Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes
Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication 1 – 4 . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent 4 , 21.0...
Saved in:
Published in | Nature (London) Vol. 575; no. 7784; pp. 634 - 638 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.11.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication
1
–
4
. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent
4
, 21.0 per cent
5
and 19.8 per cent
6
, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.
A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays. |
---|---|
AbstractList | Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication.sup.1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent.sup.4, 21.0 per cent.sup.5 and 19.8 per cent.sup.6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication 1 – 4 . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent 4 , 21.0 per cent 5 and 19.8 per cent 6 , respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays. Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication . Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent , 21.0 per cent and 19.8 per cent , respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those oftheir Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays.Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent4, 21.0 per cent5 and 19.8 per cent6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and cost-effective fabrication.sup.1-4. Intensive efforts have produced red-, green- and blue-emitting QD-LEDs with efficiencies of 20.5 per cent.sup.4, 21.0 per cent.sup.5 and 19.8 per cent.sup.6, respectively, but it is still desirable to improve the operating stability of the devices and to replace their toxic cadmium composition with a more environmentally benign alternative. The performance of indium phosphide (InP)-based materials and devices has remained far behind those of their Cd-containing counterparts. Here we present a synthetic method of preparing a uniform InP core and a highly symmetrical core/shell QD with a quantum yield of approximately 100 per cent. In particular, we add hydrofluoric acid to etch out the oxidative InP core surface during the growth of the initial ZnSe shell and then we enable high-temperature ZnSe growth at 340 degrees Celsius. The engineered shell thickness suppresses energy transfer and Auger recombination in order to maintain high luminescence efficiency, and the initial surface ligand is replaced with a shorter one for better charge injection. The optimized InP/ZnSe/ZnS QD-LEDs showed a theoretical maximum external quantum efficiency of 21.4 per cent, a maximum brightness of 100,000 candelas per square metre and an extremely long lifetime of a million hours at 100 candelas per square metre, representing a performance comparable to that of state-of-the-art Cd-containing QD-LEDs. These as-prepared InP-based QD-LEDs could soon be usable in commercial displays. A method of engineering efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes (QD-LEDs) has improved their performance to the level of state-of-the-art cadmium-containing QD-LEDs, removing the problem of the toxicity of cadmium in large-panel displays. |
Audience | Academic |
Author | Kim, Taehyung Lee, Junho Won, Yu-Ho Cho, Oul Jang, Hyosook Jang, Eunjoo Kim, Taehee Kim, Dongho Chung, Heejae Chung, Dae-Young |
Author_xml | – sequence: 1 givenname: Yu-Ho surname: Won fullname: Won, Yu-Ho organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 2 givenname: Oul surname: Cho fullname: Cho, Oul organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 3 givenname: Taehyung surname: Kim fullname: Kim, Taehyung organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 4 givenname: Dae-Young surname: Chung fullname: Chung, Dae-Young organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 5 givenname: Taehee surname: Kim fullname: Kim, Taehee organization: Department of Chemistry, Yonsei University – sequence: 6 givenname: Heejae surname: Chung fullname: Chung, Heejae organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 7 givenname: Hyosook surname: Jang fullname: Jang, Hyosook organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 8 givenname: Junho surname: Lee fullname: Lee, Junho organization: Samsung Advanced Institute of Technology, Samsung Electronics – sequence: 9 givenname: Dongho surname: Kim fullname: Kim, Dongho organization: Department of Chemistry, Yonsei University – sequence: 10 givenname: Eunjoo surname: Jang fullname: Jang, Eunjoo email: ejjang12@samsung.com organization: Samsung Advanced Institute of Technology, Samsung Electronics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31776489$$D View this record in MEDLINE/PubMed |
BookMark | eNp90mFr1DAYB_AgE3ebfgDfSNE3imRL2jRNXx6HcydDxU0E34Q0eVozeuldkoL79ku56bxxk0IK4fd_Ep48R-jADQ4QeknJCSWFOA2MloJjQmtMq4ri8gmaUVZxzLioDtCMkFxgIgp-iI5CuCaElLRiz9BhkThnop6hT-e2-9XfZNC2VltwMVPOZCGqpods6b6e_nSXMC3ZZlQujqvMDDHrUyhiWNkYresyYwcD4Tl62qo-wIu7_zH6fvbhanGOL758XC7mF1hzRiJmRcsqA4QqJRpFmpqTSkAORjHNCsrKOk_boqjKghLDS1Mq1eoUMkY3htTFMXq7rbv2w2aEEOXKBg19rxwMY5B5QWsmBKc80TcP6PUwepdul1ROOed5Xt6rTvUgrWuH6JWeiso5L0mdk5yypPAe1YEDr_r0Lq1N2zv-9R6v13Yj_0Une1D6TGqu3lv13U4gmQi_Y6fGEOTy8tuuff-4nV_9WHze1a_uejU2KzBy7e1K-Rv5Z1YSoFug_RCCh_YvoURO8yi38yjTPMppHuXU2upBRtuook038cr2_03m22RIp7gO_P3TPR66BUxX7LY |
CitedBy_id | crossref_primary_10_1002_apxr_202400130 crossref_primary_10_1039_D2TC01355J crossref_primary_10_3169_itej_78_124 crossref_primary_10_1039_D4NR00203B crossref_primary_10_1021_acs_jpclett_3c00307 crossref_primary_10_1557_s43578_021_00344_w crossref_primary_10_1002_chem_202101802 crossref_primary_10_1002_smll_202102340 crossref_primary_10_1021_acsphotonics_2c00555 crossref_primary_10_1039_D4TC04696J crossref_primary_10_1038_s41928_021_00624_7 crossref_primary_10_1039_D0NR05920J crossref_primary_10_1002_sdtp_17529 crossref_primary_10_1063_5_0070538 crossref_primary_10_1039_D1NR05497J crossref_primary_10_1021_acsphotonics_2c01638 crossref_primary_10_1002_sdtp_16681 crossref_primary_10_1038_s41566_022_00999_9 crossref_primary_10_1002_sdtp_14005 crossref_primary_10_1364_OME_406092 crossref_primary_10_1038_s41528_022_00169_5 crossref_primary_10_1038_s41467_024_52521_0 crossref_primary_10_1002_sdtp_14007 crossref_primary_10_1002_smtd_202300266 crossref_primary_10_1002_sdtp_14006 crossref_primary_10_29026_oes_2025_240028 crossref_primary_10_1038_s41467_025_57746_1 crossref_primary_10_1021_acsami_4c13987 crossref_primary_10_1021_acs_nanolett_3c00008 crossref_primary_10_1039_D2CP04102B crossref_primary_10_1021_acs_jpclett_1c00248 crossref_primary_10_1039_D1MA00408E crossref_primary_10_1002_sdtp_17984 crossref_primary_10_1007_s11771_020_4395_x crossref_primary_10_1038_s41565_023_01432_0 crossref_primary_10_1016_j_matchemphys_2022_126322 crossref_primary_10_1021_acs_nanolett_4c04032 crossref_primary_10_1002_adom_202302509 crossref_primary_10_1039_D2NA00734G crossref_primary_10_1016_j_jlumin_2022_119391 crossref_primary_10_1002_adom_202200918 crossref_primary_10_1039_D3TC03857B crossref_primary_10_1002_adma_202210385 crossref_primary_10_1038_s41566_023_01369_9 crossref_primary_10_1016_j_isci_2021_103372 crossref_primary_10_1021_jacs_2c09705 crossref_primary_10_5757_ASCT_2023_32_1_23 crossref_primary_10_1021_acsenergylett_2c02924 crossref_primary_10_1002_adfm_202500280 crossref_primary_10_1021_acs_chemmater_4c02675 crossref_primary_10_1063_5_0010203 crossref_primary_10_1038_s41427_021_00300_4 crossref_primary_10_1103_PhysRevB_106_045425 crossref_primary_10_1002_cctc_202000616 crossref_primary_10_1021_acs_chemmater_4c00492 crossref_primary_10_1021_acs_chemmater_0c03181 crossref_primary_10_1039_D2MA00375A crossref_primary_10_1021_acsami_4c07049 crossref_primary_10_1038_s41467_024_44894_z crossref_primary_10_1002_adom_202402555 crossref_primary_10_1021_acs_nanolett_3c01352 crossref_primary_10_1039_D3TC04023B crossref_primary_10_1002_sdtp_15142 crossref_primary_10_1039_D2CS00130F crossref_primary_10_1002_ange_202311317 crossref_primary_10_1002_advs_202409736 