Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differen...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 5; no. C; pp. 298 - 308
Main Authors Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., Mueller, B.A., Pearlson, G.D., Potkin, S.G., Preda, A., Turner, J.A., Vaidya, J.G., van Erp, T.G., Calhoun, V.D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. •Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner
AbstractList AbstractSchizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k -means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. • Studied both static and dynamic connectivity changes in schizophrenia during rest • Small but significant connectivity differences might be obscured in static analysis. • Patients show significant differences in dwell times in multiple states. • Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. •Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
Author McEwen, S.
van Erp, T.G.
Ford, J.M.
Potkin, S.G.
Belger, A.
Calhoun, V.D.
Mathalon, D.H.
Turner, J.A.
Preda, A.
Mueller, B.A.
Vaidya, J.G.
Pearlson, G.D.
Damaraju, E.
Allen, E.A.
AuthorAffiliation a The Mind Research Network, Albuquerque, NM, USA
g Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
b K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
l Department of ECE, University of New Mexico, NM, USA
d Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
e San Francisco VA Medical Center, San Francisco, CA, USA
k Department of Psychiatry, University of Iowa, IA, USA
f Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
j Department of Psychology, Georgia State University, GA, USA
c Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
h Yale University, School of Medicine, New Haven, CT, USA
i Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
AuthorAffiliation_xml – name: d Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
– name: l Department of ECE, University of New Mexico, NM, USA
– name: j Department of Psychology, Georgia State University, GA, USA
– name: b K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
– name: c Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
– name: a The Mind Research Network, Albuquerque, NM, USA
– name: i Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
– name: h Yale University, School of Medicine, New Haven, CT, USA
– name: e San Francisco VA Medical Center, San Francisco, CA, USA
– name: k Department of Psychiatry, University of Iowa, IA, USA
– name: f Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
– name: g Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
Author_xml – sequence: 1
  givenname: E.
  surname: Damaraju
  fullname: Damaraju, E.
  email: edamaraju@mrn.org
  organization: The Mind Research Network, Albuquerque, NM, USA
– sequence: 2
  givenname: E.A.
  surname: Allen
  fullname: Allen, E.A.
  organization: The Mind Research Network, Albuquerque, NM, USA
– sequence: 3
  givenname: A.
  surname: Belger
  fullname: Belger, A.
  organization: Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
– sequence: 4
  givenname: J.M.
  surname: Ford
  fullname: Ford, J.M.
  organization: Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
– sequence: 5
  givenname: S.
  surname: McEwen
  fullname: McEwen, S.
  organization: Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
– sequence: 6
  givenname: D.H.
  surname: Mathalon
  fullname: Mathalon, D.H.
  organization: Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
– sequence: 7
  givenname: B.A.
  surname: Mueller
  fullname: Mueller, B.A.
  organization: Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
– sequence: 8
  givenname: G.D.
  surname: Pearlson
  fullname: Pearlson, G.D.
  organization: Yale University, School of Medicine, New Haven, CT, USA
– sequence: 9
  givenname: S.G.
  surname: Potkin
  fullname: Potkin, S.G.
  organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
– sequence: 10
  givenname: A.
  surname: Preda
  fullname: Preda, A.
  organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
– sequence: 11
  givenname: J.A.
  surname: Turner
  fullname: Turner, J.A.
  organization: Department of Psychology, Georgia State University, GA, USA
– sequence: 12
  givenname: J.G.
  surname: Vaidya
  fullname: Vaidya, J.G.
  organization: Department of Psychiatry, University of Iowa, IA, USA
– sequence: 13
  givenname: T.G.
  surname: van Erp
  fullname: van Erp, T.G.
  organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
– sequence: 14
  givenname: V.D.
  surname: Calhoun
  fullname: Calhoun, V.D.
  organization: The Mind Research Network, Albuquerque, NM, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25161896$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_oH-CAcuSywU78kXBAQoVCpUocgLM160y6XrL2YicrhV_PpLtUXSSaS5LJO89k_L7n2YkPHrPsFWcFZ1y9XRfe2b4oGRcF0wVj1bPsrCx5teCyLk8ePZ9mlymtGV01Y1qpF9lpKbnidaPOMvw4edg4m3ejt4MLHvrcBu-RXnZumHKgypRcyiPuEPqUDxF8cuiHPA0wYMpDl7dTOmpyPk925X6H7Sqid_Aye95RL14e7hfZj-tP36--LG6_fr65-nC7sEqwYVFiBaAEdLWEJW9tVVpZs1bplltOJSWU7upKNozLRsqlkEstRFVzC7LTrKousps9tw2wNtvoNhAnE8CZ-0KIdwbiQOeGBkFBW2rNiC1EV9WNtkqpTgvJwEpNrPd71nZcbrC1tHGE_gh6_MW7lbkLOyO44I2eAW8OgBh-jZgGs3HJYt-DxzAmw6WsJbmgFUlfP571MOSvTyQo9wIbQ0oRuwcJZ2bOg1mbOQ9mzoNh2rD706j_abKOLCOT6X9d_3TrYXkkt3YOo7G9IxX0P3HCtA5jpFzQDiaVhplvc9jmrHFBMWvkDHj3fwC54Z6a_gc3febA
CitedBy_id crossref_primary_10_1002_hbm_25671
crossref_primary_10_1002_hbm_24580
crossref_primary_10_1002_hbm_25555
crossref_primary_10_1007_s11682_019_00255_9
crossref_primary_10_1002_hbm_23135
crossref_primary_10_1002_hbm_24343
crossref_primary_10_1016_j_jad_2023_02_060
crossref_primary_10_3389_fnins_2019_00542
crossref_primary_10_3390_e24081148
crossref_primary_10_1140_epjs_s11734_025_01587_y
crossref_primary_10_7554_eLife_62324
crossref_primary_10_1177_0004867420948960
crossref_primary_10_1016_j_bpsc_2017_09_008
crossref_primary_10_1007_s12264_024_01214_1
crossref_primary_10_1007_s11571_023_10054_0
crossref_primary_10_1016_j_nicl_2019_101966
crossref_primary_10_1016_j_schres_2019_01_035
crossref_primary_10_3389_fnagi_2022_944485
crossref_primary_10_1007_s00234_022_02895_z
crossref_primary_10_1016_j_nicl_2019_101959
crossref_primary_10_1016_j_neurobiolaging_2023_03_006
crossref_primary_10_1016_j_neuroimage_2020_117464
crossref_primary_10_1016_j_nicl_2020_102396
crossref_primary_10_1093_brain_aww143
crossref_primary_10_1016_j_schres_2020_04_033
crossref_primary_10_1093_brain_awx233
crossref_primary_10_1002_hbm_25303
crossref_primary_10_1093_schbul_sby077
crossref_primary_10_1371_journal_pone_0249502
crossref_primary_10_3389_fpsyt_2021_687580
crossref_primary_10_1016_j_media_2025_103462
crossref_primary_10_1002_hbm_23240
crossref_primary_10_1002_hbm_24572
crossref_primary_10_1007_s11055_021_01146_7
crossref_primary_10_1016_j_jad_2020_11_012
crossref_primary_10_3389_fnins_2021_683633
crossref_primary_10_1016_j_neuron_2015_01_014
crossref_primary_10_1017_S0033291719001132
crossref_primary_10_1038_s41598_019_46702_x
crossref_primary_10_1017_S0033291718001502
crossref_primary_10_1109_TNSRE_2023_3344995
crossref_primary_10_3389_fnins_2020_00327
crossref_primary_10_3390_brainsci11050582
crossref_primary_10_1016_j_neuroimage_2017_09_012
crossref_primary_10_1038_s41537_023_00371_y
crossref_primary_10_1016_j_neuroimage_2017_10_022
crossref_primary_10_1016_j_jneumeth_2023_109794
crossref_primary_10_1016_j_neuroimage_2017_09_010
crossref_primary_10_1016_j_pnpbp_2023_110827
crossref_primary_10_1016_j_jad_2021_04_005
crossref_primary_10_1002_hbm_24447
crossref_primary_10_1002_hbm_26746
crossref_primary_10_1371_journal_pone_0279260
crossref_primary_10_1016_j_media_2021_102026
crossref_primary_10_1016_j_media_2018_03_013
crossref_primary_10_1093_schbul_sby086
crossref_primary_10_1089_brain_2020_0815
crossref_primary_10_3389_fpsyt_2015_00174
crossref_primary_10_1016_j_tins_2014_11_006
crossref_primary_10_1093_schbul_sbz052
crossref_primary_10_1016_j_neuroimage_2023_120132
crossref_primary_10_1016_j_dcn_2015_08_006
crossref_primary_10_1002_hbm_23151
crossref_primary_10_1016_j_bpsc_2024_10_011
