Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differen...
Saved in:
Published in | NeuroImage clinical Vol. 5; no. C; pp. 298 - 308 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.01.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.
•Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner |
---|---|
AbstractList | AbstractSchizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k -means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. • Studied both static and dynamic connectivity changes in schizophrenia during rest • Small but significant connectivity differences might be obscured in static analysis. • Patients show significant differences in dwell times in multiple states. • Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. •Studied both static and dynamic connectivity changes in schizophrenia during rest•Small but significant connectivity differences might be obscured in static analysis.•Patients show significant differences in dwell times in multiple states.•Disrupted thalamo-cortical connectivity in schizophrenia in a state-specific manner Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences. |
Author | McEwen, S. van Erp, T.G. Ford, J.M. Potkin, S.G. Belger, A. Calhoun, V.D. Mathalon, D.H. Turner, J.A. Preda, A. Mueller, B.A. Vaidya, J.G. Pearlson, G.D. Damaraju, E. Allen, E.A. |
AuthorAffiliation | a The Mind Research Network, Albuquerque, NM, USA g Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA b K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway l Department of ECE, University of New Mexico, NM, USA d Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA e San Francisco VA Medical Center, San Francisco, CA, USA k Department of Psychiatry, University of Iowa, IA, USA f Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA j Department of Psychology, Georgia State University, GA, USA c Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA h Yale University, School of Medicine, New Haven, CT, USA i Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA |
AuthorAffiliation_xml | – name: d Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA – name: l Department of ECE, University of New Mexico, NM, USA – name: j Department of Psychology, Georgia State University, GA, USA – name: b K.G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway – name: c Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA – name: a The Mind Research Network, Albuquerque, NM, USA – name: i Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA – name: h Yale University, School of Medicine, New Haven, CT, USA – name: e San Francisco VA Medical Center, San Francisco, CA, USA – name: k Department of Psychiatry, University of Iowa, IA, USA – name: f Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA – name: g Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA |
Author_xml | – sequence: 1 givenname: E. surname: Damaraju fullname: Damaraju, E. email: edamaraju@mrn.org organization: The Mind Research Network, Albuquerque, NM, USA – sequence: 2 givenname: E.A. surname: Allen fullname: Allen, E.A. organization: The Mind Research Network, Albuquerque, NM, USA – sequence: 3 givenname: A. surname: Belger fullname: Belger, A. organization: Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA – sequence: 4 givenname: J.M. surname: Ford fullname: Ford, J.M. organization: Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA – sequence: 5 givenname: S. surname: McEwen fullname: McEwen, S. organization: Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA – sequence: 6 givenname: D.H. surname: Mathalon fullname: Mathalon, D.H. organization: Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA – sequence: 7 givenname: B.A. surname: Mueller fullname: Mueller, B.A. organization: Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA – sequence: 8 givenname: G.D. surname: Pearlson fullname: Pearlson, G.D. organization: Yale University, School of Medicine, New Haven, CT, USA – sequence: 9 givenname: S.G. surname: Potkin fullname: Potkin, S.G. organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA – sequence: 10 givenname: A. surname: Preda fullname: Preda, A. organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA – sequence: 11 givenname: J.A. surname: Turner fullname: Turner, J.A. organization: Department of Psychology, Georgia State University, GA, USA – sequence: 12 givenname: J.G. surname: Vaidya fullname: Vaidya, J.G. organization: Department of Psychiatry, University of Iowa, IA, USA – sequence: 13 givenname: T.G. surname: van Erp fullname: van Erp, T.G. organization: Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA – sequence: 14 givenname: V.D. surname: Calhoun fullname: Calhoun, V.D. organization: The Mind Research Network, Albuquerque, NM, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25161896$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_oH-CAcuSywU78kXBAQoVCpUocgLM160y6XrL2YicrhV_PpLtUXSSaS5LJO89k_L7n2YkPHrPsFWcFZ1y9XRfe2b4oGRcF0wVj1bPsrCx5teCyLk8ePZ9mlymtGV01Y1qpF9lpKbnidaPOMvw4edg4m3ejt4MLHvrcBu-RXnZumHKgypRcyiPuEPqUDxF8cuiHPA0wYMpDl7dTOmpyPk925X6H7Sqid_Aye95RL14e7hfZj-tP36--LG6_fr65-nC7sEqwYVFiBaAEdLWEJW9tVVpZs1bplltOJSWU7upKNozLRsqlkEstRFVzC7LTrKousps9tw2wNtvoNhAnE8CZ-0KIdwbiQOeGBkFBW2rNiC1EV9WNtkqpTgvJwEpNrPd71nZcbrC1tHGE_gh6_MW7lbkLOyO44I2eAW8OgBh-jZgGs3HJYt-DxzAmw6WsJbmgFUlfP571MOSvTyQo9wIbQ0oRuwcJZ2bOg1mbOQ9mzoNh2rD706j_abKOLCOT6X9d_3TrYXkkt3YOo7G9IxX0P3HCtA5jpFzQDiaVhplvc9jmrHFBMWvkDHj3fwC54Z6a_gc3febA |
CitedBy_id | crossref_primary_10_1002_hbm_25671 crossref_primary_10_1002_hbm_24580 crossref_primary_10_1002_hbm_25555 crossref_primary_10_1007_s11682_019_00255_9 crossref_primary_10_1002_hbm_23135 crossref_primary_10_1002_hbm_24343 crossref_primary_10_1016_j_jad_2023_02_060 crossref_primary_10_3389_fnins_2019_00542 crossref_primary_10_3390_e24081148 crossref_primary_10_1140_epjs_s11734_025_01587_y crossref_primary_10_7554_eLife_62324 crossref_primary_10_1177_0004867420948960 crossref_primary_10_1016_j_bpsc_2017_09_008 crossref_primary_10_1007_s12264_024_01214_1 crossref_primary_10_1007_s11571_023_10054_0 crossref_primary_10_1016_j_nicl_2019_101966 crossref_primary_10_1016_j_schres_2019_01_035 crossref_primary_10_3389_fnagi_2022_944485 crossref_primary_10_1007_s00234_022_02895_z crossref_primary_10_1016_j_nicl_2019_101959 crossref_primary_10_1016_j_neurobiolaging_2023_03_006 crossref_primary_10_1016_j_neuroimage_2020_117464 crossref_primary_10_1016_j_nicl_2020_102396 crossref_primary_10_1093_brain_aww143 crossref_primary_10_1016_j_schres_2020_04_033 crossref_primary_10_1093_brain_awx233 crossref_primary_10_1002_hbm_25303 crossref_primary_10_1093_schbul_sby077 crossref_primary_10_1371_journal_pone_0249502 crossref_primary_10_3389_fpsyt_2021_687580 crossref_primary_10_1016_j_media_2025_103462 crossref_primary_10_1002_hbm_23240 crossref_primary_10_1002_hbm_24572 crossref_primary_10_1007_s11055_021_01146_7 crossref_primary_10_1016_j_jad_2020_11_012 crossref_primary_10_3389_fnins_2021_683633 crossref_primary_10_1016_j_neuron_2015_01_014 crossref_primary_10_1017_S0033291719001132 crossref_primary_10_1038_s41598_019_46702_x crossref_primary_10_1017_S0033291718001502 crossref_primary_10_1109_TNSRE_2023_3344995 crossref_primary_10_3389_fnins_2020_00327 crossref_primary_10_3390_brainsci11050582 crossref_primary_10_1016_j_neuroimage_2017_09_012 crossref_primary_10_1038_s41537_023_00371_y crossref_primary_10_1016_j_neuroimage_2017_10_022 crossref_primary_10_1016_j_jneumeth_2023_109794 crossref_primary_10_1016_j_neuroimage_2017_09_010 crossref_primary_10_1016_j_pnpbp_2023_110827 crossref_primary_10_1016_j_jad_2021_04_005 crossref_primary_10_1002_hbm_24447 crossref_primary_10_1002_hbm_26746 crossref_primary_10_1371_journal_pone_0279260 crossref_primary_10_1016_j_media_2021_102026 crossref_primary_10_1016_j_media_2018_03_013 crossref_primary_10_1093_schbul_sby086 crossref_primary_10_1089_brain_2020_0815 crossref_primary_10_3389_fpsyt_2015_00174 crossref_primary_10_1016_j_tins_2014_11_006 crossref_primary_10_1093_schbul_sbz052 crossref_primary_10_1016_j_neuroimage_2023_120132 crossref_primary_10_1016_j_dcn_2015_08_006 crossref_primary_10_1002_hbm_23151 crossref_primary_10_1016_j_bpsc_2024_10_011 crossref_primary_10_3389_fnhum_2016_00476 crossref_primary_10_1016_j_nicl_2024_103584 crossref_primary_10_1155_2016_4182483 crossref_primary_10_1016_j_neuroimage_2015_07_064 crossref_primary_10_1016_j_nicl_2019_101747 crossref_primary_10_1016_j_neuroimage_2017_09_020 crossref_primary_10_1109_TBME_2020_2964724 