crossref_primary_10_1021_acsami_0c11141 crossref_primary_10_1021_acs_inorgchem_4c00168 crossref_primary_10_1021_acsmaterialslett_0c00112 crossref_primary_10_1002_smll_202311559 crossref_primary_10_1007_s11814_024_00248_5 crossref_primary_10_1016_j_optcom_2024_130384 crossref_primary_10_1039_D0DT00575D crossref_primary_10_1002_adfm_202008453 crossref_primary_10_1016_j_jallcom_2024_174337 crossref_primary_10_1021_acs_jpcc_2c04223 crossref_primary_10_1002_smsc_202000072 crossref_primary_10_1021_acs_jpcc_1c02616 crossref_primary_10_1002_aelm_202200970 crossref_primary_10_1016_j_pquantelec_2022_100415 crossref_primary_10_1126_sciadv_ado0614 crossref_primary_10_3390_ma16041371 crossref_primary_10_1002_admt_202201070 crossref_primary_10_1039_D0NH00606H crossref_primary_10_1002_adom_202301427 crossref_primary_10_1016_j_jlumin_2023_120241 crossref_primary_10_1021_acsanm_2c04936 crossref_primary_10_1002_adma_202418300 crossref_primary_10_1038_s41467_024_45944_2 crossref_primary_10_1021_acsanm_4c00634 crossref_primary_10_1016_j_jpowsour_2022_231732 crossref_primary_10_26565_2312_4334_2024_2_35 crossref_primary_10_1039_D0TA03490H crossref_primary_10_1364_OE_523932 crossref_primary_10_1002_adma_202106276 crossref_primary_10_1021_acsphotonics_1c01805 crossref_primary_10_1021_acs_nanolett_1c01286 crossref_primary_10_1002_adom_202300133 crossref_primary_10_1039_D2NR00281G crossref_primary_10_1021_acs_chemmater_4c02406 crossref_primary_10_1016_j_commatsci_2024_113394 crossref_primary_10_1002_admi_202000343 crossref_primary_10_1016_j_jlumin_2021_117946 crossref_primary_10_1103_PhysRevB_108_235419 crossref_primary_10_1021_acsami_2c01699 crossref_primary_10_1002_smll_202403325 crossref_primary_10_1039_D2NA00862A crossref_primary_10_1002_advs_202200637 crossref_primary_10_1016_j_device_2023_100061 crossref_primary_10_1021_acsnano_0c04091 crossref_primary_10_1016_j_cej_2023_148140 crossref_primary_10_3390_pr11113160 crossref_primary_10_1002_smll_202404426 crossref_primary_10_1016_j_apsusc_2023_157483 crossref_primary_10_3390_nano10040726 crossref_primary_10_1016_j_isci_2022_103831 crossref_primary_10_1002_aelm_202100535 crossref_primary_10_1364_OME_540696 crossref_primary_10_1007_s12274_022_5172_y crossref_primary_10_1002_adma_202006043 crossref_primary_10_1002_sdtp_15190 crossref_primary_10_1021_acsanm_4c00820 crossref_primary_10_1021_acsenergylett_1c00462 crossref_primary_10_1021_jacs_2c13834 crossref_primary_10_1038_s41377_022_00855_z crossref_primary_10_1021_jacs_5c01305 crossref_primary_10_1021_acsenergylett_0c02697 crossref_primary_10_3390_nano12030408 crossref_primary_10_1021_acs_chemmater_4c02490 crossref_primary_10_1016_j_addr_2023_114830 crossref_primary_10_1021_acsnano_2c10237 crossref_primary_10_1016_j_cej_2021_132464 crossref_primary_10_1088_1361_6528_ac3180 crossref_primary_10_1515_nanoph_2024_0543 crossref_primary_10_1021_acsnano_3c07029 crossref_primary_10_1021_acs_jpcc_0c07209 crossref_primary_10_1021_acsami_4c12250 crossref_primary_10_1063_5_0039996 crossref_primary_10_1002_adom_202401884 crossref_primary_10_1155_2020_8858996 crossref_primary_10_1002_smtd_202101030 crossref_primary_10_1039_D1PY00497B crossref_primary_10_1039_D0NR05025C crossref_primary_10_1021_acsenergylett_1c01348 crossref_primary_10_1038_s41524_022_00888_3 crossref_primary_10_1186_s11671_021_03642_8 crossref_primary_10_1021_acsnano_4c08439 crossref_primary_10_1126_science_ado7088 crossref_primary_10_1002_adfm_202204529 crossref_primary_10_1038_s41586_024_08197_z crossref_primary_10_1002_sdtp_17591 crossref_primary_10_1016_j_cej_2025_160483 crossref_primary_10_1039_D0TC01349H crossref_primary_10_56767_jfpe_2023_2_2_211 crossref_primary_10_1002_adpr_202200279 crossref_primary_10_1021_acsnano_4c04083 crossref_primary_10_1021_acs_nanolett_0c05109 crossref_primary_10_1021_acs_nanolett_4c02021 crossref_primary_10_1039_D0TC05391K crossref_primary_10_1063_5_0093248 crossref_primary_10_1038_s41467_025_57304_9 crossref_primary_10_1016_j_jlumin_2024_120560 crossref_primary_10_3390_cryst14090788 crossref_primary_10_1002_adom_202201834 crossref_primary_10_1038_s41578_023_00596_4 crossref_primary_10_1016_j_jnlest_2020_100018 crossref_primary_10_1080_15599612_2024_2449386 crossref_primary_10_1002_anie_202007520 crossref_primary_10_1021_acsnano_3c09490 crossref_primary_10_1039_D3NR04615J crossref_primary_10_1039_D3QM00911D crossref_primary_10_1007_s10854_022_08321_7 crossref_primary_10_1021_jacs_1c12207 crossref_primary_10_1016_j_apsusc_2021_151972 crossref_primary_10_1021_acsnano_2c06171 crossref_primary_10_1021_jacs_0c12871 crossref_primary_10_1021_acsaelm_2c01351 crossref_primary_10_1016_j_mattod_2021_01_015 crossref_primary_10_1021_acsanm_0c00958 crossref_primary_10_1039_D0NH00145G crossref_primary_10_1016_j_xcrp_2022_100860 crossref_primary_10_1021_acsenergylett_3c01019 crossref_primary_10_1016_j_nanoen_2023_109050 crossref_primary_10_1021_acs_jpcc_1c06394 crossref_primary_10_1039_D3MH00062A crossref_primary_10_1038_s41928_025_01350_0 crossref_primary_10_1002_jsid_2022 crossref_primary_10_1039_D4NR01515K crossref_primary_10_1088_2058_8585_acf508 crossref_primary_10_1126_sciadv_abq1700 crossref_primary_10_1002_adom_202200328 crossref_primary_10_1002_smtd_202101090 crossref_primary_10_3938_jkps_76_1121 crossref_primary_10_1002_adma_202415648 crossref_primary_10_1021_acs_chemmater_4c01157 crossref_primary_10_1021_acsnano_3c03921 crossref_primary_10_46670_JSST_2023_32_6_391 crossref_primary_10_1002_ange_202404292 crossref_primary_10_3390_c6020028 crossref_primary_10_1016_j_nantod_2022_101449 crossref_primary_10_1021_jacs_4c09209 crossref_primary_10_1021_acsnano_1c04909 crossref_primary_10_1021_jacsau_1c00055 crossref_primary_10_1016_j_nanoen_2020_105062 crossref_primary_10_1039_D1NA00502B crossref_primary_10_1002_smll_202206133 crossref_primary_10_1126_sciadv_ads7159 crossref_primary_10_1038_s41377_024_01727_4 crossref_primary_10_1039_D2NH00436D crossref_primary_10_1002_admt_202401983 crossref_primary_10_1002_smll_202309284 crossref_primary_10_1039_D1TC00421B crossref_primary_10_1016_j_optmat_2021_110994 crossref_primary_10_1039_D3SC00164D crossref_primary_10_1039_D2CC06119H crossref_primary_10_1016_j_chip_2023_100073 crossref_primary_10_1021_jacs_3c02709 crossref_primary_10_1038_s41467_023_38536_z crossref_primary_10_1038_s41467_021_27652_3 crossref_primary_10_1002_lpor_202000412 crossref_primary_10_1016_j_jiec_2020_03_029 crossref_primary_10_1021_acsaelm_2c01560 crossref_primary_10_1002_smll_202203093 crossref_primary_10_1039_D2TC01060G crossref_primary_10_1002_aesr_202200142 crossref_primary_10_1021_acs_jpcc_3c00144 crossref_primary_10_1002_jsid_1133 crossref_primary_10_1021_jacs_4c00538 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1364_OL_405520 crossref_primary_10_1021_acs_chemmater_0c00551 crossref_primary_10_1039_D1NR04630F crossref_primary_10_1038_s41467_022_35731_2 crossref_primary_10_1002_adfm_202005303 crossref_primary_10_1002_msid_1487 crossref_primary_10_1007_s10854_020_05206_5 crossref_primary_10_1021_acsnano_3c09971 crossref_primary_10_3169_mta_9_222 crossref_primary_10_1039_D0NR06665F crossref_primary_10_1021_acsenergylett_9b02824 crossref_primary_10_1002_adom_202100427 crossref_primary_10_1002_lpor_202400005 crossref_primary_10_1021_acsanm_0c02814 crossref_primary_10_35848_1347_4065_ac54fa crossref_primary_10_1021_acs_jpcc_3c00376 crossref_primary_10_1088_1674_1056_ad36bc crossref_primary_10_1021_acs_inorgchem_3c00161 crossref_primary_10_1002_solr_202200299 crossref_primary_10_1021_jacs_2c13677 crossref_primary_10_1021_acsmaterialsau_1c00075 crossref_primary_10_1007_s10853_022_08002_0 crossref_primary_10_1007_s11082_020_02653_6 crossref_primary_10_1038_s41467_021_24765_7 crossref_primary_10_1088_1674_4926_44_9_092603 crossref_primary_10_1021_acsami_4c14036 crossref_primary_10_1021_acsami_0c02904 crossref_primary_10_1021_acsami_9b23265 crossref_primary_10_1021_acs_chemmater_1c01287 crossref_primary_10_3365_KJMM_2021_59_10_718 crossref_primary_10_1039_D1TC04271H crossref_primary_10_1021_acs_chemmater_0c02500 crossref_primary_10_1021_acs_jpclett_2c01882 