Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes

Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication 1 – 4 . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent 4 , 21.0...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 575; no. 7784; pp. 634 - 638
Main Authors Won, Yu-Ho, Cho, Oul, Kim, Taehyung, Chung, Dae-Young, Kim, Taehee, Chung, Heejae, Jang, Hyosook, Lee, Junho, Kim, Dongho, Jang, Eunjoo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication 1 – 4 . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent 4 , 21.0 per cent 5 and 19.8 per cent 6 , respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays.
AbstractList Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication.sup.1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent.sup.4, 21.0 per cent.sup.5 and 19.8 per cent.sup.6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication 1 – 4 . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent 4 , 21.0 per cent 5 and 19.8 per cent 6 , respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent , 21.0 per cent and 19.8 per cent , respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those oftheir Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication.sup.1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent.sup.4, 21.0 per cent.sup.5 and 19.8 per cent.sup.6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays.
Audience Academic
Author Kim, Taehyung
Lee, Junho
Won, Yu-Ho
Cho, Oul
Jang, Hyosook
Jang, Eunjoo
Kim, Taehee
Kim, Dongho
Chung, Heejae
Chung, Dae-Young
Author_xml – sequence: 1
  givenname: Yu-Ho
  surname: Won
  fullname: Won, Yu-Ho
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 2
  givenname: Oul
  surname: Cho
  fullname: Cho, Oul
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 3
  givenname: Taehyung
  surname: Kim
  fullname: Kim, Taehyung
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 4
  givenname: Dae-Young
  surname: Chung
  fullname: Chung, Dae-Young
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 5
  givenname: Taehee
  surname: Kim
  fullname: Kim, Taehee
  organization: Department of Chemistry, Yonsei University
– sequence: 6
  givenname: Heejae
  surname: Chung
  fullname: Chung, Heejae
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 7
  givenname: Hyosook
  surname: Jang
  fullname: Jang, Hyosook
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 8
  givenname: Junho
  surname: Lee
  fullname: Lee, Junho
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
– sequence: 9
  givenname: Dongho
  surname: Kim
  fullname: Kim, Dongho
  organization: Department of Chemistry, Yonsei University
– sequence: 10
  givenname: Eunjoo
  surname: Jang
  fullname: Jang, Eunjoo
  email: ejjang12@samsung.com
  organization: Samsung Advanced Institute of Technology, Samsung Electronics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31776489$$D View this record in MEDLINE/PubMed
BookMark eNp90mFr1DAYB_AgE3ebfgDfSNE3imRL2jRNXx6HcydDxU0E34Q0eVozeuldkoL79ku56bxxk0IK4fd_Ep48R-jADQ4QeknJCSWFOA2MloJjQmtMq4ri8gmaUVZxzLioDtCMkFxgIgp-iI5CuCaElLRiz9BhkThnop6hT-e2-9XfZNC2VltwMVPOZCGqpods6b6e_nSXMC3ZZlQujqvMDDHrUyhiWNkYresyYwcD4Tl62qo-wIu7_zH6fvbhanGOL758XC7mF1hzRiJmRcsqA4QqJRpFmpqTSkAORjHNCsrKOk_boqjKghLDS1Mq1eoUMkY3htTFMXq7rbv2w2aEEOXKBg19rxwMY5B5QWsmBKc80TcP6PUwepdul1ROOed5Xt6rTvUgrWuH6JWeiso5L0mdk5yypPAe1YEDr_r0Lq1N2zv-9R6v13Yj_0Une1D6TGqu3lv13U4gmQi_Y6fGEOTy8tuuff-4nV_9WHze1a_uejU2KzBy7e1K-Rv5Z1YSoFug_RCCh_YvoURO8yi38yjTPMppHuXU2upBRtuook038cr2_03m22RIp7gO_P3TPR66BUxX7LY
CitedBy_id crossref_primary_10_1002_apxr_202400130
crossref_primary_10_1039_D2TC01355J
crossref_primary_10_3169_itej_78_124
crossref_primary_10_1039_D4NR00203B
crossref_primary_10_1021_acs_jpclett_3c00307
crossref_primary_10_1557_s43578_021_00344_w
crossref_primary_10_1002_chem_202101802
crossref_primary_10_1002_smll_202102340
crossref_primary_10_1021_acsphotonics_2c00555
crossref_primary_10_1039_D4TC04696J
crossref_primary_10_1038_s41928_021_00624_7
crossref_primary_10_1039_D0NR05920J
crossref_primary_10_1002_sdtp_17529
crossref_primary_10_1063_5_0070538
crossref_primary_10_1039_D1NR05497J
crossref_primary_10_1021_acsphotonics_2c01638
crossref_primary_10_1002_sdtp_16681
crossref_primary_10_1038_s41566_022_00999_9
crossref_primary_10_1002_sdtp_14005
crossref_primary_10_1364_OME_406092
crossref_primary_10_1038_s41528_022_00169_5
crossref_primary_10_1038_s41467_024_52521_0
crossref_primary_10_1002_sdtp_14007
crossref_primary_10_1002_smtd_202300266
crossref_primary_10_1002_sdtp_14006
crossref_primary_10_29026_oes_2025_240028
crossref_primary_10_1038_s41467_025_57746_1
crossref_primary_10_1021_acsami_4c13987
crossref_primary_10_1021_acs_nanolett_3c00008
crossref_primary_10_1039_D2CP04102B
crossref_primary_10_1021_acs_jpclett_1c00248
crossref_primary_10_1039_D1MA00408E
crossref_primary_10_1002_sdtp_17984
crossref_primary_10_1007_s11771_020_4395_x
crossref_primary_10_1038_s41565_023_01432_0
crossref_primary_10_1016_j_matchemphys_2022_126322
crossref_primary_10_1021_acs_nanolett_4c04032
crossref_primary_10_1002_adom_202302509
crossref_primary_10_1039_D2NA00734G
crossref_primary_10_1016_j_jlumin_2022_119391
crossref_primary_10_1002_adom_202200918
crossref_primary_10_1039_D3TC03857B
crossref_primary_10_1002_adma_202210385
crossref_primary_10_1038_s41566_023_01369_9
crossref_primary_10_1016_j_isci_2021_103372
crossref_primary_10_1021_jacs_2c09705
crossref_primary_10_5757_ASCT_2023_32_1_23
crossref_primary_10_1021_acsenergylett_2c02924
crossref_primary_10_1002_adfm_202500280
crossref_primary_10_1021_acs_chemmater_4c02675
crossref_primary_10_1063_5_0010203
crossref_primary_10_1038_s41427_021_00300_4
crossref_primary_10_1103_PhysRevB_106_045425
crossref_primary_10_1002_cctc_202000616
crossref_primary_10_1021_acs_chemmater_4c00492
crossref_primary_10_1021_acs_chemmater_0c03181
crossref_primary_10_1039_D2MA00375A
crossref_primary_10_1021_acsami_4c07049
crossref_primary_10_1038_s41467_024_44894_z
crossref_primary_10_1002_adom_202402555
crossref_primary_10_1021_acs_nanolett_3c01352
crossref_primary_10_1039_D3TC04023B
crossref_primary_10_1002_sdtp_15142
crossref_primary_10_1039_D2CS00130F
crossref_primary_10_1002_ange_202311317
crossref_primary_10_1002_advs_202409736
crossref_primary_10_1021_acsami_0c11141
crossref_primary_10_1021_acs_inorgchem_4c00168
crossref_primary_10_1021_acsmaterialslett_0c00112
crossref_primary_10_1002_smll_202311559
crossref_primary_10_1007_s11814_024_00248_5
crossref_primary_10_1016_j_optcom_2024_130384
crossref_primary_10_1039_D0DT00575D
crossref_primary_10_1002_adfm_202008453
crossref_primary_10_1016_j_jallcom_2024_174337
crossref_primary_10_1021_acs_jpcc_2c04223
crossref_primary_10_1002_smsc_202000072
crossref_primary_10_1021_acs_jpcc_1c02616
crossref_primary_10_1002_aelm_202200970
crossref_primary_10_1016_j_pquantelec_2022_100415
crossref_primary_10_1126_sciadv_ado0614
crossref_primary_10_3390_ma16041371
crossref_primary_10_1002_admt_202201070
crossref_primary_10_1039_D0NH00606H
crossref_primary_10_1002_adom_202301427
crossref_primary_10_1016_j_jlumin_2023_120241
crossref_primary_10_1021_acsanm_2c04936
crossref_primary_10_1002_adma_202418300
crossref_primary_10_1038_s41467_024_45944_2
crossref_primary_10_1021_acsanm_4c00634
crossref_primary_10_1016_j_jpowsour_2022_231732
crossref_primary_10_26565_2312_4334_2024_2_35
crossref_primary_10_1039_D0TA03490H
crossref_primary_10_1364_OE_523932
crossref_primary_10_1002_adma_202106276
crossref_primary_10_1021_acsphotonics_1c01805
crossref_primary_10_1021_acs_nanolett_1c01286
crossref_primary_10_1002_adom_202300133
crossref_primary_10_1039_D2NR00281G
crossref_primary_10_1021_acs_chemmater_4c02406
crossref_primary_10_1016_j_commatsci_2024_113394
crossref_primary_10_1002_admi_202000343
crossref_primary_10_1016_j_jlumin_2021_117946
crossref_primary_10_1103_PhysRevB_108_235419
crossref_primary_10_1021_acsami_2c01699
crossref_primary_10_1002_smll_202403325
crossref_primary_10_1039_D2NA00862A
crossref_primary_10_1002_advs_202200637
crossref_primary_10_1016_j_device_2023_100061
crossref_primary_10_1021_acsnano_0c04091
crossref_primary_10_1016_j_cej_2023_148140
crossref_primary_10_3390_pr11113160