crossref_primary_10_1016_j_jpsychires_2022_03_010 crossref_primary_10_1016_j_nicl_2020_102375 crossref_primary_10_3389_fnins_2021_696853 crossref_primary_10_1016_j_schres_2023_02_007 crossref_primary_10_3389_fnins_2022_976229 crossref_primary_10_1093_cercor_bhab423 crossref_primary_10_1002_hbm_25205 crossref_primary_10_1016_j_bpsc_2024_02_013 crossref_primary_10_1016_j_sleep_2022_12_003 crossref_primary_10_1089_brain_2020_0847 crossref_primary_10_1016_j_schres_2018_06_007 crossref_primary_10_1002_hbm_24591 crossref_primary_10_1002_hbm_26776 crossref_primary_10_1002_hbm_26773 crossref_primary_10_1016_j_jneumeth_2018_03_015 crossref_primary_10_3389_fncom_2017_00014 crossref_primary_10_1016_j_neurobiolaging_2020_05_017 crossref_primary_10_1080_17588928_2020_1793752 crossref_primary_10_1016_j_neuroimage_2020_117429 crossref_primary_10_1016_j_neuroimage_2017_09_036 crossref_primary_10_1111_cns_12499 crossref_primary_10_1016_j_neuroimage_2017_09_035 crossref_primary_10_1016_j_pnpbp_2025_111330 crossref_primary_10_1017_S0033291720004882 crossref_primary_10_1177_13524585221101470 crossref_primary_10_3389_fnins_2022_770468 crossref_primary_10_1002_aur_2020 crossref_primary_10_1364_BOE_9_003694 crossref_primary_10_1016_j_neuroimage_2017_12_074 crossref_primary_10_1016_j_jpsychires_2024_06_012 crossref_primary_10_1089_brain_2020_0950 crossref_primary_10_3389_fpubh_2021_734370 crossref_primary_10_1002_hbm_25799 crossref_primary_10_1038_s41537_017_0022_8 crossref_primary_10_1523_ENEURO_0283_21_2021 crossref_primary_10_1016_j_mex_2020_101168 crossref_primary_10_1016_j_schres_2021_06_014 crossref_primary_10_3389_fnins_2022_816331 crossref_primary_10_1002_hbm_26649 crossref_primary_10_1016_j_schres_2020_03_020 crossref_primary_10_1007_s11682_021_00592_8 crossref_primary_10_1016_j_neuroimage_2022_119288 crossref_primary_10_1002_hbm_25873 crossref_primary_10_1016_j_conb_2019_01_009 crossref_primary_10_3389_fnhum_2021_697696 crossref_primary_10_1371_journal_pcbi_1011274 crossref_primary_10_1007_s11042_018_6424_4 crossref_primary_10_1111_exsy_12644 crossref_primary_10_1055_s_0044_1787761 crossref_primary_10_1109_TBME_2020_3011363 crossref_primary_10_3389_fnins_2019_00856 crossref_primary_10_3389_fnins_2019_00618 crossref_primary_10_1038_s41467_018_03462_y crossref_primary_10_3389_fpsyt_2019_00234 crossref_primary_10_1016_j_neurobiolaging_2016_11_013 crossref_primary_10_1016_j_neuroimage_2020_116571 crossref_primary_10_1111_desc_13389 crossref_primary_10_1093_schbul_sbw093 crossref_primary_10_3389_fneur_2020_602586 crossref_primary_10_1109_TBME_2019_2895663 crossref_primary_10_1016_j_nbas_2023_100105 crossref_primary_10_1016_j_bpsc_2018_03_011 crossref_primary_10_2139_ssrn_4174810 crossref_primary_10_3389_fpsyt_2024_1165424 crossref_primary_10_1016_j_nicl_2019_101653 crossref_primary_10_1103_PhysRevE_109_054312 crossref_primary_10_1016_j_jneumeth_2020_108651 crossref_primary_10_3389_fnins_2019_00873 crossref_primary_10_1016_j_nicl_2020_102299 crossref_primary_10_1017_S0033291720002445 crossref_primary_10_3389_fnins_2019_00634 crossref_primary_10_1016_j_jad_2023_01_109 crossref_primary_10_3389_fnhum_2016_00163 crossref_primary_10_1016_j_nicl_2018_06_018 crossref_primary_10_1016_j_neuroimage_2021_118801 crossref_primary_10_1038_s41598_021_94825_x crossref_primary_10_1109_TMI_2019_2929959 crossref_primary_10_1016_j_cmpb_2017_11_017 crossref_primary_10_1038_s41598_019_49726_5 crossref_primary_10_1155_2020_4107065 crossref_primary_10_1212_WNL_0000000000007607 crossref_primary_10_1007_s11682_018_9949_2 crossref_primary_10_1002_hbm_24529 crossref_primary_10_1002_hbm_25617 crossref_primary_10_1007_s11682_019_00233_1 crossref_primary_10_1016_j_neuroimage_2022_119391 crossref_primary_10_1002_hbm_25736 crossref_primary_10_3389_fpsyt_2019_00484 crossref_primary_10_1002_hbm_25890 crossref_primary_10_1016_j_neuroimage_2024_120895 crossref_primary_10_1371_journal_pbio_1002469 crossref_primary_10_1016_j_jpsychires_2018_09_015 crossref_primary_10_1016_j_neuroimage_2022_119188 crossref_primary_10_1109_TMI_2017_2755369 crossref_primary_10_1007_s00429_023_02697_w crossref_primary_10_1016_j_neuroimage_2015_12_001 crossref_primary_10_1002_hbm_24202 crossref_primary_10_1016_j_jpsychires_2020_08_027 crossref_primary_10_1016_j_nicl_2020_102169 crossref_primary_10_3389_fnins_2020_00214 crossref_primary_10_1002_brb3_1255 crossref_primary_10_1016_j_ijpsycho_2024_112354 crossref_primary_10_1016_j_neuroimage_2019_01_080 crossref_primary_10_1016_j_neuroimage_2015_07_022 crossref_primary_10_1016_j_neuroimage_2020_116556 crossref_primary_10_1109_ACCESS_2022_3178748 crossref_primary_10_1186_s13742_014_0042_5 crossref_primary_10_1016_j_ynirp_2023_100186 crossref_primary_10_3389_fnins_2024_1429084 crossref_primary_10_1089_brain_2020_0920 crossref_primary_10_1002_hbm_23346 crossref_primary_10_1093_cercor_bhab503 crossref_primary_10_1002_hbm_24559 crossref_primary_10_1002_hbm_25649 crossref_primary_10_1016_j_bpsc_2019_04_004 crossref_primary_10_1007_s11682_019_00220_6 crossref_primary_10_3389_fpsyt_2017_00014 crossref_primary_10_1002_hbm_25763 crossref_primary_10_1002_hbm_25884 crossref_primary_10_3389_fnbeh_2014_00404 crossref_primary_10_1007_s12021_021_09554_3 crossref_primary_10_1016_j_plrev_2023_10_012 crossref_primary_10_1016_j_bbr_2021_113618 crossref_primary_10_1016_j_nicl_2024_103655 crossref_primary_10_1155_2017_4820935 crossref_primary_10_1016_j_neuroimage_2017_02_066 crossref_primary_10_1177_1352458519837707 crossref_primary_10_1177_1352458519837704 crossref_primary_10_1016_j_nicl_2020_102284 crossref_primary_10_1002_hbm_23215 crossref_primary_10_1016_j_neuroimage_2016_10_026 crossref_primary_10_1371_journal_pone_0131209 crossref_primary_10_1016_j_neuroimage_2022_119052 crossref_primary_10_1002_hbm_23890 crossref_primary_10_3389_fnins_2017_00639 crossref_primary_10_1002_hbm_24741 crossref_primary_10_3389_fninf_2019_00005 crossref_primary_10_3389_fneur_2024_1363869 crossref_primary_10_1093_cercor_bhaa391 crossref_primary_10_1162_netn_a_00209 crossref_primary_10_3389_fnins_2022_821179 crossref_primary_10_1007_s11042_017_5163_2 crossref_primary_10_1016_j_neuroimage_2017_07_005 crossref_primary_10_1016_j_jad_2018_11_002 crossref_primary_10_1016_j_schres_2015_10_004 crossref_primary_10_1007_s00247_024_06022_3 crossref_primary_10_3389_fnagi_2021_646017 crossref_primary_10_3389_fnhum_2019_00006 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1109_ACCESS_2020_2974997 crossref_primary_10_1016_j_bbr_2017_10_001 crossref_primary_10_1016_j_neuroimage_2014_11_054 crossref_primary_10_1016_j_neuroimage_2021_118555 crossref_primary_10_3389_fnins_2023_1078995 crossref_primary_10_1002_hbm_24855 crossref_primary_10_1016_j_jpsychires_2022_10_067 crossref_primary_10_1093_schbul_sby112 crossref_primary_10_3389_fnsys_2021_724805 crossref_primary_10_1002_hbm_23884 crossref_primary_10_1002_hbm_23764 crossref_primary_10_1016_j_pnpbp_2024_110957 crossref_primary_10_1016_j_clinph_2019_08_009 crossref_primary_10_1016_j_neuroimage_2017_08_044 crossref_primary_10_1111_cns_12998 crossref_primary_10_1016_j_jad_2023_04_082 crossref_primary_10_1016_j_artmed_2024_102984 crossref_primary_10_1038_s41598_018_28237_9 crossref_primary_10_3390_app9204298 crossref_primary_10_3389_fncir_2021_719364 crossref_primary_10_3389_fninf_2022_859309 crossref_primary_10_1016_j_bpsc_2018_05_005 crossref_primary_10_1016_j_nicl_2024_103630 crossref_primary_10_1038_s41598_020_66967_x crossref_primary_10_1007_s00234_017_1881_4 crossref_primary_10_1007_s00406_024_01803_1 crossref_primary_10_1162_netn_a_00432 crossref_primary_10_3389_fnins_2018_00600 crossref_primary_10_1007_s10548_017_0546_2 crossref_primary_10_1017_S1355617716000060 crossref_primary_10_1093_braincomms_fcae119 crossref_primary_10_1038_s41467_021_23694_9 crossref_primary_10_1007_s11571_022_09899_8 crossref_primary_10_1093_cercor_bhae402 crossref_primary_10_1016_j_jad_2018_12_079 crossref_primary_10_1002_hbm_23553 crossref_primary_10_1002_hbm_25972 crossref_primary_10_3389_fninf_2018_00055 crossref_primary_10_1016_j_psychres_2024_116351 crossref_primary_10_1002_hbm_23430 crossref_primary_10_1016_j_brainres_2022_147996 crossref_primary_10_3389_fnhum_2023_1295326 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_1111_adb_13329 crossref_primary_10_1109_JBHI_2021_3107305 crossref_primary_10_1007_s11682_017_9814_8 crossref_primary_10_1038_s41398_022_01795_3 crossref_primary_10_1186_s12874_022_01544_6 crossref_primary_10_1002_hbm_24519 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_1016_j_neuroimage_2020_117047 