crossref_primary_10_1021_acsami_3c04900 crossref_primary_10_1007_s12274_024_6926_5 crossref_primary_10_1007_s12274_022_5268_4 crossref_primary_10_1016_j_xcrp_2022_101207 crossref_primary_10_1021_acsami_2c16289 crossref_primary_10_1016_j_isci_2020_101272 crossref_primary_10_1007_s11814_023_00006_z crossref_primary_10_1021_acs_chemmater_1c03219 crossref_primary_10_1021_acsanm_3c03749 crossref_primary_10_1063_5_0149097 crossref_primary_10_1021_acsenergylett_4c02621 crossref_primary_10_1063_5_0199397 crossref_primary_10_1002_ejic_202001100 crossref_primary_10_20517_ss_2024_19 crossref_primary_10_1016_j_ccr_2023_215539 crossref_primary_10_1063_5_0041689 crossref_primary_10_1007_s40843_021_1793_3 crossref_primary_10_1021_acs_nanolett_3c01919 crossref_primary_10_1088_1361_6528_ad40b3 crossref_primary_10_3390_ma16175877 crossref_primary_10_1039_D3CC05282F crossref_primary_10_3365_KJMM_2021_59_10_730 crossref_primary_10_1002_jsid_2006 crossref_primary_10_1021_acs_nanolett_1c00600 crossref_primary_10_1088_1361_6463_ac7d1e crossref_primary_10_1364_OL_390266 crossref_primary_10_1021_acsanm_4c01163 crossref_primary_10_1002_adsr_202200101 crossref_primary_10_1007_s12274_024_6541_5 crossref_primary_10_1016_j_rinp_2025_108130 crossref_primary_10_1021_acs_jpcc_0c00351 crossref_primary_10_1021_acs_nanolett_4c01107 crossref_primary_10_1016_j_jlumin_2022_119651 crossref_primary_10_1021_acs_jpclett_0c00112 crossref_primary_10_1021_jacsau_3c00457 crossref_primary_10_1021_acs_jpcc_3c06971 crossref_primary_10_1021_acs_jpclett_1c04117 crossref_primary_10_1021_acs_inorgchem_5c00148 crossref_primary_10_1007_s13233_021_9055_y crossref_primary_10_1126_science_aaz8541 crossref_primary_10_1088_2752_5724_ad3a83 crossref_primary_10_1016_j_compositesa_2024_108338 crossref_primary_10_1021_acsmaterialsau_1c00034 crossref_primary_10_1002_adom_202202594 crossref_primary_10_1039_D2NR05848K crossref_primary_10_1016_j_cej_2023_146789 crossref_primary_10_1021_acsenergylett_2c01065 crossref_primary_10_1016_j_apsusc_2021_149944 crossref_primary_10_1021_acs_nanolett_2c03564 crossref_primary_10_1002_adfm_202420829 crossref_primary_10_1063_5_0020742 crossref_primary_10_1002_adfm_202415687 crossref_primary_10_3390_ma16145039 crossref_primary_10_1002_adma_202103411 crossref_primary_10_1021_acsami_4c09968 crossref_primary_10_1039_D0SC01039A crossref_primary_10_1002_smll_202303247 crossref_primary_10_1021_acs_jpcc_1c03015 crossref_primary_10_1039_D1NR01671G crossref_primary_10_1039_D0NH00556H crossref_primary_10_1016_j_jlumin_2021_118463 crossref_primary_10_1063_5_0187162 crossref_primary_10_1002_adpr_202100315 crossref_primary_10_1021_acsenergylett_1c01545 crossref_primary_10_3390_nano13071159 crossref_primary_10_1007_s12274_022_4260_3 crossref_primary_10_1063_5_0206176 crossref_primary_10_1007_s40042_021_00153_8 crossref_primary_10_1021_acsanm_0c00695 crossref_primary_10_1021_acs_jpclett_2c02764 crossref_primary_10_1039_D0RA10173G crossref_primary_10_1021_acsenergylett_0c02193 crossref_primary_10_1021_acs_jpclett_2c03853 crossref_primary_10_1038_s44287_024_00063_4 crossref_primary_10_1002_jsid_1126 crossref_primary_10_1002_cnma_202200534 crossref_primary_10_1021_acs_jpclett_0c01451 crossref_primary_10_1021_acs_jpclett_0c02777 crossref_primary_10_1021_acs_chemmater_1c03888 crossref_primary_10_1016_j_rinp_2020_103113 crossref_primary_10_1002_msid_1256 crossref_primary_10_1002_msid_1258 crossref_primary_10_1021_acs_chemmater_1c02556 crossref_primary_10_1039_D3TA00168G crossref_primary_10_1021_acs_nanolett_2c04670 crossref_primary_10_1002_adma_202006178 crossref_primary_10_1002_admt_202201845 crossref_primary_10_1002_adom_202303194 crossref_primary_10_1016_j_orgel_2021_106156 crossref_primary_10_1016_j_orgel_2022_106696 crossref_primary_10_1038_s41598_023_45907_5 crossref_primary_10_1021_acs_jpclett_1c03478 crossref_primary_10_1021_acsnano_3c13159 crossref_primary_10_1038_s41467_022_28037_w crossref_primary_10_1021_acs_nanolett_4c00610 crossref_primary_10_3390_nano11030683 crossref_primary_10_1016_j_mtphys_2024_101492 crossref_primary_10_1021_acs_nanolett_3c03903 crossref_primary_10_1039_D4NJ01219D crossref_primary_10_1007_s12274_021_3503_z crossref_primary_10_3390_nano14121055 crossref_primary_10_1021_acsanm_1c04486 crossref_primary_10_1002_smtd_202201454 crossref_primary_10_1021_acsenergylett_3c01983 crossref_primary_10_1002_adma_202413978 crossref_primary_10_1021_acsami_4c18231 crossref_primary_10_1021_acsaom_3c00104 crossref_primary_10_1021_acs_jpclett_3c01465 crossref_primary_10_1088_2515_7647_acf972 crossref_primary_10_1002_aelm_202200256 crossref_primary_10_1021_acs_jpcc_3c01621 crossref_primary_10_1038_s41928_021_00632_7 crossref_primary_10_1039_D2RE00378C crossref_primary_10_1002_adma_202303528 crossref_primary_10_1002_sdtp_16701 crossref_primary_10_1088_2515_7639_ab95e8 crossref_primary_10_1039_D2MA00442A crossref_primary_10_1038_s41467_020_18655_7 crossref_primary_10_1016_j_jlumin_2025_121136 crossref_primary_10_1021_acsami_2c20138 crossref_primary_10_1016_j_jmst_2024_02_047 crossref_primary_10_1002_adom_202402051 crossref_primary_10_1038_s41467_024_50323_y crossref_primary_10_1038_s43246_021_00203_5 crossref_primary_10_1021_acsanm_4c05968 crossref_primary_10_3390_ma15238455 crossref_primary_10_5488_cmp_27_43703 crossref_primary_10_1002_adma_202407026 crossref_primary_10_1021_acs_chemrev_3c00169 crossref_primary_10_1039_D3TC02699J crossref_primary_10_1002_adfm_202215189 crossref_primary_10_1021_acsanm_3c04449 crossref_primary_10_1021_acsnano_1c08631 crossref_primary_10_1039_D2NR02071H crossref_primary_10_1021_acsanm_2c04677 crossref_primary_10_1016_j_foodchem_2022_133116 crossref_primary_10_1002_adma_202312250 crossref_primary_10_1021_acsanm_3c03356 crossref_primary_10_1364_OL_521324 crossref_primary_10_1021_acs_chemmater_1c00348 crossref_primary_10_1039_D1AY01186C crossref_primary_10_1021_acsami_1c01898 crossref_primary_10_1021_acsami_2c21232 crossref_primary_10_3390_nano13101695 crossref_primary_10_1063_5_0019790 crossref_primary_10_1002_adom_202403376 crossref_primary_10_1002_admi_202200835 crossref_primary_10_1021_acs_nanolett_1c03719 crossref_primary_10_1038_s41578_022_00459_4 crossref_primary_10_1002_smtd_202402237 crossref_primary_10_1002_adma_202410441 crossref_primary_10_1021_acsphotonics_3c00332 crossref_primary_10_1021_acsnano_4c13110 crossref_primary_10_1002_adma_202209784 crossref_primary_10_1002_pssr_201900737 crossref_primary_10_1002_jsid_896 crossref_primary_10_1038_s41563_023_01606_0 crossref_primary_10_1002_adom_202402271 crossref_primary_10_1039_D1CP05780D crossref_primary_10_1021_acsami_2c14711 crossref_primary_10_1002_adom_202202128 crossref_primary_10_1002_open_201900336 crossref_primary_10_1002_admt_202000648 crossref_primary_10_1021_acscentsci_0c00484 crossref_primary_10_1016_j_jpowsour_2024_234902 crossref_primary_10_1021_acs_jpclett_2c00378 crossref_primary_10_1103_PhysRevB_111_035425 crossref_primary_10_1002_lpor_202400678 crossref_primary_10_1021_acscatal_2c05401 crossref_primary_10_1109_LED_2020_3011505 crossref_primary_10_1021_acs_nanolett_0c02227 crossref_primary_10_1002_admi_202300575 crossref_primary_10_1002_adfm_202210558 crossref_primary_10_1515_nanoph_2021_0053 crossref_primary_10_1016_j_ces_2023_119062 crossref_primary_10_1021_acs_chemmater_2c02960 crossref_primary_10_1038_s41467_024_51179_y crossref_primary_10_1021_acs_jpclett_4c00158 crossref_primary_10_1016_j_cej_2022_138413 crossref_primary_10_1038_s44160_022_00025_4 crossref_primary_10_3390_mi13081315 crossref_primary_10_1002_smtd_202200163 crossref_primary_10_3390_nano14221825 crossref_primary_10_1016_j_orgel_2024_107098 crossref_primary_10_1021_acs_jpclett_2c02147 crossref_primary_10_1038_s41467_024_52535_8 crossref_primary_10_1021_acsphotonics_4c01617 crossref_primary_10_1002_apxr_202400042 crossref_primary_10_1039_D0NA01012J crossref_primary_10_1021_acs_jpcc_2c04987 crossref_primary_10_1109_LED_2021_3137532 crossref_primary_10_1002_adom_202102404 crossref_primary_10_1002_sdtp_15417 crossref_primary_10_3390_ma16247585 crossref_primary_10_1039_D1NR05288H crossref_primary_10_35848_1882_0786_aca9ba