crossref_primary_10_3389_fnhum_2016_00476
crossref_primary_10_1016_j_nicl_2024_103584
crossref_primary_10_1155_2016_4182483
crossref_primary_10_1016_j_neuroimage_2015_07_064
crossref_primary_10_1016_j_nicl_2019_101747
crossref_primary_10_1016_j_neuroimage_2017_09_020
crossref_primary_10_1109_TBME_2020_2964724
crossref_primary_10_1016_j_jpsychires_2022_03_010
crossref_primary_10_1016_j_nicl_2020_102375
crossref_primary_10_3389_fnins_2021_696853
crossref_primary_10_1016_j_schres_2023_02_007
crossref_primary_10_3389_fnins_2022_976229
crossref_primary_10_1093_cercor_bhab423
crossref_primary_10_1002_hbm_25205
crossref_primary_10_1016_j_bpsc_2024_02_013
crossref_primary_10_1016_j_sleep_2022_12_003
crossref_primary_10_1089_brain_2020_0847
crossref_primary_10_1016_j_schres_2018_06_007
crossref_primary_10_1002_hbm_24591
crossref_primary_10_1002_hbm_26776
crossref_primary_10_1002_hbm_26773
crossref_primary_10_1016_j_jneumeth_2018_03_015
crossref_primary_10_3389_fncom_2017_00014
crossref_primary_10_1016_j_neurobiolaging_2020_05_017
crossref_primary_10_1080_17588928_2020_1793752
crossref_primary_10_1016_j_neuroimage_2020_117429
crossref_primary_10_1016_j_neuroimage_2017_09_036
crossref_primary_10_1111_cns_12499
crossref_primary_10_1016_j_neuroimage_2017_09_035
crossref_primary_10_1016_j_pnpbp_2025_111330
crossref_primary_10_1017_S0033291720004882
crossref_primary_10_1177_13524585221101470
crossref_primary_10_3389_fnins_2022_770468
crossref_primary_10_1002_aur_2020
crossref_primary_10_1364_BOE_9_003694
crossref_primary_10_1016_j_neuroimage_2017_12_074
crossref_primary_10_1016_j_jpsychires_2024_06_012
crossref_primary_10_1089_brain_2020_0950
crossref_primary_10_3389_fpubh_2021_734370
crossref_primary_10_1002_hbm_25799
crossref_primary_10_1038_s41537_017_0022_8
crossref_primary_10_1523_ENEURO_0283_21_2021
crossref_primary_10_1016_j_mex_2020_101168
crossref_primary_10_1016_j_schres_2021_06_014
crossref_primary_10_3389_fnins_2022_816331
crossref_primary_10_1002_hbm_26649
crossref_primary_10_1016_j_schres_2020_03_020
crossref_primary_10_1007_s11682_021_00592_8
crossref_primary_10_1016_j_neuroimage_2022_119288
crossref_primary_10_1002_hbm_25873
crossref_primary_10_1016_j_conb_2019_01_009
crossref_primary_10_3389_fnhum_2021_697696
crossref_primary_10_1371_journal_pcbi_1011274
crossref_primary_10_1007_s11042_018_6424_4
crossref_primary_10_1111_exsy_12644
crossref_primary_10_1055_s_0044_1787761
crossref_primary_10_1109_TBME_2020_3011363
crossref_primary_10_3389_fnins_2019_00856
crossref_primary_10_3389_fnins_2019_00618
crossref_primary_10_1038_s41467_018_03462_y
crossref_primary_10_3389_fpsyt_2019_00234
crossref_primary_10_1016_j_neurobiolaging_2016_11_013
crossref_primary_10_1016_j_neuroimage_2020_116571
crossref_primary_10_1111_desc_13389
crossref_primary_10_1093_schbul_sbw093
crossref_primary_10_3389_fneur_2020_602586
crossref_primary_10_1109_TBME_2019_2895663
crossref_primary_10_1016_j_nbas_2023_100105
crossref_primary_10_1016_j_bpsc_2018_03_011
crossref_primary_10_2139_ssrn_4174810
crossref_primary_10_3389_fpsyt_2024_1165424
crossref_primary_10_1016_j_nicl_2019_101653
crossref_primary_10_1103_PhysRevE_109_054312
crossref_primary_10_1016_j_jneumeth_2020_108651
crossref_primary_10_3389_fnins_2019_00873
crossref_primary_10_1016_j_nicl_2020_102299
crossref_primary_10_1017_S0033291720002445
crossref_primary_10_3389_fnins_2019_00634
crossref_primary_10_1016_j_jad_2023_01_109
crossref_primary_10_3389_fnhum_2016_00163
crossref_primary_10_1016_j_nicl_2018_06_018
crossref_primary_10_1016_j_neuroimage_2021_118801
crossref_primary_10_1038_s41598_021_94825_x
crossref_primary_10_1109_TMI_2019_2929959
crossref_primary_10_1016_j_cmpb_2017_11_017
crossref_primary_10_1038_s41598_019_49726_5
crossref_primary_10_1155_2020_4107065
crossref_primary_10_1212_WNL_0000000000007607
crossref_primary_10_1007_s11682_018_9949_2
crossref_primary_10_1002_hbm_24529
crossref_primary_10_1002_hbm_25617
crossref_primary_10_1007_s11682_019_00233_1
crossref_primary_10_1016_j_neuroimage_2022_119391
crossref_primary_10_1002_hbm_25736
crossref_primary_10_3389_fpsyt_2019_00484
crossref_primary_10_1002_hbm_25890
crossref_primary_10_1016_j_neuroimage_2024_120895
crossref_primary_10_1371_journal_pbio_1002469
crossref_primary_10_1016_j_jpsychires_2018_09_015
crossref_primary_10_1016_j_neuroimage_2022_119188
crossref_primary_10_1109_TMI_2017_2755369
crossref_primary_10_1007_s00429_023_02697_w
crossref_primary_10_1016_j_neuroimage_2015_12_001
crossref_primary_10_1002_hbm_24202
crossref_primary_10_1016_j_jpsychires_2020_08_027
crossref_primary_10_1016_j_nicl_2020_102169
crossref_primary_10_3389_fnins_2020_00214
crossref_primary_10_1002_brb3_1255
crossref_primary_10_1016_j_ijpsycho_2024_112354
crossref_primary_10_1016_j_neuroimage_2019_01_080
crossref_primary_10_1016_j_neuroimage_2015_07_022
crossref_primary_10_1016_j_neuroimage_2020_116556
crossref_primary_10_1109_ACCESS_2022_3178748
crossref_primary_10_1186_s13742_014_0042_5
crossref_primary_10_1016_j_ynirp_2023_100186
crossref_primary_10_3389_fnins_2024_1429084
crossref_primary_10_1089_brain_2020_0920
crossref_primary_10_1002_hbm_23346
crossref_primary_10_1093_cercor_bhab503
crossref_primary_10_1002_hbm_24559
crossref_primary_10_1002_hbm_25649
crossref_primary_10_1016_j_bpsc_2019_04_004
crossref_primary_10_1007_s11682_019_00220_6
crossref_primary_10_3389_fpsyt_2017_00014
crossref_primary_10_1002_hbm_25763
crossref_primary_10_1002_hbm_25884
crossref_primary_10_3389_fnbeh_2014_00404
crossref_primary_10_1007_s12021_021_09554_3
crossref_primary_10_1016_j_plrev_2023_10_012
crossref_primary_10_1016_j_bbr_2021_113618
crossref_primary_10_1016_j_nicl_2024_103655
crossref_primary_10_1155_2017_4820935
crossref_primary_10_1016_j_neuroimage_2017_02_066
crossref_primary_10_1177_1352458519837707
crossref_primary_10_1177_1352458519837704
crossref_primary_10_1016_j_nicl_2020_102284
crossref_primary_10_1002_hbm_23215
crossref_primary_10_1016_j_neuroimage_2016_10_026
crossref_primary_10_1371_journal_pone_0131209
crossref_primary_10_1016_j_neuroimage_2022_119052
crossref_primary_10_1002_hbm_23890
crossref_primary_10_3389_fnins_2017_00639
crossref_primary_10_1002_hbm_24741
crossref_primary_10_3389_fninf_2019_00005
crossref_primary_10_3389_fneur_2024_1363869
crossref_primary_10_1093_cercor_bhaa391
crossref_primary_10_1162_netn_a_00209
crossref_primary_10_3389_fnins_2022_821179
crossref_primary_10_1007_s11042_017_5163_2
crossref_primary_10_1016_j_neuroimage_2017_07_005
crossref_primary_10_1016_j_jad_2018_11_002
crossref_primary_10_1016_j_schres_2015_10_004
crossref_primary_10_1007_s00247_024_06022_3
crossref_primary_10_3389_fnagi_2021_646017
crossref_primary_10_3389_fnhum_2019_00006
crossref_primary_10_1088_1361_6560_ac9d1e
crossref_primary_10_1109_ACCESS_2020_2974997
crossref_primary_10_1016_j_bbr_2017_10_001
crossref_primary_10_1016_j_neuroimage_2014_11_054
crossref_primary_10_1016_j_neuroimage_2021_118555
crossref_primary_10_3389_fnins_2023_1078995
crossref_primary_10_1002_hbm_24855
crossref_primary_10_1016_j_jpsychires_2022_10_067
crossref_primary_10_1093_schbul_sby112
crossref_primary_10_3389_fnsys_2021_724805
crossref_primary_10_1002_hbm_23884
crossref_primary_10_1002_hbm_23764
crossref_primary_10_1016_j_pnpbp_2024_110957
crossref_primary_10_1016_j_clinph_2019_08_009
crossref_primary_10_1016_j_neuroimage_2017_08_044
crossref_primary_10_1111_cns_12998
crossref_primary_10_1016_j_jad_2023_04_082
crossref_primary_10_1016_j_artmed_2024_102984
crossref_primary_10_1038_s41598_018_28237_9
crossref_primary_10_3390_app9204298
crossref_primary_10_3389_fncir_2021_719364
crossref_primary_10_3389_fninf_2022_859309
crossref_primary_10_1016_j_bpsc_2018_05_005
crossref_primary_10_1016_j_nicl_2024_103630
crossref_primary_10_1038_s41598_020_66967_x
crossref_primary_10_1007_s00234_017_1881_4
crossref_primary_10_1007_s00406_024_01803_1
crossref_primary_10_1162_netn_a_00432
crossref_primary_10_3389_fnins_2018_00600
crossref_primary_10_1007_s10548_017_0546_2
crossref_primary_10_1017_S1355617716000060
crossref_primary_10_1093_braincomms_fcae119