crossref_primary_10_1109_ACCESS_2018_2875492 crossref_primary_10_1177_1087054720964561 crossref_primary_10_1016_j_neuroimage_2018_02_036 crossref_primary_10_1109_TSIPN_2020_2982765 crossref_primary_10_3389_fnagi_2022_977917 crossref_primary_10_3389_fnins_2017_00624 crossref_primary_10_1016_j_bbe_2020_05_008 crossref_primary_10_1177_15459683231179172 crossref_primary_10_26599_BSA_2020_9050020 crossref_primary_10_1016_j_neuroimage_2019_04_042 crossref_primary_10_3389_fnhum_2024_1453638 crossref_primary_10_1093_braincomms_fcab298 crossref_primary_10_3389_fncir_2022_681544 crossref_primary_10_1002_hbm_24751 crossref_primary_10_1002_hbm_25720 crossref_primary_10_1002_brb3_2414 crossref_primary_10_1002_brb3_2535 crossref_primary_10_1016_j_neuroimage_2018_03_074 crossref_primary_10_3389_fnsys_2018_00068 crossref_primary_10_1016_j_jad_2022_02_052 crossref_primary_10_1093_schbul_sby108 crossref_primary_10_1016_j_schres_2018_12_005 crossref_primary_10_3389_fnagi_2017_00203 crossref_primary_10_1016_j_neuroimage_2020_117156 crossref_primary_10_3389_fnins_2018_00741 crossref_primary_10_1002_hbm_24986 crossref_primary_10_1038_s41531_021_00257_9 crossref_primary_10_1089_brain_2016_0454 crossref_primary_10_3389_fncom_2019_00075 crossref_primary_10_1002_hbm_23896 crossref_primary_10_1038_s42003_022_03903_x crossref_primary_10_1093_gigascience_giae009 crossref_primary_10_1016_j_bpsgos_2024_100367 crossref_primary_10_1002_hbm_24504 crossref_primary_10_1002_hbm_24505 crossref_primary_10_1002_hbm_25714 crossref_primary_10_1016_j_bpsc_2024_12_002 crossref_primary_10_1016_j_neuroimage_2018_01_019 crossref_primary_10_3389_fnins_2021_682110 crossref_primary_10_1016_j_neuroimage_2017_08_006 crossref_primary_10_1016_j_jad_2023_10_143 crossref_primary_10_1016_j_brainresbull_2021_04_025 crossref_primary_10_1038_s41380_023_02395_3 crossref_primary_10_3389_fninf_2017_00028 crossref_primary_10_1162_netn_a_00247 crossref_primary_10_1109_TBME_2018_2880428 crossref_primary_10_3389_fneur_2022_829714 crossref_primary_10_1017_S003329171800003X crossref_primary_10_1038_s41398_022_02147_x crossref_primary_10_1109_LSP_2016_2585182 crossref_primary_10_3389_fnins_2022_1008652 crossref_primary_10_3389_fnsys_2020_00049 crossref_primary_10_1016_j_neuroimage_2020_117027 crossref_primary_10_1089_brain_2018_0629 crossref_primary_10_3389_fpsyt_2019_00995 crossref_primary_10_1093_cercor_bhac534 crossref_primary_10_1016_j_neuroimage_2020_117385 crossref_primary_10_1007_s10072_020_04322_8 crossref_primary_10_1002_hbm_24812 crossref_primary_10_1038_s41537_018_0070_8 crossref_primary_10_3389_fncel_2022_1015556 crossref_primary_10_1371_journal_pone_0234790 crossref_primary_10_1038_s41380_024_02767_3 crossref_primary_10_1016_j_bspc_2022_104521 crossref_primary_10_1038_s41398_022_02111_9 crossref_primary_10_1016_j_neuroimage_2021_118518 crossref_primary_10_1016_j_nicl_2019_101812 crossref_primary_10_20900_jpbs_20220009 crossref_primary_10_3389_fncir_2021_649417 crossref_primary_10_1002_hbm_24808 crossref_primary_10_1016_j_neuroimage_2021_118407 crossref_primary_10_1038_s41467_018_03664_4 crossref_primary_10_3389_fnins_2020_00881 crossref_primary_10_1016_j_biopsych_2022_03_019 crossref_primary_10_1002_hbm_23711 crossref_primary_10_1016_j_neuroimage_2021_117791 crossref_primary_10_1109_TMI_2019_2893651 crossref_primary_10_1093_braincomms_fcae154 crossref_primary_10_1093_cercor_bhac421 crossref_primary_10_1016_j_neuropsychologia_2023_108519 crossref_primary_10_1002_erv_3188 crossref_primary_10_1038_s41386_021_01039_w crossref_primary_10_1109_TBME_2016_2600637 crossref_primary_10_3389_fnins_2022_965937 crossref_primary_10_1111_cns_14904 crossref_primary_10_1093_cercor_bhab220 crossref_primary_10_1016_j_neuroimage_2017_08_029 crossref_primary_10_1016_j_pnpbp_2023_110898 crossref_primary_10_1016_j_bspc_2021_103285 crossref_primary_10_1016_j_neubiorev_2018_09_011 crossref_primary_10_1016_j_schres_2016_10_021 crossref_primary_10_1088_1741_2552_ac514e crossref_primary_10_1152_physrev_00033_2019 crossref_primary_10_1038_tp_2017_40 crossref_primary_10_1016_j_nicl_2019_101937 crossref_primary_10_1089_brain_2018_0608 crossref_primary_10_1109_ACCESS_2019_2920978 crossref_primary_10_1016_j_eng_2018_10_001 crossref_primary_10_1016_j_heliyon_2022_e12276 crossref_primary_10_1089_brain_2018_0609 crossref_primary_10_1371_journal_pone_0224744 crossref_primary_10_1038_s41598_017_06389_4 crossref_primary_10_1155_2018_9394156 crossref_primary_10_1038_s41598_018_29538_9 crossref_primary_10_2174_1570159X21666221129105408 crossref_primary_10_3389_fnins_2022_756938 crossref_primary_10_1214_16_AOAS948 crossref_primary_10_1007_s12035_020_01995_2 crossref_primary_10_1016_j_neuroimage_2019_03_055 crossref_primary_10_1016_j_psychres_2022_114974 crossref_primary_10_1002_jmri_25429 crossref_primary_10_1016_j_neuroimage_2023_120060 crossref_primary_10_1016_j_nicl_2022_103203 crossref_primary_10_1016_j_pnpbp_2018_03_020 crossref_primary_10_3389_fnagi_2021_808094 crossref_primary_10_3389_fneur_2018_00810 crossref_primary_10_1002_brb3_1516 crossref_primary_10_1002_hbm_24827 crossref_primary_10_1038_s41398_023_02615_y crossref_primary_10_3389_fgene_2015_00276 crossref_primary_10_1038_s41598_017_06509_0 crossref_primary_10_1016_j_neuroimage_2021_118862 crossref_primary_10_1016_j_tins_2024_05_011 crossref_primary_10_1093_brain_awaa101 crossref_primary_10_1007_s11682_017_9718_7 crossref_primary_10_1016_j_neuroimage_2020_117111 crossref_primary_10_3389_fphar_2023_1102413 crossref_primary_10_30773_pi_2022_0091 crossref_primary_10_1109_TMI_2018_2831261 crossref_primary_10_1007_s00415_021_10580_z crossref_primary_10_52294_001c_129695 crossref_primary_10_1093_cercor_bhad022 crossref_primary_10_1016_j_neuroimage_2019_116116 crossref_primary_10_3389_fncom_2022_885126 crossref_primary_10_1007_s10548_021_00828_2 crossref_primary_10_3389_fnins_2021_621716 crossref_primary_10_1016_j_neuroimage_2018_01_058 crossref_primary_10_1111_jcpp_13970 crossref_primary_10_1109_MSP_2015_2478915 crossref_primary_10_1016_j_neuroimage_2015_09_003 crossref_primary_10_3389_fphys_2018_01704 crossref_primary_10_1007_s11065_015_9294_9 crossref_primary_10_1016_j_clinph_2015_03_011 crossref_primary_10_1038_s41467_020_17788_z crossref_primary_10_1007_s12021_017_9338_9 crossref_primary_10_1038_s41398_021_01398_4 crossref_primary_10_1162_netn_a_00163 crossref_primary_10_3389_fpsyt_2025_1529983 crossref_primary_10_1371_journal_pone_0225094 crossref_primary_10_1016_j_jneumeth_2022_109720 crossref_primary_10_1016_j_neuroimage_2018_07_004 crossref_primary_10_3389_fnagi_2019_00118 crossref_primary_10_1016_j_nic_2017_06_009 crossref_primary_10_1016_j_tics_2015_06_005 crossref_primary_10_1016_j_bbr_2019_112142 crossref_primary_10_1016_j_biopsych_2023_12_002 crossref_primary_10_3389_fnhum_2023_1134012 crossref_primary_10_1016_j_neuroimage_2019_116129 crossref_primary_10_1093_cercor_bhad030 crossref_primary_10_1007_s11571_022_09807_0 crossref_primary_10_1016_j_neuroimage_2015_09_010 crossref_primary_10_1162_netn_a_00155 crossref_primary_10_1016_j_bpsc_2021_07_004 crossref_primary_10_1109_TMI_2017_2786553 crossref_primary_10_3390_diagnostics12112720 crossref_primary_10_1016_j_jad_2022_12_057 crossref_primary_10_1109_TMI_2024_3502545 crossref_primary_10_1177_13872877241313056 crossref_primary_10_3389_fpsyg_2021_717519 crossref_primary_10_1007_s11682_024_00938_y crossref_primary_10_1007_s11571_021_09722_w crossref_primary_10_1080_20008066_2023_2213595 crossref_primary_10_3389_fpsyt_2018_00339 crossref_primary_10_1016_j_neuroimage_2019_116363 crossref_primary_10_1038_s44220_024_00341_y crossref_primary_10_1039_C7MD00448F crossref_primary_10_3389_fnhum_2014_00897 crossref_primary_10_1111_nyas_13656 crossref_primary_10_7717_peerj_17078 crossref_primary_10_1016_j_neuroimage_2023_119945 crossref_primary_10_1016_j_neuroimage_2018_01_075 crossref_primary_10_1038_s41380_020_00983_1 crossref_primary_10_1016_j_nbd_2023_106265 crossref_primary_10_3390_diagnostics12112632 crossref_primary_10_3389_fnins_2018_00114 crossref_primary_10_1093_scan_nsy059 crossref_primary_10_1162_jocn_a_01828 crossref_primary_10_3389_fnhum_2022_774921 crossref_primary_10_1186_s12916_023_03208_8 crossref_primary_10_3389_fnins_2021_721236 crossref_primary_10_1016_j_jpsychires_2023_09_021 crossref_primary_10_1109_TMI_2018_2863944 crossref_primary_10_1002_jnr_25136 crossref_primary_10_1016_j_mri_2019_05_031 crossref_primary_10_1145_3154524 crossref_primary_10_1111_ejn_15664 crossref_primary_10_1093_schbul_sbad107 crossref_primary_10_1093_braincomms_fcab227 