crossref_primary_10_1002_sdtp_15418 crossref_primary_10_1021_acsenergylett_0c00638 crossref_primary_10_1039_D3TC01543B crossref_primary_10_1021_acsenergylett_9b02851 crossref_primary_10_1021_acs_nanolett_4c02609 crossref_primary_10_1038_s41467_020_16652_4 crossref_primary_10_1039_D0TC01639J crossref_primary_10_1109_JSTQE_2023_3323619 crossref_primary_10_1038_d41586_019_03607_z crossref_primary_10_1002_sdtp_16732 crossref_primary_10_1016_j_jallcom_2021_161233 crossref_primary_10_1021_acsami_4c18246 crossref_primary_10_1002_sdtp_15401 crossref_primary_10_1002_apxr_202400071 crossref_primary_10_1021_acsami_1c11898 crossref_primary_10_1021_acs_jpclett_1c02125 crossref_primary_10_1021_jacs_0c08954 crossref_primary_10_1002_adom_202300533 crossref_primary_10_3390_nano11113014 crossref_primary_10_1016_j_isci_2022_105111 crossref_primary_10_1002_sstr_202000024 crossref_primary_10_1021_acs_nanolett_3c02630 crossref_primary_10_1021_acsami_1c11649 crossref_primary_10_3390_coatings11050581 crossref_primary_10_1039_D1NR04199A crossref_primary_10_3390_nano10091858 crossref_primary_10_1016_j_jpowsour_2025_236355 crossref_primary_10_1021_acs_chemmater_2c01840 crossref_primary_10_1021_acsomega_3c05580 crossref_primary_10_1002_anie_202404292 crossref_primary_10_1002_aenm_202403574 crossref_primary_10_1021_acs_chemmater_0c00781 crossref_primary_10_3390_nano10112171 crossref_primary_10_1038_s41467_020_15944_z crossref_primary_10_1016_j_cej_2023_145034 crossref_primary_10_1021_acsnano_2c03138 crossref_primary_10_1038_s41566_024_01496_x crossref_primary_10_1063_5_0159472 crossref_primary_10_3390_coatings10070645 crossref_primary_10_1016_j_orgel_2020_105790 crossref_primary_10_1038_s44287_024_00059_0 crossref_primary_10_1021_acs_chemmater_4c02784 crossref_primary_10_3390_nano14161354 crossref_primary_10_1088_1361_6633_ad2ac9 crossref_primary_10_1021_jacs_0c09547 crossref_primary_10_1002_adom_202300425 crossref_primary_10_1021_acs_inorgchem_2c04308 crossref_primary_10_1021_acsenergylett_4c02088 crossref_primary_10_1063_5_0071508 crossref_primary_10_1002_smtd_202301224 crossref_primary_10_1088_1361_6463_abe43d crossref_primary_10_1002_admi_202001712 crossref_primary_10_1002_adma_202306621 crossref_primary_10_1021_acs_chemrev_2c00688 crossref_primary_10_1002_adma_202212220 crossref_primary_10_3390_nano12213817 crossref_primary_10_1007_s12274_024_6603_8 crossref_primary_10_1002_sdtp_14122 crossref_primary_10_1021_acsnano_1c01399 crossref_primary_10_1002_sdtp_16781 crossref_primary_10_1002_sdtp_16782 crossref_primary_10_1364_PRJ_462852 crossref_primary_10_1002_sdtp_16784 crossref_primary_10_1002_lpor_202301051 crossref_primary_10_1002_adom_202300659 crossref_primary_10_1016_j_mattod_2025_02_009 crossref_primary_10_1021_acs_jpcc_4c02671 crossref_primary_10_1002_adma_202110665 crossref_primary_10_1149_2162_8777_ac1997 crossref_primary_10_1039_D4TC00615A crossref_primary_10_1088_1361_6528_abbdde crossref_primary_10_1039_D3SC04136K crossref_primary_10_1021_acs_inorgchem_1c00304 crossref_primary_10_1002_adom_202402215 crossref_primary_10_1002_ppsc_202000115 crossref_primary_10_1021_acsnano_4c03290 crossref_primary_10_1021_acs_chemrev_2c00695 crossref_primary_10_1063_5_0057449 crossref_primary_10_1021_acsenergylett_1c01067 crossref_primary_10_1002_smtd_202300359 crossref_primary_10_1021_acsami_4c18047 crossref_primary_10_1016_j_rser_2024_115317 crossref_primary_10_1038_s41467_021_25955_z crossref_primary_10_1016_j_ccr_2024_216376 crossref_primary_10_1002_ange_202004857 crossref_primary_10_1021_acsnano_2c06032 crossref_primary_10_1021_acsphotonics_0c00117 crossref_primary_10_1002_adom_202001479 crossref_primary_10_1109_LED_2021_3119322 crossref_primary_10_1021_jacs_0c10554 crossref_primary_10_1021_acsnano_1c06849 crossref_primary_10_1021_acsnano_2c02912 crossref_primary_10_1039_C9EE03348C crossref_primary_10_1021_acs_jpcc_2c01499 crossref_primary_10_1016_j_optlastec_2021_107026 crossref_primary_10_1021_acsenergylett_0c01860 crossref_primary_10_12693_APhysPolA_146_424 crossref_primary_10_1021_acs_jpclett_4c00070 crossref_primary_10_3365_KJMM_2023_61_1_33 crossref_primary_10_1002_adom_202402677 crossref_primary_10_1038_s41467_023_35954_x crossref_primary_10_3390_nano12234314 crossref_primary_10_1039_D1TC06072D crossref_primary_10_1063_5_0165956 crossref_primary_10_1038_s44160_024_00562_0 crossref_primary_10_1021_acs_nanolett_4c06595 crossref_primary_10_1016_j_matt_2022_06_017 crossref_primary_10_1002_admt_202100889 crossref_primary_10_1021_acsami_4c13899 crossref_primary_10_1021_acs_inorgchem_0c03117 crossref_primary_10_1093_nsr_nwac025 crossref_primary_10_1073_pnas_2307633121 crossref_primary_10_1016_j_optlastec_2023_109839 crossref_primary_10_1063_5_0226368 crossref_primary_10_1002_cjoc_202000609 crossref_primary_10_1364_OE_442578 crossref_primary_10_1021_acsanm_2c02638 crossref_primary_10_1063_5_0152650 crossref_primary_10_1002_adma_202417330 crossref_primary_10_1021_acs_nanolett_1c02284 crossref_primary_10_1038_s41467_023_44643_8 crossref_primary_10_1002_admi_202202241 crossref_primary_10_1088_1361_6463_ac7c9f crossref_primary_10_1002_adom_202201939 crossref_primary_10_1021_acs_inorgchem_4c05511 crossref_primary_10_1038_s41467_023_43340_w crossref_primary_10_1039_D3TC02098C crossref_primary_10_1021_acsomega_1c05420 crossref_primary_10_1021_acs_jpclett_9b03567 crossref_primary_10_1021_acs_nanolett_3c01491 crossref_primary_10_1002_adom_202102372 crossref_primary_10_3390_nano13101669 crossref_primary_10_1021_acs_jpcc_2c07860 crossref_primary_10_1021_acs_chemmater_0c01906 crossref_primary_10_1021_acs_nanolett_0c03939 crossref_primary_10_1002_advs_202105577 crossref_primary_10_1007_s10895_024_03957_6 crossref_primary_10_1038_s41586_020_2791_x crossref_primary_10_1109_TED_2021_3138844 crossref_primary_10_1142_S0217984921503826 crossref_primary_10_1364_OE_523817 crossref_primary_10_1039_D3NR04423H crossref_primary_10_1021_acs_jpcc_0c06672 crossref_primary_10_1038_s41566_021_00783_1 crossref_primary_10_1039_D3CS00179B crossref_primary_10_1002_adom_202002128 crossref_primary_10_1007_s11814_024_00236_9 crossref_primary_10_1002_adom_202002129 crossref_primary_10_1016_j_matt_2022_07_032 crossref_primary_10_1039_D4NR04907A crossref_primary_10_1038_s41467_020_18932_5 crossref_primary_10_3390_nano14161337 crossref_primary_10_1002_lpor_202200551 crossref_primary_10_1364_OE_506286 crossref_primary_10_1002_smll_202202290 crossref_primary_10_1021_acs_nanolett_2c00763 crossref_primary_10_1088_1674_1056_abd471 crossref_primary_10_1021_acsaelm_0c00091 crossref_primary_10_1002_sdtp_15476 crossref_primary_10_1016_j_optmat_2022_113363 crossref_primary_10_1364_PRJ_525231 crossref_primary_10_1039_D2CS00490A crossref_primary_10_1002_adma_202314061 crossref_primary_10_1002_admi_202400708 crossref_primary_10_1021_acs_analchem_2c03925 crossref_primary_10_1002_adma_202404480 crossref_primary_10_1038_s41586_024_07363_7 crossref_primary_10_56767_jfpe_2022_1_1_45 crossref_primary_10_1063_5_0058992 crossref_primary_10_1002_adma_202310705 crossref_primary_10_1021_acsenergylett_1c00351 crossref_primary_10_1016_j_orgel_2021_106086 crossref_primary_10_1021_acs_langmuir_0c02886 crossref_primary_10_1007_s11051_025_06258_6 crossref_primary_10_1021_acsenergylett_0c02561 crossref_primary_10_1039_D2NR06618A crossref_primary_10_1021_acs_nanolett_4c00173 crossref_primary_10_1021_acsami_1c14147 crossref_primary_10_1021_acs_inorgchem_3c04358 crossref_primary_10_1016_j_orgel_2020_105955 crossref_primary_10_1039_D4TC00925H crossref_primary_10_1021_acs_chemmater_0c04757 crossref_primary_10_1039_D1EN00712B crossref_primary_10_1021_acs_jpcc_2c07893 crossref_primary_10_1021_acsmaterialslett_1c00474 crossref_primary_10_1016_j_orgel_2022_106593 crossref_primary_10_1007_s11814_024_00251_w crossref_primary_10_1016_j_optmat_2020_110158 crossref_primary_10_1016_j_cej_2024_151152 crossref_primary_10_1039_D2TC01522F crossref_primary_10_1002_lpor_202200749 crossref_primary_10_1002_smll_202402371 crossref_primary_10_1002_aelm_202300439 crossref_primary_10_1016_j_orgel_2020_105945 crossref_primary_10_1002_adma_202305382 