethics, social computing, and design. In: Companion publication of the 2019 on designing interactive systems conference 2019 companion (pp. 381–384).
– reference: LuckinRTowards artificial intelligence-based assessment systemsNature Human Behaviour2017131310.1038/s41562-016-0028
– reference: Heidicker, P., Langbehn, E., & Steinicke, F. (2017). Influence of avatar appearance on presence in social VR. In: 2017 IEEE symposium on 3D user interfaces (3DUI) (pp. 233–234). IEEE.
– reference: Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16).
– reference: BakerRSStupid tutoring systems, intelligent humansInternational Journal of Artificial Intelligence in Education201626260061410.1007/s40593-016-0105-0
– reference: RossBChaseAMRobbieDOatesGAbsalomYAdaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unitInternational Journal of Educational Technology in Higher Education20181513010.1186/s41239-018-0113-2
– reference: MartinFBolligerDUEngagement matters: Student perceptions on the importance of engagement strategies in the online learning environmentOnline Learning201822120522210.24059/olj.v22i1.1092
– reference: Tsai, Y. S., Whitelock-Wainwright, A., & Gašević, D. (2020). The privacy paradox and its implications for learning analytics. In: Proceedings of the tenth international conference on learning analytics & knowledge (pp. 230–239).
– reference: Zawacki-RichterOMarínVIBondMGouverneurFSystematic review of research on artificial intelligence applications in higher education–where are the educators?International Journal of Educational Technology in Higher Education20191613910.1186/s41239-019-0171-0
– reference: KangMImTFactors of learner–instructor interaction which predict perceived learning outcomes in online learning environmentJournal of Computer Assisted Learning201329329230110.1111/jcal.12005
– reference: FergusonREthical challenges for learning analyticsJournal of Learning Analytics2019632530
– reference: GuilhermeAAI and education: The importance of teacher and student relationsAI & Society2019341475410.1007/s00146-017-0693-8
– reference: ZhangCChenHPhangCWRole of instructors' forum interactions with students in promoting MOOC continuanceJournal of Global Information Management (JGIM)201826310512010.4018/JGIM.2018070108
– reference: WoguIAPMisraSOlu-OwolabiEFAssibongPAUdohODOgiriSODamaseviciusRArtificial intelligence, artificial teachers and the fate of learners in the 21st century education sector: Implications for theory and practiceInternational Journal of Pure and Applied Mathematics20181191622452259
– reference: Holstein, K., Hong, G., Tegene, M., McLaren, B. M., & Aleven, V. (2018). The classroom as a dashboard: Co-designing wearable cognitive augmentation for K-12 teachers. In: Proceedings of the 8th international conference on learning analytics and knowledge (pp. 79–88).
– reference: Cruz-Benito, J., Sánchez-Prieto, J. C., Therón, R., & García-Peñalvo, F. J. (2019). Measuring students’ acceptance to AI-driven assessment in eLearning: Proposing a first TAM-based research model. In: International conference on human–computer interaction (pp. 15–25). Springer, Cham.
– reference: Fong, M., Dodson, S., Harandi, N. M., Seo, K., Yoon, D., Roll, I., & Fels, S. (2019). Instructors desire student activity, literacy, and video quality analytics to improve video-based blended courses. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale (pp. 1–10).
– reference: AndersonJRBoyleCFReiserBJIntelligent tutoring systemsScience1985228469845646210.1126/science.228.4698.456
– reference: Luria, M., Zheng, R., Huffman, B., Huang, S., Zimmerman, J., & Forlizzi, J. (2020). Social boundaries for personal agents in the interpersonal space of the home. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–12).
– reference: VanLehnKThe relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systemsEducational Psychologist201146419722110.1080/00461520.2011.611369
– reference: Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2).
– reference: Truong, K. N., Hayes, G. R., & Abowd, G. D. (2006). Storyboarding: an empirical determination of best practices and effective guidelines. In: Proceedings of the 6th conference on designing interactive systems (pp. 12–21).
– reference: MurphyRFArtificial intelligence applications to support K–12 teachers and teachingRAND Corporation201910.7249/PE315
– reference: Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM international conference on interaction design and children (pp. 121–132).