crossref_primary_10_1038_s41467_021_23694_9
crossref_primary_10_1007_s11571_022_09899_8
crossref_primary_10_1093_cercor_bhae402
crossref_primary_10_1016_j_jad_2018_12_079
crossref_primary_10_1002_hbm_23553
crossref_primary_10_1002_hbm_25972
crossref_primary_10_3389_fninf_2018_00055
crossref_primary_10_1016_j_psychres_2024_116351
crossref_primary_10_1002_hbm_23430
crossref_primary_10_1016_j_brainres_2022_147996
crossref_primary_10_3389_fnhum_2023_1295326
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_1111_adb_13329
crossref_primary_10_1109_JBHI_2021_3107305
crossref_primary_10_1007_s11682_017_9814_8
crossref_primary_10_1038_s41398_022_01795_3
crossref_primary_10_1186_s12874_022_01544_6
crossref_primary_10_1002_hbm_24519
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_1016_j_neuroimage_2020_117047
crossref_primary_10_1109_ACCESS_2018_2875492
crossref_primary_10_1177_1087054720964561
crossref_primary_10_1016_j_neuroimage_2018_02_036
crossref_primary_10_1109_TSIPN_2020_2982765
crossref_primary_10_3389_fnagi_2022_977917
crossref_primary_10_3389_fnins_2017_00624
crossref_primary_10_1016_j_bbe_2020_05_008
crossref_primary_10_1177_15459683231179172
crossref_primary_10_26599_BSA_2020_9050020
crossref_primary_10_1016_j_neuroimage_2019_04_042
crossref_primary_10_3389_fnhum_2024_1453638
crossref_primary_10_1093_braincomms_fcab298
crossref_primary_10_3389_fncir_2022_681544
crossref_primary_10_1002_hbm_24751
crossref_primary_10_1002_hbm_25720
crossref_primary_10_1002_brb3_2414
crossref_primary_10_1002_brb3_2535
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_3389_fnsys_2018_00068
crossref_primary_10_1016_j_jad_2022_02_052
crossref_primary_10_1093_schbul_sby108
crossref_primary_10_1016_j_schres_2018_12_005
crossref_primary_10_3389_fnagi_2017_00203
crossref_primary_10_1016_j_neuroimage_2020_117156
crossref_primary_10_3389_fnins_2018_00741
crossref_primary_10_1002_hbm_24986
crossref_primary_10_1038_s41531_021_00257_9
crossref_primary_10_1089_brain_2016_0454
crossref_primary_10_3389_fncom_2019_00075
crossref_primary_10_1002_hbm_23896
crossref_primary_10_1038_s42003_022_03903_x
crossref_primary_10_1093_gigascience_giae009
crossref_primary_10_1016_j_bpsgos_2024_100367
crossref_primary_10_1002_hbm_24504
crossref_primary_10_1002_hbm_24505
crossref_primary_10_1002_hbm_25714
crossref_primary_10_1016_j_bpsc_2024_12_002
crossref_primary_10_1016_j_neuroimage_2018_01_019
crossref_primary_10_3389_fnins_2021_682110
crossref_primary_10_1016_j_neuroimage_2017_08_006
crossref_primary_10_1016_j_jad_2023_10_143
crossref_primary_10_1016_j_brainresbull_2021_04_025
crossref_primary_10_1038_s41380_023_02395_3
crossref_primary_10_3389_fninf_2017_00028
crossref_primary_10_1162_netn_a_00247
crossref_primary_10_1109_TBME_2018_2880428
crossref_primary_10_3389_fneur_2022_829714
crossref_primary_10_1017_S003329171800003X
crossref_primary_10_1038_s41398_022_02147_x
crossref_primary_10_1109_LSP_2016_2585182
crossref_primary_10_3389_fnins_2022_1008652
crossref_primary_10_3389_fnsys_2020_00049
crossref_primary_10_1016_j_neuroimage_2020_117027
crossref_primary_10_1089_brain_2018_0629
crossref_primary_10_3389_fpsyt_2019_00995
crossref_primary_10_1093_cercor_bhac534
crossref_primary_10_1016_j_neuroimage_2020_117385
crossref_primary_10_1007_s10072_020_04322_8
crossref_primary_10_1002_hbm_24812
crossref_primary_10_1038_s41537_018_0070_8
crossref_primary_10_3389_fncel_2022_1015556
crossref_primary_10_1371_journal_pone_0234790
crossref_primary_10_1038_s41380_024_02767_3
crossref_primary_10_1016_j_bspc_2022_104521
crossref_primary_10_1038_s41398_022_02111_9
crossref_primary_10_1016_j_neuroimage_2021_118518
crossref_primary_10_1016_j_nicl_2019_101812
crossref_primary_10_20900_jpbs_20220009
crossref_primary_10_3389_fncir_2021_649417
crossref_primary_10_1002_hbm_24808
crossref_primary_10_1016_j_neuroimage_2021_118407
crossref_primary_10_1038_s41467_018_03664_4
crossref_primary_10_3389_fnins_2020_00881
crossref_primary_10_1016_j_biopsych_2022_03_019
crossref_primary_10_1002_hbm_23711
crossref_primary_10_1016_j_neuroimage_2021_117791
crossref_primary_10_1109_TMI_2019_2893651
crossref_primary_10_1093_braincomms_fcae154
crossref_primary_10_1093_cercor_bhac421
crossref_primary_10_1016_j_neuropsychologia_2023_108519
crossref_primary_10_1002_erv_3188
crossref_primary_10_1038_s41386_021_01039_w
crossref_primary_10_1109_TBME_2016_2600637
crossref_primary_10_3389_fnins_2022_965937
crossref_primary_10_1111_cns_14904
crossref_primary_10_1093_cercor_bhab220
crossref_primary_10_1016_j_neuroimage_2017_08_029
crossref_primary_10_1016_j_pnpbp_2023_110898
crossref_primary_10_1016_j_bspc_2021_103285
crossref_primary_10_1016_j_neubiorev_2018_09_011
crossref_primary_10_1016_j_schres_2016_10_021
crossref_primary_10_1088_1741_2552_ac514e
crossref_primary_10_1152_physrev_00033_2019
crossref_primary_10_1038_tp_2017_40
crossref_primary_10_1016_j_nicl_2019_101937
crossref_primary_10_1089_brain_2018_0608
crossref_primary_10_1109_ACCESS_2019_2920978
crossref_primary_10_1016_j_eng_2018_10_001
crossref_primary_10_1016_j_heliyon_2022_e12276
crossref_primary_10_1089_brain_2018_0609
crossref_primary_10_1371_journal_pone_0224744
crossref_primary_10_1038_s41598_017_06389_4
crossref_primary_10_1155_2018_9394156
crossref_primary_10_1038_s41598_018_29538_9
crossref_primary_10_2174_1570159X21666221129105408
crossref_primary_10_3389_fnins_2022_756938
crossref_primary_10_1214_16_AOAS948
crossref_primary_10_1007_s12035_020_01995_2
crossref_primary_10_1016_j_neuroimage_2019_03_055
crossref_primary_10_1016_j_psychres_2022_114974
crossref_primary_10_1002_jmri_25429
crossref_primary_10_1016_j_neuroimage_2023_120060
crossref_primary_10_1016_j_nicl_2022_103203
crossref_primary_10_1016_j_pnpbp_2018_03_020
crossref_primary_10_3389_fnagi_2021_808094
crossref_primary_10_3389_fneur_2018_00810
crossref_primary_10_1002_brb3_1516
crossref_primary_10_1002_hbm_24827
crossref_primary_10_1038_s41398_023_02615_y
crossref_primary_10_3389_fgene_2015_00276
crossref_primary_10_1038_s41598_017_06509_0
crossref_primary_10_1016_j_neuroimage_2021_118862
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1093_brain_awaa101
crossref_primary_10_1007_s11682_017_9718_7
crossref_primary_10_1016_j_neuroimage_2020_117111
crossref_primary_10_3389_fphar_2023_1102413
crossref_primary_10_30773_pi_2022_0091
crossref_primary_10_1109_TMI_2018_2831261
crossref_primary_10_1007_s00415_021_10580_z
crossref_primary_10_52294_001c_129695
crossref_primary_10_1093_cercor_bhad022
crossref_primary_10_1016_j_neuroimage_2019_116116
crossref_primary_10_3389_fncom_2022_885126
crossref_primary_10_1007_s10548_021_00828_2
crossref_primary_10_3389_fnins_2021_621716
crossref_primary_10_1016_j_neuroimage_2018_01_058
crossref_primary_10_1111_jcpp_13970
crossref_primary_10_1109_MSP_2015_2478915
crossref_primary_10_1016_j_neuroimage_2015_09_003
crossref_primary_10_3389_fphys_2018_01704
crossref_primary_10_1007_s11065_015_9294_9
crossref_primary_10_1016_j_clinph_2015_03_011
crossref_primary_10_1038_s41467_020_17788_z
crossref_primary_10_1007_s12021_017_9338_9
crossref_primary_10_1038_s41398_021_01398_4
crossref_primary_10_1162_netn_a_00163
crossref_primary_10_3389_fpsyt_2025_1529983
crossref_primary_10_1371_journal_pone_0225094
crossref_primary_10_1016_j_jneumeth_2022_109720
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_3389_fnagi_2019_00118
crossref_primary_10_1016_j_nic_2017_06_009
crossref_primary_10_1016_j_tics_2015_06_005
crossref_primary_10_1016_j_bbr_2019_112142
crossref_primary_10_1016_j_biopsych_2023_12_002
crossref_primary_10_3389_fnhum_2023_1134012
crossref_primary_10_1016_j_neuroimage_2019_116129
crossref_primary_10_1093_cercor_bhad030
crossref_primary_10_1007_s11571_022_09807_0
crossref_primary_10_1016_j_neuroimage_2015_09_010
crossref_primary_10_1162_netn_a_00155
crossref_primary_10_1016_j_bpsc_2021_07_004
crossref_primary_10_1109_TMI_2017_2786553
crossref_primary_10_3390_diagnostics12112720
crossref_primary_10_1016_j_jad_2022_12_057
crossref_primary_10_1109_TMI_2024_3502545