crossref_primary_10_1021_jacs_4c10731 crossref_primary_10_1039_D3NR05010F crossref_primary_10_1002_sdtp_16136 crossref_primary_10_1016_j_cej_2023_143223 crossref_primary_10_1021_acsami_3c00268 crossref_primary_10_1007_s12274_024_6732_0 crossref_primary_10_1063_5_0082223 crossref_primary_10_1038_s41598_021_83583_5 crossref_primary_10_1021_acs_jpclett_0c02752 crossref_primary_10_1002_smll_202408938 crossref_primary_10_1002_sdtp_16140 crossref_primary_10_1002_adfm_202401284 crossref_primary_10_1021_acs_chemrev_2c00865 crossref_primary_10_1002_adom_202401755 crossref_primary_10_1364_OE_459837 crossref_primary_10_1038_s41467_022_32662_w crossref_primary_10_1080_15980316_2020_1720835 crossref_primary_10_1039_D4TA03218G crossref_primary_10_1063_5_0060462 crossref_primary_10_3169_itej_75_226 crossref_primary_10_1039_D0TA09474A crossref_primary_10_1007_s12274_021_3596_4 crossref_primary_10_1063_5_0084416 crossref_primary_10_3390_ma18030487 crossref_primary_10_1021_acs_chemmater_0c01275 crossref_primary_10_1039_D4TC03312D crossref_primary_10_1002_adma_202205504 crossref_primary_10_1002_advs_202200959 crossref_primary_10_1021_acsnano_4c18113 crossref_primary_10_59717_j_xinn_mater_2024_100124 crossref_primary_10_1002_crat_202000177 crossref_primary_10_1007_s12274_021_3354_7 crossref_primary_10_1016_j_scib_2025_02_042 crossref_primary_10_1021_jacs_3c10203 crossref_primary_10_1016_j_cej_2024_151347 crossref_primary_10_1002_EXP_20220082 crossref_primary_10_1021_acs_inorgchem_3c04153 crossref_primary_10_1002_jsid_1296 crossref_primary_10_1021_acs_jpcc_3c07658 crossref_primary_10_1021_acs_jpcc_0c07145 crossref_primary_10_1021_acsami_1c25009 crossref_primary_10_1007_s12274_024_6896_7 crossref_primary_10_1021_acs_jpclett_0c00748 crossref_primary_10_1021_acs_jpclett_2c01976 crossref_primary_10_3390_nano14100832 crossref_primary_10_3390_mi13101767 crossref_primary_10_1007_s11814_024_00305_z crossref_primary_10_1364_OE_502064 crossref_primary_10_1021_acs_nanolett_4c04580 crossref_primary_10_1002_smsc_202300092 crossref_primary_10_1146_annurev_matsci_080819_011036 crossref_primary_10_1007_s12274_023_5635_9 crossref_primary_10_1039_D4TC00837E crossref_primary_10_1021_acsomega_4c03802 crossref_primary_10_1002_adma_202312948 crossref_primary_10_1021_acs_chemrev_2c00410 crossref_primary_10_1021_acs_nanolett_4c03024 crossref_primary_10_1002_adom_202200685 crossref_primary_10_14356_kona_2024001 crossref_primary_10_1016_j_matt_2022_04_023 crossref_primary_10_1038_s41566_023_01344_4 crossref_primary_10_1038_s41586_025_08645_4 crossref_primary_10_1002_sdtp_15091 crossref_primary_10_1088_2633_4356_ad13a0 crossref_primary_10_1002_admt_202201799 crossref_primary_10_1021_acsanm_3c05167 crossref_primary_10_1002_adma_202301842 crossref_primary_10_1021_acsami_4c16513 crossref_primary_10_1002_bkcs_12684 crossref_primary_10_1021_acsanm_3c06015 crossref_primary_10_2139_ssrn_4077244 crossref_primary_10_1002_adom_202300088 crossref_primary_10_1038_s42256_020_00289_5 crossref_primary_10_3390_mi13101775 crossref_primary_10_1039_D2TC00851C crossref_primary_10_1039_D2NR03082A crossref_primary_10_1002_marc_202200187 crossref_primary_10_1039_D0RE00454E crossref_primary_10_1021_acs_jpclett_3c03137 crossref_primary_10_1039_D1TC01664D crossref_primary_10_1021_acsenergylett_4c02526 crossref_primary_10_1021_acs_chemmater_2c02800 crossref_primary_10_1007_s11814_024_00179_1 crossref_primary_10_1021_acs_jpclett_0c01599 crossref_primary_10_1021_acs_chemmater_1c02029 crossref_primary_10_1007_s11082_021_02934_8 crossref_primary_10_1063_1_5143618 crossref_primary_10_1016_j_jchromb_2022_123587 crossref_primary_10_1021_acsami_4c08943 crossref_primary_10_1002_smll_202004487 crossref_primary_10_1021_acssuschemeng_2c00938 crossref_primary_10_1021_acs_jpcc_1c02277 crossref_primary_10_1038_s41586_021_03997_z crossref_primary_10_1080_15980316_2024_2350437 crossref_primary_10_1103_PhysRevX_12_021055 crossref_primary_10_1103_PhysRevB_104_045404 crossref_primary_10_1002_adpr_202100243 crossref_primary_10_1021_acs_jpclett_4c01974 crossref_primary_10_3390_nano11061483 crossref_primary_10_1021_acs_chemmater_3c02461 crossref_primary_10_1021_acsanm_1c02577 crossref_primary_10_1016_j_chphi_2024_100579 crossref_primary_10_1002_jsid_910 crossref_primary_10_1039_D4MA00352G crossref_primary_10_1016_j_orgel_2021_106256 crossref_primary_10_1016_j_rio_2022_100228 crossref_primary_10_1002_adma_202300546 crossref_primary_10_1021_acsenergylett_2c02489 crossref_primary_10_1039_D4NR04558K crossref_primary_10_1088_1402_4896_ac05f3 crossref_primary_10_1007_s12274_022_4074_3 crossref_primary_10_1039_D1TC02534A crossref_primary_10_1021_acsanm_3c00126 crossref_primary_10_1038_s41467_022_29812_5 crossref_primary_10_1016_j_saa_2023_123140 crossref_primary_10_1007_s12274_020_2883_9 crossref_primary_10_1021_acs_chemmater_0c02870 crossref_primary_10_1002_aenm_202400148 crossref_primary_10_1021_acsami_3c12897 crossref_primary_10_1051_e3sconf_202454903013 crossref_primary_10_1016_j_cej_2024_158969 crossref_primary_10_1002_smll_202304881 crossref_primary_10_1002_jsid_948 crossref_primary_10_1080_15980316_2022_2035835 crossref_primary_10_1364_PRJ_467604 crossref_primary_10_1002_adma_202412105 crossref_primary_10_1002_adma_202301887 crossref_primary_10_1016_j_optmat_2021_111126 crossref_primary_10_1021_acs_chemmater_3c01359 crossref_primary_10_1021_acsanm_2c05498 crossref_primary_10_1002_ijch_202200103 crossref_primary_10_1002_smll_202108120 crossref_primary_10_3390_condmat8030084 crossref_primary_10_1246_bcsj_20230216 crossref_primary_10_1088_2058_8585_ad4eef crossref_primary_10_1016_j_mattod_2020_04_032 crossref_primary_10_1016_j_mtchem_2023_101888 crossref_primary_10_1039_D1TC00683E crossref_primary_10_1039_D2NH00158F crossref_primary_10_1166_sam_2021_3979 crossref_primary_10_1016_j_ceramint_2022_11_056 crossref_primary_10_1002_adma_202104685 crossref_primary_10_7498_aps_69_20191767 crossref_primary_10_3390_ma15238511 crossref_primary_10_1007_s40820_022_00970_x crossref_primary_10_1039_D0CP01647K crossref_primary_10_1002_adma_202309123 crossref_primary_10_1002_adma_202302984 crossref_primary_10_1364_OE_482241 crossref_primary_10_1021_jacs_2c13108 crossref_primary_10_1002_sdtp_15940 crossref_primary_10_1039_D1NR08038E crossref_primary_10_1002_wnan_1624 crossref_primary_10_1038_s41563_021_01119_8 crossref_primary_10_1364_OE_386276 crossref_primary_10_1016_j_synthmet_2024_117747 crossref_primary_10_1021_acs_jpclett_0c01323 crossref_primary_10_1002_smll_202405275 crossref_primary_10_3390_nano12132243 crossref_primary_10_1021_acs_chemmater_0c01561 crossref_primary_10_26599_NR_2025_94907267 crossref_primary_10_3390_nano12030573 crossref_primary_10_1002_msid_1164 crossref_primary_10_1016_j_orgel_2022_106569 crossref_primary_10_3390_app11104422 crossref_primary_10_1021_acsphotonics_4c00027 crossref_primary_10_1039_D1NR02334A crossref_primary_10_1002_sdtp_14841 crossref_primary_10_1007_s40843_021_1957_9 crossref_primary_10_1021_acs_chemmater_3c00005 crossref_primary_10_1080_14686996_2025_2463317 crossref_primary_10_1002_sdtp_14844 crossref_primary_10_1109_LED_2021_3088280 crossref_primary_10_1002_sdtp_14843 crossref_primary_10_1016_j_materresbull_2023_112589 crossref_primary_10_1021_acs_nanolett_4c05832 crossref_primary_10_1021_acs_chemmater_3c00481 crossref_primary_10_1021_acs_jpclett_4c00689 crossref_primary_10_1002_sdtp_14846 crossref_primary_10_1002_adma_202105958 crossref_primary_10_1039_D3CS00611E crossref_primary_10_1038_s41524_021_00591_9 crossref_primary_10_1002_msid_1395 crossref_primary_10_1007_s12274_022_4784_6 crossref_primary_10_1007_s40042_023_00945_0 crossref_primary_10_1021_acsomega_1c07045 crossref_primary_10_1002_adma_202414957 crossref_primary_10_1021_acs_chemmater_2c03074 crossref_primary_10_1039_D0TA12623C crossref_primary_10_1002_adma_202414953 crossref_primary_10_3390_ma15248977 crossref_primary_10_1007_s12274_024_6982_x crossref_primary_10_1002_sdtp_14838 crossref_primary_10_1039_D0RA00653J crossref_primary_10_1080_15980316_2025_2449929 crossref_primary_10_1038_s41565_023_01428_w crossref_primary_10_1002_adma_202312334 