– reference: NowellLSNorrisJMWhiteDEMoulesNJThematic analysis: Striving to meet the trustworthiness criteriaInternational Journal of Qualitative Methods2017161160940691773384710.1177/1609406917733847
– reference: Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid adaptivity in education. In: International conference on artificial intelligence in education (pp. 240–254). Springer, Cham.
– reference: HwangGJXieHWahBWGaševićDVision, challenges, roles and research issues of Artificial Intelligence in EducationComputers and Education: Artificial Intelligence20201
– reference: RichardsonJCMaedaYLvJCaskurluSSocial presence in relation to students' satisfaction and learning in the online environment: A meta-analysisComputers in Human Behavior20177140241710.1016/j.chb.2017.02.001
– reference: CrawfordKCaloRThere is a blind spot in AI researchNature2016538762531131310.1038/538311a
– reference: Woolf, B. P., Arroyo, I., Muldner, K., Burleson, W., Cooper, D. G., Dolan, R., & Christopherson, R. M. (2010). The effect of motivational learning companions on low achieving students and students with disabilities. In: International conference on intelligent tutoring systems (pp. 327–337). Springer, Berlin, Heidelberg.
– reference: MooreMGThree types of interactionAmerican Journal of Distance Education1989321710.1080/08923648909526659
– reference: Seo, K., Fels, S., Kang, M., Jung, C., & Ryu, H. (2020a). Goldilocks conditions for workplace gamification: How narrative persuasion helps manufacturing workers create self-directed behaviors. Human–Computer Interaction. 1–38.
– reference: RobinsonHKilgoreWWarrenSCare, communication, support: Core for designing meaningful online collaborative learningOnline Learning Journal.201710.24059/olj.v21i4.1240
– reference: Seo, K., Dodson, S., Harandi, N. M., Roberson, N., Fels, S., & Roll, I. (2021). Active learning with online video: The impact of learning context on engagement. Computers & Education, 165, 104132.
– reference: Seo, K., Fels, S., Yoon, D., Roll, I., Dodson, S., & Fong, M. (2020b). Artificial intelligence for video-based learning at scale. In Proceedings of the Seventh ACM Conference on Learning@ Scale (pp. 215–217).
– reference: BraunVClarkeVUsing thematic analysis in psychologyQualitative Research in Psychology2006327710110.1191/1478088706qp063oa
– reference: LuoNZhangMQiDEffects of different interactions on students' sense of community in e-learning environmentComputers & Education201711515316010.1016/j.compedu.2017.08.006
– reference: MartinFWangCSadafAStudent perception of helpfulness of facilitation strategies that enhance instructor presence, connectedness, engagement and learning in online coursesThe Internet and Higher Education201837526510.1016/j.iheduc.2018.01.003
– reference: Linsey, J. S., & Becker, B. (2011). Effectiveness of brainwriting techniques: comparing nominal groups to real teams. In: Design creativity 2010 (pp. 165–171). Springer.
– reference: LauraRSChapmanAThe technologisation of education: Philosophical reflections on being too plugged inInternational Journal of Children's Spirituality200914328929810.1080/13644360903086554
– reference: ShackelfordJLMaxwellMContribution of learner–instructor interaction to sense of community in graduate online educationMERLOT Journal of Online Learning and Teaching201284248260
– reference: JouMLinYTWuDWEffect of a blended learning environment on student critical thinking and knowledge transformationInteractive Learning Environments20162461131114710.1080/10494820.2014.961485
– ident: 292_CR26
  doi: 10.1109/3DUI.2017.7893357
– volume: 37
  start-page: 52
  year: 2018
  ident: 292_CR42
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2018.01.003
– ident: 292_CR58
  doi: 10.1145/3375462.3375536
– ident: 292_CR27
  doi: 10.1145/3170358.3170377
– ident: 292_CR28
  doi: 10.1007/978-3-030-52237-7_20
– ident: 292_CR14
  doi: 10.1016/j.compedu.2021.104132
– ident: 292_CR57
  doi: 10.1145/1142405.1142410
– year: 2017
  ident: 292_CR52
  publication-title: Online Learning Journal.