crossref_primary_10_3389_fnagi_2022_913191 crossref_primary_10_1002_hbm_22847 crossref_primary_10_1162_netn_a_00372 crossref_primary_10_1177_02841851221109897 crossref_primary_10_1371_journal_pcbi_1007263 crossref_primary_10_3389_fnimg_2023_1097523 crossref_primary_10_1002_hbm_24902 crossref_primary_10_1111_adb_13395 crossref_primary_10_1016_j_pneurobio_2016_08_003 crossref_primary_10_1016_j_nicl_2020_102507 crossref_primary_10_17116_jnevro202012011170 crossref_primary_10_1093_cercor_bhac133 crossref_primary_10_1016_j_jocn_2025_111053 crossref_primary_10_3389_fnins_2016_00466 crossref_primary_10_1007_s00234_017_1875_2 crossref_primary_10_1016_j_tins_2017_04_003 crossref_primary_10_1016_j_neuroimage_2018_07_047 crossref_primary_10_1155_2022_9941832 crossref_primary_10_1016_j_neuroimage_2018_09_054 crossref_primary_10_1073_pnas_1420687112 crossref_primary_10_1007_s11427_020_1822_4 crossref_primary_10_1016_j_bspc_2020_102056 crossref_primary_10_1016_j_nicl_2017_06_023 crossref_primary_10_3389_fnhum_2022_875201 crossref_primary_10_1016_j_neuroimage_2016_12_061 crossref_primary_10_1016_j_schres_2017_09_035 crossref_primary_10_1016_j_parkreldis_2023_105777 crossref_primary_10_1016_j_wneu_2024_08_160 crossref_primary_10_1007_s00234_023_03259_x crossref_primary_10_3389_fnhum_2021_647518 crossref_primary_10_1371_journal_pbio_2002580 crossref_primary_10_1007_s10548_018_0666_3 crossref_primary_10_3389_fneur_2019_01083 crossref_primary_10_1016_j_neuron_2014_10_015 crossref_primary_10_3389_fnins_2019_00197 crossref_primary_10_1109_ACCESS_2020_3025828 crossref_primary_10_1016_j_jad_2024_08_165 crossref_primary_10_1089_brain_2018_0579 crossref_primary_10_1162_netn_a_00196 crossref_primary_10_3389_fnins_2018_00525 crossref_primary_10_1016_j_nbd_2024_106493 crossref_primary_10_1016_j_neuroscience_2019_11_025 crossref_primary_10_1162_netn_a_00071 crossref_primary_10_1093_cercor_bhw029 crossref_primary_10_3390_app112311392 crossref_primary_10_1186_s10194_021_01348_x crossref_primary_10_1016_j_neuroimage_2018_06_003 crossref_primary_10_1093_cercor_bhad113 crossref_primary_10_1016_j_jneumeth_2022_109539 crossref_primary_10_1016_j_schres_2015_11_021 crossref_primary_10_1093_cercor_bhx273 crossref_primary_10_1016_j_nicl_2018_02_025 crossref_primary_10_1007_s00234_022_03033_5 crossref_primary_10_1093_cercor_bhab181 crossref_primary_10_31887_DCNS_2018_20_2_vcalhoun crossref_primary_10_1109_TSIPN_2017_2774504 crossref_primary_10_1093_scan_nsaa114 crossref_primary_10_1016_j_neuroimage_2017_07_065 crossref_primary_10_1073_pnas_1501242112 crossref_primary_10_1162_netn_a_00063 crossref_primary_10_1111_bdi_12900 crossref_primary_10_1109_JSTSP_2020_3003891 crossref_primary_10_1016_j_biopsych_2023_03_024 crossref_primary_10_1016_j_neuroimage_2019_116453 crossref_primary_10_1016_j_nicl_2019_102071 crossref_primary_10_1038_s41598_020_63984_8 crossref_primary_10_1093_cercor_bhy232 crossref_primary_10_1016_j_neuroimage_2019_116347 crossref_primary_10_1016_j_neuroimage_2020_117190 crossref_primary_10_3389_fninf_2022_960607 crossref_primary_10_1016_j_bbr_2023_114506 crossref_primary_10_1016_j_neuroimage_2022_119737 crossref_primary_10_1093_brain_awz192 crossref_primary_10_3389_fncel_2022_1024192 crossref_primary_10_1016_j_tics_2017_04_007 crossref_primary_10_3389_fnhum_2017_00492 crossref_primary_10_1016_j_neuroimage_2021_118588 crossref_primary_10_1162_netn_a_00292 crossref_primary_10_3389_fneur_2020_606592 crossref_primary_10_1016_j_biopsych_2019_12_014 crossref_primary_10_3389_fneur_2019_01052 crossref_primary_10_1016_j_jad_2015_10_042 crossref_primary_10_3389_fpsyt_2020_608197 crossref_primary_10_1002_hbm_24064 crossref_primary_10_1089_brain_2017_0533 crossref_primary_10_1016_j_dsp_2021_103192 crossref_primary_10_3389_fncom_2023_1290089 crossref_primary_10_1093_schbul_sbac088 crossref_primary_10_1088_1741_2552_ac16b3 crossref_primary_10_1109_TCBB_2019_2899568 crossref_primary_10_1016_j_neuroimage_2015_07_002 crossref_primary_10_1088_1741_2552_ab0169 crossref_primary_10_1111_biom_13362 crossref_primary_10_1088_1741_2552_ad27ee crossref_primary_10_1093_schbul_sbae142 crossref_primary_10_1002_jmri_27353 crossref_primary_10_1155_2021_5573740 crossref_primary_10_3389_fpsyt_2021_659814 crossref_primary_10_1016_j_schres_2024_06_044 crossref_primary_10_3389_fpsyt_2022_877417 crossref_primary_10_1016_j_jad_2020_05_148 crossref_primary_10_1002_hbm_25020 crossref_primary_10_1002_hbm_26479 crossref_primary_10_1523_JNEUROSCI_4312_15_2016 crossref_primary_10_1016_j_neuroimage_2022_119476 crossref_primary_10_1016_j_nicl_2019_101692 crossref_primary_10_1002_hbm_26234 crossref_primary_10_1016_j_ynstr_2021_100377 crossref_primary_10_1109_TCDS_2021_3054504 crossref_primary_10_1523_JNEUROSCI_1940_23_2024 crossref_primary_10_1016_j_nicl_2021_102833 crossref_primary_10_3389_fnins_2022_840481 crossref_primary_10_1038_s41398_023_02599_9 crossref_primary_10_1002_jmri_28439 crossref_primary_10_1016_j_jad_2020_06_062 crossref_primary_10_1093_schbul_sbad042 crossref_primary_10_1038_srep34291 crossref_primary_10_1089_brain_2020_0896 crossref_primary_10_1002_hbm_70067 crossref_primary_10_1016_j_schres_2020_11_055 crossref_primary_10_1016_j_neuroimage_2018_10_004 crossref_primary_10_1016_j_neuroimage_2017_05_050 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_3389_fnins_2020_00258 crossref_primary_10_1371_journal_pone_0250222 crossref_primary_10_1007_s00429_024_02888_z crossref_primary_10_1002_acn3_51487 crossref_primary_10_1016_j_media_2020_101709 crossref_primary_10_3389_fnagi_2022_1009232 crossref_primary_10_1109_TNSRE_2022_3202713 crossref_primary_10_3389_fneur_2018_00448 crossref_primary_10_1016_j_neuri_2023_100148 crossref_primary_10_1016_j_compbiolchem_2017_10_012 crossref_primary_10_1016_j_nicl_2023_103382 crossref_primary_10_1093_scan_nsx123 crossref_primary_10_1016_j_cortex_2018_03_029 crossref_primary_10_1098_rsta_2016_0283 crossref_primary_10_3233_JAD_215239 crossref_primary_10_3389_fpsyt_2019_00499 crossref_primary_10_1016_j_jad_2025_03_121 crossref_primary_10_3389_fnins_2021_749887 crossref_primary_10_1162_imag_a_00220 crossref_primary_10_7717_peerj_15721 crossref_primary_10_1016_j_neuroimage_2022_119131 crossref_primary_10_2139_ssrn_4064661 crossref_primary_10_1002_hbm_25285 crossref_primary_10_1089_brain_2017_0543 crossref_primary_10_1016_j_neuroimage_2018_11_057 crossref_primary_10_1016_j_neuroimage_2022_119013 crossref_primary_10_1016_j_neuroimage_2019_116425 crossref_primary_10_1016_j_neuroimage_2022_119015 crossref_primary_10_1002_hbm_25167 crossref_primary_10_1016_j_brainres_2017_11_011 crossref_primary_10_1016_j_nicl_2018_03_016 crossref_primary_10_1002_hbm_26251 crossref_primary_10_1002_jmri_29306 crossref_primary_10_30773_pi_2020_0418 crossref_primary_10_1007_s00429_020_02119_1 crossref_primary_10_1016_j_schres_2019_05_007 crossref_primary_10_1089_brain_2020_0794 crossref_primary_10_3389_fnhum_2020_00003 crossref_primary_10_1016_j_neuroimage_2018_06_024 crossref_primary_10_1002_wps_21159 crossref_primary_10_1007_s10548_018_0678_z crossref_primary_10_1162_imag_a_00234 crossref_primary_10_1162_netn_a_00090 crossref_primary_10_3389_fneur_2015_00010 crossref_primary_10_1177_0269881119849814 crossref_primary_10_1016_j_jad_2021_12_093 crossref_primary_10_1097_YCO_0000000000000157 crossref_primary_10_1016_j_neuroimage_2022_119250 crossref_primary_10_3389_fnsys_2023_1163147 crossref_primary_10_3389_fpsyt_2022_1054380 crossref_primary_10_1002_hbm_24385 crossref_primary_10_1016_j_neuroimage_2021_118193 crossref_primary_10_3389_fnins_2024_1363255 crossref_primary_10_1016_j_neuroimage_2017_03_022 crossref_primary_10_1016_j_neuropsychologia_2016_11_003 crossref_primary_10_1002_hbm_24389 crossref_primary_10_1002_hbm_25235 crossref_primary_10_3389_fnagi_2022_893297 crossref_primary_10_3389_fnins_2019_00583 crossref_primary_10_3389_fnins_2019_01430 crossref_primary_10_1002_hbm_26202 crossref_primary_10_3389_fpsyt_2021_683610 crossref_primary_10_1109_JBHI_2020_2983456 crossref_primary_10_1016_j_neucom_2020_05_113 crossref_primary_10_3174_ajnr_A5527 crossref_primary_10_1002_brb3_2047 crossref_primary_10_1016_j_neuroimage_2022_119208 crossref_primary_10_1016_j_tics_2024_03_004 crossref_primary_10_1016_j_schres_2018_03_004 crossref_primary_10_3389_fnins_2021_799916 crossref_primary_10_1016_j_schres_2021_07_038 crossref_primary_10_1192_bjp_2019_10 crossref_primary_10_1002_ehf2_13967 crossref_primary_10_3389_fpsyt_2023_1071769 crossref_primary_10_1117_1_NPh_6_2_025010 crossref_primary_10_1016_j_nicl_2020_102352 