crossref_primary_10_1038_s41566_023_01340_8 crossref_primary_10_1039_D1NA00716E crossref_primary_10_1021_acs_jpclett_0c03519 crossref_primary_10_1063_5_0198140 crossref_primary_10_3390_nano11051246 crossref_primary_10_1002_anie_202311317 crossref_primary_10_1021_acs_accounts_4c00708 crossref_primary_10_1021_acs_jpcc_0c11317 crossref_primary_10_1021_acsami_3c01566 crossref_primary_10_1021_acs_nanolett_4c03673 crossref_primary_10_1016_j_matdes_2022_110736 crossref_primary_10_1038_d41586_022_04447_0 crossref_primary_10_1039_D0QI01228A crossref_primary_10_1002_adma_202303621 crossref_primary_10_1039_D2CC05874J crossref_primary_10_1002_sdtp_15914 crossref_primary_10_1021_acsenergylett_1c02745 crossref_primary_10_3390_nano15020147 crossref_primary_10_1021_acsanm_4c01073 crossref_primary_10_1002_sdtp_13977 crossref_primary_10_1021_acs_chemmater_0c01596 crossref_primary_10_1016_j_mattod_2022_06_020 crossref_primary_10_1021_acsanm_0c00583 crossref_primary_10_1002_adma_202211702 crossref_primary_10_1016_j_mtnano_2024_100457 crossref_primary_10_1021_acsami_1c20088 crossref_primary_10_1002_adma_202005635 crossref_primary_10_1016_j_esci_2023_100227 crossref_primary_10_1021_acsami_3c18371 crossref_primary_10_1002_anbr_202300076 crossref_primary_10_1002_anie_202004857 crossref_primary_10_1007_s12274_022_4115_y crossref_primary_10_1021_acsenergylett_2c02062 crossref_primary_10_1016_j_apsusc_2022_155579 crossref_primary_10_1002_adma_202106215 crossref_primary_10_1063_5_0077327 crossref_primary_10_1002_adfm_202110900 crossref_primary_10_1016_j_jphotochemrev_2023_100588 crossref_primary_10_1080_02786826_2025_2469780 crossref_primary_10_3390_nano12061032 crossref_primary_10_1364_OE_462444 crossref_primary_10_1002_adom_202100389 crossref_primary_10_1002_adom_202202036 crossref_primary_10_1002_adom_202002167 crossref_primary_10_1016_j_jlumin_2022_119560 crossref_primary_10_1002_sdtp_17919 crossref_primary_10_1002_adom_202401085 crossref_primary_10_1039_D1MH00859E crossref_primary_10_1002_smll_202304497 crossref_primary_10_1016_j_physb_2023_415408 crossref_primary_10_1063_5_0180211 crossref_primary_10_1021_jacs_4c13568 crossref_primary_10_1063_5_0092736 crossref_primary_10_1002_adma_202200854 crossref_primary_10_3390_mi13050709 crossref_primary_10_1016_j_cej_2021_128426 crossref_primary_10_1038_s41377_022_01036_8 crossref_primary_10_1002_sdtp_17906 crossref_primary_10_1021_acs_jpcc_3c03951 crossref_primary_10_1002_sdtp_15965 crossref_primary_10_1021_acs_nanolett_4c01606 crossref_primary_10_1364_OE_533257 crossref_primary_10_1002_admt_202201077 crossref_primary_10_1016_j_nanoen_2024_109906 crossref_primary_10_1007_s11814_024_00235_w crossref_primary_10_1021_acs_chemmater_1c01795 crossref_primary_10_1364_OPTICA_422287 crossref_primary_10_1002_adpr_202100083 crossref_primary_10_1016_j_orgel_2022_106705 crossref_primary_10_3390_ma16145106 crossref_primary_10_1088_1361_648X_ac858d crossref_primary_10_1021_acsanm_4c05636 crossref_primary_10_1002_adom_202202256 crossref_primary_10_1002_aenm_202101230 crossref_primary_10_3365_KJMM_2021_59_7_476 crossref_primary_10_1039_D1NA00561H crossref_primary_10_1002_smll_202105492 crossref_primary_10_1016_j_jiec_2023_04_005 crossref_primary_10_3390_en13133370 crossref_primary_10_1002_smll_202411539 crossref_primary_10_1007_s12274_021_4038_z crossref_primary_10_1002_smll_202003542 crossref_primary_10_1515_nanoph_2023_0033 crossref_primary_10_1002_smll_202002454 crossref_primary_10_1016_j_optmat_2022_113209 crossref_primary_10_1016_j_cej_2024_150839 crossref_primary_10_1016_j_inoche_2023_110602 crossref_primary_10_1021_jacs_3c04890 crossref_primary_10_1038_s41467_020_19573_4 crossref_primary_10_1002_sdtp_14450 crossref_primary_10_1002_adma_202301018 crossref_primary_10_1364_OE_460054 crossref_primary_10_1002_adom_202300873 crossref_primary_10_1021_acs_nanolett_1c01223 crossref_primary_10_1039_D1RA08233G crossref_primary_10_1039_D2NR04244D crossref_primary_10_1088_1674_1056_aca7e8 crossref_primary_10_1002_adom_202100586 crossref_primary_10_1021_acsanm_0c02334 crossref_primary_10_1002_adma_202402912 crossref_primary_10_1021_acsanm_4c01692 crossref_primary_10_1021_acsami_1c08118 crossref_primary_10_1038_s41467_022_29538_4 crossref_primary_10_1038_s41566_021_00763_5 crossref_primary_10_1039_D2QI00448H crossref_primary_10_1021_acs_nanolett_3c01419 crossref_primary_10_1002_adom_202300612 crossref_primary_10_1021_acs_nanolett_4c02968 crossref_primary_10_1021_acsami_4c09447 crossref_primary_10_1002_adma_202420575 crossref_primary_10_1021_jacs_3c03582 crossref_primary_10_1007_s12274_022_4204_y crossref_primary_10_1021_acs_jchemed_2c01167 crossref_primary_10_1002_sdtp_15764 crossref_primary_10_1002_adom_202202066 crossref_primary_10_1016_j_matt_2023_01_018 crossref_primary_10_1021_acsphotonics_3c00420 crossref_primary_10_1007_s12274_024_6947_0 crossref_primary_10_1021_acsnano_3c06518 crossref_primary_10_1021_acs_nanolett_0c04740 crossref_primary_10_1063_1_5145189 crossref_primary_10_1021_jacs_0c10907 crossref_primary_10_1021_acsnano_4c05643 crossref_primary_10_1016_j_orgel_2024_107190 crossref_primary_10_1021_acsanm_2c04509 crossref_primary_10_1021_acs_nanolett_4c01648 crossref_primary_10_1039_D2CE01588A crossref_primary_10_1021_acs_jpclett_4c01594 crossref_primary_10_1021_acs_chemrev_3c00097 crossref_primary_10_1021_jacs_4c00073 crossref_primary_10_1002_eem2_12798 crossref_primary_10_1021_acs_nanolett_2c01459 crossref_primary_10_1002_rpm_20240019 crossref_primary_10_1021_acs_nanolett_2c01699 crossref_primary_10_1038_s41565_021_00871_x crossref_primary_10_1002_ange_202007520 crossref_primary_10_1126_sciadv_abl8219 crossref_primary_10_1002_open_202000357 crossref_primary_10_1021_acscentsci_3c01451 crossref_primary_10_1021_acs_chemmater_0c03939 crossref_primary_10_1039_D4NH00663A crossref_primary_10_1007_s11814_024_00279_y crossref_primary_10_21597_jist_1376078 crossref_primary_10_1002_sdtp_15758 crossref_primary_10_1038_s41598_022_17084_4 crossref_primary_10_1063_5_0018132 crossref_primary_10_1002_adom_202301970 crossref_primary_10_1021_acs_nanolett_2c00118 crossref_primary_10_1016_j_apsusc_2022_153568 |
Cites_doi | 10.1103/PhysRevB.54.8633 10.1021/jp0021502 10.1038/nphoton.2013.70 10.1021/acs.chemrev.6b00116 10.1002/jsid.393 10.1002/adma.201403620 10.1038/s41467-018-04986-z 10.1126/science.287.5455.1011 10.1021/acs.chemmater.8b03671 10.1021/acsami.7b10785 10.1021/acs.nanolett.6b00066 10.1038/nphoton.2011.171 10.1021/jacs.8b12908 10.1021/acs.chemmater.8b03117 10.1021/nn4002825 10.1002/smll.201603962 10.1021/nn403594j 10.1038/ncomms3661 10.1021/jp981703u 10.1038/nphoton.2015.36 10.1021/acs.chemmater.5b02138 10.1021/acs.chemmater.8b02590 10.1021/acsanm.8b02063 10.1038/nature13829 10.1038/nature01217 10.1021/ja903633d 10.1038/s41566-019-0364-z 10.1364/OL.41.003984 10.1021/acs.nanolett.7b02438 10.1103/PhysRevLett.106.187401 10.1007/978-0-387-46312-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Nov 28, 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 28, 2019 |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-019-1771-5 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database (NC LIVE) Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 638 |
ExternalDocumentID | A650920214 31776489 10_1038_s41586_019_1771_5 |
Genre | Journal Article |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGOIJ AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c640t-43f47de01aa8ba0b96078e2eda4c4314592ba08375310d65d5aafc3f4ddcbd093 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 03:13:25 EDT 2025 Sat Aug 23 13:35:29 EDT 2025 Tue Jun 17 21:50:56 EDT 2025 Thu Jun 12 22:43:45 EDT 2025 Tue Jun 10 15:32:19 EDT 2025 Tue Jun 10 20:46:10 EDT 2025 Fri Jun 27 04:03:47 EDT 2025 Fri Jun 27 04:55:31 EDT 2025 Thu Apr 03 07:09:19 EDT 2025 Tue Jul 01 01:21:15 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Fri Feb 21 02:38:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7784 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-43f47de01aa8ba0b96078e2eda4c4314592ba08375310d65d5aafc3f4ddcbd093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31776489 |