  doi: 10.24059/olj.v21i4.1240
– ident: 292_CR67
  doi: 10.1145/3311927.3323139
– volume-title: Jill Watson: A virtual teaching assistant for online education
  year: 2016
  ident: 292_CR23
– ident: 292_CR8
  doi: 10.18608/jla.2015.21.2
– ident: 292_CR10
  doi: 10.1007/s40593-018-0170-7
– ident: 292_CR11
  doi: 10.1145/3330430.3333618
– volume: 111
  start-page: 163
  issue: 2
  year: 2018
  ident: 292_CR47
  publication-title: The Journal of Educational Research
  doi: 10.1080/00220671.2016.1220359
– ident: 292_CR7
– volume: 15
  start-page: 30
  issue: 1
  year: 2018
  ident: 292_CR53
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-018-0113-2
– ident: 292_CR20
  doi: 10.1007/978-3-540-74853-3_25
– ident: 292_CR40
  doi: 10.1145/3313831.3376311
– volume: 8
  start-page: 248
  issue: 4
  year: 2012
  ident: 292_CR54
  publication-title: MERLOT Journal of Online Learning and Teaching
– volume: 3
  start-page: 1
  issue: 2
  year: 1989
  ident: 292_CR45
  publication-title: American Journal of Distance Education
  doi: 10.1080/08923648909526659
– ident: 292_CR43
– year: 2019
  ident: 292_CR46
  publication-title: RAND Corporation
  doi: 10.7249/PE315
– volume: 46
  start-page: 197
  issue: 4
  year: 2011
  ident: 292_CR59
  publication-title: Educational Psychologist
  doi: 10.1080/00461520.2011.611369
– volume: 28
  start-page: 56
  issue: 1
  year: 2018
  ident: 292_CR49
  publication-title: International Journal of Artificial Intelligence in Education
  doi: 10.1007/s40593-016-0122-z
– ident: 292_CR13
  doi: 10.1145/3386527.3405937
– volume: 11
  start-page: 249
  issue: 2
  year: 2015
  ident: 292_CR6
  publication-title: Journal of Online Learning and Teaching/MERLOT
– ident: 292_CR63
  doi: 10.1007/978-3-642-13388-6_37
– volume: 16
  start-page: 160940691773384
  issue: 1
  year: 2017
  ident: 292_CR48
  publication-title: International Journal of Qualitative Methods
  doi: 10.1177/1609406917733847
– volume: 1
  year: 2020
  ident: 292_CR29
  publication-title: Computers and Education: Artificial Intelligence
– volume: 16
  start-page: 39
  issue: 1
  year: 2019
  ident: 292_CR64
  publication-title: International Journal of Educational Technology in Higher Education
  doi: 10.1186/s41239-019-0171-0
– volume: 115
  start-page: 153
  year: 2017
  ident: 292_CR39
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2017.08.006
– ident: 292_CR25
– volume: 22
  start-page: 205
  issue: 1
  year: 2018
  ident: 292_CR41
  publication-title: Online Learning
  doi: 10.24059/olj.v22i1.1092
– volume: 119
  start-page: 2245
  issue: 16
  year: 2018
  ident: 292_CR62
  publication-title: International Journal of Pure and Applied Mathematics
– ident: 292_CR44
– ident: 292_CR60
– ident: 292_CR1
– ident: 292_CR12
  doi: 10.1080/07370024.2020.1744145
– volume: 14
  start-page: 289
  issue: 3
  year: 2009
  ident: 292_CR33
  publication-title: International Journal of Children's Spirituality