crossref_primary_10_1177_13872877241313056
crossref_primary_10_3389_fpsyg_2021_717519
crossref_primary_10_1007_s11682_024_00938_y
crossref_primary_10_1007_s11571_021_09722_w
crossref_primary_10_1080_20008066_2023_2213595
crossref_primary_10_3389_fpsyt_2018_00339
crossref_primary_10_1016_j_neuroimage_2019_116363
crossref_primary_10_1038_s44220_024_00341_y
crossref_primary_10_1039_C7MD00448F
crossref_primary_10_3389_fnhum_2014_00897
crossref_primary_10_1111_nyas_13656
crossref_primary_10_7717_peerj_17078
crossref_primary_10_1016_j_neuroimage_2023_119945
crossref_primary_10_1016_j_neuroimage_2018_01_075
crossref_primary_10_1038_s41380_020_00983_1
crossref_primary_10_1016_j_nbd_2023_106265
crossref_primary_10_3390_diagnostics12112632
crossref_primary_10_3389_fnins_2018_00114
crossref_primary_10_1093_scan_nsy059
crossref_primary_10_1162_jocn_a_01828
crossref_primary_10_3389_fnhum_2022_774921
crossref_primary_10_1186_s12916_023_03208_8
crossref_primary_10_3389_fnins_2021_721236
crossref_primary_10_1016_j_jpsychires_2023_09_021
crossref_primary_10_1109_TMI_2018_2863944
crossref_primary_10_1002_jnr_25136
crossref_primary_10_1016_j_mri_2019_05_031
crossref_primary_10_1145_3154524
crossref_primary_10_1111_ejn_15664
crossref_primary_10_1093_schbul_sbad107
crossref_primary_10_1093_braincomms_fcab227
crossref_primary_10_3389_fnagi_2022_913191
crossref_primary_10_1002_hbm_22847
crossref_primary_10_1162_netn_a_00372
crossref_primary_10_1177_02841851221109897
crossref_primary_10_1371_journal_pcbi_1007263
crossref_primary_10_3389_fnimg_2023_1097523
crossref_primary_10_1002_hbm_24902
crossref_primary_10_1111_adb_13395
crossref_primary_10_1016_j_pneurobio_2016_08_003
crossref_primary_10_1016_j_nicl_2020_102507
crossref_primary_10_17116_jnevro202012011170
crossref_primary_10_1093_cercor_bhac133
crossref_primary_10_1016_j_jocn_2025_111053
crossref_primary_10_3389_fnins_2016_00466
crossref_primary_10_1007_s00234_017_1875_2
crossref_primary_10_1016_j_tins_2017_04_003
crossref_primary_10_1016_j_neuroimage_2018_07_047
crossref_primary_10_1155_2022_9941832
crossref_primary_10_1016_j_neuroimage_2018_09_054
crossref_primary_10_1073_pnas_1420687112
crossref_primary_10_1007_s11427_020_1822_4
crossref_primary_10_1016_j_bspc_2020_102056
crossref_primary_10_1016_j_nicl_2017_06_023
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_neuroimage_2016_12_061
crossref_primary_10_1016_j_schres_2017_09_035
crossref_primary_10_1016_j_parkreldis_2023_105777
crossref_primary_10_1016_j_wneu_2024_08_160
crossref_primary_10_1007_s00234_023_03259_x
crossref_primary_10_3389_fnhum_2021_647518
crossref_primary_10_1371_journal_pbio_2002580
crossref_primary_10_1007_s10548_018_0666_3
crossref_primary_10_3389_fneur_2019_01083
crossref_primary_10_1016_j_neuron_2014_10_015
crossref_primary_10_3389_fnins_2019_00197
crossref_primary_10_1109_ACCESS_2020_3025828
crossref_primary_10_1016_j_jad_2024_08_165
crossref_primary_10_1089_brain_2018_0579
crossref_primary_10_1162_netn_a_00196
crossref_primary_10_3389_fnins_2018_00525
crossref_primary_10_1016_j_nbd_2024_106493
crossref_primary_10_1016_j_neuroscience_2019_11_025
crossref_primary_10_1162_netn_a_00071
crossref_primary_10_1093_cercor_bhw029
crossref_primary_10_3390_app112311392
crossref_primary_10_1186_s10194_021_01348_x
crossref_primary_10_1016_j_neuroimage_2018_06_003
crossref_primary_10_1093_cercor_bhad113
crossref_primary_10_1016_j_jneumeth_2022_109539
crossref_primary_10_1016_j_schres_2015_11_021
crossref_primary_10_1093_cercor_bhx273
crossref_primary_10_1016_j_nicl_2018_02_025
crossref_primary_10_1007_s00234_022_03033_5
crossref_primary_10_1093_cercor_bhab181
crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun
crossref_primary_10_1109_TSIPN_2017_2774504
crossref_primary_10_1093_scan_nsaa114
crossref_primary_10_1016_j_neuroimage_2017_07_065
crossref_primary_10_1073_pnas_1501242112
crossref_primary_10_1162_netn_a_00063
crossref_primary_10_1111_bdi_12900
crossref_primary_10_1109_JSTSP_2020_3003891
crossref_primary_10_1016_j_biopsych_2023_03_024
crossref_primary_10_1016_j_neuroimage_2019_116453
crossref_primary_10_1016_j_nicl_2019_102071
crossref_primary_10_1038_s41598_020_63984_8
crossref_primary_10_1093_cercor_bhy232
crossref_primary_10_1016_j_neuroimage_2019_116347
crossref_primary_10_1016_j_neuroimage_2020_117190
crossref_primary_10_3389_fninf_2022_960607
crossref_primary_10_1016_j_bbr_2023_114506
crossref_primary_10_1016_j_neuroimage_2022_119737
crossref_primary_10_1093_brain_awz192
crossref_primary_10_3389_fncel_2022_1024192
crossref_primary_10_1016_j_tics_2017_04_007
crossref_primary_10_3389_fnhum_2017_00492
crossref_primary_10_1016_j_neuroimage_2021_118588
crossref_primary_10_1162_netn_a_00292
crossref_primary_10_3389_fneur_2020_606592
crossref_primary_10_1016_j_biopsych_2019_12_014
crossref_primary_10_3389_fneur_2019_01052
crossref_primary_10_1016_j_jad_2015_10_042
crossref_primary_10_3389_fpsyt_2020_608197
crossref_primary_10_1002_hbm_24064
crossref_primary_10_1089_brain_2017_0533
crossref_primary_10_1016_j_dsp_2021_103192
crossref_primary_10_3389_fncom_2023_1290089
crossref_primary_10_1093_schbul_sbac088
crossref_primary_10_1088_1741_2552_ac16b3
crossref_primary_10_1109_TCBB_2019_2899568
crossref_primary_10_1016_j_neuroimage_2015_07_002
crossref_primary_10_1088_1741_2552_ab0169
crossref_primary_10_1111_biom_13362
crossref_primary_10_1088_1741_2552_ad27ee
crossref_primary_10_1093_schbul_sbae142
crossref_primary_10_1002_jmri_27353
crossref_primary_10_1155_2021_5573740
crossref_primary_10_3389_fpsyt_2021_659814
crossref_primary_10_1016_j_schres_2024_06_044
crossref_primary_10_3389_fpsyt_2022_877417
crossref_primary_10_1016_j_jad_2020_05_148
crossref_primary_10_1002_hbm_25020
crossref_primary_10_1002_hbm_26479
crossref_primary_10_1523_JNEUROSCI_4312_15_2016
crossref_primary_10_1016_j_neuroimage_2022_119476
crossref_primary_10_1016_j_nicl_2019_101692
crossref_primary_10_1002_hbm_26234
crossref_primary_10_1016_j_ynstr_2021_100377
crossref_primary_10_1109_TCDS_2021_3054504
crossref_primary_10_1523_JNEUROSCI_1940_23_2024
crossref_primary_10_1016_j_nicl_2021_102833
crossref_primary_10_3389_fnins_2022_840481
crossref_primary_10_1038_s41398_023_02599_9
crossref_primary_10_1002_jmri_28439
crossref_primary_10_1016_j_jad_2020_06_062
crossref_primary_10_1093_schbul_sbad042
crossref_primary_10_1038_srep34291
crossref_primary_10_1089_brain_2020_0896
crossref_primary_10_1002_hbm_70067
crossref_primary_10_1016_j_schres_2020_11_055
crossref_primary_10_1016_j_neuroimage_2018_10_004
crossref_primary_10_1016_j_neuroimage_2017_05_050
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_3389_fnins_2020_00258
crossref_primary_10_1371_journal_pone_0250222
crossref_primary_10_1007_s00429_024_02888_z
crossref_primary_10_1002_acn3_51487
crossref_primary_10_1016_j_media_2020_101709
crossref_primary_10_3389_fnagi_2022_1009232
crossref_primary_10_1109_TNSRE_2022_3202713
crossref_primary_10_3389_fneur_2018_00448
crossref_primary_10_1016_j_neuri_2023_100148
crossref_primary_10_1016_j_compbiolchem_2017_10_012
crossref_primary_10_1016_j_nicl_2023_103382
crossref_primary_10_1093_scan_nsx123
crossref_primary_10_1016_j_cortex_2018_03_029
crossref_primary_10_1098_rsta_2016_0283
crossref_primary_10_3233_JAD_215239
crossref_primary_10_3389_fpsyt_2019_00499
crossref_primary_10_1016_j_jad_2025_03_121
crossref_primary_10_3389_fnins_2021_749887
crossref_primary_10_1162_imag_a_00220
crossref_primary_10_7717_peerj_15721
crossref_primary_10_1016_j_neuroimage_2022_119131
crossref_primary_10_2139_ssrn_4064661
crossref_primary_10_1002_hbm_25285
crossref_primary_10_1089_brain_2017_0543
crossref_primary_10_1016_j_neuroimage_2018_11_057
crossref_primary_10_1016_j_neuroimage_2022_119013
crossref_primary_10_1016_j_neuroimage_2019_116425
crossref_primary_10_1016_j_neuroimage_2022_119015
crossref_primary_10_1002_hbm_25167
crossref_primary_10_1016_j_brainres_2017_11_011
crossref_primary_10_1016_j_nicl_2018_03_016
crossref_primary_10_1002_hbm_26251
crossref_primary_10_1002_jmri_29306
crossref_primary_10_30773_pi_2020_0418
crossref_primary_10_1007_s00429_020_02119_1