PQID | 2321666225 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2319488616 proquest_journals_2321666225 gale_infotracmisc_A650920214 gale_infotracgeneralonefile_A650920214 gale_infotraccpiq_650920214 gale_infotracacademiconefile_A650920214 gale_incontextgauss_ISR_A650920214 gale_incontextgauss_ATWCN_A650920214 pubmed_primary_31776489 crossref_primary_10_1038_s41586_019_1771_5 crossref_citationtrail_10_1038_s41586_019_1771_5 springer_journals_10_1038_s41586_019_1771_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-28 |
PublicationDateYYYYMMDD | 2019-11-28 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wang (CR6) 2017; 9 Mashford (CR3) 2013; 7 Yang (CR8) 2015; 9 Vaxenburg, Rodina, Lifshitz, Efros (CR23) 2016; 16 Li (CR10) 2019; 141 Klimov, Mikhailovsky, McBranch, Leatherdale, Bawendi (CR22) 2000; 287 Cao (CR25) 2018; 30 Lim (CR18) 2014; 26 Cao (CR9) 2018; 9 Manders (CR5) 2015; 23 Tessier, Dupong, Nolf, Roo, Hens (CR12) 2015; 27 Bae (CR7) 2013; 4 Park, Lim, Makarov, Klimov (CR31) 2017; 17 Park (CR24) 2011; 106 Bae (CR19) 2013; 7 Kagan, Murray, Bawendi (CR21) 1996; 54 Kim (CR30) 2019; 2 Mićić, Jones, Cahill, Nozik (CR15) 1998; 102 Wang (CR27) 2017; 13 Liu (CR17) 2009; 131 Jo (CR26) 2016; 41 Lim (CR28) 2013; 7 Coe, Woo, Bawendi, Bulovic (CR1) 2002; 420 Reiss, Carriere, Lincheneau, Vaure, Tamang (CR11) 2016; 116 CR20 Tessier (CR14) 2018; 30 Shen (CR29) 2019; 13 Stein (CR13) 2018; 30 Mićić, Smith, Nozik (CR16) 2000; 104 Qian, Zheng, Xue, Holloway (CR2) 2011; 5 Dai (CR4) 2014; 515 JL Stein (1771_CR13) 2018; 30 HC Wang (1771_CR27) 2017; 13 H Shen (1771_CR29) 2019; 13 JR Manders (1771_CR5) 2015; 23 Y Li (1771_CR10) 2019; 141 OI Mićić (1771_CR15) 1998; 102 R Vaxenburg (1771_CR23) 2016; 16 F Cao (1771_CR25) 2018; 30 WK Bae (1771_CR7) 2013; 4 Y Park (1771_CR31) 2017; 17 Y Kim (1771_CR30) 2019; 2 BS Mashford (1771_CR3) 2013; 7 1771_CR20 WK Bae (1771_CR19) 2013; 7 L Wang (1771_CR6) 2017; 9 P Reiss (1771_CR11) 2016; 116 S Coe (1771_CR1) 2002; 420 MD Tessier (1771_CR12) 2015; 27 L Liu (1771_CR17) 2009; 131 J-H Jo (1771_CR26) 2016; 41 L Qian (1771_CR2) 2011; 5 X Dai (1771_CR4) 2014; 515 J Lim (1771_CR18) 2014; 26 J Lim (1771_CR28) 2013; 7 Y-S Park (1771_CR24) 2011; 106 CR Kagan (1771_CR21) 1996; 54 OI Mićić (1771_CR16) 2000; 104 W Cao (1771_CR9) 2018; 9 VI Klimov (1771_CR22) 2000; 287 Y Yang (1771_CR8) 2015; 9 MD Tessier (1771_CR14) 2018; 30 31776486 - Nature. 2019 Nov;575(7784):604-605 |
References_xml | – volume: 54 start-page: 8633 year: 1996 ident: CR21 article-title: Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.8633 – volume: 104 start-page: 12149 year: 2000 end-page: 12156 ident: CR16 article-title: Core-shell quantum dots of lattice-matched ZnCdSe shells on InP cores: experiment and theory publication-title: J. Phys. Chem. B doi: 10.1021/jp0021502 – volume: 7 start-page: 407 year: 2013 end-page: 412 ident: CR3 article-title: High-efficiency quantum-dot light-emitting devices with enhanced charge injection publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.70 – volume: 116 start-page: 10731 year: 2016 end-page: 10819 ident: CR11 article-title: Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00116 – volume: 23 start-page: 523 year: 2015 end-page: 528 ident: CR5 article-title: High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays publication-title: J. Soc. Inf. Disp. doi: 10.1002/jsid.393 – volume: 26 start-page: 8034 year: 2014 end-page: 8040 ident: CR18 article-title: Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn Cd S core/shell heterostructured quantum dots publication-title: Adv. Mater. doi: 10.1002/adma.201403620 – volume: 9 year: 2018 ident: CR9 article-title: Highly stable QLEDs with improved hole injection via quantum dot structure tailoring publication-title: Nat. Commun. doi: 10.1038/s41467-018-04986-z – volume: 287 start-page: 1011 year: 2000 ident: CR22 article-title: Quantization of multiparticle Auger rates in semiconductor quantum dots publication-title: Science doi: 10.1126/science.287.5455.1011 – volume: 30 start-page: 8002 year: 2018 end-page: 8007 ident: CR25 article-title: A layer-by-layer growth strategy for large-size InP/ZnSe/ZnS core-shell quantum dots enabling high-efficiency light-emitting diodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03671 – volume: 9 start-page: 38755 year: 2017 end-page: 38760 ident: CR6 article-title: Blue quantum dot light-emitting diodes with high electroluminescent efficiency publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b10785 – volume: 16 start-page: 2503 year: 2016 end-page: 2511 ident: CR23 article-title: Biexciton Auger recombination in CdSe/CdS core/shell semiconductor nanocrystals publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00066 – volume: 5 start-page: 543 year: 2011 end-page: 548 ident: CR2 article-title: Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures publication-title: Nat. Photon. doi: 10.1038/nphoton.2011.171 – volume: 141 start-page: 6448 year: 2019 end-page: 6452 ident: CR10 article-title: Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12908 – volume: 30 start-page: 6877 year: 2018 end-page: 6883 ident: CR14 article-title: Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03117 – volume: 7 start-page: 3411 year: 2013 end-page: 3419 ident: CR19 article-title: Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination publication-title: ACS Nano doi: 10.1021/nn4002825 – volume: 13 start-page: 1603962 year: 2017 ident: CR27 article-title: Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10000 cd m publication-title: Small doi: 10.1002/smll.201603962 – volume: 7 start-page: 9019 year: 2013 end-page: 9026 ident: CR28 article-title: Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots publication-title: ACS Nano doi: 10.1021/nn403594j – volume: 4 year: 2013 ident: CR7 article-title: Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes publication-title: Nat. Commun. doi: 10.1038/ncomms3661 – volume: 102 start-page: 9791 year: 1998 end-page: 9796 ident: CR15 article-title: Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots publication-title: J. Phys. Chem. B doi: 10.1021/jp981703u – volume: 9 start-page: 259 year: 2015 end-page: 266 ident: CR8 article-title: High-efficiency light-emitting devices based on quantum dots with tailored nanostructures publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.36 – volume: 27 start-page: 4893 year: 2015 end-page: 4898 ident: CR12 article-title: Economic and size-tunable synthesis of InP/ZnE (E=S, Se) colloidal quantum dots publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02138 – volume: 30 start-page: 6377 year: 2018 end-page: 6388 ident: CR13 article-title: Probing surface defects of InP quantum dots using phophorus Kα and Kβ X-ray emission spectroscopy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02590 – volume: 2 start-page: 1496 year: 2019 end-page: 1504 ident: CR30 article-title: Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02063 – volume: 515 start-page: 96 year: 2014 end-page: 99 ident: CR4 article-title: Solution-processed, high-performance light-emitting diodes based on quantum dots publication-title: Nature doi: 10.1038/nature13829 – volume: 420 start-page: 800 year: 2002 end-page: 803 ident: CR1 article-title: Electroluminescence from single monolayers of nanocrystals in molecular organic devices publication-title: Nature doi: 10.1038/nature01217 – volume: 131 start-page: 16423 year: 2009 end-page: 16429 ident: CR17 article-title: Shape control of CdSe nanocrystals with zinc blende structure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903633d – volume: 13 start-page: 192 year: 2019 end-page: 197 ident: CR29 article-title: Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency publication-title: Nat. Photon. doi: 10.1038/s41566-019-0364-z – volume: 41 start-page: 3984 year: 2016 end-page: 3987 ident: CR26 article-title: High-efficiency red electroluminescent device based on multishelled InP quantum dots publication-title: Opt. Lett. doi: 10.1364/OL.41.003984 – volume: 17 start-page: 5607 year: 2017 end-page: 5613 ident: CR31 article-title: Effect of interfacial alloying versus “volume scaling” on Auger recombination in compositionally graded semiconductor quantum dots publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02438 – ident: CR20 – volume: 106 start-page: 187401 year: 2011 ident: CR24 article-title: Near-unity quantum yields of biexciton emission from CdSe=CdS nanocrystals measured using single-particle spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.187401 – volume: 9 start-page: 259 year: 2015 ident: 1771_CR8 publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.36 – volume: 116 start-page: 10731 year: 2016 ident: 1771_CR11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00116 – volume: 141 start-page: 6448 year: 2019 ident: 1771_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12908 – volume: 7 start-page: 407 year: 2013 ident: 1771_CR3 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.70 – volume: 515 start-page: 96 year: 2014 ident: 1771_CR4 publication-title: Nature doi: 10.1038/nature13829 – volume: 30 start-page: 6877 year: 2018 ident: 1771_CR14 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03117 – volume: 5 start-page: 543 year: 2011 ident: 1771_CR2 publication-title: Nat. Photon. doi: 10.1038/nphoton.2011.171 – volume: 131 start-page: 16423 year: 2009 ident: 1771_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903633d – volume: 30 start-page: 8002 year: 2018 ident: 1771_CR25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03671 – ident: 1771_CR20 doi: 10.1007/978-0-387-46312-4 – volume: 287 start-page: 1011 year: 2000 ident: 1771_CR22 publication-title: Science doi: 10.1126/science.287.5455.1011 – volume: 420 start-page: 800 year: 2002 ident: 1771_CR1 publication-title: Nature doi: 10.1038/nature01217 – volume: 7 start-page: 3411 year: 2013 ident: 1771_CR19 publication-title: ACS Nano doi: 10.1021/nn4002825 – volume: 26 start-page: 8034 year: 2014 ident: 1771_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201403620 – volume: 2 start-page: 1496 year: 2019 ident: 1771_CR30 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02063 – volume: 23 start-page: 523 year: 2015 ident: 1771_CR5 publication-title: J. Soc. Inf. Disp. doi: 10.1002/jsid.393 – volume: 104 start-page: 12149 year: 2000 ident: 1771_CR16 publication-title: J. Phys. Chem. B doi: 10.1021/jp0021502 – volume: 102 start-page: 9791 year: 1998 ident: 1771_CR15 publication-title: J. Phys. Chem. B doi: 10.1021/jp981703u – volume: 16 start-page: 2503 year: 2016 ident: 1771_CR23 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00066 – volume: 17 start-page: 5607 year: 2017 ident: 1771_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02438 – volume: 30 start-page: 6377 year: 2018 ident: 1771_CR13 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02590 – volume: 54 start-page: 8633 year: 1996 ident: 1771_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.8633 – volume: 106 start-page: 187401 year: 2011 ident: 1771_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.187401 – volume: 7 start-page: 9019 year: 2013 ident: 1771_CR28 publication-title: ACS Nano doi: 10.1021/nn403594j – volume: 13 start-page: 1603962 year: 2017 ident: 1771_CR27 publication-title: Small doi: 10.1002/smll.201603962 – volume: 13 start-page: 192 year: 2019 ident: 1771_CR29 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0364-z – volume: 4 year: 2013 ident: 1771_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms3661 – volume: 9 year: 2018 ident: 1771_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04986-z – volume: 9 start-page: 38755 year: 2017 ident: 1771_CR6 publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b10785 – volume: 27 start-page: 4893 year: 2015 ident: 1771_CR12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02138 – volume: 41 start-page: 3984 year: 2016 ident: 1771_CR26 publication-title: Opt. Lett. doi: 10.1364/OL.41.003984 – reference: 31776486 - Nature. 2019 Nov;575(7784):604-605 |
SSID | ssj0005174 |
Score | 2.7208493 |
Snippet | Quantum dot (QD) light-emitting diodes (LEDs) are ideal for large-panel displays because of their excellent efficiency, colour purity, reliability and... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 634 |
SubjectTerms | 140/125 140/146 639/624/1020/1089 639/925/357/1017 Augers Cadmium Charge injection Chemical properties Defects Design and construction Displays Efficiency Energy transfer High temperature Humanities and Social Sciences Hydrofluoric acid Indium phosphides Light emitting diodes Mechanical properties multidisciplinary Nanocrystals Organic light emitting diodes Oxidation Quantum dots Quantum efficiency Recombination Science Science (multidisciplinary) Spectrum analysis Zinc compounds Zinc selenide Zinc sulfide |
Title | Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes |
URI | https://link.springer.com/article/10.1038/s41586-019-1771-5 https://www.ncbi.nlm.nih.gov/pubmed/31776489 https://www.proquest.com/docview/2321666225 https://www.proquest.com/docview/2319488616 |
Volume | 575 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbWFgN2Gdbu5bULtKHYE0YsP-XTkAXN2gILij6wYhdBlpQiQOokc3LYvx_pKEkddL34YFGGTJEiadIfAQ6ViZTVpvCNjSlASbgvUIsIi5AHJk90VNDfyD_76fFVfHqdXLsPbpUrq1yeifVBbcaavpG30fJThgvF79tk6lPXKMquuhYaW7DD0dJQSZfo_ViXeGygMC-zmpFoV2i4BMXSOS4r437SsEubp_Md87SRL63NUO8ZPHX-I-ssNnwXHtlyDx7XdZy62oNdp6sV--QApT8_h1Mq5hj9ZbaGi0Arw1RpGLqFxciyk_Ks_bu8sHRh0zkyen7LMFRloxpixN4O68poZoZjY6sXcNU7uuwe-66Hgq_TOJj5cTSIM2MDrpQoVFBgwJIJG1qjYo2-Q5zkId7GKBV1MTBpYhKlBhonGaMLE-TRS9gux6V9DUzwwKI7GBkV1E2uRB6Hg5jbwIToFFrhQbDkoNQOYJz6XIxkneiOhFwwXSLTJTFdJh58WU2ZLNA1HiI-pG2RhFpRUlnMjZpXlexc_ur2ZYeQAEMCgPPg_X1kJxfnDaKPjmgwxjVq5X5GwDclPKwG5X6DUk-GU3ln9ENj9Gaxtfc95qBBiEqsm8NLWZPuEKnkWuQ9eLcapplUGFfa8ZxoeI5ncMpTD14tZHTFSXQNszQWuQdfl0K7fvh_2fzm4aXsw5Ow1hruh-IAtmd_5vYt-mWzogVb2XWGV9HlrVoRW7Dz_ah_dv4PuuQwww |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiJaXaYEFlUdBVvxYO-sDQlEhJH1EiKai4rKsdzdVpNRJcCLUP8VvZGZtJ3VUeuslh-ys5czOMzP7DSE7UofSKJ262jBMUCLf5aBFiEXoezqJVJjibeSjXtw5Yfun0eka-VvdhcG2ysomWkOtxwr_I2-A58cKF4jfp8nUxalRWF2tRmgUYnFgLv5AypZ_7H6G830dBO0v_b2OW04VcFXMvJnLwgFrauP5UvJUeimE8E1uAqMlU-BNWZQE8DXkbSCdno4jHUk5ULBJa5VqC74EJv8WC8GT48309tdlS8kK6nNVRQ15IwdHyTF3T4ANTd-Nan5w1Rtccocr9Vnr9tr3yb0yXqWtQsA2yJrJNslt2zeq8k2yUdqGnL4rAax3H5B9bB4ZXVBj4SnAq1GZaQphaDoytJt9a_zMjg1-0OkcDnZ-TiE1piMLaWLOh7YTm-rhWJv8ITm5Ee4-IuvZODNPCOW-ZyD8DLX07FAtnrBgwHzj6QCCUMMd4lUcFKoENMe5GiNhC-shFwXTBTBdINNF5JD3iy2TAs3jOuIdPBaBKBkZtuGcyXmei1b_x15PtBB5MEDAOYe8uoqse_y9RvS2JBqM4R2VLC8_wC9F_K0a5VaNUk2GU3Fp9U1t9aw42qses10jBKOh6suVrInSaOViqWIOeblYxp3YiJeZ8Rxp_ARsfuzHDnlcyOiCkxCKNmPGE4d8qIR2-fD_svnp9a_ygtzp9I8OxWG3d7BF7gZWg3w34NtkffZ7bp5BTDhLn1tFpOTXTWv-PxFDawk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSAuiJaXaYEFlbes-O31AaEoJWpaiCraiorLst5dV5FSO8GJUP8av46ZtZ3GUemtlxyys5YzO8_M7DeE7AjlCy1VaisdYIISujYDLUIsQtdRSSj9FG8jfxtGeyfB_ml4ukb-NndhsK2ysYnGUKtC4n_kHfD8WOEC8etkdVvE4W7_82Rq4wQprLQ24zQqETnQF38gfSs_DXbhrF97Xv_LcW_PricM2DIKnJkd-FkQK-24QrBUOCmE8zHTnlYikOBZgzDx4GvI4UBSHRWFKhQik7BJKZkqA8QE5v9W7McMdYz1ltpLVhCgm4qqzzolOE2GeXwCLIldO2z5xFXPsOQaV2q1xgX275N7dexKu5WwbZA1nW-S26aHVJabZKO2EyV9V4NZv39A9rGRZHxBtYGqAA9HRa4ohKTpWNNBftj5mR9p_KDTORzy_JxCmkzHBt5En49MVzZVo0Lp8iE5uRHuPiLreZHrJ4Qy19EQivpKOGbAFksCLwtc7SgPAlLNLOI0HOSyBjfHGRtjborsPuMV0zkwnSPTeWiRD4stkwrZ4zriHTwWjogZOcremZiXJe8e_-gNeRdRCD0En7PIq6vIBkffW0Rva6KsgHeUor4IAb8UsbhalFstSjkZTfnS6pvW6ll1tFc9ZrtFCAZEtpcbWeO1ASv5pbpZ5OViGXdiU16uiznSuAnY_8iNLPK4ktEFJyEsjaOAJRb52Ajt5cP_y-an17_KC3IHdJ5_HQwPtshdzyiQa3tsm6zPfs_1MwgPZ-lzo4eU_Lppxf8HEttvCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+stable+InP%2FZnSe%2FZnS+quantum+dot+light-emitting+diodes&rft.jtitle=Nature+%28London%29&rft.au=Won%2C+Yu-Ho&rft.au=Cho%2C+Oul&rft.au=Kim%2C+Taehyung&rft.au=Chung%2C+Dae-Young&rft.date=2019-11-28&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=575&rft.issue=7784&rft.spage=634&rft_id=info:doi/10.1038%2Fs41586-019-1771-5&rft.externalDBID=ISR&rft.externalDocID=A650920214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |