The impact of artificial intelligence on learner–instructor interaction in online learning
Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on t...
Saved in:
Published in | International Journal of Educational Technology in Higher Education Vol. 18; no. 1; pp. 54 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
26.10.2021
BioMed Central, Ltd Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones. |
---|---|
AbstractList | Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors' routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner-instructor interaction (inter alia, communication, support, and presence) has a profound impact on students' satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner-instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner-instructor interaction, capturing students' and instructors' concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones.Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors' routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner-instructor interaction (inter alia, communication, support, and presence) has a profound impact on students' satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner-instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner-instructor interaction, capturing students' and instructors' concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones. Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones. Abstract Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating instructors’ routine tasks, and powering adaptive assessments. However, while the opportunities for AI are promising, the impact of AI systems on the culture of, norms in, and expectations about interactions between students and instructors are still elusive. In online learning, learner–instructor interaction (inter alia, communication, support, and presence) has a profound impact on students’ satisfaction and learning outcomes. Thus, identifying how students and instructors perceive the impact of AI systems on their interaction is important to identify any gaps, challenges, or barriers preventing AI systems from achieving their intended potential and risking the safety of these interactions. To address this need for forward-looking decisions, we used Speed Dating with storyboards to analyze the authentic voices of 12 students and 11 instructors on diverse use cases of possible AI systems in online learning. Findings show that participants envision adopting AI systems in online learning can enable personalized learner–instructor interaction at scale but at the risk of violating social boundaries. Although AI systems have been positively recognized for improving the quantity and quality of communication, for providing just-in-time, personalized support for large-scale settings, and for improving the feeling of connection, there were concerns about responsibility, agency, and surveillance issues. These findings have implications for the design of AI systems to ensure explainability, human-in-the-loop, and careful data collection and presentation. Overall, contributions of this study include the design of AI system storyboards which are technically feasible and positively support learner–instructor interaction, capturing students’ and instructors’ concerns of AI systems through Speed Dating, and suggesting practical implications for maximizing the positive impact of AI systems while minimizing the negative ones. |
ArticleNumber | 54 |
Audience | Higher Education Postsecondary Education |
Author | Seo, Kyoungwon Roll, Ido Fels, Sidney Yoon, Dongwook Tang, Joice |
Author_xml | – sequence: 1 givenname: Kyoungwon orcidid: 0000-0003-3435-0685 surname: Seo fullname: Seo, Kyoungwon email: kwseo@seoultech.ac.kr organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology – sequence: 2 givenname: Joice surname: Tang fullname: Tang, Joice organization: Department of Computer Science, The University of British Columbia – sequence: 3 givenname: Ido surname: Roll fullname: Roll, Ido organization: Faculty of Education in Science and Technology, Technion-Israel Institute of Technology – sequence: 4 givenname: Sidney surname: Fels fullname: Fels, Sidney organization: Department of Electrical and Computer Engineering, The University of British Columbia – sequence: 5 givenname: Dongwook surname: Yoon fullname: Yoon, Dongwook organization: Department of Computer Science, The University of British Columbia |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315865$$DView record in ERIC |
BookMark | eNp9kstq3TAQhk1JadI0L1AoGLrpxq2utrQplJC0KYFuzrIg5PHY0cFHOpXsQnd9h75hnyTycXpJFoEBCc3_fxqN5nlx5IPHonhJyVtKVf0uCcq4rgijFSFMs0o_KU4Yr2WlhSBH_-2Pi7OUtoQQqhnjij0rjrloGiUFOSm-bm6wdLu9hakMfWnj5HoHzo6l8xOOoxvQA5bBlyPa6DH-_vnL-TTFGaYQD6KYvS4LnM-y0Xlcpc4PL4qnvR0Tnt2tp8Xm8mJz_qm6_vLx6vzDdQW1IFMlbEcRlKK9rBsOioIErVXDJGoCnLJeISW1bdFiSznUTaO7pregbdeonp8WVyu2C3Zr9tHtbPxhgnXmcBDiYJZ3wYiGQ2ubrsvR9UJCbwm0iuiWKaa5AJlZ71fWfm532AH6KdrxHvR-xrsbM4TvJrdTilpkwJs7QAzfZkyT2bkEuZPWY5iTYVI3ikitl7teP5Buwxx97lRWKVnzHAvw1arC6OBvIRefKadS1QtFrXmIIaWIvQE32eVHcn1uNJSYZWDMOjAmD4w5DIzR2coeWP_gHzXx1ZSy2A8Y_1X9iOsWlQPVcA |
CitedBy_id | crossref_primary_10_1007_s10639_021_10866_9 crossref_primary_10_18009_jcer_1477709 crossref_primary_10_59231_SARI7600 crossref_primary_10_1007_s10758_024_09780_z crossref_primary_10_1177_02704676231224705 crossref_primary_10_1016_j_ssaho_2024_101035 crossref_primary_10_32329_uad_1609305 crossref_primary_10_22610_imbr_v16i3S_I_a_4178 crossref_primary_10_1016_j_acalib_2024_102885 crossref_primary_10_1016_j_caeai_2024_100306 crossref_primary_10_1007_s10639_024_12523_3 crossref_primary_10_24093_awej_call10_11 crossref_primary_10_1007_s10639_024_13270_1 crossref_primary_10_1080_10447318_2024_2443263 crossref_primary_10_5937_ptp2404165G crossref_primary_10_1007_s10462_023_10508_1 crossref_primary_10_1080_0886022X_2023_2274507 crossref_primary_10_1016_j_caeai_2025_100380 crossref_primary_10_1109_ACCESS_2024_3369901 crossref_primary_10_1016_j_chb_2025_108600 crossref_primary_10_7759_cureus_69332 crossref_primary_10_1016_j_heliyon_2023_e21019 crossref_primary_10_3389_frai_2024_1377938 crossref_primary_10_3390_educsci14070742 crossref_primary_10_1007_s43621_025_00809_6 crossref_primary_10_1007_s44217_024_00252_1 crossref_primary_10_1057_s41599_024_04168_x crossref_primary_10_3389_feduc_2024_1323898 crossref_primary_10_1080_08839514_2023_2261730 crossref_primary_10_3390_educsci14090974 crossref_primary_10_3390_educsci13070632 crossref_primary_10_56741_jpes_v3i02_515 crossref_primary_10_1016_j_bushor_2023_11_003 crossref_primary_10_17984_adyuebd_1463794 