crossref_primary_10_1016_j_schres_2019_05_007
crossref_primary_10_1089_brain_2020_0794
crossref_primary_10_3389_fnhum_2020_00003
crossref_primary_10_1016_j_neuroimage_2018_06_024
crossref_primary_10_1002_wps_21159
crossref_primary_10_1007_s10548_018_0678_z
crossref_primary_10_1162_imag_a_00234
crossref_primary_10_1162_netn_a_00090
crossref_primary_10_3389_fneur_2015_00010
crossref_primary_10_1177_0269881119849814
crossref_primary_10_1016_j_jad_2021_12_093
crossref_primary_10_1097_YCO_0000000000000157
crossref_primary_10_1016_j_neuroimage_2022_119250
crossref_primary_10_3389_fnsys_2023_1163147
crossref_primary_10_3389_fpsyt_2022_1054380
crossref_primary_10_1002_hbm_24385
crossref_primary_10_1016_j_neuroimage_2021_118193
crossref_primary_10_3389_fnins_2024_1363255
crossref_primary_10_1016_j_neuroimage_2017_03_022
crossref_primary_10_1016_j_neuropsychologia_2016_11_003
crossref_primary_10_1002_hbm_24389
crossref_primary_10_1002_hbm_25235
crossref_primary_10_3389_fnagi_2022_893297
crossref_primary_10_3389_fnins_2019_00583
crossref_primary_10_3389_fnins_2019_01430
crossref_primary_10_1002_hbm_26202
crossref_primary_10_3389_fpsyt_2021_683610
crossref_primary_10_1109_JBHI_2020_2983456
crossref_primary_10_1016_j_neucom_2020_05_113
crossref_primary_10_3174_ajnr_A5527
crossref_primary_10_1002_brb3_2047
crossref_primary_10_1016_j_neuroimage_2022_119208
crossref_primary_10_1016_j_tics_2024_03_004
crossref_primary_10_1016_j_schres_2018_03_004
crossref_primary_10_3389_fnins_2021_799916
crossref_primary_10_1016_j_schres_2021_07_038
crossref_primary_10_1192_bjp_2019_10
crossref_primary_10_1002_ehf2_13967
crossref_primary_10_3389_fpsyt_2023_1071769
crossref_primary_10_1117_1_NPh_6_2_025010
crossref_primary_10_1016_j_nicl_2020_102352
crossref_primary_10_1097_j_pain_0000000000001676
crossref_primary_10_1016_j_schres_2020_11_026
crossref_primary_10_1038_s41598_024_52410_y
crossref_primary_10_1002_hbm_25589
crossref_primary_10_1038_s41537_022_00299_9
crossref_primary_10_1089_brain_2020_0748
crossref_primary_10_1109_JSTSP_2016_2594945
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1523_ENEURO_0341_20_2021
crossref_primary_10_1111_bdi_13261
crossref_primary_10_1002_hbm_25581
crossref_primary_10_1038_srep46072
crossref_primary_10_1016_j_jneumeth_2019_03_015
crossref_primary_10_3389_fnhum_2015_00418
crossref_primary_10_1016_j_jneumeth_2019_03_011
crossref_primary_10_1002_hbm_70145
crossref_primary_10_1007_s12975_023_01148_2
crossref_primary_10_3389_fnins_2022_971809
crossref_primary_10_1142_S0129065718500028
crossref_primary_10_1002_hbm_24009
crossref_primary_10_1016_j_neuroimage_2021_118085
crossref_primary_10_1016_j_neuroimage_2022_119460
crossref_primary_10_1016_j_neurobiolaging_2020_04_021
crossref_primary_10_3390_s23063264
crossref_primary_10_1002_hbm_26341
crossref_primary_10_1016_j_jneumeth_2020_108600
crossref_primary_10_1093_schbul_sbac187
crossref_primary_10_1073_pnas_2005531117
crossref_primary_10_1016_j_bpsc_2024_09_001
crossref_primary_10_1162_jocn_a_01066
crossref_primary_10_3389_fphys_2020_00066
crossref_primary_10_1016_j_jneumeth_2019_108519
crossref_primary_10_1088_1741_2552_abfd46
crossref_primary_10_1002_aur_2974
crossref_primary_10_1089_brain_2020_0768
crossref_primary_10_1002_hbm_70131
crossref_primary_10_3389_fncir_2020_593263
crossref_primary_10_3390_e24050631
crossref_primary_10_1523_ENEURO_0242_22_2023
crossref_primary_10_1038_s41598_017_06866_w
crossref_primary_10_1002_hbm_25124
crossref_primary_10_1002_hbm_25366
crossref_primary_10_1016_j_nicl_2020_102431
crossref_primary_10_1002_hbm_24391
crossref_primary_10_3390_e26070545
crossref_primary_10_59324_ejaset_2024_2_6__03
crossref_primary_10_1016_j_jneumeth_2017_09_013
crossref_primary_10_1016_j_pscychresns_2020_111140
crossref_primary_10_1016_j_jad_2022_08_072
crossref_primary_10_1016_j_pscychresns_2020_111149
crossref_primary_10_1080_01621459_2017_1379404
crossref_primary_10_1016_j_neuroimage_2021_118188
crossref_primary_10_1016_j_media_2021_102163
crossref_primary_10_3389_fnins_2021_763966
crossref_primary_10_1016_j_neuroimage_2017_04_051
crossref_primary_10_1016_j_nic_2017_06_012
Cites_doi 10.1016/j.neuroimage.2013.05.079
10.1093/schbul/sbn145
10.1016/S0006-3223(99)00071-2
10.1176/appi.ajp.2012.12010056
10.1016/j.neuroimage.2010.08.063
10.1089/brain.2012.0115
10.1093/cercor/bhs352
10.1016/j.neuroimage.2011.10.018
10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2
10.1016/S1053-8119(03)00332-X
10.1016/S0361-9230(00)00437-8
10.1016/j.neuroimage.2007.11.001
10.1016/j.neuroimage.2013.03.004
10.1002/hbm.21170
10.1007/s10334-010-0197-8
10.1093/biostatistics/kxm045
10.1016/j.neuroimage.2012.06.078
10.1214/12-EJS740
10.1016/j.neuroimage.2011.12.090
10.1002/hbm.1048
10.1162/neco.1995.7.6.1129
10.1007/s00401-008-0404-0
10.1016/j.neuroimage.2012.03.070
10.1002/hbm.22058
10.1038/npp.2011.215
10.1523/JNEUROSCI.2015-10.2010
10.3389/fnhum.2013.00118
10.1017/S0033291709992297
10.1073/pnas.0900924106
10.1093/schbul/sbq142
10.1073/pnas.1216856110
10.1523/JNEUROSCI.1091-13.2013
10.1016/S0920-9964(97)00140-0
10.1073/pnas.0905267106
10.1152/jn.00783.2009
10.1073/pnas.1111133109
10.1093/schbul/sbn159
10.1176/appi.ajp.2008.08050735
10.1038/nrn2201
10.1016/j.neuroimage.2009.12.011
10.1073/pnas.0809141106
10.1016/j.neuroimage.2012.08.052
10.1016/j.neuroimage.2013.02.035
10.1002/hbm.20993
10.3389/fnsys.2011.00002
ContentType Journal Article
Copyright 2014
2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014
– notice: 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nicl.2014.07.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 308
ExternalDocumentID oai_doaj_org_article_ea6ad2770d1c44f3897c666f7450ac57
PMC4141977
25161896
10_1016_j_nicl_2014_07_003
1_s2_0_S2213158214000953
S2213158214000953
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K01 MH099431
– fundername: NIDA NIH HHS
  grantid: R01 DA040487
– fundername: NCRR NIH HHS
  grantid: U24 RR021992
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NICHD NIH HHS
  grantid: U54 HD079124
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c640t-2e3aa64af85ab1dc32c580d67d1c15ab6467f8359015955b45b744381ca5f7033
IEDL.DBID M48
ISSN 2213-1582
IngestDate Wed Aug 27 01:13:25 EDT 2025
Thu Aug 21 14:01:42 EDT 2025
Fri Jul 11 01:21:57 EDT 2025
Thu Apr 03 06:49:01 EDT 2025
Tue Jul 01 01:09:13 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Sun Feb 23 10:19:26 EST 2025
Tue Aug 26 17:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Language English
License http://creativecommons.org/licenses/by-nc-sa/3.0
This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-2e3aa64af85ab1dc32c580d67d1c15ab6467f8359015955b45b744381ca5f7033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ea6ad2770d1c44f3897c666f7450ac57
PMID 25161896
PQID 1558518976
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ea6ad2770d1c44f3897c666f7450ac57
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141977
proquest_miscellaneous_1558518976
pubmed_primary_25161896
crossref_primary_10_1016_j_nicl_2014_07_003
crossref_citationtrail_10_1016_j_nicl_2014_07_003
elsevier_clinicalkeyesjournals_1_s2_0_S2213158214000953
elsevier_clinicalkey_doi_10_1016_j_nicl_2014_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bb001.48) 2011; 54
Sakoğlu, Pearlson, Kiehl, Wang, Michael, Calhoun (bb001.44) 2010; 23
Moncrieff, Leo (bb001.38) 2010; 40
Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (bb001.19) 2011; 32
Mazoyer, Zago, Mellet, Bricogne, Etard, Houdé, Crivello, Joliot, Petit, Tzourio-Mazoyer (bb001.36) 2001; 54
Boly, Perlbarg, Marrelec, Schabus, Laureys, Doyon, Pélégrini-Issac, Maquet, Benali (bb001.7) 2012; 109
Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bb001.14) 2001; 22
Bell, Sejnowski (bb001.4) 1995; 7
Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bb001.15) 2012; 61
Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bb001.26) 2012; 63
Larson-Prior, Zempel, Nolan, Prior, Snyder, Raichle (bb001.32) 2009; 106
Allen, Eichele, Wu, Calhoun (bb001.2) 2013
Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bb001.17) 2013; 33
Welsh, Chen, Taylor (bb001.52) 2010; 36
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bb001.1) 2012; 24
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bb001.47) 2009; 106
Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Di, Li, Zuo, Castellanos, Milham (bb001.55) 2013; 76
Friston (bb001.25) 1998; 30
Woodward, Karbasforoushan, Heckers (bb001.54) 2012; 169
Friedman, Hastie, Tibshirani (bb001.24) 2008; 9
Fox, Raichle (bb001.23) 2007; 8
Chang, Glover (bb001.12) 2010; 50
Breakspear, Terry, Friston, Harris, Williams, Brown, Brennan, Gordon (bb001.8) 2003; 20
Keilholz, Magnuson, Pan, Willis, Thompson (bb001.30) 2013; 3
Calhoun, Adali, Pearlson, Pekar (bb001.10) 2001; 14
Mathalon, Ford (bb001.35) 2008; 165
Fox, Greicius (bb001.22) 2010; 4
Pan, Thompson, Magnuson, Jaeger, Keilholz (bb001.39) 2013; 74
Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (bb001.46) 2013; 64
Hutchison, Womelsdorf, Gati, Everling, Menon (bb001.28) 2013; 34
Deco, Jirsa, McIntosh (bb001.16) 2011; 56
Byne, Hazlett, Buchsbaum, Kemether (bb001.9) 2009; 117
Ferrarelli, Tononi (bb001.20) 2011; 37
Jafri, Pearlson, Stevens, Calhoun (bb001.29) 2008; 39
Liu, Duyn (bb001.33) 2013; 110
Christensen (bb001.13) 2001
Whitfield-Gabrieli, Thermenos, Milanovic, Tsuang, Faraone, McCarley, Shenton, Green, Nieto-Castanon, LaViolette, Wojcik, Gabrieli, Seidman (bb001.53) 2009; 106
Di, Kim, Huang, Tsai, Lin, Biswal (bb001.18) 2013; 7
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo (bb001.27) 2013; 80
Potkin, Ford (bb001.42) 2009; 35
Mazumder, Hastie (bb001.37) 2012; 6
Spoormaker, Schröter, Gleiser, Andrade, Dresler, Wehrle, Sämann, Czisch (bb001.49) 2010; 30
Calhoun, Sui, Kiehl, Turner, Allen, Pearlson (bb001.11) 2011; 2
Varoquaux, Gramfort, Poline, Thirion (bb001.51) 2010
Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (bb001.3) 2011
Kraepelin (bb001.31) 1971
Pearlson (bb001.40) 2000; 48
Power, Barnes, Snyder, Schlaggar, Petersen (bb001.43) 2012; 59
Marenco, Stein, Savostyanova, Sambataro, Tan, Goldman, Verchinski, Barnett, Dickinson, Apud (bb001.34) 2011; 37
Salvador, Sarró, Gomar, Ortiz-Gil, Vila, Capdevila, Bullmore, McKenna, Pomarol-Clotet (bb001.45) 2010; 31
Anticevic, Cole, Repovs, Murray, Brumbaugh, Winkler, Savic, Krystal, Pearlson, Glahn (bb001.5) 2013
Bleuler (bb001.6) 1950
Fornito, Zalesky, Pantelis, Bullmore (bb001.21) 2012; 62
Pearlson, Marsh (bb001.41) 1999; 46
Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bb001.50) 2010; 103
Smith (10.1016/j.nicl.2014.07.003_bb001.47) 2009; 106
Van Dijk (10.1016/j.nicl.2014.07.003_bb001.50) 2010; 103
Marenco (10.1016/j.nicl.2014.07.003_bb001.34) 2011; 37
Satterthwaite (10.1016/j.nicl.2014.07.003_bb001.46) 2013; 64
Hutchison (10.1016/j.nicl.2014.07.003_bb001.27) 2013; 80
Mathalon (10.1016/j.nicl.2014.07.003_bb001.35) 2008; 165
Calhoun (10.1016/j.nicl.2014.07.003_bb001.11) 2011; 2
Salvador (10.1016/j.nicl.2014.07.003_bb001.45) 2010; 31
Woodward (10.1016/j.nicl.2014.07.003_bb001.54) 2012; 169
Chang (10.1016/j.nicl.2014.07.003_bb001.12) 2010; 50
Varoquaux (10.1016/j.nicl.2014.07.003_bb001.51) 2010
Pearlson (10.1016/j.nicl.2014.07.003_bb001.40) 2000; 48
Smith (10.1016/j.nicl.2014.07.003_bb001.48) 2011; 54
Breakspear (10.1016/j.nicl.2014.07.003_bb001.8) 2003; 20
Yan (10.1016/j.nicl.2014.07.003_bb001.55) 2013; 76
Jafri (10.1016/j.nicl.2014.07.003_bb001.29) 2008; 39
Allen (10.1016/j.nicl.2014.07.003_bb001.3) 2011
Mazumder (10.1016/j.nicl.2014.07.003_bb001.37) 2012; 6
Moncrieff (10.1016/j.nicl.2014.07.003_bb001.38) 2010; 40
Pan (10.1016/j.nicl.2014.07.003_bb001.39) 2013; 74
Whitfield-Gabrieli (10.1016/j.nicl.2014.07.003_bb001.53) 2009; 106
Deco (10.1016/j.nicl.2014.07.003_bb001.17) 2013; 33
Deco (10.1016/j.nicl.2014.07.003_bb001.16) 2011; 56
Mazoyer (10.1016/j.nicl.2014.07.003_bb001.36) 2001; 54
Di (10.1016/j.nicl.2014.07.003_bb001.18) 2013; 7
Bell (10.1016/j.nicl.2014.07.003_bb001.4) 1995; 7
Larson-Prior (10.1016/j.nicl.2014.07.003_bb001.32) 2009; 106
Kraepelin (10.1016/j.nicl.2014.07.003_bb001.31) 1971
Keilholz (10.1016/j.nicl.2014.07.003_bb001.30) 2013; 3
Potkin (10.1016/j.nicl.2014.07.003_bb001.42) 2009; 35
Cribben (10.1016/j.nicl.2014.07.003_bb001.15) 2012; 61
Welsh (10.1016/j.nicl.2014.07.003_bb001.52) 2010; 36
Byne (10.1016/j.nicl.2014.07.003_bb001.9) 2009; 117
Christensen (10.1016/j.nicl.2014.07.003_bb001.13) 2001
Hutchison (10.1016/j.nicl.2014.07.003_bb001.28) 2013; 34
Fornito (10.1016/j.nicl.2014.07.003_bb001.21) 2012; 62
Fox (10.1016/j.nicl.2014.07.003_bb001.23) 2007; 8
Friedman (10.1016/j.nicl.2014.07.003_bb001.24) 2008; 9
Fox (10.1016/j.nicl.2014.07.003_bb001.22) 2010; 4
Power (10.1016/j.nicl.2014.07.003_bb001.43) 2012; 59
Liu (10.1016/j.nicl.2014.07.003_bb001.33) 2013; 110
Pearlson (10.1016/j.nicl.2014.07.003_bb001.41) 1999; 46
Boly (10.1016/j.nicl.2014.07.003_bb001.7) 2012; 109
Calhoun (10.1016/j.nicl.2014.07.003_bb001.10) 2001; 14
Handwerker (10.1016/j.nicl.2014.07.003_bb001.26) 2012; 63
Ferrarelli (10.1016/j.nicl.2014.07.003_bb001.20) 2011; 37
Cordes (10.1016/j.nicl.2014.07.003_bb001.14) 2001; 22
Anticevic (10.1016/j.nicl.2014.07.003_bb001.5) 2013
Sakoğlu (10.1016/j.nicl.2014.07.003_bb001.44) 2010; 23
Erhardt (10.1016/j.nicl.2014.07.003_bb001.19) 2011; 32
Allen (10.1016/j.nicl.2014.07.003_bb001.1) 2012; 24
Allen (10.1016/j.nicl.2014.07.003_bb001.2) 2013
Spoormaker (10.1016/j.nicl.2014.07.003_bb001.49) 2010; 30
Friston (10.1016/j.nicl.2014.07.003_bb001.25) 1998; 30
Bleuler (10.1016/j.nicl.2014.07.003_bb001.6) 1950
References_xml – volume: 76
  start-page: 183
  year: 2013
  end-page: 201
  ident: bb001.55
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
– volume: 3
  start-page: 31
  year: 2013
  end-page: 40
  ident: bb001.30
  article-title: Dynamic properties of functional connectivity in the rodent
  publication-title: Brain Connectivity
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bb001.47
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 432
  year: 2008
  end-page: 441
  ident: bb001.24
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics (Oxford, England)
– volume: 165
  start-page: 944
  year: 2008
  end-page: 948
  ident: bb001.35
  article-title: Divergent approaches converge on frontal lobe dysfunction in schizophrenia
  publication-title: American Journal of Psychiatry
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  ident: bb001.50
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: Journal of Neurophysiology
– volume: 34
  start-page: 2154
  year: 2013
  end-page: 2177
  ident: bb001.28
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Human Brain Mapping
– start-page: 2334
  year: 2010
  end-page: 2342
  ident: bb001.51
  article-title: Brain covariance selection: better individual functional connectivity models using population prior
– volume: 64
  start-page: 240
  year: 2013
  end-page: 256
  ident: bb001.46
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: Neuroimage
– volume: 33
  start-page: 11239
  year: 2013
  end-page: 11252
  ident: bb001.17
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: Journal of Neuroscience
– volume: 62
  start-page: 2296
  year: 2012
  end-page: 2314
  ident: bb001.21
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
– volume: 106
  start-page: 4489
  year: 2009
  end-page: 4494
  ident: bb001.32
  article-title: Cortical network functional connectivity in the descent to sleep
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 30
  start-page: 115
  year: 1998
  end-page: 125
  ident: bb001.25
  article-title: The disconnection hypothesis
  publication-title: Schizophrenia Research
– volume: 48
  start-page: 556
  year: 2000
  end-page: 566
  ident: bb001.40
  article-title: Neurobiology of schizophrenia
  publication-title: Annals of Neurology
– volume: 109
  start-page: 5856
  year: 2012
  end-page: 5861
  ident: bb001.7
  article-title: Hierarchical clustering of brain activity during human nonrapid eye movement sleep
  publication-title: Proceedings of the National Academy of Sciences of the U.S.A.