crossref_primary_10_1002_smll_202404426
crossref_primary_10_1016_j_apsusc_2023_157483
crossref_primary_10_3390_nano10040726
crossref_primary_10_1016_j_isci_2022_103831
crossref_primary_10_1002_aelm_202100535
crossref_primary_10_1364_OME_540696
crossref_primary_10_1007_s12274_022_5172_y
crossref_primary_10_1002_adma_202006043
crossref_primary_10_1002_sdtp_15190
crossref_primary_10_1021_acsanm_4c00820
crossref_primary_10_1021_acsenergylett_1c00462
crossref_primary_10_1021_jacs_2c13834
crossref_primary_10_1038_s41377_022_00855_z
crossref_primary_10_1021_jacs_5c01305
crossref_primary_10_1021_acsenergylett_0c02697
crossref_primary_10_3390_nano12030408
crossref_primary_10_1021_acs_chemmater_4c02490
crossref_primary_10_1016_j_addr_2023_114830
crossref_primary_10_1021_acsnano_2c10237
crossref_primary_10_1016_j_cej_2021_132464
crossref_primary_10_1088_1361_6528_ac3180
crossref_primary_10_1515_nanoph_2024_0543
crossref_primary_10_1021_acsnano_3c07029
crossref_primary_10_1021_acs_jpcc_0c07209
crossref_primary_10_1021_acsami_4c12250
crossref_primary_10_1063_5_0039996
crossref_primary_10_1002_adom_202401884
crossref_primary_10_1155_2020_8858996
crossref_primary_10_1002_smtd_202101030
crossref_primary_10_1039_D1PY00497B
crossref_primary_10_1039_D0NR05025C
crossref_primary_10_1021_acsenergylett_1c01348
crossref_primary_10_1038_s41524_022_00888_3
crossref_primary_10_1186_s11671_021_03642_8
crossref_primary_10_1021_acsnano_4c08439
crossref_primary_10_1126_science_ado7088
crossref_primary_10_1002_adfm_202204529
crossref_primary_10_1038_s41586_024_08197_z
crossref_primary_10_1002_sdtp_17591
crossref_primary_10_1016_j_cej_2025_160483
crossref_primary_10_1039_D0TC01349H
crossref_primary_10_56767_jfpe_2023_2_2_211
crossref_primary_10_1002_adpr_202200279
crossref_primary_10_1021_acsnano_4c04083
crossref_primary_10_1021_acs_nanolett_0c05109
crossref_primary_10_1021_acs_nanolett_4c02021
crossref_primary_10_1039_D0TC05391K
crossref_primary_10_1063_5_0093248
crossref_primary_10_1038_s41467_025_57304_9
crossref_primary_10_1016_j_jlumin_2024_120560
crossref_primary_10_3390_cryst14090788
crossref_primary_10_1002_adom_202201834
crossref_primary_10_1038_s41578_023_00596_4
crossref_primary_10_1016_j_jnlest_2020_100018
crossref_primary_10_1080_15599612_2024_2449386
crossref_primary_10_1002_anie_202007520
crossref_primary_10_1021_acsnano_3c09490
crossref_primary_10_1039_D3NR04615J
crossref_primary_10_1039_D3QM00911D
crossref_primary_10_1007_s10854_022_08321_7
crossref_primary_10_1021_jacs_1c12207
crossref_primary_10_1016_j_apsusc_2021_151972
crossref_primary_10_1021_acsnano_2c06171
crossref_primary_10_1021_jacs_0c12871
crossref_primary_10_1021_acsaelm_2c01351
crossref_primary_10_1016_j_mattod_2021_01_015
crossref_primary_10_1021_acsanm_0c00958
crossref_primary_10_1039_D0NH00145G
crossref_primary_10_1016_j_xcrp_2022_100860
crossref_primary_10_1021_acsenergylett_3c01019
crossref_primary_10_1016_j_nanoen_2023_109050
crossref_primary_10_1021_acs_jpcc_1c06394
crossref_primary_10_1039_D3MH00062A
crossref_primary_10_1038_s41928_025_01350_0
crossref_primary_10_1002_jsid_2022
crossref_primary_10_1039_D4NR01515K
crossref_primary_10_1088_2058_8585_acf508
crossref_primary_10_1126_sciadv_abq1700
crossref_primary_10_1002_adom_202200328
crossref_primary_10_1002_smtd_202101090
crossref_primary_10_3938_jkps_76_1121
crossref_primary_10_1002_adma_202415648
crossref_primary_10_1021_acs_chemmater_4c01157
crossref_primary_10_1021_acsnano_3c03921
crossref_primary_10_46670_JSST_2023_32_6_391
crossref_primary_10_1002_ange_202404292
crossref_primary_10_3390_c6020028
crossref_primary_10_1016_j_nantod_2022_101449
crossref_primary_10_1021_jacs_4c09209
crossref_primary_10_1021_acsnano_1c04909
crossref_primary_10_1021_jacsau_1c00055
crossref_primary_10_1016_j_nanoen_2020_105062
crossref_primary_10_1039_D1NA00502B
crossref_primary_10_1002_smll_202206133
crossref_primary_10_1126_sciadv_ads7159
crossref_primary_10_1038_s41377_024_01727_4
crossref_primary_10_1039_D2NH00436D
crossref_primary_10_1002_admt_202401983
crossref_primary_10_1002_smll_202309284
crossref_primary_10_1039_D1TC00421B
crossref_primary_10_1016_j_optmat_2021_110994
crossref_primary_10_1039_D3SC00164D
crossref_primary_10_1039_D2CC06119H
crossref_primary_10_1016_j_chip_2023_100073
crossref_primary_10_1021_jacs_3c02709
crossref_primary_10_1038_s41467_023_38536_z
crossref_primary_10_1038_s41467_021_27652_3
crossref_primary_10_1002_lpor_202000412
crossref_primary_10_1016_j_jiec_2020_03_029
crossref_primary_10_1021_acsaelm_2c01560
crossref_primary_10_1002_smll_202203093
crossref_primary_10_1039_D2TC01060G
crossref_primary_10_1002_aesr_202200142
crossref_primary_10_1021_acs_jpcc_3c00144
crossref_primary_10_1002_jsid_1133
crossref_primary_10_1021_jacs_4c00538
crossref_primary_10_1021_acs_chemrev_3c00548
crossref_primary_10_1364_OL_405520
crossref_primary_10_1021_acs_chemmater_0c00551
crossref_primary_10_1039_D1NR04630F
crossref_primary_10_1038_s41467_022_35731_2
crossref_primary_10_1002_adfm_202005303
crossref_primary_10_1002_msid_1487
crossref_primary_10_1007_s10854_020_05206_5
crossref_primary_10_1021_acsnano_3c09971
crossref_primary_10_3169_mta_9_222
crossref_primary_10_1039_D0NR06665F
crossref_primary_10_1021_acsenergylett_9b02824
crossref_primary_10_1002_adom_202100427
crossref_primary_10_1002_lpor_202400005
crossref_primary_10_1021_acsanm_0c02814
crossref_primary_10_35848_1347_4065_ac54fa
crossref_primary_10_1021_acs_jpcc_3c00376
crossref_primary_10_1088_1674_1056_ad36bc
crossref_primary_10_1021_acs_inorgchem_3c00161
crossref_primary_10_1002_solr_202200299
crossref_primary_10_1021_jacs_2c13677
crossref_primary_10_1021_acsmaterialsau_1c00075
crossref_primary_10_1007_s10853_022_08002_0
crossref_primary_10_1007_s11082_020_02653_6
crossref_primary_10_1038_s41467_021_24765_7
crossref_primary_10_1088_1674_4926_44_9_092603
crossref_primary_10_1021_acsami_4c14036
crossref_primary_10_1021_acsami_0c02904
crossref_primary_10_1021_acsami_9b23265
crossref_primary_10_1021_acs_chemmater_1c01287
crossref_primary_10_3365_KJMM_2021_59_10_718
crossref_primary_10_1039_D1TC04271H
crossref_primary_10_1021_acs_chemmater_0c02500
crossref_primary_10_1021_acs_jpclett_2c01882
crossref_primary_10_1021_acsami_3c04900
crossref_primary_10_1007_s12274_024_6926_5
crossref_primary_10_1007_s12274_022_5268_4
crossref_primary_10_1016_j_xcrp_2022_101207
crossref_primary_10_1021_acsami_2c16289
crossref_primary_10_1016_j_isci_2020_101272
crossref_primary_10_1007_s11814_023_00006_z
crossref_primary_10_1021_acs_chemmater_1c03219
crossref_primary_10_1021_acsanm_3c03749
crossref_primary_10_1063_5_0149097
crossref_primary_10_1021_acsenergylett_4c02621
crossref_primary_10_1063_5_0199397
crossref_primary_10_1002_ejic_202001100
crossref_primary_10_20517_ss_2024_19
crossref_primary_10_1016_j_ccr_2023_215539
crossref_primary_10_1063_5_0041689
crossref_primary_10_1007_s40843_021_1793_3
crossref_primary_10_1021_acs_nanolett_3c01919
crossref_primary_10_1088_1361_6528_ad40b3
crossref_primary_10_3390_ma16175877
crossref_primary_10_1039_D3CC05282F
crossref_primary_10_3365_KJMM_2021_59_10_730
crossref_primary_10_1002_jsid_2006
crossref_primary_10_1021_acs_nanolett_1c00600
crossref_primary_10_1088_1361_6463_ac7d1e
crossref_primary_10_1364_OL_390266
crossref_primary_10_1021_acsanm_4c01163
crossref_primary_10_1002_adsr_202200101
crossref_primary_10_1007_s12274_024_6541_5
crossref_primary_10_1016_j_rinp_2025_108130
crossref_primary_10_1021_acs_jpcc_0c00351
crossref_primary_10_1021_acs_nanolett_4c01107
crossref_primary_10_1016_j_jlumin_2022_119651
crossref_primary_10_1021_acs_jpclett_0c00112
crossref_primary_10_1021_jacsau_3c00457
crossref_primary_10_1021_acs_jpcc_3c06971
crossref_primary_10_1021_acs_jpclett_1c04117
crossref_primary_10_1021_acs_inorgchem_5c00148
crossref_primary_10_1007_s13233_021_9055_y
crossref_primary_10_1126_science_aaz8541
crossref_primary_10_1088_2752_5724_ad3a83
crossref_primary_10_1016_j_compositesa_2024_108338
crossref_primary_10_1021_acsmaterialsau_1c00034
crossref_primary_10_1002_adom_202202594
crossref_primary_10_1039_D2NR05848K
crossref_primary_10_1016_j_cej_2023_146789
crossref_primary_10_1021_acsenergylett_2c01065