  doi: 10.1080/13644360903086554
– volume: 26
  start-page: 105
  issue: 3
  year: 2018
  ident: 292_CR65
  publication-title: Journal of Global Information Management (JGIM)
  doi: 10.4018/JGIM.2018070108
– volume: 3
  start-page: 77
  issue: 2
  year: 2006
  ident: 292_CR15
  publication-title: Qualitative Research in Psychology
  doi: 10.1191/1478088706qp063oa
– ident: 292_CR9
  doi: 10.1007/s40593-016-0110-3
– volume: 538
  start-page: 311
  issue: 7625
  year: 2016
  ident: 292_CR18
  publication-title: Nature
  doi: 10.1038/538311a
– ident: 292_CR19
  doi: 10.1007/978-3-030-21814-0_2
– ident: 292_CR35
  doi: 10.1007/978-0-85729-224-7_22
– volume: 6
  start-page: 25
  issue: 3
  year: 2019
  ident: 292_CR22
  publication-title: Journal of Learning Analytics
– volume: 71
  start-page: 402
  year: 2017
  ident: 292_CR51
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2017.02.001
– volume: 3
  start-page: 30
  issue: 1
  year: 2017
  ident: 292_CR66
  publication-title: She Ji: THe Journal of Design, Economics, and Innovation
– ident: 292_CR3
  doi: 10.1145/3290605.3300534
– volume: 24
  start-page: 1131
  issue: 6
  year: 2016
  ident: 292_CR30
  publication-title: Interactive Learning Environments
  doi: 10.1080/10494820.2014.961485
– volume: 29
  start-page: 292
  issue: 3
  year: 2013
  ident: 292_CR32
  publication-title: Journal of Computer Assisted Learning
  doi: 10.1111/jcal.12005
– volume: 1
  start-page: 1
  issue: 3
  year: 2017
  ident: 292_CR38
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-016-0028
– volume: 12
  start-page: 22
  issue: 1
  year: 2017
  ident: 292_CR50
  publication-title: Research and Practice in Technology Enhanced Learning
  doi: 10.1186/s41039-017-0062-8
– ident: 292_CR56
  doi: 10.1609/aaai.v33i01.33019795
– ident: 292_CR21
  doi: 10.1108/S2055-364120200000033003
– volume: 34
  start-page: 47
  issue: 1
  year: 2019
  ident: 292_CR24
  publication-title: AI & Society
  doi: 10.1007/s00146-017-0693-8
– ident: 292_CR31
  doi: 10.17232/KSET.26.2.187
– ident: 292_CR4
– ident: 292_CR17
– volume: 25
  start-page: 50
  issue: 3
  year: 2019
  ident: 292_CR55
  publication-title: XRDS: Crossroads, the ACM Magazine for Students
  doi: 10.1145/3313129
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: 292_CR16
  publication-title: Nature News
  doi: 10.1038/538020a
– volume: 45
  start-page: 223
  issue: 3
  year: 2020
  ident: 292_CR61
  publication-title: Learning, Media and Technology
  doi: 10.1080/17439884.2020.1798995
– volume: 228
  start-page: 456
  issue: 4698
  year: 1985
  ident: 292_CR2
  publication-title: Science
  doi: 10.1126/science.228.4698.456
– ident: 292_CR34
– ident: 292_CR37
  doi: 10.1145/3313831.3376727
– ident: 292_CR36
  doi: 10.1145/3301019.3320000
– volume: 26
  start-page: 600
  issue: 2
  year: 2016
  ident: 292_CR5
  publication-title: International Journal of Artificial Intelligence in Education