crossref_primary_10_2196_49964 crossref_primary_10_1080_10999922_2024_2414957 crossref_primary_10_3390_systems12050176 crossref_primary_10_31757_euer_811 crossref_primary_10_3389_feduc_2024_1487882 crossref_primary_10_1016_j_heliyon_2024_e40025 crossref_primary_10_1007_s10956_024_10186_w crossref_primary_10_1016_j_caeai_2024_100287 crossref_primary_10_1007_s44217_024_00173_z crossref_primary_10_1016_j_joitmc_2024_100278 crossref_primary_10_3390_educsci13121216 crossref_primary_10_1007_s43681_025_00686_9 crossref_primary_10_1080_23311983_2024_2392388 crossref_primary_10_3389_feduc_2025_1522905 crossref_primary_10_61927_igmin151 crossref_primary_10_1080_10447318_2024_2400396 crossref_primary_10_1155_2024_8713718 crossref_primary_10_32329_uad_1557111 crossref_primary_10_30935_ojcmt_14485 crossref_primary_10_1080_10447318_2024_2359222 crossref_primary_10_1177_02666669241283790 crossref_primary_10_4018_IJKM_356493 crossref_primary_10_7906_indecs_22_1_1 crossref_primary_10_1007_s44217_024_00297_2 crossref_primary_10_1016_j_caeai_2024_100330 crossref_primary_10_1016_j_caeai_2023_100156 crossref_primary_10_1007_s11423_023_10203_6 crossref_primary_10_4236_jilsa_2023_154009 crossref_primary_10_3390_educsci13090963 crossref_primary_10_1051_e3sconf_202345002010 crossref_primary_10_1016_j_chbah_2025_100137 crossref_primary_10_3390_mti8040028 crossref_primary_10_59324_ejceel_2024_2_3__04 crossref_primary_10_3390_electronics11091487 crossref_primary_10_1007_s10639_024_12594_2 crossref_primary_10_30935_cedtech_15688 crossref_primary_10_1080_10447318_2023_2278283 crossref_primary_10_1016_j_actpsy_2024_104677 crossref_primary_10_32628_IJSRST2411424 crossref_primary_10_58567_jie01020002 crossref_primary_10_18184_2079_4665_2024_15_1_8_26 crossref_primary_10_3390_bs14111008 crossref_primary_10_1177_02666669241304407 crossref_primary_10_1016_j_caeai_2023_100188 crossref_primary_10_1007_s44163_024_00147_y crossref_primary_10_3390_su15043507 crossref_primary_10_1016_j_caeai_2024_100346 crossref_primary_10_1111_jcal_12988 crossref_primary_10_1108_K_03_2024_0613 crossref_primary_10_1007_s10639_025_13347_5 crossref_primary_10_1038_s41598_024_52549_8 crossref_primary_10_12973_ijem_10_2_997 crossref_primary_10_1080_2331186X_2023_2287917 crossref_primary_10_1016_j_tate_2024_104736 crossref_primary_10_1007_s10639_023_12315_1 crossref_primary_10_1016_j_heliyon_2024_e37238 crossref_primary_10_4236_jss_2024_1210025 crossref_primary_10_1007_s10639_024_12916_4 crossref_primary_10_30738_union_v12i2_17548 crossref_primary_10_54097_ijeh_v11i2_13753 crossref_primary_10_1177_07356331241278636 crossref_primary_10_1057_s41599_024_03432_4 crossref_primary_10_30935_cedtech_14250 crossref_primary_10_1016_j_compedu_2023_104967 crossref_primary_10_51531_korkutataturkiyat_1361112 crossref_primary_10_1016_j_cptl_2023_10_001 crossref_primary_10_1016_j_caeai_2024_100358 crossref_primary_10_37843_rted_v17i2_539 crossref_primary_10_59652_jetm_v3i1_404 crossref_primary_10_1007_s44322_025_00028_x crossref_primary_10_23887_jisd_v8i2_58854 crossref_primary_10_14686_buefad_1416087 crossref_primary_10_21833_ijaas_2024_11_003 crossref_primary_10_1080_03075079_2024_2326956 crossref_primary_10_1108_JWL_02_2022_0023 crossref_primary_10_23887_jipp_v7i1_59718 crossref_primary_10_1186_s40561_024_00350_5 crossref_primary_10_1177_21582440241242188 crossref_primary_10_3390_electronics13142808 crossref_primary_10_57175_evsos_v2i4_157 crossref_primary_10_32457_scr_v4i1_2826 crossref_primary_10_24018_ejeng_2023_1_CIE_3133 crossref_primary_10_30935_jdet_15809 crossref_primary_10_1108_JME_09_2024_0119 crossref_primary_10_1080_10447318_2024_2307692 crossref_primary_10_1021_acs_jchemed_4c00138 crossref_primary_10_1080_1475939X_2024_2337924 crossref_primary_10_1016_j_caeo_2024_100191 crossref_primary_10_21511_ppm_23_1__2025_08 crossref_primary_10_33516_rb_v49i4_140_150p crossref_primary_10_3389_fpsyg_2025_1498132 crossref_primary_10_1186_s41239_022_00341_x crossref_primary_10_3390_app142411612 crossref_primary_10_1080_10447318_2024_2430433 crossref_primary_10_1007_s10639_023_12371_7 crossref_primary_10_47836_pjssh_32_3_02 crossref_primary_10_4236_ce_2024_1512157 crossref_primary_10_1111_bjet_13544 crossref_primary_10_3390_electronics13173424 crossref_primary_10_1016_j_caeai_2025_100392 crossref_primary_10_1016_j_caeai_2025_100398 crossref_primary_10_3390_educsci14121386 crossref_primary_10_5861_ijrsm_2024_1037 crossref_primary_10_62273_GKZI2477 crossref_primary_10_1177_21582440241310644 crossref_primary_10_21834_e_bpj_v9i28_5787 crossref_primary_10_4018_IJeC_356491 crossref_primary_10_1007_s10639_024_12452_1 crossref_primary_10_1016_j_heliyon_2024_e25896 crossref_primary_10_1186_s41239_023_00406_5 crossref_primary_10_19126_suje_1447044 crossref_primary_10_1007_s10639_024_12743_7 crossref_primary_10_3390_app14093672 crossref_primary_10_1007_s10639_025_13337_7 crossref_primary_10_3390_educsci13060580 crossref_primary_10_55982_openpraxis_16_1_618 crossref_primary_10_1177_20965311251319049 crossref_primary_10_1007_s10639_024_13143_7 |
Cites_doi | 10.1109/3DUI.2017.7893357 10.1016/j.iheduc.2018.01.003 10.1145/3375462.3375536 10.1145/3170358.3170377 10.1007/978-3-030-52237-7_20 10.1016/j.compedu.2021.104132 10.1145/1142405.1142410 10.24059/olj.v21i4.1240 10.1145/3311927.3323139 10.18608/jla.2015.21.2 10.1007/s40593-018-0170-7 10.1145/3330430.3333618 10.1080/00220671.2016.1220359 10.1186/s41239-018-0113-2 10.1007/978-3-540-74853-3_25 10.1145/3313831.3376311 10.1080/08923648909526659 10.7249/PE315 10.1080/00461520.2011.611369 10.1007/s40593-016-0122-z 10.1145/3386527.3405937 10.1007/978-3-642-13388-6_37 10.1177/1609406917733847 10.1186/s41239-019-0171-0 10.1016/j.compedu.2017.08.006 10.24059/olj.v22i1.1092 10.1080/07370024.2020.1744145 10.1080/13644360903086554 10.4018/JGIM.2018070108 10.1191/1478088706qp063oa 10.1007/s40593-016-0110-3 10.1038/538311a 10.1007/978-3-030-21814-0_2 10.1007/978-0-85729-224-7_22 10.1016/j.chb.2017.02.001 10.1145/3290605.3300534 10.1080/10494820.2014.961485 10.1111/jcal.12005 10.1038/s41562-016-0028 10.1186/s41039-017-0062-8 10.1609/aaai.v33i01.33019795 10.1108/S2055-364120200000033003 10.1007/s00146-017-0693-8 10.17232/KSET.26.2.187 10.1145/3313129 10.1038/538020a 10.1080/17439884.2020.1798995 10.1126/science.228.4698.456 10.1145/3313831.3376727 10.1145/3301019.3320000 10.1007/s40593-016-0105-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021. |
DBID | C6C AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN 0-V 3V. 7XB 88B 89V 8BY 8FE 8FG 8FK 8G5 ABUWG AFKRA AHOVV ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CJNVE CLZPN COVID DPSOV DWQXO GNUQQ GUQSH HCIFZ KC- M0P M2L M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U 7X8 5PM DOA |