crossref_primary_10_1016_j_apsusc_2021_149944
crossref_primary_10_1021_acs_nanolett_2c03564
crossref_primary_10_1002_adfm_202420829
crossref_primary_10_1063_5_0020742
crossref_primary_10_1002_adfm_202415687
crossref_primary_10_3390_ma16145039
crossref_primary_10_1002_adma_202103411
crossref_primary_10_1021_acsami_4c09968
crossref_primary_10_1039_D0SC01039A
crossref_primary_10_1002_smll_202303247
crossref_primary_10_1021_acs_jpcc_1c03015
crossref_primary_10_1039_D1NR01671G
crossref_primary_10_1039_D0NH00556H
crossref_primary_10_1016_j_jlumin_2021_118463
crossref_primary_10_1063_5_0187162
crossref_primary_10_1002_adpr_202100315
crossref_primary_10_1021_acsenergylett_1c01545
crossref_primary_10_3390_nano13071159
crossref_primary_10_1007_s12274_022_4260_3
crossref_primary_10_1063_5_0206176
crossref_primary_10_1007_s40042_021_00153_8
crossref_primary_10_1021_acsanm_0c00695
crossref_primary_10_1021_acs_jpclett_2c02764
crossref_primary_10_1039_D0RA10173G
crossref_primary_10_1021_acsenergylett_0c02193
crossref_primary_10_1021_acs_jpclett_2c03853
crossref_primary_10_1038_s44287_024_00063_4
crossref_primary_10_1002_jsid_1126
crossref_primary_10_1002_cnma_202200534
crossref_primary_10_1021_acs_jpclett_0c01451
crossref_primary_10_1021_acs_jpclett_0c02777
crossref_primary_10_1021_acs_chemmater_1c03888
crossref_primary_10_1016_j_rinp_2020_103113
crossref_primary_10_1002_msid_1256
crossref_primary_10_1002_msid_1258
crossref_primary_10_1021_acs_chemmater_1c02556
crossref_primary_10_1039_D3TA00168G
crossref_primary_10_1021_acs_nanolett_2c04670
crossref_primary_10_1002_adma_202006178
crossref_primary_10_1002_admt_202201845
crossref_primary_10_1002_adom_202303194
crossref_primary_10_1016_j_orgel_2021_106156
crossref_primary_10_1016_j_orgel_2022_106696
crossref_primary_10_1038_s41598_023_45907_5
crossref_primary_10_1021_acs_jpclett_1c03478
crossref_primary_10_1021_acsnano_3c13159
crossref_primary_10_1038_s41467_022_28037_w
crossref_primary_10_1021_acs_nanolett_4c00610
crossref_primary_10_3390_nano11030683
crossref_primary_10_1016_j_mtphys_2024_101492
crossref_primary_10_1021_acs_nanolett_3c03903
crossref_primary_10_1039_D4NJ01219D
crossref_primary_10_1007_s12274_021_3503_z
crossref_primary_10_3390_nano14121055
crossref_primary_10_1021_acsanm_1c04486
crossref_primary_10_1002_smtd_202201454
crossref_primary_10_1021_acsenergylett_3c01983
crossref_primary_10_1002_adma_202413978
crossref_primary_10_1021_acsami_4c18231
crossref_primary_10_1021_acsaom_3c00104
crossref_primary_10_1021_acs_jpclett_3c01465
crossref_primary_10_1088_2515_7647_acf972
crossref_primary_10_1002_aelm_202200256
crossref_primary_10_1021_acs_jpcc_3c01621
crossref_primary_10_1038_s41928_021_00632_7
crossref_primary_10_1039_D2RE00378C
crossref_primary_10_1002_adma_202303528
crossref_primary_10_1002_sdtp_16701
crossref_primary_10_1088_2515_7639_ab95e8
crossref_primary_10_1039_D2MA00442A
crossref_primary_10_1038_s41467_020_18655_7
crossref_primary_10_1016_j_jlumin_2025_121136
crossref_primary_10_1021_acsami_2c20138
crossref_primary_10_1016_j_jmst_2024_02_047
crossref_primary_10_1002_adom_202402051
crossref_primary_10_1038_s41467_024_50323_y
crossref_primary_10_1038_s43246_021_00203_5
crossref_primary_10_1021_acsanm_4c05968
crossref_primary_10_3390_ma15238455
crossref_primary_10_5488_cmp_27_43703
crossref_primary_10_1002_adma_202407026
crossref_primary_10_1021_acs_chemrev_3c00169
crossref_primary_10_1039_D3TC02699J
crossref_primary_10_1002_adfm_202215189
crossref_primary_10_1021_acsanm_3c04449
crossref_primary_10_1021_acsnano_1c08631
crossref_primary_10_1039_D2NR02071H
crossref_primary_10_1021_acsanm_2c04677
crossref_primary_10_1016_j_foodchem_2022_133116
crossref_primary_10_1002_adma_202312250
crossref_primary_10_1021_acsanm_3c03356
crossref_primary_10_1364_OL_521324
crossref_primary_10_1021_acs_chemmater_1c00348
crossref_primary_10_1039_D1AY01186C
crossref_primary_10_1021_acsami_1c01898
crossref_primary_10_1021_acsami_2c21232
crossref_primary_10_3390_nano13101695
crossref_primary_10_1063_5_0019790
crossref_primary_10_1002_adom_202403376
crossref_primary_10_1002_admi_202200835
crossref_primary_10_1021_acs_nanolett_1c03719
crossref_primary_10_1038_s41578_022_00459_4
crossref_primary_10_1002_smtd_202402237
crossref_primary_10_1002_adma_202410441
crossref_primary_10_1021_acsphotonics_3c00332
crossref_primary_10_1021_acsnano_4c13110
crossref_primary_10_1002_adma_202209784
crossref_primary_10_1002_pssr_201900737
crossref_primary_10_1002_jsid_896
crossref_primary_10_1038_s41563_023_01606_0
crossref_primary_10_1002_adom_202402271
crossref_primary_10_1039_D1CP05780D
crossref_primary_10_1021_acsami_2c14711
crossref_primary_10_1002_adom_202202128
crossref_primary_10_1002_open_201900336
crossref_primary_10_1002_admt_202000648
crossref_primary_10_1021_acscentsci_0c00484
crossref_primary_10_1016_j_jpowsour_2024_234902
crossref_primary_10_1021_acs_jpclett_2c00378
crossref_primary_10_1103_PhysRevB_111_035425
crossref_primary_10_1002_lpor_202400678
crossref_primary_10_1021_acscatal_2c05401
crossref_primary_10_1109_LED_2020_3011505
crossref_primary_10_1021_acs_nanolett_0c02227
crossref_primary_10_1002_admi_202300575
crossref_primary_10_1002_adfm_202210558
crossref_primary_10_1515_nanoph_2021_0053
crossref_primary_10_1016_j_ces_2023_119062
crossref_primary_10_1021_acs_chemmater_2c02960
crossref_primary_10_1038_s41467_024_51179_y
crossref_primary_10_1021_acs_jpclett_4c00158
crossref_primary_10_1016_j_cej_2022_138413
crossref_primary_10_1038_s44160_022_00025_4
crossref_primary_10_3390_mi13081315
crossref_primary_10_1002_smtd_202200163
crossref_primary_10_3390_nano14221825
crossref_primary_10_1016_j_orgel_2024_107098
crossref_primary_10_1021_acs_jpclett_2c02147
crossref_primary_10_1038_s41467_024_52535_8
crossref_primary_10_1021_acsphotonics_4c01617
crossref_primary_10_1002_apxr_202400042
crossref_primary_10_1039_D0NA01012J
crossref_primary_10_1021_acs_jpcc_2c04987
crossref_primary_10_1109_LED_2021_3137532
crossref_primary_10_1002_adom_202102404
crossref_primary_10_1002_sdtp_15417
crossref_primary_10_3390_ma16247585
crossref_primary_10_1039_D1NR05288H
crossref_primary_10_35848_1882_0786_aca9ba
crossref_primary_10_1002_sdtp_15418
crossref_primary_10_1021_acsenergylett_0c00638
crossref_primary_10_1039_D3TC01543B
crossref_primary_10_1021_acsenergylett_9b02851
crossref_primary_10_1021_acs_nanolett_4c02609
crossref_primary_10_1038_s41467_020_16652_4
crossref_primary_10_1039_D0TC01639J
crossref_primary_10_1109_JSTQE_2023_3323619
crossref_primary_10_1038_d41586_019_03607_z
crossref_primary_10_1002_sdtp_16732
crossref_primary_10_1016_j_jallcom_2021_161233
crossref_primary_10_1021_acsami_4c18246
crossref_primary_10_1002_sdtp_15401
crossref_primary_10_1002_apxr_202400071
crossref_primary_10_1021_acsami_1c11898
crossref_primary_10_1021_acs_jpclett_1c02125
crossref_primary_10_1021_jacs_0c08954
crossref_primary_10_1002_adom_202300533
crossref_primary_10_3390_nano11113014
crossref_primary_10_1016_j_isci_2022_105111
crossref_primary_10_1002_sstr_202000024
crossref_primary_10_1021_acs_nanolett_3c02630
crossref_primary_10_1021_acsami_1c11649
crossref_primary_10_3390_coatings11050581
crossref_primary_10_1039_D1NR04199A
crossref_primary_10_3390_nano10091858
crossref_primary_10_1016_j_jpowsour_2025_236355
crossref_primary_10_1021_acs_chemmater_2c01840
crossref_primary_10_1021_acsomega_3c05580
crossref_primary_10_1002_anie_202404292
crossref_primary_10_1002_aenm_202403574
crossref_primary_10_1021_acs_chemmater_0c00781
crossref_primary_10_3390_nano10112171
crossref_primary_10_1038_s41467_020_15944_z
crossref_primary_10_1016_j_cej_2023_145034
crossref_primary_10_1021_acsnano_2c03138
crossref_primary_10_1038_s41566_024_01496_x
crossref_primary_10_1063_5_0159472
crossref_primary_10_3390_coatings10070645
crossref_primary_10_1016_j_orgel_2020_105790
crossref_primary_10_1038_s44287_024_00059_0
crossref_primary_10_1021_acs_chemmater_4c02784
crossref_primary_10_3390_nano14161354
crossref_primary_10_1088_1361_6633_ad2ac9
crossref_primary_10_1021_jacs_0c09547
crossref_primary_10_1002_adom_202300425
crossref_primary_10_1021_acs_inorgchem_2c04308
crossref_primary_10_1021_acsenergylett_4c02088
crossref_primary_10_1063_5_0071508
crossref_primary_10_1002_smtd_202301224
crossref_primary_10_1088_1361_6463_abe43d
crossref_primary_10_1002_admi_202001712
crossref_primary_10_1002_adma_202306621
crossref_primary_10_1021_acs_chemrev_2c00688
crossref_primary_10_1002_adma_202212220
crossref_primary_10_3390_nano12213817
crossref_primary_10_1007_s12274_024_6603_8
crossref_primary_10_1002_sdtp_14122
crossref_primary_10_1021_acsnano_1c01399
crossref_primary_10_1002_sdtp_16781
crossref_primary_10_1002_sdtp_16782
crossref_primary_10_1364_PRJ_462852
crossref_primary_10_1002_sdtp_16784
crossref_primary_10_1002_lpor_202301051
crossref_primary_10_1002_adom_202300659
crossref_primary_10_1016_j_mattod_2025_02_009
crossref_primary_10_1021_acs_jpcc_4c02671
crossref_primary_10_1002_adma_202110665
crossref_primary_10_1149_2162_8777_ac1997
crossref_primary_10_1039_D4TC00615A
crossref_primary_10_1088_1361_6528_abbdde
crossref_primary_10_1039_D3SC04136K
crossref_primary_10_1021_acs_inorgchem_1c00304
crossref_primary_10_1002_adom_202402215
crossref_primary_10_1002_ppsc_202000115
crossref_primary_10_1021_acsnano_4c03290
crossref_primary_10_1021_acs_chemrev_2c00695
crossref_primary_10_1063_5_0057449
crossref_primary_10_1021_acsenergylett_1c01067
crossref_primary_10_1002_smtd_202300359
crossref_primary_10_1021_acsami_4c18047
crossref_primary_10_1016_j_rser_2024_115317
crossref_primary_10_1038_s41467_021_25955_z
crossref_primary_10_1016_j_ccr_2024_216376
crossref_primary_10_1002_ange_202004857
crossref_primary_10_1021_acsnano_2c06032
crossref_primary_10_1021_acsphotonics_0c00117
crossref_primary_10_1002_adom_202001479
crossref_primary_10_1109_LED_2021_3119322
crossref_primary_10_1021_jacs_0c10554
crossref_primary_10_1021_acsnano_1c06849
crossref_primary_10_1021_acsnano_2c02912
crossref_primary_10_1039_C9EE03348C
crossref_primary_10_1021_acs_jpcc_2c01499
crossref_primary_10_1016_j_optlastec_2021_107026
crossref_primary_10_1021_acsenergylett_0c01860
crossref_primary_10_12693_APhysPolA_146_424
crossref_primary_10_1021_acs_jpclett_4c00070
crossref_primary_10_3365_KJMM_2023_61_1_33
crossref_primary_10_1002_adom_202402677
crossref_primary_10_1038_s41467_023_35954_x
crossref_primary_10_3390_nano12234314
crossref_primary_10_1039_D1TC06072D
crossref_primary_10_1063_5_0165956
crossref_primary_10_1038_s44160_024_00562_0
crossref_primary_10_1021_acs_nanolett_4c06595
crossref_primary_10_1016_j_matt_2022_06_017
crossref_primary_10_1002_admt_202100889
crossref_primary_10_1021_acsami_4c13899
crossref_primary_10_1021_acs_inorgchem_0c03117
crossref_primary_10_1093_nsr_nwac025
crossref_primary_10_1073_pnas_2307633121
crossref_primary_10_1016_j_optlastec_2023_109839
crossref_primary_10_1063_5_0226368
crossref_primary_10_1002_cjoc_202000609
crossref_primary_10_1364_OE_442578
crossref_primary_10_1021_acsanm_2c02638
crossref_primary_10_1063_5_0152650
crossref_primary_10_1002_adma_202417330
crossref_primary_10_1021_acs_nanolett_1c02284
crossref_primary_10_1038_s41467_023_44643_8
crossref_primary_10_1002_admi_202202241
crossref_primary_10_1088_1361_6463_ac7c9f
crossref_primary_10_1002_adom_202201939
crossref_primary_10_1021_acs_inorgchem_4c05511
crossref_primary_10_1038_s41467_023_43340_w
crossref_primary_10_1039_D3TC02098C
crossref_primary_10_1021_acsomega_1c05420
crossref_primary_10_1021_acs_jpclett_9b03567
crossref_primary_10_1021_acs_nanolett_3c01491
crossref_primary_10_1002_adom_202102372
crossref_primary_10_3390_nano13101669
crossref_primary_10_1021_acs_jpcc_2c07860
crossref_primary_10_1021_acs_chemmater_0c01906
crossref_primary_10_1021_acs_nanolett_0c03939
crossref_primary_10_1002_advs_202105577
crossref_primary_10_1007_s10895_024_03957_6
crossref_primary_10_1038_s41586_020_2791_x
crossref_primary_10_1109_TED_2021_3138844
crossref_primary_10_1142_S0217984921503826
crossref_primary_10_1364_OE_523817
crossref_primary_10_1039_D3NR04423H
crossref_primary_10_1021_acs_jpcc_0c06672
crossref_primary_10_1038_s41566_021_00783_1
crossref_primary_10_1039_D3CS00179B
crossref_primary_10_1002_adom_202002128
crossref_primary_10_1007_s11814_024_00236_9
crossref_primary_10_1002_adom_202002129
crossref_primary_10_1016_j_matt_2022_07_032
crossref_primary_10_1039_D4NR04907A
crossref_primary_10_1038_s41467_020_18932_5
crossref_primary_10_3390_nano14161337
crossref_primary_10_1002_lpor_202200551
crossref_primary_10_1364_OE_506286
crossref_primary_10_1002_smll_202202290
crossref_primary_10_1021_acs_nanolett_2c00763
crossref_primary_10_1088_1674_1056_abd471
crossref_primary_10_1021_acsaelm_0c00091
crossref_primary_10_1002_sdtp_15476
crossref_primary_10_1016_j_optmat_2022_113363
crossref_primary_10_1364_PRJ_525231
crossref_primary_10_1039_D2CS00490A
crossref_primary_10_1002_adma_202314061
crossref_primary_10_1002_admi_202400708
crossref_primary_10_1021_acs_analchem_2c03925
crossref_primary_10_1002_adma_202404480
crossref_primary_10_1038_s41586_024_07363_7
crossref_primary_10_56767_jfpe_2022_1_1_45
crossref_primary_10_1063_5_0058992
crossref_primary_10_1002_adma_202310705
crossref_primary_10_1021_acsenergylett_1c00351
crossref_primary_10_1016_j_orgel_2021_106086
crossref_primary_10_1021_acs_langmuir_0c02886
crossref_primary_10_1007_s11051_025_06258_6
crossref_primary_10_1021_acsenergylett_0c02561
crossref_primary_10_1039_D2NR06618A
crossref_primary_10_1021_acs_nanolett_4c00173
crossref_primary_10_1021_acsami_1c14147
crossref_primary_10_1021_acs_inorgchem_3c04358
crossref_primary_10_1016_j_orgel_2020_105955
crossref_primary_10_1039_D4TC00925H
crossref_primary_10_1021_acs_chemmater_0c04757
crossref_primary_10_1039_D1EN00712B
crossref_primary_10_1021_acs_jpcc_2c07893
crossref_primary_10_1021_acsmaterialslett_1c00474
crossref_primary_10_1016_j_orgel_2022_106593
crossref_primary_10_1007_s11814_024_00251_w
crossref_primary_10_1016_j_optmat_2020_110158
crossref_primary_10_1016_j_cej_2024_151152
crossref_primary_10_1039_D2TC01522F
crossref_primary_10_1002_lpor_202200749
crossref_primary_10_1002_smll_202402371
crossref_primary_10_1002_aelm_202300439
crossref_primary_10_1016_j_orgel_2020_105945
crossref_primary_10_1002_adma_202305382
crossref_primary_10_1021_jacs_4c10731
crossref_primary_10_1039_D3NR05010F
crossref_primary_10_1002_sdtp_16136
crossref_primary_10_1016_j_cej_2023_143223
crossref_primary_10_1021_acsami_3c00268
crossref_primary_10_1007_s12274_024_6732_0
crossref_primary_10_1063_5_0082223
crossref_primary_10_1038_s41598_021_83583_5
crossref_primary_10_1021_acs_jpclett_0c02752
crossref_primary_10_1002_smll_202408938
crossref_primary_10_1002_sdtp_16140
crossref_primary_10_1002_adfm_202401284
crossref_primary_10_1021_acs_chemrev_2c00865
crossref_primary_10_1002_adom_202401755
crossref_primary_10_1364_OE_459837
crossref_primary_10_1038_s41467_022_32662_w
crossref_primary_10_1080_15980316_2020_1720835
crossref_primary_10_1039_D4TA03218G
crossref_primary_10_1063_5_0060462
crossref_primary_10_3169_itej_75_226
crossref_primary_10_1039_D0TA09474A
crossref_primary_10_1007_s12274_021_3596_4
crossref_primary_10_1063_5_0084416
crossref_primary_10_3390_ma18030487
crossref_primary_10_1021_acs_chemmater_0c01275
crossref_primary_10_1039_D4TC03312D
crossref_primary_10_1002_adma_202205504
crossref_primary_10_1002_advs_202200959
crossref_primary_10_1021_acsnano_4c18113
crossref_primary_10_59717_j_xinn_mater_2024_100124
crossref_primary_10_1002_crat_202000177
crossref_primary_10_1007_s12274_021_3354_7
crossref_primary_10_1016_j_scib_2025_02_042
crossref_primary_10_1021_jacs_3c10203
crossref_primary_10_1016_j_cej_2024_151347
crossref_primary_10_1002_EXP_20220082
crossref_primary_10_1021_acs_inorgchem_3c04153
crossref_primary_10_1002_jsid_1296
crossref_primary_10_1021_acs_jpcc_3c07658
crossref_primary_10_1021_acs_jpcc_0c07145
crossref_primary_10_1021_acsami_1c25009
crossref_primary_10_1007_s12274_024_6896_7
crossref_primary_10_1021_acs_jpclett_0c00748
crossref_primary_10_1021_acs_jpclett_2c01976
crossref_primary_10_3390_nano14100832
crossref_primary_10_3390_mi13101767
crossref_primary_10_1007_s11814_024_00305_z
crossref_primary_10_1364_OE_502064
crossref_primary_10_1021_acs_nanolett_4c04580
crossref_primary_10_1002_smsc_202300092
crossref_primary_10_1146_annurev_matsci_080819_011036
crossref_primary_10_1007_s12274_023_5635_9