crossref_primary_10_1097_j_pain_0000000000001676 crossref_primary_10_1016_j_schres_2020_11_026 crossref_primary_10_1038_s41598_024_52410_y crossref_primary_10_1002_hbm_25589 crossref_primary_10_1038_s41537_022_00299_9 crossref_primary_10_1089_brain_2020_0748 crossref_primary_10_1109_JSTSP_2016_2594945 crossref_primary_10_1038_s42003_022_03196_0 crossref_primary_10_1523_ENEURO_0341_20_2021 crossref_primary_10_1111_bdi_13261 crossref_primary_10_1002_hbm_25581 crossref_primary_10_1038_srep46072 crossref_primary_10_1016_j_jneumeth_2019_03_015 crossref_primary_10_3389_fnhum_2015_00418 crossref_primary_10_1016_j_jneumeth_2019_03_011 crossref_primary_10_1002_hbm_70145 crossref_primary_10_1007_s12975_023_01148_2 crossref_primary_10_3389_fnins_2022_971809 crossref_primary_10_1142_S0129065718500028 crossref_primary_10_1002_hbm_24009 crossref_primary_10_1016_j_neuroimage_2021_118085 crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1016_j_neurobiolaging_2020_04_021 crossref_primary_10_3390_s23063264 crossref_primary_10_1002_hbm_26341 crossref_primary_10_1016_j_jneumeth_2020_108600 crossref_primary_10_1093_schbul_sbac187 crossref_primary_10_1073_pnas_2005531117 crossref_primary_10_1016_j_bpsc_2024_09_001 crossref_primary_10_1162_jocn_a_01066 crossref_primary_10_3389_fphys_2020_00066 crossref_primary_10_1016_j_jneumeth_2019_108519 crossref_primary_10_1088_1741_2552_abfd46 crossref_primary_10_1002_aur_2974 crossref_primary_10_1089_brain_2020_0768 crossref_primary_10_1002_hbm_70131 crossref_primary_10_3389_fncir_2020_593263 crossref_primary_10_3390_e24050631 crossref_primary_10_1523_ENEURO_0242_22_2023 crossref_primary_10_1038_s41598_017_06866_w crossref_primary_10_1002_hbm_25124 crossref_primary_10_1002_hbm_25366 crossref_primary_10_1016_j_nicl_2020_102431 crossref_primary_10_1002_hbm_24391 crossref_primary_10_3390_e26070545 crossref_primary_10_59324_ejaset_2024_2_6__03 crossref_primary_10_1016_j_jneumeth_2017_09_013 crossref_primary_10_1016_j_pscychresns_2020_111140 crossref_primary_10_1016_j_jad_2022_08_072 crossref_primary_10_1016_j_pscychresns_2020_111149 crossref_primary_10_1080_01621459_2017_1379404 crossref_primary_10_1016_j_neuroimage_2021_118188 crossref_primary_10_1016_j_media_2021_102163 crossref_primary_10_3389_fnins_2021_763966 crossref_primary_10_1016_j_neuroimage_2017_04_051 crossref_primary_10_1016_j_nic_2017_06_012 |
Cites_doi | 10.1016/j.neuroimage.2013.05.079 10.1093/schbul/sbn145 10.1016/S0006-3223(99)00071-2 10.1176/appi.ajp.2012.12010056 10.1016/j.neuroimage.2010.08.063 10.1089/brain.2012.0115 10.1093/cercor/bhs352 10.1016/j.neuroimage.2011.10.018 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2 10.1016/S1053-8119(03)00332-X 10.1016/S0361-9230(00)00437-8 10.1016/j.neuroimage.2007.11.001 10.1016/j.neuroimage.2013.03.004 10.1002/hbm.21170 10.1007/s10334-010-0197-8 10.1093/biostatistics/kxm045 10.1016/j.neuroimage.2012.06.078 10.1214/12-EJS740 10.1016/j.neuroimage.2011.12.090 10.1002/hbm.1048 10.1162/neco.1995.7.6.1129 10.1007/s00401-008-0404-0 10.1016/j.neuroimage.2012.03.070 10.1002/hbm.22058 10.1038/npp.2011.215 10.1523/JNEUROSCI.2015-10.2010 10.3389/fnhum.2013.00118 10.1017/S0033291709992297 10.1073/pnas.0900924106 10.1093/schbul/sbq142 10.1073/pnas.1216856110 10.1523/JNEUROSCI.1091-13.2013 10.1016/S0920-9964(97)00140-0 10.1073/pnas.0905267106 10.1152/jn.00783.2009 10.1073/pnas.1111133109 10.1093/schbul/sbn159 10.1176/appi.ajp.2008.08050735 10.1038/nrn2201 10.1016/j.neuroimage.2009.12.011 10.1073/pnas.0809141106 10.1016/j.neuroimage.2012.08.052 10.1016/j.neuroimage.2013.02.035 10.1002/hbm.20993 10.3389/fnsys.2011.00002 |
ContentType | Journal Article |
Copyright | 2014 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 – notice: 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nicl.2014.07.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2213-1582 |
EndPage | 308 |
ExternalDocumentID | oai_doaj_org_article_ea6ad2770d1c44f3897c666f7450ac57 PMC4141977 25161896 10_1016_j_nicl_2014_07_003 1_s2_0_S2213158214000953 S2213158214000953 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K01 MH099431 – fundername: NIDA NIH HHS grantid: R01 DA040487 – fundername: NCRR NIH HHS grantid: U24 RR021992 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NICHD NIH HHS grantid: U54 HD079124 |
GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c640t-2e3aa64af85ab1dc32c580d67d1c15ab6467f8359015955b45b744381ca5f7033 |
IEDL.DBID | M48 |
ISSN | 2213-1582 |
IngestDate | Wed Aug 27 01:13:25 EDT 2025 Thu Aug 21 14:01:42 EDT 2025 Fri Jul 11 01:21:57 EDT 2025 Thu Apr 03 06:49:01 EDT 2025 Tue Jul 01 01:09:13 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Sun Feb 23 10:19:26 EST 2025 Tue Aug 26 17:37:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Language | English |
License | http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c640t-2e3aa64af85ab1dc32c580d67d1c15ab6467f8359015955b45b744381ca5f7033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/ea6ad2770d1c44f3897c666f7450ac57 |
PMID | 25161896 |
PQID | 1558518976 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea6ad2770d1c44f3897c666f7450ac57 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141977 proquest_miscellaneous_1558518976 pubmed_primary_25161896 crossref_primary_10_1016_j_nicl_2014_07_003 crossref_citationtrail_10_1016_j_nicl_2014_07_003 elsevier_clinicalkeyesjournals_1_s2_0_S2213158214000953 elsevier_clinicalkey_doi_10_1016_j_nicl_2014_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | NeuroImage clinical |
PublicationTitleAlternate | Neuroimage Clin |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bb001.48) 2011; 54 Sakoğlu, Pearlson, Kiehl, Wang, Michael, Calhoun (bb001.44) 2010; 23 Moncrieff, Leo (bb001.38) 2010; 40 Erhardt, Rachakonda, Bedrick, Allen, Adali, Calhoun (bb001.19) 2011; 32 Mazoyer, Zago, Mellet, Bricogne, Etard, Houdé, Crivello, Joliot, Petit, Tzourio-Mazoyer (bb001.36) 2001; 54 Boly, Perlbarg, Marrelec, Schabus, Laureys, Doyon, Pélégrini-Issac, Maquet, Benali (bb001.7) 2012; 109 Cordes, Haughton, Arfanakis, Carew, Turski, Moritz, Quigley, Meyerand (bb001.14) 2001; 22 Bell, Sejnowski (bb001.4) 1995; 7 Cribben, Haraldsdottir, Atlas, Wager, Lindquist (bb001.15) 2012; 61 Handwerker, Roopchansingh, Gonzalez-Castillo, Bandettini (bb001.26) 2012; 63 Larson-Prior, Zempel, Nolan, Prior, Snyder, Raichle (bb001.32) 2009; 106 Allen, Eichele, Wu, Calhoun (bb001.2) 2013 Deco, Ponce-Alvarez, Mantini, Romani, Hagmann, Corbetta (bb001.17) 2013; 33 Welsh, Chen, Taylor (bb001.52) 2010; 36 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bb001.1) 2012; 24 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bb001.47) 2009; 106 Yan, Cheung, Kelly, Colcombe, Craddock, Di Martino, Di, Li, Zuo, Castellanos, Milham (bb001.55) 2013; 76 Friston (bb001.25) 1998; 30 Woodward, Karbasforoushan, Heckers (bb001.54) 2012; 169 Friedman, Hastie, Tibshirani (bb001.24) 2008; 9 Fox, Raichle (bb001.23) 2007; 8 Chang, Glover (bb001.12) 2010; 50 Breakspear, Terry, Friston, Harris, Williams, Brown, Brennan, Gordon (bb001.8) 2003; 20 Keilholz, Magnuson, Pan, Willis, Thompson (bb001.30) 2013; 3 Calhoun, Adali, Pearlson, Pekar (bb001.10) 2001; 14 Mathalon, Ford (bb001.35) 2008; 165 Fox, Greicius (bb001.22) 2010; 4 Pan, Thompson, Magnuson, Jaeger, Keilholz (bb001.39) 2013; 74 Satterthwaite, Elliott, Gerraty, Ruparel, Loughead, Calkins, Eickhoff, Hakonarson, Gur, Gur, Wolf (bb001.46) 2013; 64 Hutchison, Womelsdorf, Gati, Everling, Menon (bb001.28) 2013; 34 Deco, Jirsa, McIntosh (bb001.16) 2011; 56 Byne, Hazlett, Buchsbaum, Kemether (bb001.9) 2009; 117 Ferrarelli, Tononi (bb001.20) 2011; 37 Jafri, Pearlson, Stevens, Calhoun (bb001.29) 2008; 39 Liu, Duyn (bb001.33) 2013; 110 Christensen (bb001.13) 2001 Whitfield-Gabrieli, Thermenos, Milanovic, Tsuang, Faraone, McCarley, Shenton, Green, Nieto-Castanon, LaViolette, Wojcik, Gabrieli, Seidman (bb001.53) 2009; 106 Di, Kim, Huang, Tsai, Lin, Biswal (bb001.18) 2013; 7 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta, Della Penna, Duyn, Glover, Gonzalez-Castillo (bb001.27) 2013; 80 Potkin, Ford (bb001.42) 2009; 35 Mazumder, Hastie (bb001.37) 2012; 6 Spoormaker, Schröter, Gleiser, Andrade, Dresler, Wehrle, Sämann, Czisch (bb001.49) 2010; 30 Calhoun, Sui, Kiehl, Turner, Allen, Pearlson (bb001.11) 2011; 2 Varoquaux, Gramfort, Poline, Thirion (bb001.51) 2010 Allen, Erhardt, Damaraju, Gruner, Segall, Silva, Havlicek, Rachakonda, Fries, Kalyanam, Michael, Caprihan, Turner, Eichele, Adelsheim, Bryan, Bustillo, Clark, Feldstein