DOI | 10.1186/s41239-021-00292-9 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) PRISMA Database PRISMA Database with HAPI Index ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Education Research Index Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Education Collection Latin America & Iberia Database Coronavirus Research Database Politics Collection ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Politics Collection Education Database Political Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef ERIC Publicly Available Content Database ProQuest One Education Research Library Prep ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials PRISMA (without HAPI) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Politics Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Political Science Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Latin America & Iberian Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition PRISMA (with HAPI) ProQuest Politics Collection ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef ERIC |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Law Computer Science |
EISSN | 2365-9440 |
ERIC | EJ1315865 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_3cba7dd7dddf45cfa0cb809b282934c5 PMC8545464 EJ1315865 10_1186_s41239_021_00292_9 |
GrantInformation_xml | – fundername: seoul national university of science and technology – fundername: ; |
GroupedDBID | -W8 0R~ 5VS 89V 8BY 8G5 AAFWJ AAHSB AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADUOI AFGXO AFKRA AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARAPS ASPBG AZQEC B14 BCNDV BENPR BGLVJ C24 C6C CCPQU CJNVE CLZPN DPSOV DWQXO EBS EDJ EJD FAEIB GNUQQ GROUPED_DOAJ GUQSH HCIFZ HISYW IAO IER INF ITC KC- KPI M0P M2L M2O M~E OK1 PIMPY PQEDU PQQKQ PROAC RHO RSV SOJ AAYXX AFPKN CITATION PHGZM PHGZT 7SW AHSBF BJH BNH BNI BNJ BNO ERI H13 PET PQGLB PRQQA REK WWN 0-V 3V. 7XB 8FE 8FG 8FK AHOVV COVID MBDVC P62 PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c640t-4ad1ec881f5673c81c5c998725e90c312f8e106abeaeb13c6779d7fac9ad78f3 |
IEDL.DBID | DOA |
ISSN | 2365-9440 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Thu Aug 21 13:51:18 EDT 2025 Fri Jul 11 15:37:32 EDT 2025 Sat Aug 23 14:34:26 EDT 2025 Fri Aug 01 12:14:15 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 04:32:45 EDT 2025 Fri Feb 21 02:47:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Learner–instructor interaction Speed dating Artificial intelligence Online learning Boundary |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-4ad1ec881f5673c81c5c998725e90c312f8e106abeaeb13c6779d7fac9ad78f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3435-0685 |
OpenAccessLink | https://doaj.org/article/3cba7dd7dddf45cfa0cb809b282934c5 |
PMID | 34778540 |
PQID | 2585635634 |
PQPubID | 396499 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3cba7dd7dddf45cfa0cb809b282934c5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8545464 proquest_miscellaneous_2597805995 proquest_journals_2585635634 eric_primary_EJ1315865 crossref_citationtrail_10_1186_s41239_021_00292_9 crossref_primary_10_1186_s41239_021_00292_9 springer_journals_10_1186_s41239_021_00292_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-26 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | International Journal of Educational Technology in Higher Education |
PublicationTitleAbbrev | Int J Educ Technol High Educ |
PublicationYear | 2021 |
Publisher | Springer International Publishing BioMed Central, Ltd Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central, Ltd – name: Springer Nature B.V – name: SpringerOpen |
References | PopeniciSAKerrSExploring the impact of artificial intelligence on teaching and learning in higher educationResearch and Practice in Technology Enhanced Learning20171212210.1186/s41039-017-0062-8 Aslan, S., Alyuz, N., Tanriover, C., Mete, S. E., Okur, E., D'Mello, S. K., & Arslan Esme, A. (2019). Investigating the impact of a real-time, multimodal student engagement analytics technology in authentic classrooms. In: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–12). GoelAKPolepeddiLJill Watson: A virtual teaching assistant for online education2016Georgia Institute of Technology KangMImTFactors of learner–instructor interaction which predict perceived learning outcomes in online learning environmentJournal of Computer Assisted Learning201329329230110.1111/jcal.12005 McArthur, A. (2020). Students struggle with online test proctoring systems. Retrieved January 10, 2021, from https://universe.byu.edu/2020/12/17/students-struggle-with-online-test-proctoring-systems Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. LuckinRTowards artificial intelligence-based assessment systemsNature Human Behaviour2017131310.1038/s41562-016-0028 Loi, D., Wolf, C. T., Blomberg, J. L., Arar, R., & Brereton, M. (2019). Co-designing AI futures: Integrating AI ethics, social computing, and design. In: Companion publication of the 2019 on designing interactive systems conference 2019 companion (pp. 381–384). ShackelfordJLMaxwellMContribution of learner–instructor interaction to sense of community in graduate online educationMERLOT Journal of Online Learning and Teaching201284248260 MurphyRFArtificial intelligence applications to support K–12 teachers and teachingRAND Corporation201910.7249/PE315 HwangGJXieHWahBWGaševićDVision, challenges, roles and research issues of Artificial Intelligence in EducationComputers and Education: Artificial Intelligence20201 MartinFWangCSadafAStudent perception of helpfulness of facilitation strategies that enhance instructor presence, connectedness, engagement and learning in online coursesThe Internet and Higher Education201837526510.1016/j.iheduc.2018.01.003 CastelvecchiDCan we open the black box of AI?Nature News201653876232010.1038/538020a NguyenTDCannataMMillerJUnderstanding student behavioral engagement: Importance of student interaction with peers and teachersThe Journal of Educational Research2018111216317410.1080/00220671.2016.1220359 Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7–12. Bajaj, M., & Li, J. (2020). Students, faculty express concerns about online exam invigilation amidst COVID-19 outbreak. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/Students-express-concerns-about-online-exams RossBChaseAMRobbieDOatesGAbsalomYAdaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unitInternational Journal of Educational Technology in Higher Education20181513010.1186/s41239-018-0113-2 Kang, M. S. (2010). Development of learners’ perceived interaction model and scale between learner and instructor in e-learning environments. Doctoral dissertation. Korea University, Korea. MartinFBolligerDUEngagement matters: Student perceptions on the importance of engagement strategies in the online learning environmentOnline Learning201822120522210.24059/olj.v22i1.1092 Walker, C. H. (2016). The correlation between types of instructor-student communication in online graduate courses and student satisfaction levels in the private university setting. Doctoral dissertation. Carson-Newman University, Tennessee. WilliamsonBEynonRHistorical threads, missing links, and future directions in AI in educationLearning, Media and Technology202045322323510.1080/17439884.2020.1798995 GuilhermeAAI and education: The importance of teacher and student relationsAI & Society2019341475410.1007/s00146-017-0693-8 Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM international conference on interaction design and children (pp. 121–132). Felix, C. V. (2020). The role of the teacher and AI in education. In: International perspectives on the role of technology in humanizing higher education. Emerald Publishing Limited. RichardsonJCMaedaYLvJCaskurluSSocial presence in relation to students' satisfaction and learning in the online environment: A meta-analysisComputers in Human Behavior20177140241710.1016/j.chb.2017.02.001 RobinsonHKilgoreWWarrenSCare, communication, support: Core for designing meaningful online collaborative learningOnline Learning Journal.201710.24059/olj.v21i4.1240 ZhangCChenHPhangCWRole of instructors' forum interactions with students in promoting MOOC continuanceJournal of Global Information Management (JGIM)201826310512010.4018/JGIM.2018070108 Luria, M., Zheng, R., Huffman, B., Huang, S., Zimmerman, J., & Forlizzi, J. (2020). Social boundaries for personal agents in the interpersonal space of the home. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–12). NowellLSNorrisJMWhiteDEMoulesNJThematic analysis: Striving to meet the trustworthiness criteriaInternational Journal of Qualitative Methods2017161160940691773384710.1177/1609406917733847 Fong, M., Dodson, S., Harandi, N. M., Seo, K., Yoon, D., Roll, I., & Fels, S. (2019). Instructors desire student activity, literacy, and video quality analytics to improve video-based blended courses. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale (pp. 1–10). Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16). MooreMGThree types of interactionAmerican Journal of Distance Education1989321710.1080/08923648909526659 Davidoff, S., Lee, M. K., Dey, A. K., & Zimmerman, J. (2007). Rapidly exploring application design through speed dating. In: International conference on ubiquitous computing (pp. 429–446). Springer, Berlin, Heidelberg. LuoNZhangMQiDEffects of different interactions on students' sense of community in e-learning environmentComputers & Education201711515316010.1016/j.compedu.2017.08.006 Andersen, J. C. (2013). Learner satisfaction in online learning: An analysis of the perceived impact of learner-social media and learner–instructor interaction. Doctoral dissertation. East Tennessee State University, Tennessee. Roll, I., Russell, D. M., & Gašević, D. (2018). Learning at scale. International Journal of Artificial Intelligence in Education, 28(4), 471–477. Lee, S. (2020). Proctorio CEO releases student’s chat logs, sparking renewed privacy concerns. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/proctorio-chat-logs Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid adaptivity in education. In: International conference on artificial intelligence in education (pp. 240–254). Springer, Cham. Tsai, Y. S., Whitelock-Wainwright, A., & Gašević, D. (2020). The privacy paradox and its implications for learning analytics. In: Proceedings of the tenth international conference on learning analytics & knowledge (pp. 230–239). Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2). Truong, K. N., Hayes, G. R., & Abowd, G. D. (2006). Storyboarding: an empirical determination of best practices and effective guidelines. In: Proceedings of the 6th conference on designing interactive systems (pp. 12–21). CrawfordKCaloRThere is a blind spot in AI researchNature2016538762531131310.1038/538311a Chan, R. (2019). The Cambridge Analytica whistleblower explains how the firm used Facebook data to sway elections. Business Insider. Retrieved from https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10 ZimmermanJForlizziJSpeed dating: Providing a menu of possible futuresShe Ji: THe Journal of Design, Economics, and Innovation2017313050 Heidicker, P., Langbehn, E., & Steinicke, F. (2017). Influence of avatar appearance on presence in social VR. In: 2017 IEEE symposium on 3D user interfaces (3DUI) (pp. 233–234). IEEE. WoguIAPMisraSOlu-OwolabiEFAssibongPAUdohODOgiriSODamaseviciusRArtificial intelligence, artificial teachers and the fate of learners in the 21st century education sector: Implications for theory and practiceInternational Journal of Pure and Applied Mathematics20181191622452259 BannaJLinMFGStewartMFialkowskiMKInteraction matters: Strategies to promote engaged learning in an online introductory nutrition courseJournal of Online Learning and Teaching/MERLOT2015112249 Seo, K., Fels, S., Kang, M., Jung, C., & Ryu, H. (2020a). Goldilocks conditions for workplace gamification: How narrative persuasion helps manufacturing workers create self-directed behaviors. Human–Computer Interaction. 1–38. Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What should every child know about AI?. In: Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 9795–9799). JouMLinYTWuDWEffect of a blended learning environment on student critical thinking and knowledge transformationInteractive Learning Environments20162461131114710.1080/10494820.2014.961485 Seo, K., Fels, S., Yoon, D., Roll, I., Dodson, S., & Fong, M. (2020b). Artificial intelligence for video-based learning at scale. In Proceedings of the Seventh ACM Conference on Learning@ Scale (pp. 215–217). LauraRSChapmanAThe technologisation of education: Philosophical reflections on being too plugged inInternational Journal of Children's Spirituality200914328929810.1080/13644360903086554 Linsey, J. S., & Becker, B. (2011) 292_CR27 292_CR28 292_CR1 JR Anderson (292_CR2) 1985; 228 292_CR21 MG Moore (292_CR45) 1989; 3 292_CR63 292_CR20 292_CR25 LS Nowell (292_CR48) 2017; 16 292_CR26 D Perin (292_CR49) 2018; 28 292_CR67 V Braun (292_CR15) 2006; 3 GJ Hwang (292_CR29) 2020; 1 292_CR3 292_CR4 292_CR7 292_CR8 292_CR9 RS Baker (292_CR5) 2016; 26 292_CR19 M Kang (292_CR32) 2013; 29 292_CR17 TD Nguyen (292_CR47) 2018; 111 C Zhang (292_CR65) 2018; 26 292_CR10 292_CR11 O Zawacki-Richter (292_CR64) 2019; 16 292_CR14 292_CR58 292_CR12 292_CR56 292_CR13 292_CR57 A Guilherme (292_CR24) 2019; 34 292_CR60 K VanLehn (292_CR59) 2011; 46 J Zimmerman (292_CR66) 2017; 3 JC Richardson (292_CR51) 2017; 71 N Luo (292_CR39) 2017; 115 B Ross (292_CR53) 2018; 15 292_CR43 292_CR44 RS Laura (292_CR33) 2009; 14 JL Shackelford (292_CR54) 2012; 8 F Martin (292_CR42) 2018; 37 RF Murphy (292_CR46) 2019 R Luckin (292_CR38) 2017; 1 K Crawford (292_CR18) 2016; 538 L Stark (292_CR55) 2019; 25 M Jou (292_CR30) 2016; 24 D Castelvecchi (292_CR16) 2016; 538 R Ferguson (292_CR22) 2019; 6 292_CR31 H Robinson (292_CR52) 2017 292_CR36 292_CR37 292_CR34 292_CR35 F Martin (292_CR41) 2018; 22 AK Goel (292_CR23) 2016 292_CR40 SA Popenici (292_CR50) 2017; 12 B Williamson (292_CR61) 2020; 45 J Banna (292_CR6) 2015; 11 IAP Wogu (292_CR62) 2018; 119 |
References_xml | – reference: PerinDLauterbachMAssessing text-based writing of low-skilled college studentsInternational Journal of Artificial Intelligence in Education2018281567810.1007/s40593-016-0122-z – reference: Aslan, S., Alyuz, N., Tanriover, C., Mete, S. E., Okur, E., D'Mello, S. K., & Arslan Esme, A. (2019). Investigating the impact of a real-time, multimodal student engagement analytics technology in authentic classrooms. In: Proceedings of the 2019 CHI conference on human factors in computing systems (pp. 1–12). – reference: Davidoff, S., Lee, M. K., Dey, A. K., & Zimmerman, J. (2007). Rapidly exploring application design through speed dating. In: International conference on ubiquitous computing (pp. 429–446). Springer, Berlin, Heidelberg. – reference: Chan, R. (2019). The Cambridge Analytica whistleblower explains how the firm used Facebook data to sway elections. Business Insider. Retrieved from https://www.businessinsider.com/cambridge-analytica-whistleblower-christopher-wylie-facebook-data-2019-10 – reference: McArthur, A. (2020). Students struggle with online test proctoring systems. Retrieved January 10, 2021, from https://universe.byu.edu/2020/12/17/students-struggle-with-online-test-proctoring-systems/ – reference: ZimmermanJForlizziJSpeed dating: Providing a menu of possible futuresShe Ji: THe Journal of Design, Economics, and Innovation2017313050 – reference: BannaJLinMFGStewartMFialkowskiMKInteraction matters: Strategies to promote engaged learning in an online introductory nutrition courseJournal of Online Learning and Teaching/MERLOT2015112249 – reference: Felix, C. V. (2020). The role of the teacher and AI in education. In: International perspectives on the role of technology in humanizing higher education. Emerald Publishing Limited. – reference: Walker, C. H. (2016). The correlation between types of instructor-student communication in online graduate courses and student satisfaction levels in the private university setting. Doctoral dissertation. Carson-Newman University, Tennessee. – reference: Roll, I., & Winne, P. H. (2015). Understanding, evaluating, and supporting self-regulated learning using learning analytics. Journal of Learning Analytics, 2(1), 7–12. – reference: Andersen, J. C. (2013). Learner satisfaction in online learning: An analysis of the perceived impact of learner-social media and learner–instructor interaction. Doctoral dissertation. East Tennessee State University, Tennessee. – reference: CastelvecchiDCan we open the black box of AI?Nature News201653876232010.1038/538020a – reference: NguyenTDCannataMMillerJUnderstanding student behavioral engagement: Importance of student interaction with peers and teachersThe Journal of Educational Research2018111216317410.1080/00220671.2016.1220359 – reference: GoelAKPolepeddiLJill Watson: A virtual teaching assistant for online education2016Georgia Institute of Technology – reference: StarkLFacial recognition is the plutonium of AIXRDS: Crossroads, the ACM Magazine for Students2019253505510.1145/3313129 – reference: Bajaj, M., & Li, J. (2020). Students, faculty express concerns about online exam invigilation amidst COVID-19 outbreak. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/Students-express-concerns-about-online-exams/ – reference: Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI for K-12: What should every child know about AI?. In: Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 9795–9799). – reference: WilliamsonBEynonRHistorical threads, missing links, and future directions in AI in educationLearning, Media and Technology202045322323510.1080/17439884.2020.1798995 – reference: Lee, S. (2020). Proctorio CEO releases student’s chat logs, sparking renewed privacy concerns. Retrieved February 8, 2021, from https://www.ubyssey.ca/news/proctorio-chat-logs/ – reference: Roll, I., & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. – reference: Roll, I., Russell, D. M., & Gašević, D. (2018). Learning at scale. International Journal of Artificial Intelligence in Education, 28(4), 471–477. – reference: Kang, M. S. (2010). Development of learners’ perceived interaction model and scale between learner and instructor in e-learning environments. Doctoral dissertation. Korea University, Korea. – reference: Misiejuk, K., & Wasson, B. (2017). State of the field report on learning analytics. Centre for the Science of Learning & Technology (SLATE), University of Bergen. – reference: PopeniciSAKerrSExploring the impact of artificial intelligence on teaching and learning in higher educationResearch and Practice in Technology Enhanced Learning20171212210.1186/s41039-017-0062-8 – reference: Beard, A. (2020). Can computers ever replace the classroom?. Retrieved January 10, 2021, from https://www.theguardian.com/technology/2020/mar/19/can-computers-ever-replace-the-classroom – reference: Loi, D., Wolf, C. T., Blomberg, J. L., Arar, R., & Brereton, M. (2019). Co-designing AI futures: Integrating AI ethics, social computing, and design. In: Companion publication of the 2019 on designing interactive systems conference 2019 companion (pp. 381–384). – reference: LuckinRTowards artificial intelligence-based assessment systemsNature Human Behaviour2017131310.1038/s41562-016-0028 – reference: Heidicker, P., Langbehn, E., & Steinicke, F. (2017). Influence of avatar appearance on presence in social VR. In: 2017 IEEE symposium on 3D user interfaces (3DUI) (pp. 233–234). IEEE. – reference: Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–16). – reference: BakerRSStupid tutoring systems, intelligent humansInternational Journal of Artificial Intelligence in Education201626260061410.1007/s40593-016-0105-0 – reference: RossBChaseAMRobbieDOatesGAbsalomYAdaptive quizzes to increase motivation, engagement and learning outcomes in a first year accounting unitInternational Journal of Educational Technology in Higher Education20181513010.1186/s41239-018-0113-2 – reference: MartinFBolligerDUEngagement matters: Student perceptions on the importance of engagement strategies in the online learning environmentOnline Learning201822120522210.24059/olj.v22i1.1092 – reference: Tsai, Y. S., Whitelock-Wainwright, A., & Gašević, D. (2020). The privacy paradox and its implications for learning analytics. In: Proceedings of the tenth international conference on learning analytics & knowledge (pp. 230–239). – reference: Zawacki-RichterOMarínVIBondMGouverneurFSystematic review of research on artificial intelligence applications in higher education–where are the educators?International Journal of Educational Technology in Higher Education20191613910.1186/s41239-019-0171-0 – reference: KangMImTFactors of learner–instructor interaction which predict perceived learning outcomes in online learning environmentJournal of Computer Assisted Learning201329329230110.1111/jcal.12005 – reference: FergusonREthical challenges for learning analyticsJournal of Learning Analytics2019632530 – reference: GuilhermeAAI and education: The importance of teacher and student relationsAI & Society2019341475410.1007/s00146-017-0693-8 – reference: ZhangCChenHPhangCWRole of instructors' forum interactions with students in promoting MOOC continuanceJournal of Global Information Management (JGIM)201826310512010.4018/JGIM.2018070108 – reference: WoguIAPMisraSOlu-OwolabiEFAssibongPAUdohODOgiriSODamaseviciusRArtificial intelligence, artificial teachers and the fate of learners in the 21st century education sector: Implications for theory and practiceInternational Journal of Pure and Applied Mathematics20181191622452259 – reference: Holstein, K., Hong, G., Tegene, M., McLaren, B. M., & Aleven, V. (2018). The classroom as a dashboard: Co-designing wearable cognitive augmentation for K-12 teachers. In: Proceedings of the 8th international conference on learning analytics and knowledge (pp. 79–88). – reference: Cruz-Benito, J., Sánchez-Prieto, J. C., Therón, R., & García-Peñalvo, F. J. (2019). Measuring students’ acceptance to AI-driven assessment in eLearning: Proposing a first TAM-based research model. In: International conference on human–computer interaction (pp. 15–25). Springer, Cham. – reference: Fong, M., Dodson, S., Harandi, N. M., Seo, K., Yoon, D., Roll, I., & Fels, S. (2019). Instructors desire student activity, literacy, and video quality analytics to improve video-based blended courses. In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale (pp. 1–10). – reference: AndersonJRBoyleCFReiserBJIntelligent tutoring systemsScience1985228469845646210.1126/science.228.4698.456 – reference: Luria, M., Zheng, R., Huffman, B., Huang, S., Zimmerman, J., & Forlizzi, J. (2020). Social boundaries for personal agents in the interpersonal space of the home. In: Proceedings of the 2020 CHI conference on human factors in computing systems (pp. 1–12). – reference: VanLehnKThe relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systemsEducational Psychologist201146419722110.1080/00461520.2011.611369 – reference: Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web, 2(2). – reference: Truong, K. N., Hayes, G. R., & Abowd, G. D. (2006). Storyboarding: an empirical determination of best practices and effective guidelines. In: Proceedings of the 6th conference on designing interactive systems (pp. 12–21). – reference: MurphyRFArtificial intelligence applications to support K–12 teachers and teachingRAND Corporation201910.7249/PE315 – reference: Zimmermann-Niefield, A., Turner, M., Murphy, B., Kane, S. K., & Shapiro, R. B. (2019). Youth learning machine learning through building models of athletic moves. In Proceedings of the 18th ACM international conference on interaction design and children (pp. 121–132). – reference: NowellLSNorrisJMWhiteDEMoulesNJThematic analysis: Striving to meet the trustworthiness criteriaInternational Journal of Qualitative Methods2017161160940691773384710.1177/1609406917733847 – reference: Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human–AI hybrid adaptivity in education. In: International conference on artificial intelligence in education (pp. 240–254). Springer, Cham. – reference: HwangGJXieHWahBWGaševićDVision, challenges, roles and research issues of Artificial Intelligence in EducationComputers and Education: Artificial Intelligence20201 – reference: RichardsonJCMaedaYLvJCaskurluSSocial presence in relation to students' satisfaction and learning in the online environment: A meta-analysisComputers in Human Behavior20177140241710.1016/j.chb.2017.02.001 – reference: CrawfordKCaloRThere is a blind spot in AI researchNature2016538762531131310.1038/538311a – reference: Woolf, B. P., Arroyo, I., Muldner, K., Burleson, W., Cooper, D. G., Dolan, R., & Christopherson, R. M. (2010). The effect of motivational learning companions on low achieving students and students with disabilities. In: International conference on intelligent tutoring systems (pp. 327–337). Springer, Berlin, Heidelberg. – reference: MooreMGThree types of interactionAmerican Journal of Distance Education1989321710.1080/08923648909526659 – reference: Seo, K., Fels, S., Kang, M., Jung, C., & Ryu, H. (2020a). Goldilocks conditions for workplace gamification: How narrative persuasion helps manufacturing workers create self-directed behaviors. Human–Computer Interaction. 