– volume: 37
  start-page: 306
  year: 2011
  end-page: 315
  ident: bb001.20
  article-title: The thalamic reticular nucleus and schizophrenia
  publication-title: Schizophrenia Bulletin
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bb001.4
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
– volume: 14
  start-page: 140
  year: 2001
  end-page: 151
  ident: bb001.10
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
– volume: 169
  start-page: 1092
  year: 2012
  end-page: 1099
  ident: bb001.54
  article-title: Thalamocortical dysconnectivity in schizophrenia
  publication-title: American Journal of Psychiatry
– year: 2011
  ident: bb001.3
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Frontiers in Systems Neuroscience
– volume: 23
  start-page: 351
  year: 2010
  end-page: 366
  ident: bb001.44
  article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– volume: 4
  start-page: 19
  year: 2010
  ident: bb001.22
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Frontiers in Systems Neuroscience
– volume: 106
  start-page: 1279
  year: 2009
  end-page: 1284
  ident: bb001.53
  article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia
  publication-title: Proceedings of the National Academy of Sciences of the U.S.A.
– year: 2013
  ident: bb001.2
  publication-title: EEG Signature of Functional Connectivity States
– volume: 39
  start-page: 1666
  year: 2008
  end-page: 1681
  ident: bb001.29
  article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia
  publication-title: NeuroImage
– volume: 54
  start-page: 287
  year: 2001
  end-page: 298
  ident: bb001.36
  article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man
  publication-title: Brain Research Bulletin
– volume: 74
  start-page: 288
  year: 2013
  end-page: 297
  ident: bb001.39
  article-title: Infraslow LFP correlates to resting-state fMRI BOLD signals
  publication-title: Neuroimage
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bb001.48
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
– volume: 6
  start-page: 2125
  year: 2012
  end-page: 2149
  ident: bb001.37
  article-title: The graphical lasso: new insights and alternatives
  publication-title: Electronic Journal of Statistics
– volume: 37
  start-page: 499
  year: 2011
  end-page: 507
  ident: bb001.34
  article-title: Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia
  publication-title: Neuropsychopharmacology
– year: 1971
  ident: bb001.31
  publication-title: Dementia Praecox and Paraphrenia
– volume: 63
  start-page: 1712
  year: 2012
  end-page: 1719
  ident: bb001.26
  article-title: Periodic changes in fMRI connectivity
  publication-title: Neuroimage
– volume: 35
  start-page: 15
  year: 2009
  end-page: 18
  ident: bb001.42
  article-title: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium
  publication-title: Schizophrenia Bulletin
– volume: 31
  start-page: 2003
  year: 2010
  end-page: 2014
  ident: bb001.45
  article-title: Overall brain connectivity maps show corticosubcortical abnormalities in schizophrenia
  publication-title: Human Brain Mapping
– volume: 7
  start-page: 118
  year: 2013
  ident: bb001.18
  article-title: The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity
  publication-title: Frontiers in Human Neuroscience
– volume: 36
  start-page: 713
  year: 2010
  end-page: 722
  ident: bb001.52
  article-title: Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia
  publication-title: Schizophrenia Bulletin
– volume: 20
  start-page: 466
  year: 2003
  end-page: 478
  ident: bb001.8
  article-title: A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia
  publication-title: NeuroImage
– volume: 30
  start-page: 11379
  year: 2010
  end-page: 11387
  ident: bb001.49
  article-title: Development of a large-scale functional brain network during human non-rapid eye movement sleep
  publication-title: Journal of Neuroscience
– volume: 110
  start-page: 4392
  year: 2013
  end-page: 4397
  ident: bb001.33
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 80
  start-page: 360
  year: 2013
  end-page: 368
  ident: bb001.27
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
– year: 2013
  ident: bb001.5
  article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness
  publication-title: Cerebral Cortex
– year: 2001
  ident: bb001.13
  publication-title: Advanced Linear Modeling: Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization
– volume: 61
  start-page: 907
  year: 2012
  end-page: 920
  ident: bb001.15
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: Neuroimage
– volume: 24
  start-page: 663
  year: 2012
  end-page: 676
  ident: bb001.1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
– volume: 117
  start-page: 347
  year: 2009
  end-page: 368
  ident: bb001.9
  article-title: The thalamus and schizophrenia: current status of research
  publication-title: Acta Neuropathologica
– year: 1950
  ident: bb001.6
  publication-title: Dementia Praecox or the Group of Schizophrenias
– volume: 8
  start-page: 700
  year: 2007
  end-page: 711
  ident: bb001.23
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Reviews. Neuroscience
– volume: 22
  start-page: 1326
  year: 2001
  end-page: 1333
  ident: bb001.14
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 32
  start-page: 2075
  year: 2011
  end-page: 2095
  ident: bb001.19
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Human Brain Mapping
– volume: 56
  start-page: 2043
  year: 2011
  ident: bb001.16
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nature Reviews. Neuroscience
– volume: 2
  start-page: 75
  year: 2011
  ident: bb001.11
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Frontiers in Psychiatry
– volume: 40
  start-page: 1409
  year: 2010
  end-page: 1422
  ident: bb001.38
  article-title: A systematic review of the effects of antipsychotic drugs on brain volume
  publication-title: Psychological Medicine
– volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  ident: bb001.12
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
– volume: 46
  start-page: 627
  year: 1999
  end-page: 649
  ident: bb001.41
  article-title: Structural brain imaging in schizophrenia: a selective review
  publication-title: Biological Psychiatry
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bb001.43
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 56
  start-page: 2043
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.16
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nature Reviews. Neuroscience
– volume: 80
  start-page: 360
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.27
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 36
  start-page: 713
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.52
  article-title: Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbn145
– volume: 46
  start-page: 627
  year: 1999
  ident: 10.1016/j.nicl.2014.07.003_bb001.41
  article-title: Structural brain imaging in schizophrenia: a selective review
  publication-title: Biological Psychiatry
  doi: 10.1016/S0006-3223(99)00071-2
– volume: 169
  start-page: 1092
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.54
  article-title: Thalamocortical dysconnectivity in schizophrenia
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2012.12010056
– year: 1950
  ident: 10.1016/j.nicl.2014.07.003_bb001.6
– volume: 54
  start-page: 875
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.48
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 3
  start-page: 31
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.30
  article-title: Dynamic properties of functional connectivity in the rodent
  publication-title: Brain Connectivity
  doi: 10.1089/brain.2012.0115
– volume: 24
  start-page: 663
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.1
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhs352
– volume: 59
  start-page: 2142
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.43
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 48
  start-page: 556
  year: 2000
  ident: 10.1016/j.nicl.2014.07.003_bb001.40
  article-title: Neurobiology of schizophrenia
  publication-title: Annals of Neurology
  doi: 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2
– volume: 20
  start-page: 466
  year: 2003
  ident: 10.1016/j.nicl.2014.07.003_bb001.8
  article-title: A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00332-X
– volume: 54
  start-page: 287
  year: 2001
  ident: 10.1016/j.nicl.2014.07.003_bb001.36
  article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man
  publication-title: Brain Research Bulletin
  doi: 10.1016/S0361-9230(00)00437-8
– volume: 39
  start-page: 1666
  year: 2008
  ident: 10.1016/j.nicl.2014.07.003_bb001.29
  article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.001
– volume: 76
  start-page: 183
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.55
  article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.004
– volume: 32
  start-page: 2075
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.19
  article-title: Comparison of multi-subject ICA methods for analysis of fMRI data
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.21170
– volume: 23
  start-page: 351
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.44
  article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
  doi: 10.1007/s10334-010-0197-8
– start-page: 2334
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.51
  article-title: Brain covariance selection: better individual functional connectivity models using population prior