Ewing, Filbey, Ford, Hutchison, Jung, Kiehl, Kodituwakku, Komesu, Mayer, Pearlson, Phillips, Sadek, Stevens, Teuscher, Thoma, Calhoun (bb001.3) 2011 Kraepelin (bb001.31) 1971 Pearlson (bb001.40) 2000; 48 Power, Barnes, Snyder, Schlaggar, Petersen (bb001.43) 2012; 59 Marenco, Stein, Savostyanova, Sambataro, Tan, Goldman, Verchinski, Barnett, Dickinson, Apud (bb001.34) 2011; 37 Salvador, Sarró, Gomar, Ortiz-Gil, Vila, Capdevila, Bullmore, McKenna, Pomarol-Clotet (bb001.45) 2010; 31 Anticevic, Cole, Repovs, Murray, Brumbaugh, Winkler, Savic, Krystal, Pearlson, Glahn (bb001.5) 2013 Bleuler (bb001.6) 1950 Fornito, Zalesky, Pantelis, Bullmore (bb001.21) 2012; 62 Pearlson, Marsh (bb001.41) 1999; 46 Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bb001.50) 2010; 103 Smith (10.1016/j.nicl.2014.07.003_bb001.47) 2009; 106 Van Dijk (10.1016/j.nicl.2014.07.003_bb001.50) 2010; 103 Marenco (10.1016/j.nicl.2014.07.003_bb001.34) 2011; 37 Satterthwaite (10.1016/j.nicl.2014.07.003_bb001.46) 2013; 64 Hutchison (10.1016/j.nicl.2014.07.003_bb001.27) 2013; 80 Mathalon (10.1016/j.nicl.2014.07.003_bb001.35) 2008; 165 Calhoun (10.1016/j.nicl.2014.07.003_bb001.11) 2011; 2 Salvador (10.1016/j.nicl.2014.07.003_bb001.45) 2010; 31 Woodward (10.1016/j.nicl.2014.07.003_bb001.54) 2012; 169 Chang (10.1016/j.nicl.2014.07.003_bb001.12) 2010; 50 Varoquaux (10.1016/j.nicl.2014.07.003_bb001.51) 2010 Pearlson (10.1016/j.nicl.2014.07.003_bb001.40) 2000; 48 Smith (10.1016/j.nicl.2014.07.003_bb001.48) 2011; 54 Breakspear (10.1016/j.nicl.2014.07.003_bb001.8) 2003; 20 Yan (10.1016/j.nicl.2014.07.003_bb001.55) 2013; 76 Jafri (10.1016/j.nicl.2014.07.003_bb001.29) 2008; 39 Allen (10.1016/j.nicl.2014.07.003_bb001.3) 2011 Mazumder (10.1016/j.nicl.2014.07.003_bb001.37) 2012; 6 Moncrieff (10.1016/j.nicl.2014.07.003_bb001.38) 2010; 40 Pan (10.1016/j.nicl.2014.07.003_bb001.39) 2013; 74 Whitfield-Gabrieli (10.1016/j.nicl.2014.07.003_bb001.53) 2009; 106 Deco (10.1016/j.nicl.2014.07.003_bb001.17) 2013; 33 Deco (10.1016/j.nicl.2014.07.003_bb001.16) 2011; 56 Mazoyer (10.1016/j.nicl.2014.07.003_bb001.36) 2001; 54 Di (10.1016/j.nicl.2014.07.003_bb001.18) 2013; 7 Bell (10.1016/j.nicl.2014.07.003_bb001.4) 1995; 7 Larson-Prior (10.1016/j.nicl.2014.07.003_bb001.32) 2009; 106 Kraepelin (10.1016/j.nicl.2014.07.003_bb001.31) 1971 Keilholz (10.1016/j.nicl.2014.07.003_bb001.30) 2013; 3 Potkin (10.1016/j.nicl.2014.07.003_bb001.42) 2009; 35 Cribben (10.1016/j.nicl.2014.07.003_bb001.15) 2012; 61 Welsh (10.1016/j.nicl.2014.07.003_bb001.52) 2010; 36 Byne (10.1016/j.nicl.2014.07.003_bb001.9) 2009; 117 Christensen (10.1016/j.nicl.2014.07.003_bb001.13) 2001 Hutchison (10.1016/j.nicl.2014.07.003_bb001.28) 2013; 34 Fornito (10.1016/j.nicl.2014.07.003_bb001.21) 2012; 62 Fox (10.1016/j.nicl.2014.07.003_bb001.23) 2007; 8 Friedman (10.1016/j.nicl.2014.07.003_bb001.24) 2008; 9 Fox (10.1016/j.nicl.2014.07.003_bb001.22) 2010; 4 Power (10.1016/j.nicl.2014.07.003_bb001.43) 2012; 59 Liu (10.1016/j.nicl.2014.07.003_bb001.33) 2013; 110 Pearlson (10.1016/j.nicl.2014.07.003_bb001.41) 1999; 46 Boly (10.1016/j.nicl.2014.07.003_bb001.7) 2012; 109 Calhoun (10.1016/j.nicl.2014.07.003_bb001.10) 2001; 14 Handwerker (10.1016/j.nicl.2014.07.003_bb001.26) 2012; 63 Ferrarelli (10.1016/j.nicl.2014.07.003_bb001.20) 2011; 37 Cordes (10.1016/j.nicl.2014.07.003_bb001.14) 2001; 22 Anticevic (10.1016/j.nicl.2014.07.003_bb001.5) 2013 Sakoğlu (10.1016/j.nicl.2014.07.003_bb001.44) 2010; 23 Erhardt (10.1016/j.nicl.2014.07.003_bb001.19) 2011; 32 Allen (10.1016/j.nicl.2014.07.003_bb001.1) 2012; 24 Allen (10.1016/j.nicl.2014.07.003_bb001.2) 2013 Spoormaker (10.1016/j.nicl.2014.07.003_bb001.49) 2010; 30 Friston (10.1016/j.nicl.2014.07.003_bb001.25) 1998; 30 Bleuler (10.1016/j.nicl.2014.07.003_bb001.6) 1950 |
References_xml | – volume: 76 start-page: 183 year: 2013 end-page: 201 ident: bb001.55 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage – volume: 3 start-page: 31 year: 2013 end-page: 40 ident: bb001.30 article-title: Dynamic properties of functional connectivity in the rodent publication-title: Brain Connectivity – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bb001.47 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 start-page: 432 year: 2008 end-page: 441 ident: bb001.24 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics (Oxford, England) – volume: 165 start-page: 944 year: 2008 end-page: 948 ident: bb001.35 article-title: Divergent approaches converge on frontal lobe dysfunction in schizophrenia publication-title: American Journal of Psychiatry – volume: 103 start-page: 297 year: 2010 end-page: 321 ident: bb001.50 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: Journal of Neurophysiology – volume: 34 start-page: 2154 year: 2013 end-page: 2177 ident: bb001.28 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Human Brain Mapping – start-page: 2334 year: 2010 end-page: 2342 ident: bb001.51 article-title: Brain covariance selection: better individual functional connectivity models using population prior – volume: 64 start-page: 240 year: 2013 end-page: 256 ident: bb001.46 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: Neuroimage – volume: 33 start-page: 11239 year: 2013 end-page: 11252 ident: bb001.17 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: Journal of Neuroscience – volume: 62 start-page: 2296 year: 2012 end-page: 2314 ident: bb001.21 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage – volume: 106 start-page: 4489 year: 2009 end-page: 4494 ident: bb001.32 article-title: Cortical network functional connectivity in the descent to sleep publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 30 start-page: 115 year: 1998 end-page: 125 ident: bb001.25 article-title: The disconnection hypothesis publication-title: Schizophrenia Research – volume: 48 start-page: 556 year: 2000 end-page: 566 ident: bb001.40 article-title: Neurobiology of schizophrenia publication-title: Annals of Neurology – volume: 109 start-page: 5856 year: 2012 end-page: 5861 ident: bb001.7 article-title: Hierarchical clustering of brain activity during human nonrapid eye movement sleep publication-title: Proceedings of the National Academy of Sciences of the U.S.A. – volume: 37 start-page: 306 year: 2011 end-page: 315 ident: bb001.20 article-title: The thalamic reticular nucleus and schizophrenia publication-title: Schizophrenia Bulletin – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bb001.4 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation – volume: 14 start-page: 140 year: 2001 end-page: 151 ident: bb001.10 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human Brain Mapping – volume: 169 start-page: 1092 year: 2012 end-page: 1099 ident: bb001.54 article-title: Thalamocortical dysconnectivity in schizophrenia publication-title: American Journal of Psychiatry – year: 2011 ident: bb001.3 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Frontiers in Systems Neuroscience – volume: 23 start-page: 351 year: 2010 end-page: 366 ident: bb001.44 article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – volume: 4 start-page: 19 year: 2010 ident: bb001.22 article-title: Clinical applications of resting state functional connectivity publication-title: Frontiers in Systems Neuroscience – volume: 106 start-page: 1279 year: 2009 end-page: 1284 ident: bb001.53 article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia publication-title: Proceedings of the National Academy of Sciences of the U.S.A. – year: 2013 ident: bb001.2 publication-title: EEG Signature of Functional Connectivity States – volume: 39 start-page: 1666 year: 2008 end-page: 1681 ident: bb001.29 article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia publication-title: NeuroImage – volume: 54 start-page: 287 year: 2001 end-page: 298 ident: bb001.36 article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man publication-title: Brain Research Bulletin – volume: 74 start-page: 288 year: 2013 end-page: 297 ident: bb001.39 article-title: Infraslow LFP correlates to resting-state fMRI BOLD signals publication-title: Neuroimage – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: bb001.48 article-title: Network modelling methods for FMRI publication-title: Neuroimage – volume: 6 start-page: 2125 year: 2012 end-page: 2149 ident: bb001.37 article-title: The graphical lasso: new insights and alternatives publication-title: Electronic Journal of Statistics – volume: 37 start-page: 499 year: 2011 end-page: 507 ident: bb001.34 article-title: Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia publication-title: Neuropsychopharmacology – year: 1971 ident: bb001.31 publication-title: Dementia Praecox and Paraphrenia – volume: 63 start-page: 1712 year: 2012 end-page: 1719 ident: bb001.26 article-title: Periodic changes in fMRI connectivity publication-title: Neuroimage – volume: 35 start-page: 15 year: 2009 end-page: 18 ident: bb001.42 article-title: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium publication-title: Schizophrenia Bulletin – volume: 31 start-page: 2003 year: 2010 end-page: 2014 ident: bb001.45 article-title: Overall brain connectivity maps show corticosubcortical abnormalities in schizophrenia publication-title: Human Brain Mapping – volume: 7 start-page: 118 year: 2013 ident: bb001.18 article-title: The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity publication-title: Frontiers in Human Neuroscience – volume: 36 start-page: 713 year: 2010 end-page: 722 ident: bb001.52 article-title: Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia publication-title: Schizophrenia Bulletin – volume: 20 start-page: 466 year: 2003 end-page: 478 ident: bb001.8 article-title: A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia publication-title: NeuroImage – volume: 30 start-page: 11379 year: 2010 end-page: 11387 ident: bb001.49 article-title: Development of a large-scale functional brain network during human non-rapid eye movement sleep publication-title: Journal of Neuroscience – volume: 110 start-page: 4392 year: 2013 end-page: 4397 ident: bb001.33 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 80 start-page: 360 year: 2013 end-page: 368 ident: bb001.27 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage – year: 2013 ident: bb001.5 article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness publication-title: Cerebral Cortex – year: 2001 ident: bb001.13 publication-title: Advanced Linear Modeling: Multivariate, Time Series, and Spatial Data; Nonparametric Regression and Response Surface Maximization – volume: 61 start-page: 907 year: 2012 end-page: 920 ident: bb001.15 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: Neuroimage – volume: 24 start-page: 663 year: 2012 end-page: 676 ident: bb001.1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebral Cortex – volume: 117 start-page: 347 year: 2009 end-page: 368 ident: bb001.9 article-title: The thalamus and schizophrenia: current status of research publication-title: Acta Neuropathologica – year: 1950 ident: bb001.6 publication-title: Dementia Praecox or the Group of Schizophrenias – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: bb001.23 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews. Neuroscience – volume: 22 start-page: 1326 year: 2001 end-page: 1333 ident: bb001.14 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR. American Journal of Neuroradiology – volume: 32 start-page: 2075 year: 2011 end-page: 2095 ident: bb001.19 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Human Brain Mapping – volume: 56 start-page: 2043 year: 2011 ident: bb001.16 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nature Reviews. Neuroscience – volume: 2 start-page: 75 year: 2011 ident: bb001.11 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Frontiers in Psychiatry – volume: 40 start-page: 1409 year: 2010 end-page: 1422 ident: bb001.38 article-title: A systematic review of the effects of antipsychotic drugs on brain volume publication-title: Psychological Medicine – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: bb001.12 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage – volume: 46 start-page: 627 year: 1999 end-page: 649 ident: bb001.41 article-title: Structural brain imaging in schizophrenia: a selective review publication-title: Biological Psychiatry – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bb001.43 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 56 start-page: 2043 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.16 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nature Reviews. Neuroscience – volume: 80 start-page: 360 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.27 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 36 start-page: 713 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.52 article-title: Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbn145 – volume: 46 start-page: 627 year: 1999 ident: 10.1016/j.nicl.2014.07.003_bb001.41 article-title: Structural brain imaging in schizophrenia: a selective review publication-title: Biological Psychiatry doi: 10.1016/S0006-3223(99)00071-2 – volume: 169 start-page: 1092 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.54 article-title: Thalamocortical dysconnectivity in schizophrenia publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2012.12010056 – year: 1950 ident: 10.1016/j.nicl.2014.07.003_bb001.6 – volume: 54 start-page: 875 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.48 article-title: Network modelling methods for FMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 3 start-page: 31 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.30 article-title: Dynamic properties of functional connectivity in the rodent publication-title: Brain Connectivity doi: 10.1089/brain.2012.0115 – volume: 24 start-page: 663 issue: 3 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.1 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebral Cortex doi: 10.1093/cercor/bhs352 – volume: 59 start-page: 2142 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.43 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 48 start-page: 556 year: 2000 ident: 10.1016/j.nicl.2014.07.003_bb001.40 article-title: Neurobiology of schizophrenia publication-title: Annals of Neurology doi: 10.1002/1531-8249(200010)48:4<556::AID-ANA2>3.0.CO;2-2 – volume: 20 start-page: 466 year: 2003 ident: 10.1016/j.nicl.2014.07.003_bb001.8 article-title: A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00332-X – volume: 54 start-page: 287 year: 2001 ident: 10.1016/j.nicl.2014.07.003_bb001.36 article-title: Cortical networks for working memory and executive functions sustain the conscious resting state in man publication-title: Brain Research Bulletin doi: 10.1016/S0361-9230(00)00437-8 – volume: 39 start-page: 1666 year: 2008 ident: 10.1016/j.nicl.2014.07.003_bb001.29 article-title: A method for functional network connectivity among spatially independent resting-state components in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.001 – volume: 76 start-page: 183 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.55 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 32 start-page: 2075 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.19 article-title: Comparison of multi-subject ICA methods for analysis of fMRI data publication-title: Human Brain Mapping doi: 10.1002/hbm.21170 – volume: 23 start-page: 351 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.44 article-title: A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine doi: 10.1007/s10334-010-0197-8 – start-page: 2334 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.51 article-title: Brain covariance selection: better individual functional connectivity models using population prior – volume: 9 start-page: 432 year: 2008 ident: 10.1016/j.nicl.2014.07.003_bb001.24 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics (Oxford, England) doi: 10.1093/biostatistics/kxm045 – volume: 63 start-page: 1712 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.26 article-title: Periodic changes in fMRI connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.078 – volume: 6 start-page: 2125 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.37 article-title: The graphical lasso: new insights and alternatives publication-title: Electronic Journal of Statistics doi: 10.1214/12-EJS740 – volume: 62 start-page: 2296 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.21 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: 14 start-page: 140 year: 2001 ident: 10.1016/j.nicl.2014.07.003_bb001.10 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Human Brain Mapping doi: 10.1002/hbm.1048 – volume: 7 start-page: 1129 year: 1995 ident: 10.1016/j.nicl.2014.07.003_bb001.4 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation doi: 10.1162/neco.1995.7.6.1129 – year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.5 article-title: Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness publication-title: Cerebral Cortex – volume: 117 start-page: 347 year: 2009 ident: 10.1016/j.nicl.2014.07.003_bb001.9 article-title: The thalamus and schizophrenia: current status of research publication-title: Acta Neuropathologica doi: 10.1007/s00401-008-0404-0 – year: 2001 ident: 10.1016/j.nicl.2014.07.003_bb001.13 – volume: 61 start-page: 907 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.15 article-title: Dynamic connectivity regression: determining state-related changes in brain connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.070 – volume: 34 start-page: 2154 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.28 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Human Brain Mapping doi: 10.1002/hbm.22058 – volume: 37 start-page: 499 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.34 article-title: Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia publication-title: Neuropsychopharmacology doi: 10.1038/npp.2011.215 – volume: 22 start-page: 1326 year: 2001 ident: 10.1016/j.nicl.2014.07.003_bb001.14 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR. American Journal of Neuroradiology – volume: 30 start-page: 11379 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.49 article-title: Development of a large-scale functional brain network during human non-rapid eye movement sleep publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2015-10.2010 – volume: 7 start-page: 118 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.18 article-title: The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2013.00118 – volume: 40 start-page: 1409 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.38 article-title: A systematic review of the effects of antipsychotic drugs on brain volume publication-title: Psychological Medicine doi: 10.1017/S0033291709992297 – volume: 106 start-page: 4489 year: 2009 ident: 10.1016/j.nicl.2014.07.003_bb001.32 article-title: Cortical network functional connectivity in the descent to sleep publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0900924106 – year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.2 – volume: 37 start-page: 306 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.20 article-title: The thalamic reticular nucleus and schizophrenia publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbq142 – volume: 110 start-page: 4392 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.33 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1216856110 – volume: 33 start-page: 11239 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.17 article-title: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1091-13.2013 – volume: 30 start-page: 115 year: 1998 ident: 10.1016/j.nicl.2014.07.003_bb001.25 article-title: The disconnection hypothesis publication-title: Schizophrenia Research doi: 10.1016/S0920-9964(97)00140-0 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.nicl.2014.07.003_bb001.47 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0905267106 – volume: 103 start-page: 297 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.50 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: Journal of Neurophysiology doi: 10.1152/jn.00783.2009 – volume: 2 start-page: 75 year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.11 article-title: Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder publication-title: Frontiers in Psychiatry – year: 1971 ident: 10.1016/j.nicl.2014.07.003_bb001.31 – volume: 109 start-page: 5856 year: 2012 ident: 10.1016/j.nicl.2014.07.003_bb001.7 article-title: Hierarchical clustering of brain activity during human nonrapid eye movement sleep publication-title: Proceedings of the National Academy of Sciences of the U.S.A. doi: 10.1073/pnas.1111133109 – volume: 35 start-page: 15 year: 2009 ident: 10.1016/j.nicl.2014.07.003_bb001.42 article-title: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium publication-title: Schizophrenia Bulletin doi: 10.1093/schbul/sbn159 – volume: 4 start-page: 19 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.22 article-title: Clinical applications of resting state functional connectivity publication-title: Frontiers in Systems Neuroscience – volume: 165 start-page: 944 year: 2008 ident: 10.1016/j.nicl.2014.07.003_bb001.35 article-title: Divergent approaches converge on frontal lobe dysfunction in schizophrenia publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2008.08050735 – volume: 8 start-page: 700 year: 2007 ident: 10.1016/j.nicl.2014.07.003_bb001.23 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn2201 – volume: 50 start-page: 81 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.12 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 106 start-page: 1279 year: 2009 ident: 10.1016/j.nicl.2014.07.003_bb001.53 article-title: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia publication-title: Proceedings of the National Academy of Sciences of the U.S.A. doi: 10.1073/pnas.0809141106 – volume: 64 start-page: 240 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.46 article-title: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.052 – volume: 74 start-page: 288 year: 2013 ident: 10.1016/j.nicl.2014.07.003_bb001.39 article-title: Infraslow LFP correlates to resting-state fMRI BOLD signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.035 – volume: 31 start-page: 2003 year: 2010 ident: 10.1016/j.nicl.2014.07.003_bb001.45 article-title: Overall brain connectivity maps show corticosubcortical abnormalities in schizophrenia publication-title: Human Brain Mapping doi: 10.1002/hbm.20993 – year: 2011 ident: 10.1016/j.nicl.2014.07.003_bb001.3 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Frontiers in Systems Neuroscience doi: 10.3389/fnsys.2011.00002 |
SSID | ssj0000800766 |
Score | 2.5446851 |
Snippet | Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional... AbstractSchizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 298 |
SubjectTerms | Adult Brain - physiopathology Brain Mapping Female Humans Image Interpretation, Computer-Assisted Magnetic Resonance Imaging Male Neural Pathways - physiopathology Radiology Schizophrenia - physiopathology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBaGHopdhj72yPqACuxWGJNkPZJjnygKpJetQG-CLMtYisIp5vTQf19SkoO4G9JLr5bpRBQtfjLJj4T8UEZWnlWskKr0haxdVTjwJAWcBFwJAL9isVxseqOvbuX1nbpbafWFOWGJHjgp7mdw2tXCGFZzL2UD_tV4gNyNkYo5r2IdOfi8lcPUfcZBJgYqheBlwdVY5IqZlNyFrLOY1yUjc2ffMSt7pUjeP3BO_4LP1zmUK07pcot8ymiSnqRZbJMPod0hm9McL98l4Tw1nKfovtJXP-oxtcWnphHUZU4SikxOYIl0gb4LayRpLDXq6Lyh9XM3EJq1tFvN1ftMbi8vfp9dFbmxQuG1ZItChNI5LV0zVq7itS-FV2NWawM65nBJw-7ZADRDrDBRqpKqMhK5wLxTDWwR5Rey0c7b8I3QCXfCB1gRpwVgG-Ekr8f1xCgDuMOYyYjwXrHWZ9ZxbH7xYPv0snuLi2FxMSzDYHg5IsdLmcfEubH27lNcr-WdyJcdL4AV2WxF9i0rGpGyX23bl6TCJgoPmq39afM_qdDlfaCz3HbCMvsLrRCNEI6zCGpB8qg3KQvvMwZpXBvmTyChMFAL_0-PyNdkYsupARbVMAQjZmB8g7kPR9rZn8gZLrnkAPW_v4ey9shHVEL6ELVPNhZ_n8IBQLNFdRjfwhf_pzU9 priority: 102 providerName: Directory of Open Access Journals |
Title | Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158214000953 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158214000953 https://www.ncbi.nlm.nih.gov/pubmed/25161896 https://www.proquest.com/docview/1558518976 https://pubmed.ncbi.nlm.nih.gov/PMC4141977 https://doaj.org/article/ea6ad2770d1c44f3897c666f7450ac57 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELemTkK8IMZnYZuMxBsKsh1_tA_TtAFThVReoFLfLMdxoNOUjqaT2H_PneOUBkpfndiJ7bPvZ9_d7wh5q4wsPCtYJlXuM1m6InOgSTI4CbgcAH7BYrjY9IuezOTnuZofkC7dURrAZufRDvNJzVY373_9vD-HBX_2x1cLSWTRTUtGIk4k_zwEzWRwoU4T3L9O6MhE86UQPM-4GokUR7O7GWQKVsgoj5T-W2orsvv3tNe_6PRvJ8strXX1mDxKcJNetPJxRA5C_YQ8mCaD-lMSPrYZ6Snqt_ZakHr0ffFtVgnqEmkJRaonGDK6RuWGQZQ0xiI1dFnR8r7pVVrUtNl25ntGZlefvn2YZCnzQua1ZOtMhNw5LV01Uq7gpc-FVyNWalNyz6FIw_ZaAXZDMDFWqpCqMBLJwrxTFewh-XMyqJd1eEnomDvhg9faaQHgRzjJy1E5NsoAMDFmPCS8G1jrEy05Zse4sZ3_2bXFebE4L5ahtTwfknebOrctKcfety9xvjZvIqF2LFiuvtu0Pm1w2pXCGAY9lLICGGfgn3VlpGLOKzMkeTfbtotZhV0WGlrs_bTZVSs0nZxbbhthmf2KAonyCOddRL1Q800nUhYWPFpxXB2Wd1BDoSUX_k8PyYtWxDZd66QVvtsTvl7f-0_qxY9IKi655HAWePXfNl-Th9iz9vrpmAzWq7twAoBsXZzGi4zTuNZ-A7wLMac |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+functional+connectivity+analysis+reveals+transient+states+of+dysconnectivity+in+schizophrenia&rft.jtitle=NeuroImage+clinical&rft.au=Damaraju%2C+E&rft.au=Allen%2C+E+A&rft.au=Belger%2C+A&rft.au=Ford%2C+J+M&rft.date=2014-01-01&rft.issn=2213-1582&rft.eissn=2213-1582&rft.volume=5&rft.spage=298&rft_id=info:doi/10.1016%2Fj.nicl.2014.07.003&rft_id=info%3Apmid%2F25161896&rft.externalDocID=25161896 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158214X00021%2Fcov150h.gif |