  doi: 10.1007/s40593-016-0105-0
SSID ssj0001922382
Score 2.601061
Snippet Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating...
Abstract Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students,...
SourceID doaj
pubmedcentral
proquest
eric
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Artificial Intelligence
Behavior Standards
Boundary
CAI
College Faculty
College Students
Computer Appl. in Social and Behavioral Sciences
Computer assisted instruction
Computer Science
Computers and Education
Customization
Decision analysis
Distance learning
Educational Technology
Electronic Learning
Higher Education
Humanities
Individualized Instruction
Influence of Technology
Information Systems Applications (incl.Internet)
Interaction
Law
Learner–instructor interaction
Machine learning
Norms
Online instruction
Online learning
Research Article
Social Behavior
Speed dating
Statistics for Social Sciences
Student Attitudes
Student teacher relationship
System effectiveness
Teacher Attitudes
Teacher Student Relationship
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7avvgi3oqrVSL4pqEzuedJrGwpfSgiFfoghEwudUFm2t367n_wH_pLPMlkdt0FC_MwTDKZMOeWk3PyHYTecu1k07lIXBCOcBY6YqjQJKXUUhW4pGOW77k8_crPLsVl3XBb1bTKSScWRR0Gn_fIj2AAkbHUGP9wfUNy1agcXa0lNO6jfVDBGpyv_eP5-ecvm10WA-ZP0-m0jJZHKw662pCcmZAjUpSYLYtUgPt3c5_zonM3ZXInblrM0ckj9LCuI_HHkfCP0b3YP8klmGu6xlP0DRgAj2cg8ZBw5pARLAIv_kHhxEOPS-GIuPzz6_eiwskOy9JpOR56gHs8AmrgWmPi6hm6OJlffDoltZQC8ZI3t4S70EavdZuEVMzr1gsPjpaiIprGs5YmHcE5dF10oLyZl0qZoJLzxgWlEztAe_3Qx-cIgz8VeIYpTSxwLb2mjqegwHFqVFKmnaF2-pvWV5jxXO3ihy3uhpZ2pIAFCthCAWtm6N36nesRZOPO3seZSOueGSC7PBiWV7bKm2W-cyoEuELiwifX-E43psuBY8a9mKGDTOL1IPOzlrVCS2g4nIhuqziv7Ib5ZujNuhkEMUdXXB-Hn7lPqQ9hDAyhtphla6bbLf3ie4H01rCQ5RJGfz-x1ebj__8TL-6e60v0gGY-B0tL5SHaAw6Kr2AJddu9rnLyF0d7G4g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PaxUxEA-2XrzY-rT4apUI3jS4m_852tJSiniq0IMQsvlTn8huea_i1e_gN_STOMlmn76HCsIels1sdsnMJDPMzG8QesG1k03nInFBOMJZ6IihQpOUUktV4JKOWb7v5Pl7fnElrmpR2GrKdp9CkmWnLmqt5esVh03WkJxSkENJlJgddFeA757l-qTWOHwabRY4h-hUIfPHVzdOoQLWv53vnA3N7TTJrVhpOYLO9tH9ajviNyOzH6A7sZ-hvakvA65qOsudmGvWxgztvHVfH6IPIA14LIjEQ8JZXEbkCLz4DZITDz0uXSTi8se374uKLTssC9FyrICAezyia-DacOL6Ebo8O708OSe1rwLxkje3hLvQRq91m4RUzOvWCw9el6IimsazliYdwVN0XXSwkzMvlTJBJeeNC0ondoB2-6GPjxEG5yrwjFmaWOBaek0dT0GBF9WopEw7R-20zNZXzPHc-uKzLb6HlnZkjQXW2MIaa-bo5fqdmxFx45_Ux5l7a8qMll0eDMtrW5XPMt85FQJcIXHhk2t8pxvT5Sgy417M0UHm_XqS04uWtUJLGDiapMFW3V5ZEGWRUf0Yn6Pn62HQyhxqcX0cvmSa0izCGJhCbUjRxp9ujvSLjwXfW4NVyyXM_mqSt18f__tKHP4f-RN0j2aFgGOYyiO0CxIVn4J9dds9K-r0E5o3Hlg
  priority: 102
  providerName: Springer Nature
Title The impact of artificial intelligence on learner–instructor interaction in online learning
URI https://link.springer.com/article/10.1186/s41239-021-00292-9
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315865
https://www.proquest.com/docview/2585635634
https://www.proquest.com/docview/2597805995
https://pubmed.ncbi.nlm.nih.gov/PMC8545464
https://doaj.org/article/3cba7dd7dddf45cfa0cb809b282934c5
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhULZWUkbmA18dtHutql6qFCqEg9IFmOH7CoStC23PkP_EN-CWM7u-yuBFyQoiiJHSfxzHhm4vE3CL3k2smmc5G4IBzhLHTEUKFJSqmlKnBJa5TvuTz9wM8uxeVWqq8cE1bhgWvHHTPfORUCbCFx4ZNrfKcb0-UZQMZ9QS8FnbflTH2pdgvoIrpeJaPl8TWHMdqQHJGQZ6IoMTuaqAD278c8Z2NzP1Ryb760qKHFfXRvtB_xm_reD9Ct2D_MqZfHMI1H6CMQHte1j3hIOH9gBYnAyy30TTz0uCSMiKuf338sRxjZYVUqrepiBzjGFUgDj7klPj1GF4v5xeyUjCkUiJe8uSHchTZ6rdskpGJet154cLAUFdE0nrU06QhOoeuig0GbeamUCSo5b1xQOrFDdNAPfXyCMPhRgWd40sQC19Jr6ngKChymRiVl2glq171p_QgvnrNcXNniZmhpKwUsUMAWClgzQa8293yt4Bp_rX2SibSpmYGxywVgFzuyi_0Xu0zQYSbxppH5WctaoSUUHK2JbkcxvrbAtSID-DE-QS82xSCAeVbF9XH4luuUvBDGQBNqh1l23nS3pF9-LlDeGgxYLqH112u2-v3wP_fE0__RE8_QXZqlAfQwlUfoAPgsPgcD66abott68XaK7pzMz9-9h7MZ5XkvZ9MiZdPyk-EX0EcpVQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8apYKGAkOEHUxG8fEOLRpS96WqQekCzHj7ISSspuEeLGf-B38Kf4JYydZJddid4q5RDFziTyzHg8nvE3CD1lyoqytqGwntuCUV8XmnBVxBgrIj0TpMvyPRZ7H9nBCT_ZQL-HszAprXKYE_NE7VuX9sh3gABPWGqUvTr7WqSqUSm6OpTQ6MTiMPz4Di7b_OX-O-DvM0LGu5O3e0VfVaBwgpXnBbO-Ck6pKnIhqVOV4w58Dkl40KWjFYkqgJ9k62BhHqNOSKm9jNZp66WKFMheQVcZpToplBq_X27paLC1igxHc5TYmTMwDLpIaRAp_EUKvWL-cpWA9UTrtMJdz89cC9Jm2ze-iW70i1b8upOyW2gjNLdTvec-N-QO-gTShrsDl7iNOIljh0yBp_9AfuK2wblKRZj9-flr2mPXtrPcadadsIB73KF34L6gxeldNLmMEd5Cm03bhHsIg_PmWcJEjdQzJZwilkUvwUsrZZS6GqFqGE3jekzzVFrji8m-jRKm44ABDpjMAaNH6PninbMO0ePC3m8SkxY9Exp3ftDOTk2v3Ia62krv4fKRcRdt6WpV6jpFqSlzfIS2EosXRHYPKlpxJaBhe2C66eeOuVlK-gg9WTSD1qdQjm1C-y31ycUotAYSckVYVv50taWZfs744QpWzUwA9ReDWC0__v-RuH_xvz5G1_YmH47M0f7x4QN0nSSZBxNPxDbaBGkKD2Htdl4_yhqDkblkDf0Lp8FXUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEK-KhQJGghNETWzHjwNClO6qD7SqUJF6QLIcP9qVUFJ2ixA3_gO_hr_DL2GcOLvsSvRWKYcodiaRZzzj8Yy_QegFk4bnlfGZcaXJGHVVpkgpsxBCQYRjnHRZvhO-_4kdnpanG-h3fxYmplX2OrFV1K6xcY98BwiUEUuNsp2Q0iKO98ZvL75msYJUjLT25TQ6ETnyP76D-zZ_c7AHvH5JyHh08n4_SxUGMstZfpkx4wpvpSxCyQW1srClBf9DkNKr3NKCBOnBZzKVN6DTqOVCKCeCsco4IQMFsjfQpgCnKB-gzd3R5PjjcoNHgeWVpD-oI_nOnIGZUFlMiojBMJKpFWPY1gxYT7uO6931bM21kG1rCcd30O20hMXvOpm7izZ8fS9Wf06ZIvfRZ5A93B2_xE3AUTg7nAo8_QcAFDc1bmtW-Nmfn7-mCcm2mbWdZt15C7jHHZYHTuUtzh6gk-sY4y00qJvaP0QYXDnHIkJqoI5JbiUxLDgBPlsuglDFEBX9aGqbEM5joY0vuvV0JNcdBzRwQLcc0GqIXi3euejwPa7svRuZtOgZsbnbB83sTKeprqmtjHAOLhdYaYPJbSVzVcWYNWW2HKKtyOIFkdFhQYtScmjY7pmukyaZ66XcD9HzRTPogBjYMbVvvsU-bWkKpYCEWBGWlT9dbamn5y2auIQ1NONA_XUvVsuP_38kHl39r8_QTZid-sPB5OgxukWiyIO9J3wbDUCY_BNYyF1WT9OUwUhf8yT9C0_OXOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Artificial+Intelligence+on+Learner-Instructor+Interaction+in+Online+Learning&rft.jtitle=International+Journal+of+Educational+Technology+in+Higher+Education&rft.au=Seo%2C+Kyoungwon&rft.au=Tang%2C+Joice&rft.au=Roll%2C+Ido&rft.au=Fels%2C+Sidney&rft.date=2021-10-26&rft.pub=BioMed+Central%2C+Ltd&rft.issn=2365-9440&rft.eissn=2365-9440&rft.volume=18&rft_id=info:doi/10.1186%2Fs41239-021-00292-9&rft.externalDocID=EJ1315865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-9440&client=summon