crossref_primary_10_1039_D4TC00837E
crossref_primary_10_1021_acsomega_4c03802
crossref_primary_10_1002_adma_202312948
crossref_primary_10_1021_acs_chemrev_2c00410
crossref_primary_10_1021_acs_nanolett_4c03024
crossref_primary_10_1002_adom_202200685
crossref_primary_10_14356_kona_2024001
crossref_primary_10_1016_j_matt_2022_04_023
crossref_primary_10_1038_s41566_023_01344_4
crossref_primary_10_1038_s41586_025_08645_4
crossref_primary_10_1002_sdtp_15091
crossref_primary_10_1088_2633_4356_ad13a0
crossref_primary_10_1002_admt_202201799
crossref_primary_10_1021_acsanm_3c05167
crossref_primary_10_1002_adma_202301842
crossref_primary_10_1021_acsami_4c16513
crossref_primary_10_1002_bkcs_12684
crossref_primary_10_1021_acsanm_3c06015
crossref_primary_10_2139_ssrn_4077244
crossref_primary_10_1002_adom_202300088
crossref_primary_10_1038_s42256_020_00289_5
crossref_primary_10_3390_mi13101775
crossref_primary_10_1039_D2TC00851C
crossref_primary_10_1039_D2NR03082A
crossref_primary_10_1002_marc_202200187
crossref_primary_10_1039_D0RE00454E
crossref_primary_10_1021_acs_jpclett_3c03137
crossref_primary_10_1039_D1TC01664D
crossref_primary_10_1021_acsenergylett_4c02526
crossref_primary_10_1021_acs_chemmater_2c02800
crossref_primary_10_1007_s11814_024_00179_1
crossref_primary_10_1021_acs_jpclett_0c01599
crossref_primary_10_1021_acs_chemmater_1c02029
crossref_primary_10_1007_s11082_021_02934_8
crossref_primary_10_1063_1_5143618
crossref_primary_10_1016_j_jchromb_2022_123587
crossref_primary_10_1021_acsami_4c08943
crossref_primary_10_1002_smll_202004487
crossref_primary_10_1021_acssuschemeng_2c00938
crossref_primary_10_1021_acs_jpcc_1c02277
crossref_primary_10_1038_s41586_021_03997_z
crossref_primary_10_1080_15980316_2024_2350437
crossref_primary_10_1103_PhysRevX_12_021055
crossref_primary_10_1103_PhysRevB_104_045404
crossref_primary_10_1002_adpr_202100243
crossref_primary_10_1021_acs_jpclett_4c01974
crossref_primary_10_3390_nano11061483
crossref_primary_10_1021_acs_chemmater_3c02461
crossref_primary_10_1021_acsanm_1c02577
crossref_primary_10_1016_j_chphi_2024_100579
crossref_primary_10_1002_jsid_910
crossref_primary_10_1039_D4MA00352G
crossref_primary_10_1016_j_orgel_2021_106256
crossref_primary_10_1016_j_rio_2022_100228
crossref_primary_10_1002_adma_202300546
crossref_primary_10_1021_acsenergylett_2c02489
crossref_primary_10_1039_D4NR04558K
crossref_primary_10_1088_1402_4896_ac05f3
crossref_primary_10_1007_s12274_022_4074_3
crossref_primary_10_1039_D1TC02534A
crossref_primary_10_1021_acsanm_3c00126
crossref_primary_10_1038_s41467_022_29812_5
crossref_primary_10_1016_j_saa_2023_123140
crossref_primary_10_1007_s12274_020_2883_9
crossref_primary_10_1021_acs_chemmater_0c02870
crossref_primary_10_1002_aenm_202400148
crossref_primary_10_1021_acsami_3c12897
crossref_primary_10_1051_e3sconf_202454903013
crossref_primary_10_1016_j_cej_2024_158969
crossref_primary_10_1002_smll_202304881
crossref_primary_10_1002_jsid_948
crossref_primary_10_1080_15980316_2022_2035835
crossref_primary_10_1364_PRJ_467604
crossref_primary_10_1002_adma_202412105
crossref_primary_10_1002_adma_202301887
crossref_primary_10_1016_j_optmat_2021_111126
crossref_primary_10_1021_acs_chemmater_3c01359
crossref_primary_10_1021_acsanm_2c05498
crossref_primary_10_1002_ijch_202200103
crossref_primary_10_1002_smll_202108120
crossref_primary_10_3390_condmat8030084
crossref_primary_10_1246_bcsj_20230216
crossref_primary_10_1088_2058_8585_ad4eef
crossref_primary_10_1016_j_mattod_2020_04_032
crossref_primary_10_1016_j_mtchem_2023_101888
crossref_primary_10_1039_D1TC00683E
crossref_primary_10_1039_D2NH00158F
crossref_primary_10_1166_sam_2021_3979
crossref_primary_10_1016_j_ceramint_2022_11_056
crossref_primary_10_1002_adma_202104685
crossref_primary_10_7498_aps_69_20191767
crossref_primary_10_3390_ma15238511
crossref_primary_10_1007_s40820_022_00970_x
crossref_primary_10_1039_D0CP01647K
crossref_primary_10_1002_adma_202309123
crossref_primary_10_1002_adma_202302984
crossref_primary_10_1364_OE_482241
crossref_primary_10_1021_jacs_2c13108
crossref_primary_10_1002_sdtp_15940
crossref_primary_10_1039_D1NR08038E
crossref_primary_10_1002_wnan_1624
crossref_primary_10_1038_s41563_021_01119_8
crossref_primary_10_1364_OE_386276
crossref_primary_10_1016_j_synthmet_2024_117747
crossref_primary_10_1021_acs_jpclett_0c01323
crossref_primary_10_1002_smll_202405275
crossref_primary_10_3390_nano12132243
crossref_primary_10_1021_acs_chemmater_0c01561
crossref_primary_10_26599_NR_2025_94907267
crossref_primary_10_3390_nano12030573
crossref_primary_10_1002_msid_1164
crossref_primary_10_1016_j_orgel_2022_106569
crossref_primary_10_3390_app11104422
crossref_primary_10_1021_acsphotonics_4c00027
crossref_primary_10_1039_D1NR02334A
crossref_primary_10_1002_sdtp_14841
crossref_primary_10_1007_s40843_021_1957_9
crossref_primary_10_1021_acs_chemmater_3c00005
crossref_primary_10_1080_14686996_2025_2463317
crossref_primary_10_1002_sdtp_14844
crossref_primary_10_1109_LED_2021_3088280
crossref_primary_10_1002_sdtp_14843
crossref_primary_10_1016_j_materresbull_2023_112589
crossref_primary_10_1021_acs_nanolett_4c05832
crossref_primary_10_1021_acs_chemmater_3c00481
crossref_primary_10_1021_acs_jpclett_4c00689
crossref_primary_10_1002_sdtp_14846
crossref_primary_10_1002_adma_202105958
crossref_primary_10_1039_D3CS00611E
crossref_primary_10_1038_s41524_021_00591_9
crossref_primary_10_1002_msid_1395
crossref_primary_10_1007_s12274_022_4784_6
crossref_primary_10_1007_s40042_023_00945_0
crossref_primary_10_1021_acsomega_1c07045
crossref_primary_10_1002_adma_202414957
crossref_primary_10_1021_acs_chemmater_2c03074
crossref_primary_10_1039_D0TA12623C
crossref_primary_10_1002_adma_202414953
crossref_primary_10_3390_ma15248977
crossref_primary_10_1007_s12274_024_6982_x
crossref_primary_10_1002_sdtp_14838
crossref_primary_10_1039_D0RA00653J
crossref_primary_10_1080_15980316_2025_2449929
crossref_primary_10_1038_s41565_023_01428_w
crossref_primary_10_1002_adma_202312334
crossref_primary_10_1038_s41566_023_01340_8
crossref_primary_10_1039_D1NA00716E
crossref_primary_10_1021_acs_jpclett_0c03519
crossref_primary_10_1063_5_0198140
crossref_primary_10_3390_nano11051246
crossref_primary_10_1002_anie_202311317
crossref_primary_10_1021_acs_accounts_4c00708
crossref_primary_10_1021_acs_jpcc_0c11317
crossref_primary_10_1021_acsami_3c01566
crossref_primary_10_1021_acs_nanolett_4c03673
crossref_primary_10_1016_j_matdes_2022_110736
crossref_primary_10_1038_d41586_022_04447_0
crossref_primary_10_1039_D0QI01228A
crossref_primary_10_1002_adma_202303621
crossref_primary_10_1039_D2CC05874J
crossref_primary_10_1002_sdtp_15914
crossref_primary_10_1021_acsenergylett_1c02745
crossref_primary_10_3390_nano15020147
crossref_primary_10_1021_acsanm_4c01073
crossref_primary_10_1002_sdtp_13977
crossref_primary_10_1021_acs_chemmater_0c01596
crossref_primary_10_1016_j_mattod_2022_06_020
crossref_primary_10_1021_acsanm_0c00583
crossref_primary_10_1002_adma_202211702
crossref_primary_10_1016_j_mtnano_2024_100457
crossref_primary_10_1021_acsami_1c20088
crossref_primary_10_1002_adma_202005635
crossref_primary_10_1016_j_esci_2023_100227
crossref_primary_10_1021_acsami_3c18371
crossref_primary_10_1002_anbr_202300076
crossref_primary_10_1002_anie_202004857
crossref_primary_10_1007_s12274_022_4115_y
crossref_primary_10_1021_acsenergylett_2c02062
crossref_primary_10_1016_j_apsusc_2022_155579
crossref_primary_10_1002_adma_202106215
crossref_primary_10_1063_5_0077327
crossref_primary_10_1002_adfm_202110900
crossref_primary_10_1016_j_jphotochemrev_2023_100588
crossref_primary_10_1080_02786826_2025_2469780
crossref_primary_10_3390_nano12061032
crossref_primary_10_1364_OE_462444
crossref_primary_10_1002_adom_202100389
crossref_primary_10_1002_adom_202202036
crossref_primary_10_1002_adom_202002167
crossref_primary_10_1016_j_jlumin_2022_119560
crossref_primary_10_1002_sdtp_17919
crossref_primary_10_1002_adom_202401085
crossref_primary_10_1039_D1MH00859E
crossref_primary_10_1002_smll_202304497
crossref_primary_10_1016_j_physb_2023_415408
crossref_primary_10_1063_5_0180211
crossref_primary_10_1021_jacs_4c13568
crossref_primary_10_1063_5_0092736
crossref_primary_10_1002_adma_202200854