– volume: 9
  start-page: 432
  year: 2008
  ident: 10.1016/j.nicl.2014.07.003_bb001.24
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics (Oxford, England)
  doi: 10.1093/biostatistics/kxm045
– volume: 63
  start-page: 1712
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.26
  article-title: Periodic changes in fMRI connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.078
– volume: 6
  start-page: 2125
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.37
  article-title: The graphical lasso: new insights and alternatives
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/12-EJS740
– volume: 62
  start-page: 2296
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.21
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: 14
  start-page: 140
  year: 2001
  ident: 10.1016/j.nicl.2014.07.003_bb001.10
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.1048
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1016/j.nicl.2014.07.003_bb001.4
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.6.1129
– year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.5
  article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness
  publication-title: Cerebral Cortex
– volume: 117
  start-page: 347
  year: 2009
  ident: 10.1016/j.nicl.2014.07.003_bb001.9
  article-title: The thalamus and schizophrenia: current status of research
  publication-title: Acta Neuropathologica
  doi: 10.1007/s00401-008-0404-0
– year: 2001
  ident: 10.1016/j.nicl.2014.07.003_bb001.13
– volume: 61
  start-page: 907
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.15
  article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.070
– volume: 34
  start-page: 2154
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.28
  article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22058
– volume: 37
  start-page: 499
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.34
  article-title: Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2011.215
– volume: 22
  start-page: 1326
  year: 2001
  ident: 10.1016/j.nicl.2014.07.003_bb001.14
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR. American Journal of Neuroradiology
– volume: 30
  start-page: 11379
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.49
  article-title: Development of a large-scale functional brain network during human non-rapid eye movement sleep
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2015-10.2010
– volume: 7
  start-page: 118
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.18
  article-title: The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2013.00118
– volume: 40
  start-page: 1409
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.38
  article-title: A systematic review of the effects of antipsychotic drugs on brain volume
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291709992297
– volume: 106
  start-page: 4489
  year: 2009
  ident: 10.1016/j.nicl.2014.07.003_bb001.32
  article-title: Cortical network functional connectivity in the descent to sleep
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0900924106
– year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.2
– volume: 37
  start-page: 306
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.20
  article-title: The thalamic reticular nucleus and schizophrenia
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbq142
– volume: 110
  start-page: 4392
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.33
  article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1216856110
– volume: 33
  start-page: 11239
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.17
  article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1091-13.2013
– volume: 30
  start-page: 115
  year: 1998
  ident: 10.1016/j.nicl.2014.07.003_bb001.25
  article-title: The disconnection hypothesis
  publication-title: Schizophrenia Research
  doi: 10.1016/S0920-9964(97)00140-0
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.nicl.2014.07.003_bb001.47
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0905267106
– volume: 103
  start-page: 297
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.50
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00783.2009
– volume: 2
  start-page: 75
  year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.11
  article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder
  publication-title: Frontiers in Psychiatry
– year: 1971
  ident: 10.1016/j.nicl.2014.07.003_bb001.31
– volume: 109
  start-page: 5856
  year: 2012
  ident: 10.1016/j.nicl.2014.07.003_bb001.7
  article-title: Hierarchical clustering of brain activity during human nonrapid eye movement sleep
  publication-title: Proceedings of the National Academy of Sciences of the U.S.A.
  doi: 10.1073/pnas.1111133109
– volume: 35
  start-page: 15
  year: 2009
  ident: 10.1016/j.nicl.2014.07.003_bb001.42
  article-title: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium
  publication-title: Schizophrenia Bulletin
  doi: 10.1093/schbul/sbn159
– volume: 4
  start-page: 19
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.22
  article-title: Clinical applications of resting state functional connectivity
  publication-title: Frontiers in Systems Neuroscience
– volume: 165
  start-page: 944
  year: 2008
  ident: 10.1016/j.nicl.2014.07.003_bb001.35
  article-title: Divergent approaches converge on frontal lobe dysfunction in schizophrenia
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2008.08050735
– volume: 8
  start-page: 700
  year: 2007
  ident: 10.1016/j.nicl.2014.07.003_bb001.23
  article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn2201
– volume: 50
  start-page: 81
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.12
  article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.011
– volume: 106
  start-page: 1279
  year: 2009
  ident: 10.1016/j.nicl.2014.07.003_bb001.53
  article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia
  publication-title: Proceedings of the National Academy of Sciences of the U.S.A.
  doi: 10.1073/pnas.0809141106
– volume: 64
  start-page: 240
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.46
  article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.052
– volume: 74
  start-page: 288
  year: 2013
  ident: 10.1016/j.nicl.2014.07.003_bb001.39
  article-title: Infraslow LFP correlates to resting-state fMRI BOLD signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.035
– volume: 31
  start-page: 2003
  year: 2010
  ident: 10.1016/j.nicl.2014.07.003_bb001.45
  article-title: Overall brain connectivity maps show corticosubcortical abnormalities in schizophrenia
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20993
– year: 2011
  ident: 10.1016/j.nicl.2014.07.003_bb001.3
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2011.00002
SSID ssj0000800766
Score 2.5446851
Snippet Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional...
AbstractSchizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 298
SubjectTerms Adult
Brain - physiopathology
Brain Mapping
Female
Humans
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Male
Neural Pathways - physiopathology
Radiology
Schizophrenia - physiopathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGHopdhj72yPqACuxWGJNkPZJjnygKpJetQG-CLMtYisIp5vTQf19SkoO4G9JLr5bpRBQtfjLJj4T8UEZWnlWskKr0haxdVTjwJAWcBFwJAL9isVxseqOvbuX1nbpbafWFOWGJHjgp7mdw2tXCGFZzL2UD_tV4gNyNkYo5r2IdOfi8lcPUfcZBJgYqheBlwdVY5IqZlNyFrLOY1yUjc2ffMSt7pUjeP3BO_4LP1zmUK07pcot8ymiSnqRZbJMPod0hm9McL98l4Tw1nKfovtJXP-oxtcWnphHUZU4SikxOYIl0gb4LayRpLDXq6Lyh9XM3EJq1tFvN1ftMbi8vfp9dFbmxQuG1ZItChNI5LV0zVq7itS-FV2NWawM65nBJw-7ZADRDrDBRqpKqMhK5wLxTDWwR5Rey0c7b8I3QCXfCB1gRpwVgG-Ekr8f1xCgDuMOYyYjwXrHWZ9ZxbH7xYPv0snuLi2FxMSzDYHg5IsdLmcfEubH27lNcr-WdyJcdL4AV2WxF9i0rGpGyX23bl6TCJgoPmq39afM_qdDlfaCz3HbCMvsLrRCNEI6zCGpB8qg3KQvvMwZpXBvmTyChMFAL_0-PyNdkYsupARbVMAQjZmB8g7kPR9rZn8gZLrnkAPW_v4ey9shHVEL6ELVPNhZ_n8IBQLNFdRjfwhf_pzU9
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158214000953
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158214000953
https://www.ncbi.nlm.nih.gov/pubmed/25161896
https://www.proquest.com/docview/1558518976
https://pubmed.ncbi.nlm.nih.gov/PMC4141977
https://doaj.org/article/ea6ad2770d1c44f3897c666f7450ac57
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELemTkK8IMZnYZuMxBsKsh1_tA_TtAFThVReoFLfLMdxoNOUjqaT2H_PneOUBkpfndiJ7bPvZ9_d7wh5q4wsPCtYJlXuM1m6InOgSTI4CbgcAH7BYrjY9IuezOTnuZofkC7dURrAZufRDvNJzVY373_9vD-HBX_2x1cLSWTRTUtGIk4k_zwEzWRwoU4T3L9O6MhE86UQPM-4GokUR7O7GWQKVsgoj5T-W2orsvv3tNe_6PRvJ8strXX1mDxKcJNetPJxRA5C_YQ8mCaD-lMSPrYZ6Snqt_ZakHr0ffFtVgnqEmkJRaonGDK6RuWGQZQ0xiI1dFnR8r7pVVrUtNl25ntGZlefvn2YZCnzQua1ZOtMhNw5LV01Uq7gpc-FVyNWalNyz6FIw_ZaAXZDMDFWqpCqMBLJwrxTFewh-XMyqJd1eEnomDvhg9faaQHgRzjJy1E5NsoAMDFmPCS8G1jrEy05Zse4sZ3_2bXFebE4L5ahtTwfknebOrctKcfety9xvjZvIqF2LFiuvtu0Pm1w2pXCGAY9lLICGGfgn3VlpGLOKzMkeTfbtotZhV0WGlrs_bTZVSs0nZxbbhthmf2KAonyCOddRL1Q800nUhYWPFpxXB2Wd1BDoSUX_k8PyYtWxDZd66QVvtsTvl7f-0_qxY9IKi655HAWePXfNl-Th9iz9vrpmAzWq7twAoBsXZzGi4zTuNZ-A7wLMac
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+functional+connectivity+analysis+reveals+transient+states+of+dysconnectivity+in+schizophrenia&rft.jtitle=NeuroImage+clinical&rft.au=Damaraju%2C+E&rft.au=Allen%2C+E+A&rft.au=Belger%2C+A&rft.au=Ford%2C+J+M&rft.date=2014-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=5&rft.spage=298&rft_id=info:doi/10.1016%2Fj.nicl.2014.07.003&rft_id=info%3Apmid%2F25161896&rft.externalDocID=25161896
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00021%2Fcov150h.gif