1–38. – reference: RobinsonHKilgoreWWarrenSCare, communication, support: Core for designing meaningful online collaborative learningOnline Learning Journal.201710.24059/olj.v21i4.1240 – reference: Seo, K., Dodson, S., Harandi, N. M., Roberson, N., Fels, S., & Roll, I. (2021). Active learning with online video: The impact of learning context on engagement. Computers & Education, 165, 104132. – reference: Seo, K., Fels, S., Yoon, D., Roll, I., Dodson, S., & Fong, M. (2020b). Artificial intelligence for video-based learning at scale. In Proceedings of the Seventh ACM Conference on Learning@ Scale (pp. 215–217). – reference: BraunVClarkeVUsing thematic analysis in psychologyQualitative Research in Psychology2006327710110.1191/1478088706qp063oa – reference: LuoNZhangMQiDEffects of different interactions on students' sense of community in e-learning environmentComputers & Education201711515316010.1016/j.compedu.2017.08.006 – reference: MartinFWangCSadafAStudent perception of helpfulness of facilitation strategies that enhance instructor presence, connectedness, engagement and learning in online coursesThe Internet and Higher Education201837526510.1016/j.iheduc.2018.01.003 – reference: Linsey, J. S., & Becker, B. (2011). Effectiveness of brainwriting techniques: comparing nominal groups to real teams. In: Design creativity 2010 (pp. 165–171). Springer. – reference: LauraRSChapmanAThe technologisation of education: Philosophical reflections on being too plugged inInternational Journal of Children's Spirituality200914328929810.1080/13644360903086554 – reference: ShackelfordJLMaxwellMContribution of learner–instructor interaction to sense of community in graduate online educationMERLOT Journal of Online Learning and Teaching201284248260 – reference: JouMLinYTWuDWEffect of a blended learning environment on student critical thinking and knowledge transformationInteractive Learning Environments20162461131114710.1080/10494820.2014.961485 – ident: 292_CR26 doi: 10.1109/3DUI.2017.7893357 – volume: 37 start-page: 52 year: 2018 ident: 292_CR42 publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2018.01.003 – ident: 292_CR58 doi: 10.1145/3375462.3375536 – ident: 292_CR27 doi: 10.1145/3170358.3170377 – ident: 292_CR28 doi: 10.1007/978-3-030-52237-7_20 – ident: 292_CR14 doi: 10.1016/j.compedu.2021.104132 – ident: 292_CR57 doi: 10.1145/1142405.1142410 – year: 2017 ident: 292_CR52 publication-title: Online Learning Journal. doi: 10.24059/olj.v21i4.1240 – ident: 292_CR67 doi: 10.1145/3311927.3323139 – volume-title: Jill Watson: A virtual teaching assistant for online education year: 2016 ident: 292_CR23 – ident: 292_CR8 doi: 10.18608/jla.2015.21.2 – ident: 292_CR10 doi: 10.1007/s40593-018-0170-7 – ident: 292_CR11 doi: 10.1145/3330430.3333618 – volume: 111 start-page: 163 issue: 2 year: 2018 ident: 292_CR47 publication-title: The Journal of Educational Research doi: 10.1080/00220671.2016.1220359 – ident: 292_CR7 – volume: 15 start-page: 30 issue: 1 year: 2018 ident: 292_CR53 publication-title: International Journal of Educational Technology in Higher Education doi: 10.1186/s41239-018-0113-2 – ident: 292_CR20 doi: 10.1007/978-3-540-74853-3_25 – ident: 292_CR40 doi: 10.1145/3313831.3376311 – volume: 8 start-page: 248 issue: 4 year: 2012 ident: 292_CR54 publication-title: MERLOT Journal of Online Learning and Teaching – volume: 3 start-page: 1 issue: 2 year: 1989 ident: 292_CR45 publication-title: American Journal of Distance Education doi: 10.1080/08923648909526659 – ident: 292_CR43 – year: 2019 ident: 292_CR46 publication-title: RAND Corporation doi: 10.7249/PE315 – volume: 46 start-page: 197 issue: 4 year: 2011 ident: 292_CR59 publication-title: Educational Psychologist doi: 10.1080/00461520.2011.611369 – volume: 28 start-page: 56 issue: 1 year: 2018 ident: 292_CR49 publication-title: International Journal of Artificial Intelligence in Education doi: 10.1007/s40593-016-0122-z – ident: 292_CR13 doi: 10.1145/3386527.3405937 – volume: 11 start-page: 249 issue: 2 year: 2015 ident: 292_CR6 publication-title: Journal of Online Learning and Teaching/MERLOT – ident: 292_CR63 doi: 10.1007/978-3-642-13388-6_37 – volume: 16 start-page: 160940691773384 issue: 1 year: 2017 ident: 292_CR48 publication-title: International Journal of Qualitative Methods doi: 10.1177/1609406917733847 – volume: 1 year: 2020 ident: 292_CR29 publication-title: Computers and Education: Artificial Intelligence – volume: 16 start-page: 39 issue: 1 year: 2019 ident: 292_CR64 publication-title: International Journal of Educational Technology in Higher Education doi: 10.1186/s41239-019-0171-0 – volume: 115 start-page: 153 year: 2017 ident: 292_CR39 publication-title: Computers & Education doi: 10.1016/j.compedu.2017.08.006 – ident: 292_CR25 – volume: 22 start-page: 205 issue: 1 year: 2018 ident: 292_CR41 publication-title: Online Learning doi: 10.24059/olj.v22i1.1092 – volume: 119 start-page: 2245 issue: 16 year: 2018 ident: 292_CR62 publication-title: International Journal of Pure and Applied Mathematics – ident: 292_CR44 – ident: 292_CR60 – ident: 292_CR1 – ident: 292_CR12 doi: 10.1080/07370024.2020.1744145 – volume: 14 start-page: 289 issue: 3 year: 2009 ident: 292_CR33 publication-title: International Journal of Children's Spirituality doi: 10.1080/13644360903086554 – volume: 26 start-page: 105 issue: 3 year: 2018 ident: 292_CR65 publication-title: Journal of Global Information Management (JGIM) doi: 10.4018/JGIM.2018070108 – volume: 3 start-page: 77 issue: 2 year: 2006 ident: 292_CR15 publication-title: Qualitative Research in Psychology doi: 10.1191/1478088706qp063oa – ident: 292_CR9 doi: 10.1007/s40593-016-0110-3 – volume: 538 start-page: 311 issue: 7625 year: 2016 ident: 292_CR18 publication-title: Nature doi: 10.1038/538311a – ident: 292_CR19 doi: 10.1007/978-3-030-21814-0_2 – ident: 292_CR35 doi: 10.1007/978-0-85729-224-7_22 – volume: 6 start-page: 25 issue: 3 year: 2019 ident: 292_CR22 publication-title: Journal of Learning Analytics – volume: 71 start-page: 402 year: 2017 ident: 292_CR51 publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2017.02.001 – volume: 3 start-page: 30 issue: 1 year: 2017 ident: 292_CR66 publication-title: She Ji: THe Journal of Design, Economics, and Innovation – ident: 292_CR3 doi: 10.1145/3290605.3300534 – volume: 24 start-page: 1131 issue: 6 year: 2016 ident: 292_CR30 publication-title: Interactive Learning Environments doi: 10.1080/10494820.2014.961485 – volume: 29 start-page: 292 issue: 3 year: 2013 ident: 292_CR32 publication-title: Journal of Computer Assisted Learning doi: 10.1111/jcal.12005 – volume: 1 start-page: 1 issue: 3 year: 2017 ident: 292_CR38 publication-title: Nature Human Behaviour doi: 10.1038/s41562-016-0028 – volume: 12 start-page: 22 issue: 1 year: 2017 ident: 292_CR50 publication-title: Research and Practice in Technology Enhanced Learning doi: 10.1186/s41039-017-0062-8 – ident: 292_CR56 doi: 10.1609/aaai.v33i01.33019795 – ident: 292_CR21 doi: 10.1108/S2055-364120200000033003 – volume: 34 start-page: 47 issue: 1 year: 2019 ident: 292_CR24 publication-title: AI & Society doi: 10.1007/s00146-017-0693-8 – ident: 292_CR31 doi: 10.17232/KSET.26.2.187 – ident: 292_CR4 – ident: 292_CR17 – volume: 25 start-page: 50 issue: 3 year: 2019 ident: 292_CR55 publication-title: XRDS: Crossroads, the ACM Magazine for Students doi: 10.1145/3313129 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: 292_CR16 publication-title: Nature News doi: 10.1038/538020a – volume: 45 start-page: 223 issue: 3 year: 2020 ident: 292_CR61 publication-title: Learning, Media and Technology doi: 10.1080/17439884.2020.1798995 – volume: 228 start-page: 456 issue: 4698 year: 1985 ident: 292_CR2 publication-title: Science doi: 10.1126/science.228.4698.456 – ident: 292_CR34 – ident: 292_CR37 doi: 10.1145/3313831.3376727 – ident: 292_CR36 doi: 10.1145/3301019.3320000 – volume: 26 start-page: 600 issue: 2 year: 2016 ident: 292_CR5 publication-title: International Journal of Artificial Intelligence in Education doi: 10.1007/s40593-016-0105-0 |
SSID | ssj0001922382 |
Score | 2.601061 |
Snippet | Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students, automating... Abstract Artificial intelligence (AI) systems offer effective support for online learning and teaching, including personalizing learning for students,... |
SourceID | doaj pubmedcentral proquest eric crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | Artificial Intelligence Behavior Standards Boundary CAI College Faculty College Students Computer Appl. in Social and Behavioral Sciences Computer assisted instruction Computer Science Computers and Education Customization Decision analysis Distance learning Educational Technology Electronic Learning Higher Education Humanities Individualized Instruction Influence of Technology Information Systems Applications (incl.Internet) Interaction Law Learner–instructor interaction Machine learning Norms Online instruction Online learning Research Article Social Behavior Speed dating Statistics for Social Sciences Student Attitudes Student teacher relationship System effectiveness Teacher Attitudes Teacher Student Relationship |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA7avvgi3oqrVSL4pqEzuedJrGwpfSgiFfoghEwudUFm2t367n_wH_pLPMlkdt0FC_MwTDKZMOeWk3PyHYTecu1k07lIXBCOcBY6YqjQJKXUUhW4pGOW77k8_crPLsVl3XBb1bTKSScWRR0Gn_fIj2AAkbHUGP9wfUNy1agcXa0lNO6jfVDBGpyv_eP5-ecvm10WA-ZP0-m0jJZHKw662pCcmZAjUpSYLYtUgPt3c5_zonM3ZXInblrM0ckj9LCuI_HHkfCP0b3YP8klmGu6xlP0DRgAj2cg8ZBw5pARLAIv_kHhxEOPS-GIuPzz6_eiwskOy9JpOR56gHs8AmrgWmPi6hm6OJlffDoltZQC8ZI3t4S70EavdZuEVMzr1gsPjpaiIprGs5YmHcE5dF10oLyZl0qZoJLzxgWlEztAe_3Qx-cIgz8VeIYpTSxwLb2mjqegwHFqVFKmnaF2-pvWV5jxXO3ihy3uhpZ2pIAFCthCAWtm6N36nesRZOPO3seZSOueGSC7PBiWV7bKm2W-cyoEuELiwifX-E43psuBY8a9mKGDTOL1IPOzlrVCS2g4nIhuqziv7Ib5ZujNuhkEMUdXXB-Hn7lPqQ9hDAyhtphla6bbLf3ie4H01rCQ5RJGfz-x1ebj__8TL-6e60v0gGY-B0tL5SHaAw6Kr2AJddu9rnLyF0d7G4g priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PaxUxEA-2XrzY-rT4apUI3jS4m_852tJSiniq0IMQsvlTn8huea_i1e_gN_STOMlmn76HCsIels1sdsnMJDPMzG8QesG1k03nInFBOMJZ6IihQpOUUktV4JKOWb7v5Pl7fnElrmpR2GrKdp9CkmWnLmqt5esVh03WkJxSkENJlJgddFeA757l-qTWOHwabRY4h-hUIfPHVzdOoQLWv53vnA3N7TTJrVhpOYLO9tH9ajviNyOzH6A7sZ-hvakvA65qOsudmGvWxgztvHVfH6IPIA14LIjEQ8JZXEbkCLz4DZITDz0uXSTi8se374uKLTssC9FyrICAezyia-DacOL6Ebo8O708OSe1rwLxkje3hLvQRq91m4RUzOvWCw9el6IimsazliYdwVN0XXSwkzMvlTJBJeeNC0ondoB2-6GPjxEG5yrwjFmaWOBaek0dT0GBF9WopEw7R-20zNZXzPHc-uKzLb6HlnZkjQXW2MIaa-bo5fqdmxFx45_Ux5l7a8qMll0eDMtrW5XPMt85FQJcIXHhk2t8pxvT5Sgy417M0UHm_XqS04uWtUJLGDiapMFW3V5ZEGWRUf0Yn6Pn62HQyhxqcX0cvmSa0izCGJhCbUjRxp9ujvSLjwXfW4NVyyXM_mqSt18f__tKHP4f-RN0j2aFgGOYyiO0CxIVn4J9dds9K-r0E5o3Hlg priority: 102 providerName: Springer Nature |
Title | The impact of artificial intelligence on learner–instructor interaction in online learning |
URI | https://link.springer.com/article/10.1186/s41239-021-00292-9 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315865 https://www.proquest.com/docview/2585635634 https://www.proquest.com/docview/2597805995 https://pubmed.ncbi.nlm.nih.gov/PMC8545464 https://doaj.org/article/3cba7dd7dddf45cfa0cb809b282934c5 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggXhULZWUkbmA18dtHutql6qFCqEg9IFmOH7CoStC23PkP_EN-CWM7u-yuBFyQoiiJHSfxzHhm4vE3CL3k2smmc5G4IBzhLHTEUKFJSqmlKnBJa5TvuTz9wM8uxeVWqq8cE1bhgWvHHTPfORUCbCFx4ZNrfKcb0-UZQMZ9QS8FnbflTH2pdgvoIrpeJaPl8TWHMdqQHJGQZ6IoMTuaqAD278c8Z2NzP1Ryb760qKHFfXRvtB_xm_reD9Ct2D_MqZfHMI1H6CMQHte1j3hIOH9gBYnAyy30TTz0uCSMiKuf338sRxjZYVUqrepiBzjGFUgDj7klPj1GF4v5xeyUjCkUiJe8uSHchTZ6rdskpGJet154cLAUFdE0nrU06QhOoeuig0GbeamUCSo5b1xQOrFDdNAPfXyCMPhRgWd40sQC19Jr6ngKChymRiVl2glq171p_QgvnrNcXNniZmhpKwUsUMAWClgzQa8293yt4Bp_rX2SibSpmYGxywVgFzuyi_0Xu0zQYSbxppH5WctaoSUUHK2JbkcxvrbAtSID-DE-QS82xSCAeVbF9XH4luuUvBDGQBNqh1l23nS3pF9-LlDeGgxYLqH112u2-v3wP_fE0__RE8_QXZqlAfQwlUfoAPgsPgcD66abott68XaK7pzMz9-9h7MZ5XkvZ9MiZdPyk-EX0EcpVQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8apYKGAkOEHUxG8fEOLRpS96WqQekCzHj7ISSspuEeLGf-B38Kf4JYydZJddid4q5RDFziTyzHg8nvE3CD1lyoqytqGwntuCUV8XmnBVxBgrIj0TpMvyPRZ7H9nBCT_ZQL-HszAprXKYE_NE7VuX9sh3gABPWGqUvTr7WqSqUSm6OpTQ6MTiMPz4Di7b_OX-O-DvM0LGu5O3e0VfVaBwgpXnBbO-Ck6pKnIhqVOV4w58Dkl40KWjFYkqgJ9k62BhHqNOSKm9jNZp66WKFMheQVcZpToplBq_X27paLC1igxHc5TYmTMwDLpIaRAp_EUKvWL-cpWA9UTrtMJdz89cC9Jm2ze-iW70i1b8upOyW2gjNLdTvec-N-QO-gTShrsDl7iNOIljh0yBp_9AfuK2wblKRZj9-flr2mPXtrPcadadsIB73KF34L6gxeldNLmMEd5Cm03bhHsIg_PmWcJEjdQzJZwilkUvwUsrZZS6GqFqGE3jekzzVFrji8m-jRKm44ABDpjMAaNH6PninbMO0ePC3m8SkxY9Exp3ftDOTk2v3Ia62krv4fKRcRdt6WpV6jpFqSlzfIS2EosXRHYPKlpxJaBhe2C66eeOuVlK-gg9WTSD1qdQjm1C-y31ycUotAYSckVYVv50taWZfs744QpWzUwA9ReDWC0__v-RuH_xvz5G1_YmH47M0f7x4QN0nSSZBxNPxDbaBGkKD2Htdl4_yhqDkblkDf0Lp8FXUg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEK-KhQJGghNETWzHjwNClO6qD7SqUJF6QLIcP9qVUFJ2ixA3_gO_hr_DL2GcOLvsSvRWKYcodiaRZzzj8Yy_QegFk4bnlfGZcaXJGHVVpkgpsxBCQYRjnHRZvhO-_4kdnpanG-h3fxYmplX2OrFV1K6xcY98BwiUEUuNsp2Q0iKO98ZvL75msYJUjLT25TQ6ETnyP76D-zZ_c7AHvH5JyHh08n4_SxUGMstZfpkx4wpvpSxCyQW1srClBf9DkNKr3NKCBOnBZzKVN6DTqOVCKCeCsco4IQMFsjfQpgCnKB-gzd3R5PjjcoNHgeWVpD-oI_nOnIGZUFlMiojBMJKpFWPY1gxYT7uO6931bM21kG1rCcd30O20hMXvOpm7izZ8fS9Wf06ZIvfRZ5A93B2_xE3AUTg7nAo8_QcAFDc1bmtW-Nmfn7-mCcm2mbWdZt15C7jHHZYHTuUtzh6gk-sY4y00qJvaP0QYXDnHIkJqoI5JbiUxLDgBPlsuglDFEBX9aGqbEM5joY0vuvV0JNcdBzRwQLcc0GqIXi3euejwPa7svRuZtOgZsbnbB83sTKeprqmtjHAOLhdYaYPJbSVzVcWYNWW2HKKtyOIFkdFhQYtScmjY7pmukyaZ66XcD9HzRTPogBjYMbVvvsU-bWkKpYCEWBGWlT9dbamn5y2auIQ1NONA_XUvVsuP_38kHl39r8_QTZid-sPB5OgxukWiyIO9J3wbDUCY_BNYyF1WT9OUwUhf8yT9C0_OXOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Artificial+Intelligence+on+Learner-Instructor+Interaction+in+Online+Learning&rft.jtitle=International+Journal+of+Educational+Technology+in+Higher+Education&rft.au=Seo%2C+Kyoungwon&rft.au=Tang%2C+Joice&rft.au=Roll%2C+Ido&rft.au=Fels%2C+Sidney&rft.date=2021-10-26&rft.pub=BioMed+Central%2C+Ltd&rft.issn=2365-9440&rft.eissn=2365-9440&rft.volume=18&rft_id=info:doi/10.1186%2Fs41239-021-00292-9&rft.externalDocID=EJ1315865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-9440&client=summon |