crossref_primary_10_3390_mi13050709
crossref_primary_10_1016_j_cej_2021_128426
crossref_primary_10_1038_s41377_022_01036_8
crossref_primary_10_1002_sdtp_17906
crossref_primary_10_1021_acs_jpcc_3c03951
crossref_primary_10_1002_sdtp_15965
crossref_primary_10_1021_acs_nanolett_4c01606
crossref_primary_10_1364_OE_533257
crossref_primary_10_1002_admt_202201077
crossref_primary_10_1016_j_nanoen_2024_109906
crossref_primary_10_1007_s11814_024_00235_w
crossref_primary_10_1021_acs_chemmater_1c01795
crossref_primary_10_1364_OPTICA_422287
crossref_primary_10_1002_adpr_202100083
crossref_primary_10_1016_j_orgel_2022_106705
crossref_primary_10_3390_ma16145106
crossref_primary_10_1088_1361_648X_ac858d
crossref_primary_10_1021_acsanm_4c05636
crossref_primary_10_1002_adom_202202256
crossref_primary_10_1002_aenm_202101230
crossref_primary_10_3365_KJMM_2021_59_7_476
crossref_primary_10_1039_D1NA00561H
crossref_primary_10_1002_smll_202105492
crossref_primary_10_1016_j_jiec_2023_04_005
crossref_primary_10_3390_en13133370
crossref_primary_10_1002_smll_202411539
crossref_primary_10_1007_s12274_021_4038_z
crossref_primary_10_1002_smll_202003542
crossref_primary_10_1515_nanoph_2023_0033
crossref_primary_10_1002_smll_202002454
crossref_primary_10_1016_j_optmat_2022_113209
crossref_primary_10_1016_j_cej_2024_150839
crossref_primary_10_1016_j_inoche_2023_110602
crossref_primary_10_1021_jacs_3c04890
crossref_primary_10_1038_s41467_020_19573_4
crossref_primary_10_1002_sdtp_14450
crossref_primary_10_1002_adma_202301018
crossref_primary_10_1364_OE_460054
crossref_primary_10_1002_adom_202300873
crossref_primary_10_1021_acs_nanolett_1c01223
crossref_primary_10_1039_D1RA08233G
crossref_primary_10_1039_D2NR04244D
crossref_primary_10_1088_1674_1056_aca7e8
crossref_primary_10_1002_adom_202100586
crossref_primary_10_1021_acsanm_0c02334
crossref_primary_10_1002_adma_202402912
crossref_primary_10_1021_acsanm_4c01692
crossref_primary_10_1021_acsami_1c08118
crossref_primary_10_1038_s41467_022_29538_4
crossref_primary_10_1038_s41566_021_00763_5
crossref_primary_10_1039_D2QI00448H
crossref_primary_10_1021_acs_nanolett_3c01419
crossref_primary_10_1002_adom_202300612
crossref_primary_10_1021_acs_nanolett_4c02968
crossref_primary_10_1021_acsami_4c09447
crossref_primary_10_1002_adma_202420575
crossref_primary_10_1021_jacs_3c03582
crossref_primary_10_1007_s12274_022_4204_y
crossref_primary_10_1021_acs_jchemed_2c01167
crossref_primary_10_1002_sdtp_15764
crossref_primary_10_1002_adom_202202066
crossref_primary_10_1016_j_matt_2023_01_018
crossref_primary_10_1021_acsphotonics_3c00420
crossref_primary_10_1007_s12274_024_6947_0
crossref_primary_10_1021_acsnano_3c06518
crossref_primary_10_1021_acs_nanolett_0c04740
crossref_primary_10_1063_1_5145189
crossref_primary_10_1021_jacs_0c10907
crossref_primary_10_1021_acsnano_4c05643
crossref_primary_10_1016_j_orgel_2024_107190
crossref_primary_10_1021_acsanm_2c04509
crossref_primary_10_1021_acs_nanolett_4c01648
crossref_primary_10_1039_D2CE01588A
crossref_primary_10_1021_acs_jpclett_4c01594
crossref_primary_10_1021_acs_chemrev_3c00097
crossref_primary_10_1021_jacs_4c00073
crossref_primary_10_1002_eem2_12798
crossref_primary_10_1021_acs_nanolett_2c01459
crossref_primary_10_1002_rpm_20240019
crossref_primary_10_1021_acs_nanolett_2c01699
crossref_primary_10_1038_s41565_021_00871_x
crossref_primary_10_1002_ange_202007520
crossref_primary_10_1126_sciadv_abl8219
crossref_primary_10_1002_open_202000357
crossref_primary_10_1021_acscentsci_3c01451
crossref_primary_10_1021_acs_chemmater_0c03939
crossref_primary_10_1039_D4NH00663A
crossref_primary_10_1007_s11814_024_00279_y
crossref_primary_10_21597_jist_1376078
crossref_primary_10_1002_sdtp_15758
crossref_primary_10_1038_s41598_022_17084_4
crossref_primary_10_1063_5_0018132
crossref_primary_10_1002_adom_202301970
crossref_primary_10_1021_acs_nanolett_2c00118
crossref_primary_10_1016_j_apsusc_2022_153568
Cites_doi 10.1103/PhysRevB.54.8633
10.1021/jp0021502
10.1038/nphoton.2013.70
10.1021/acs.chemrev.6b00116
10.1002/jsid.393
10.1002/adma.201403620
10.1038/s41467-018-04986-z
10.1126/science.287.5455.1011
10.1021/acs.chemmater.8b03671
10.1021/acsami.7b10785
10.1021/acs.nanolett.6b00066
10.1038/nphoton.2011.171
10.1021/jacs.8b12908
10.1021/acs.chemmater.8b03117
10.1021/nn4002825
10.1002/smll.201603962
10.1021/nn403594j
10.1038/ncomms3661
10.1021/jp981703u
10.1038/nphoton.2015.36
10.1021/acs.chemmater.5b02138
10.1021/acs.chemmater.8b02590
10.1021/acsanm.8b02063
10.1038/nature13829
10.1038/nature01217
10.1021/ja903633d
10.1038/s41566-019-0364-z
10.1364/OL.41.003984
10.1021/acs.nanolett.7b02438
10.1103/PhysRevLett.106.187401
10.1007/978-0-387-46312-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Nov 28, 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 28, 2019
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-019-1771-5
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database (NC LIVE)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed



Agricultural Science Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 638
ExternalDocumentID A650920214
31776489
10_1038_s41586_019_1771_5
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGOIJ
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
ID FETCH-LOGICAL-c640t-43f47de01aa8ba0b96078e2eda4c4314592ba08375310d65d5aafc3f4ddcbd093
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 03:13:25 EDT 2025
Sat Aug 23 13:35:29 EDT 2025
Tue Jun 17 21:50:56 EDT 2025
Thu Jun 12 22:43:45 EDT 2025
Tue Jun 10 15:32:19 EDT 2025
Tue Jun 10 20:46:10 EDT 2025
Fri Jun 27 04:03:47 EDT 2025
Fri Jun 27 04:55:31 EDT 2025
Thu Apr 03 07:09:19 EDT 2025
Tue Jul 01 01:21:15 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Fri Feb 21 02:38:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7784
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-43f47de01aa8ba0b96078e2eda4c4314592ba08375310d65d5aafc3f4ddcbd093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31776489
PQID 2321666225
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_2319488616
proquest_journals_2321666225
gale_infotracmisc_A650920214
gale_infotracgeneralonefile_A650920214
gale_infotraccpiq_650920214
gale_infotracacademiconefile_A650920214
gale_incontextgauss_ISR_A650920214
gale_incontextgauss_ATWCN_A650920214
pubmed_primary_31776489
crossref_primary_10_1038_s41586_019_1771_5
crossref_citationtrail_10_1038_s41586_019_1771_5
springer_journals_10_1038_s41586_019_1771_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-28
PublicationDateYYYYMMDD 2019-11-28
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wang (CR6) 2017; 9
Mashford (CR3) 2013; 7
Yang (CR8) 2015; 9
Vaxenburg, Rodina, Lifshitz, Efros (CR23) 2016; 16
Li (CR10) 2019; 141
Klimov, Mikhailovsky, McBranch, Leatherdale, Bawendi (CR22) 2000; 287
Cao (CR25) 2018; 30
Lim (CR18) 2014; 26
Cao (CR9) 2018; 9
Manders (CR5) 2015; 23
Tessier, Dupong, Nolf, Roo, Hens (CR12) 2015; 27
Bae (CR7) 2013; 4
Park, Lim, Makarov, Klimov (CR31) 2017; 17
Park (CR24) 2011; 106
Bae (CR19) 2013; 7
Kagan, Murray, Bawendi (CR21) 1996; 54
Kim (CR30) 2019; 2
Mićić, Jones, Cahill, Nozik (CR15) 1998; 102
Wang (CR27) 2017; 13
Liu (CR17) 2009; 131
Jo (CR26) 2016; 41
Lim (CR28) 2013; 7
Coe, Woo, Bawendi, Bulovic (CR1) 2002; 420
Reiss, Carriere, Lincheneau, Vaure, Tamang (CR11) 2016; 116
CR20
Tessier (CR14) 2018; 30
Shen (CR29) 2019; 13
Stein (CR13) 2018; 30
Mićić, Smith, Nozik (CR16) 2000; 104
Qian, Zheng, Xue, Holloway (CR2) 2011; 5
Dai (CR4) 2014; 515
JL Stein (1771_CR13) 2018; 30
HC Wang (1771_CR27) 2017; 13
H Shen (1771_CR29) 2019; 13
JR Manders (1771_CR5) 2015; 23
Y Li (1771_CR10) 2019; 141
OI Mićić (1771_CR15) 1998; 102
R Vaxenburg (1771_CR23) 2016; 16
F Cao (1771_CR25) 2018; 30
WK Bae (1771_CR7) 2013; 4
Y Park (1771_CR31) 2017; 17
Y Kim (1771_CR30) 2019; 2
BS Mashford (1771_CR3) 2013; 7
1771_CR20
WK Bae (1771_CR19) 2013; 7
L Wang (1771_CR6) 2017; 9
P Reiss (1771_CR11) 2016; 116
S Coe (1771_CR1) 2002; 420
MD Tessier (1771_CR12) 2015; 27
L Liu (1771_CR17) 2009; 131
J-H Jo (1771_CR26) 2016; 41
L Qian (1771_CR2) 2011; 5
X Dai (1771_CR4) 2014; 515
J Lim (1771_CR18) 2014; 26
J Lim (1771_CR28) 2013; 7
Y-S Park (1771_CR24) 2011; 106
CR Kagan (1771_CR21) 1996; 54
OI Mićić (1771_CR16) 2000; 104
W Cao (1771_CR9) 2018; 9
VI Klimov (1771_CR22) 2000; 287
Y Yang (1771_CR8) 2015; 9
MD Tessier (1771_CR14) 2018; 30
31776486 - Nature. 2019 Nov;575(7784):604-605
References_xml – volume: 54
  start-page: 8633
  year: 1996
  ident: CR21
  article-title: Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.8633
– volume: 104
  start-page: 12149
  year: 2000
  end-page: 12156
  ident: CR16
  article-title: Core-shell quantum dots of lattice-matched ZnCdSe shells on InP cores: experiment and theory
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0021502
– volume: 7
  start-page: 407
  year: 2013
  end-page: 412
  ident: CR3
  article-title: High-efficiency quantum-dot light-emitting devices with enhanced charge injection
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.70
– volume: 116
  start-page: 10731
  year: 2016
  end-page: 10819
  ident: CR11
  article-title: Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00116
– volume: 23
  start-page: 523
  year: 2015
  end-page: 528
  ident: CR5
  article-title: High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays
  publication-title: J. Soc. Inf. Disp.
  doi: 10.1002/jsid.393
– volume: 26
  start-page: 8034
  year: 2014
  end-page: 8040
  ident: CR18
  article-title: Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn Cd S core/shell heterostructured quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403620
– volume: 9
  year: 2018
  ident: CR9
  article-title: Highly stable QLEDs with improved hole injection via quantum dot structure tailoring
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04986-z
– volume: 287
  start-page: 1011
  year: 2000
  ident: CR22
  article-title: Quantization of multiparticle Auger rates in semiconductor quantum dots
  publication-title: Science
  doi: 10.1126/science.287.5455.1011
– volume: 30
  start-page: 8002
  year: 2018
  end-page: 8007
  ident: CR25
  article-title: A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core-shell quantum dots enabling high-efficiency light-emitting diodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03671
– volume: 9
  start-page: 38755
  year: 2017
  end-page: 38760
  ident: CR6
  article-title: Blue quantum dot light-emitting diodes with high electroluminescent efficiency
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.7b10785
– volume: 16
  start-page: 2503
  year: 2016
  end-page: 2511
  ident: CR23
  article-title: Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00066
– volume: 5
  start-page: 543
  year: 2011
  end-page: 548
  ident: CR2
  article-title: Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.171
– volume: 141
  start-page: 6448
  year: 2019
  end-page: 6452
  ident: CR10
  article-title: Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12908
– volume: 30
  start-page: 6877
  year: 2018
  end-page: 6883
  ident: CR14
  article-title: Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03117
– volume: 7
  start-page: 3411
  year: 2013
  end-page: 3419
  ident: CR19
  article-title: Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination
  publication-title: ACS Nano
  doi: 10.1021/nn4002825
– volume: 13
  start-page: 1603962
  year: 2017
  ident: CR27
  article-title: Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10000 cd m
  publication-title: Small
  doi: 10.1002/smll.201603962
– volume: 7
  start-page: 9019
  year: 2013
  end-page: 9026
  ident: CR28
  article-title: Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots
  publication-title: ACS Nano
  doi: 10.1021/nn403594j
– volume: 4
  year: 2013
  ident: CR7
  article-title: Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3661
– volume: 102
  start-page: 9791
  year: 1998
  end-page: 9796
  ident: CR15
  article-title: Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp981703u
– volume: 9
  start-page: 259
  year: 2015
  end-page: 266
  ident: CR8
  article-title: High-efficiency light-emitting devices based on quantum dots with tailored nanostructures
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.36
– volume: 27
  start-page: 4893
  year: 2015
  end-page: 4898
  ident: CR12
  article-title: Economic and size-tunable synthesis of InP/ZnE (E=S, Se) colloidal quantum dots
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02138
– volume: 30
  start-page: 6377
  year: 2018
  end-page: 6388
  ident: CR13
  article-title: Probing surface defects of InP quantum dots using phophorus Kα and Kβ X-ray emission spectroscopy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02590
– volume: 2
  start-page: 1496
  year: 2019
  end-page: 1504
  ident: CR30
  article-title: Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02063
– volume: 515
  start-page: 96
  year: 2014
  end-page: 99
  ident: CR4
  article-title: Solution-processed, high-performance light-emitting diodes based on quantum dots
  publication-title: Nature
  doi: 10.1038/nature13829
– volume: 420
  start-page: 800
  year: 2002
  end-page: 803
  ident: CR1
  article-title: Electroluminescence from single monolayers of nanocrystals in molecular organic devices
  publication-title: Nature
  doi: 10.1038/nature01217
– volume: 131
  start-page: 16423
  year: 2009
  end-page: 16429
  ident: CR17
  article-title: Shape control of CdSe nanocrystals with zinc blende structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903633d
– volume: 13
  start-page: 192
  year: 2019
  end-page: 197
  ident: CR29
  article-title: Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0364-z
– volume: 41
  start-page: 3984
  year: 2016
  end-page: 3987
  ident: CR26
  article-title: High-efficiency red electroluminescent device based on multishelled InP quantum dots
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003984
– volume: 17
  start-page: 5607
  year: 2017
  end-page: 5613
  ident: CR31
  article-title: Effect of interfacial alloying versus “volume scaling” on Auger recombination in compositionally graded semiconductor quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02438
– ident: CR20
– volume: 106
  start-page: 187401
  year: 2011
  ident: CR24
  article-title: Near-unity quantum yields of biexciton emission from CdSe=CdS nanocrystals measured using single-particle spectroscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.187401
– volume: 9
  start-page: 259
  year: 2015
  ident: 1771_CR8
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.36
– volume: 116
  start-page: 10731
  year: 2016
  ident: 1771_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00116
– volume: 141
  start-page: 6448
  year: 2019
  ident: 1771_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12908
– volume: 7
  start-page: 407
  year: 2013
  ident: 1771_CR3
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.70
– volume: 515
  start-page: 96
  year: 2014
  ident: 1771_CR4
  publication-title: Nature
  doi: 10.1038/nature13829
– volume: 30
  start-page: 6877
  year: 2018
  ident: 1771_CR14
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03117
– volume: 5
  start-page: 543
  year: 2011
  ident: 1771_CR2
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.171
– volume: 131
  start-page: 16423
  year: 2009
  ident: 1771_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903633d
– volume: 30
  start-page: 8002
  year: 2018
  ident: 1771_CR25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03671
– ident: 1771_CR20
  doi: 10.1007/978-0-387-46312-4
– volume: 287
  start-page: 1011
  year: 2000
  ident: 1771_CR22
  publication-title: Science
  doi: 10.1126/science.287.5455.1011
– volume: 420
  start-page: 800
  year: 2002
  ident: 1771_CR1
  publication-title: Nature
  doi: 10.1038/nature01217
– volume: 7
  start-page: 3411
  year: 2013
  ident: 1771_CR19
  publication-title: ACS Nano
  doi: 10.1021/nn4002825
– volume: 26
  start-page: 8034
  year: 2014
  ident: 1771_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403620
– volume: 2
  start-page: 1496
  year: 2019
  ident: 1771_CR30
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02063
– volume: 23
  start-page: 523
  year: 2015
  ident: 1771_CR5
  publication-title: J. Soc. Inf. Disp.
  doi: 10.1002/jsid.393
– volume: 104
  start-page: 12149
  year: 2000
  ident: 1771_CR16
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0021502
– volume: 102
  start-page: 9791
  year: 1998
  ident: 1771_CR15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp981703u
– volume: 16
  start-page: 2503
  year: 2016
  ident: 1771_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00066
– volume: 17
  start-page: 5607
  year: 2017
  ident: 1771_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02438
– volume: 30
  start-page: 6377
  year: 2018
  ident: 1771_CR13
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02590
– volume: 54
  start-page: 8633
  year: 1996
  ident: 1771_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.8633
– volume: 106
  start-page: 187401
  year: 2011
  ident: 1771_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.187401
– volume: 7
  start-page: 9019
  year: 2013
  ident: 1771_CR28
  publication-title: ACS Nano
  doi: 10.1021/nn403594j
– volume: 13
  start-page: 1603962
  year: 2017
  ident: 1771_CR27
  publication-title: Small
  doi: 10.1002/smll.201603962
– volume: 13
  start-page: 192
  year: 2019
  ident: 1771_CR29
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0364-z
– volume: 4
  year: 2013
  ident: 1771_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3661
– volume: 9
  year: 2018
  ident: 1771_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04986-z
– volume: 9
  start-page: 38755
  year: 2017
  ident: 1771_CR6
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.7b10785
– volume: 27
  start-page: 4893
  year: 2015
  ident: 1771_CR12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02138
– volume: 41
  start-page: 3984
  year: 2016
  ident: 1771_CR26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003984
– reference: 31776486 - Nature. 2019 Nov;575(7784):604-605
SSID ssj0005174
Score 2.7208493
Snippet Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 634
SubjectTerms 140/125
140/146
639/624/1020/1089
639/925/357/1017
Augers
Cadmium
Charge injection
Chemical properties
Defects
Design and construction
Displays
Efficiency
Energy transfer
High temperature
Humanities and Social Sciences
Hydrofluoric acid
Indium phosphides
Light emitting diodes
Mechanical properties
multidisciplinary
Nanocrystals
Organic light emitting diodes
Oxidation
Quantum dots
Quantum efficiency
Recombination
Science
Science (multidisciplinary)
Spectrum analysis
Zinc compounds
Zinc selenide
Zinc sulfide
Title Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
URI https://link.springer.com/article/10.1038/s41586-019-1771-5
https://www.ncbi.nlm.nih.gov/pubmed/31776489
https://www.proquest.com/docview/2321666225
https://www.proquest.com/docview/2319488616
Volume 575
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbWFgN2Gdbu5bULtKHYE0YsP-XTkAXN2gILij6wYhdBlpQiQOokc3LYvx_pKEkddL34YFGGTJEiadIfAQ6ViZTVpvCNjSlASbgvUIsIi5AHJk90VNDfyD_76fFVfHqdXLsPbpUrq1yeifVBbcaavpG30fJThgvF79tk6lPXKMquuhYaW7DD0dJQSZfo_ViXeGygMC-zmpFoV2i4BMXSOS4r437SsEubp_Md87SRL63NUO8ZPHX-I-ssNnwXHtlyDx7XdZy62oNdp6sV--QApT8_h1Mq5hj9ZbaGi0Arw1RpGLqFxciyk_Ks_bu8sHRh0zkyen7LMFRloxpixN4O68poZoZjY6sXcNU7uuwe-66Hgq_TOJj5cTSIM2MDrpQoVFBgwJIJG1qjYo2-Q5zkId7GKBV1MTBpYhKlBhonGaMLE-TRS9gux6V9DUzwwKI7GBkV1E2uRB6Hg5jbwIToFFrhQbDkoNQOYJz6XIxkneiOhFwwXSLTJTFdJh58WU2ZLNA1HiI-pG2RhFpRUlnMjZpXlexc_ur2ZYeQAEMCgPPg_X1kJxfnDaKPjmgwxjVq5X5GwDclPKwG5X6DUk-GU3ln9ENj9Gaxtfc95qBBiEqsm8NLWZPuEKnkWuQ9eLcapplUGFfa8ZxoeI5ncMpTD14tZHTFSXQNszQWuQdfl0K7fvh_2fzm4aXsw5Ow1hruh-IAtmd_5vYt-mWzogVb2XWGV9HlrVoRW7Dz_ah_dv4PuuQwww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiJaXaYEFlUdBVvxYO-sDQlEhJH1EiKai4rKsdzdVpNRJcCLUP8VvZGZtJ3VUeuslh-ys5czOMzP7DSE7UofSKJ262jBMUCLf5aBFiEXoezqJVJjibeSjXtw5Yfun0eka-VvdhcG2ysomWkOtxwr_I2-A58cKF4jfp8nUxalRWF2tRmgUYnFgLv5AypZ_7H6G830dBO0v_b2OW04VcFXMvJnLwgFrauP5UvJUeimE8E1uAqMlU-BNWZQE8DXkbSCdno4jHUk5ULBJa5VqC74EJv8WC8GT48309tdlS8kK6nNVRQ15IwdHyTF3T4ANTd-Nan5w1Rtccocr9Vnr9tr3yb0yXqWtQsA2yJrJNslt2zeq8k2yUdqGnL4rAax3H5B9bB4ZXVBj4SnAq1GZaQphaDoytJt9a_zMjg1-0OkcDnZ-TiE1piMLaWLOh7YTm-rhWJv8ITm5Ee4-IuvZODNPCOW-ZyD8DLX07FAtnrBgwHzj6QCCUMMd4lUcFKoENMe5GiNhC-shFwXTBTBdINNF5JD3iy2TAs3jOuIdPBaBKBkZtuGcyXmei1b_x15PtBB5MEDAOYe8uoqse_y9RvS2JBqM4R2VLC8_wC9F_K0a5VaNUk2GU3Fp9U1t9aw42qses10jBKOh6suVrInSaOViqWIOeblYxp3YiJeZ8Rxp_ARsfuzHDnlcyOiCkxCKNmPGE4d8qIR2-fD_svnp9a_ygtzp9I8OxWG3d7BF7gZWg3w34NtkffZ7bp5BTDhLn1tFpOTXTWv-PxFDawk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSAuiJaXaYEFlbes-O31AaEoJWpaiCraiorLst5dV5FSO8GJUP8av46ZtZ3GUemtlxyys5YzO8_M7DeE7AjlCy1VaisdYIISujYDLUIsQtdRSSj9FG8jfxtGeyfB_ml4ukb-NndhsK2ysYnGUKtC4n_kHfD8WOEC8etkdVvE4W7_82Rq4wQprLQ24zQqETnQF38gfSs_DXbhrF97Xv_LcW_PricM2DIKnJkd-FkQK-24QrBUOCmE8zHTnlYikOBZgzDx4GvI4UBSHRWFKhQik7BJKZkqA8QE5v9W7McMdYz1ltpLVhCgm4qqzzolOE2GeXwCLIldO2z5xFXPsOQaV2q1xgX275N7dexKu5WwbZA1nW-S26aHVJabZKO2EyV9V4NZv39A9rGRZHxBtYGqAA9HRa4ohKTpWNNBftj5mR9p_KDTORzy_JxCmkzHBt5En49MVzZVo0Lp8iE5uRHuPiLreZHrJ4Qy19EQivpKOGbAFksCLwtc7SgPAlLNLOI0HOSyBjfHGRtjborsPuMV0zkwnSPTeWiRD4stkwrZ4zriHTwWjogZOcremZiXJe8e_-gNeRdRCD0En7PIq6vIBkffW0Rva6KsgHeUor4IAb8UsbhalFstSjkZTfnS6pvW6ll1tFc9ZrtFCAZEtpcbWeO1ASv5pbpZ5OViGXdiU16uiznSuAnY_8iNLPK4ktEFJyEsjaOAJRb52Ajt5cP_y-an17_KC3IHdJ5_HQwPtshdzyiQa3tsm6zPfs_1MwgPZ-lzo4eU_Lppxf8HEttvCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+stable+InP%2FZnSe%2FZnS+quantum+dot+light-emitting+diodes&rft.jtitle=Nature+%28London%29&rft.au=Won%2C+Yu-Ho&rft.au=Cho%2C+Oul&rft.au=Kim%2C+Taehyung&rft.au=Chung%2C+Dae-Young&rft.date=2019-11-28&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=575&rft.issue=7784&rft.spage=634&rft_id=info:doi/10.1038%2Fs41586-019-1771-5&rft.externalDBID=ISR&rft.externalDocID=A650920214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon