Zonulin, regulation of tight junctions, and autoimmune diseases

Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1258; no. 1; pp. 25 - 33
Main Author Fasano, Alessio
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.07.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases.
AbstractList Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases.
Recent studies indicate that beside digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJ) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to non-self antigens. To meet diverse physiological challenges, intestinal epithelial TJ must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multi-protein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJ described so far, increased understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and led us appreciate that its up-regulation in genetically susceptible individuals leads to autoimmune diseases.
Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases.Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases.
Author Fasano, Alessio
Author_xml – sequence: 1
  givenname: Alessio
  surname: Fasano
  fullname: Fasano, Alessio
  organization: Mucosal Biology Research Center and Center for Celiac Research, University of Maryland School of Medicine, Baltimore, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22731712$$D View this record in MEDLINE/PubMed
BookMark eNqVkctu1DAUhi1URKeFV0CR2LBogi9JbG9AbUULohokrqKbIyfxTB0Su9hJO317nE4Jl1XxxtY5v79z-ffQjnVWI5QQnJF4XrQZ4blMy5LRjGJCM1wWTGSbB2gxJ3bQAmPOUyEp20V7IbQ4KkXOH6FdSjkjnNAFenXu7NgZe5B4vR47NRhnE7dKBrO-GJJ2tPUUCQeJsk2ixsGZvh-tThoTtAo6PEYPV6oL-sndvY8-n7z-dPwmPXt_-vb48CytyxyLdCUL1ggpdSGkarCUOdcVrfK6rjVvJMtp1fCqwUoXTRNDSmimOC6I0JJQKtk-ernlXo5Vr6PEDl51cOlNr_wNOGXg74w1F7B2V8BYHBmzCHh-B_Dux6jDAL0Jte46ZbUbAxDMBMM5y8U9pJQyzomY2nr2j7R1o7dxE0B4KQqJSTnVfvpn83PXv2yIArEV1N6F4PVqlhAMk-PQwmQsTMbC5DjcOg6b34uZv9ZmuLUxrsF0_wG4Np2-uXdhWH47_Dg9IyDdAkwY9GYGKP8dSs54AV-Xp7A8kuWHk3df4Jz9BCwB1CA
CODEN ANYAA9
CitedBy_id crossref_primary_10_1111_liv_13979
crossref_primary_10_3390_ijms231911037
crossref_primary_10_5005_jp_journals_10018_1275
crossref_primary_10_15690_pf_v21i4_2790
crossref_primary_10_1038_ejcn_2017_57
crossref_primary_10_1080_10408398_2021_1996329
crossref_primary_10_1080_01443615_2022_2114822
crossref_primary_10_1016_j_foodres_2018_09_062
crossref_primary_10_1007_s00421_017_3739_1
crossref_primary_10_1155_2019_2472754
crossref_primary_10_1007_s00406_020_01152_9
crossref_primary_10_1093_biohorizons_hzx015
crossref_primary_10_3390_ijms24021764
crossref_primary_10_3389_fnins_2023_1232480
crossref_primary_10_1186_s12959_019_0194_8
crossref_primary_10_26779_2522_1396_2021_3_4_46
crossref_primary_10_3390_ani12213036
crossref_primary_10_4236_fns_2023_1412081
crossref_primary_10_1155_2020_2886268
crossref_primary_10_1177_1756284820942616
crossref_primary_10_3390_nu12071982
crossref_primary_10_4330_wjc_v12_i4_110
crossref_primary_10_4103_ijp_IJP_679_19
crossref_primary_10_1016_j_psj_2019_11_016
crossref_primary_10_4254_wjh_v13_i10_1394
crossref_primary_10_3390_ijms242216352
crossref_primary_10_1017_S0007114517003749
crossref_primary_10_1016_j_bbi_2014_09_009
crossref_primary_10_1016_j_medj_2021_04_013
crossref_primary_10_3390_cells11071239
crossref_primary_10_1016_j_clinbiochem_2012_10_038
crossref_primary_10_1016_j_jff_2017_06_055
crossref_primary_10_4168_aair_2023_15_4_526
crossref_primary_10_1016_j_jsbmb_2022_106083
crossref_primary_10_3390_ijms18030582
crossref_primary_10_3390_ijms22052506
crossref_primary_10_3389_fcell_2022_880544
crossref_primary_10_3390_nu14235154
crossref_primary_10_1016_j_schres_2014_06_027
crossref_primary_10_1155_2019_2804091
crossref_primary_10_5812_ijem_66801
crossref_primary_10_2174_1573396319666230213104546
crossref_primary_10_1021_acs_jafc_0c01240
crossref_primary_10_1371_journal_pone_0273855
crossref_primary_10_3389_fimmu_2022_871713
crossref_primary_10_1177_2050640619826419
crossref_primary_10_3390_ijms241914730
crossref_primary_10_1016_j_ijpara_2022_04_004
crossref_primary_10_1007_s40489_019_00187_6
crossref_primary_10_3390_ijms242015482
crossref_primary_10_3920_BM2017_0172
crossref_primary_10_1002_dmrr_3309
crossref_primary_10_3390_ijerph182312555
crossref_primary_10_3390_jcm9072181
crossref_primary_10_1111_all_13354
crossref_primary_10_1016_j_endmts_2024_100195
crossref_primary_10_1111_apt_12950
crossref_primary_10_3390_allergies2010001
crossref_primary_10_1016_j_fshw_2021_02_003
crossref_primary_10_1016_j_clim_2022_109107
crossref_primary_10_1371_journal_pntd_0006205
crossref_primary_10_1089_jicm_2022_0820
crossref_primary_10_3390_nu16121823
crossref_primary_10_1016_j_jri_2025_104423
crossref_primary_10_1128_jvi_01288_24
crossref_primary_10_1080_13651501_2020_1801754
crossref_primary_10_3390_microorganisms12101969
crossref_primary_10_3390_nu5030771
crossref_primary_10_2478_prolas_2022_0089
crossref_primary_10_3390_ijms22136761
crossref_primary_10_3390_jcm12030895
crossref_primary_10_1007_s10620_021_07368_6
crossref_primary_10_1155_2016_2424306
crossref_primary_10_5468_ogs_21185
crossref_primary_10_3390_medicina56090462
crossref_primary_10_3389_fphar_2024_1407228
crossref_primary_10_1007_s12035_019_1578_2
crossref_primary_10_4236_fns_2023_142005
crossref_primary_10_1186_s12902_020_00594_5
crossref_primary_10_1038_s41598_020_64679_w
crossref_primary_10_3390_cimb46080542
crossref_primary_10_1007_s00702_020_02234_7
crossref_primary_10_1007_s00702_021_02440_x
crossref_primary_10_1016_j_plabm_2017_09_001
crossref_primary_10_1517_13543776_2015_1041921
crossref_primary_10_1111_all_14582
crossref_primary_10_3390_microorganisms6020035
crossref_primary_10_3389_fnins_2019_01295
crossref_primary_10_1007_s40265_022_01784_2
crossref_primary_10_3389_fimmu_2022_897971
crossref_primary_10_1371_journal_pone_0210728
crossref_primary_10_1016_j_autneu_2013_12_006
crossref_primary_10_3390_ijms23084364
crossref_primary_10_3389_fimmu_2020_617089
crossref_primary_10_1080_21688370_2024_2435552
crossref_primary_10_1016_j_autneu_2014_03_004
crossref_primary_10_28982_josam_7585
crossref_primary_10_1002_ajhb_23811
crossref_primary_10_1016_j_addr_2022_114282
crossref_primary_10_1007_s00018_019_03316_w
crossref_primary_10_1007_s00204_016_1794_8
crossref_primary_10_1152_ajpgi_00386_2020
crossref_primary_10_1016_j_aohep_2024_101567
crossref_primary_10_1093_cid_ciz1141
crossref_primary_10_7759_cureus_39004
crossref_primary_10_20538_1682_0363_2022_1_121_132
crossref_primary_10_1530_EJE_14_0589
crossref_primary_10_1080_19490976_2019_1629236
crossref_primary_10_1016_j_jcs_2018_03_012
crossref_primary_10_15829_1728_8800_2020_2474
crossref_primary_10_3390_foods14060959
crossref_primary_10_1016_j_jeud_2023_100045
crossref_primary_10_1590_1516_4446_2015_1777
crossref_primary_10_1111_jch_14477
crossref_primary_10_1007_s11739_023_03329_1
crossref_primary_10_1016_j_pharmthera_2017_05_008
crossref_primary_10_3390_ijms21155254
crossref_primary_10_1039_D1FO02517A
crossref_primary_10_3390_nu13113731
crossref_primary_10_1016_j_aimed_2018_08_003
crossref_primary_10_1038_s41598_020_70755_y
crossref_primary_10_1111_ane_13196
crossref_primary_10_3390_nu14173572
crossref_primary_10_1111_all_15698
crossref_primary_10_1016_j_jaut_2018_05_008
crossref_primary_10_3389_fmicb_2022_836743
crossref_primary_10_1016_j_jaci_2015_05_042
crossref_primary_10_1080_09637486_2019_1599827
crossref_primary_10_3389_fmed_2022_846934
crossref_primary_10_5604_01_3001_0015_5535
crossref_primary_10_1038_ncomms8806
crossref_primary_10_18586_msufbd_881281
crossref_primary_10_3390_nu10070892
crossref_primary_10_1186_s43066_024_00351_6
crossref_primary_10_1038_s41598_024_76697_z
crossref_primary_10_3390_jcm10051131
crossref_primary_10_3389_fpsyt_2024_1395235
crossref_primary_10_1136_gutjnl_2019_318664
crossref_primary_10_3390_ijms25147697
crossref_primary_10_3389_fped_2021_748368
crossref_primary_10_1016_j_micpath_2023_106181
crossref_primary_10_33667_2078_5631_2021_6_14_18
crossref_primary_10_3390_ijms24087427
crossref_primary_10_1007_s10620_017_4848_8
crossref_primary_10_1007_s10620_017_4738_0
crossref_primary_10_1038_s41577_021_00538_7
crossref_primary_10_1371_journal_pone_0276391
crossref_primary_10_1016_j_crmicr_2021_100069
crossref_primary_10_1186_s12876_020_01390_0
crossref_primary_10_2478_enr_2020_0019
crossref_primary_10_1038_s41380_021_01032_1
crossref_primary_10_3390_biomedicines11010091
crossref_primary_10_3390_nu13113993
crossref_primary_10_3389_fimmu_2019_02672
crossref_primary_10_1542_peds_2023_063050
crossref_primary_10_1111_apt_18234
crossref_primary_10_1053_j_gastro_2017_03_053
crossref_primary_10_1007_s12640_019_00054_6
crossref_primary_10_1007_s10735_023_10175_0
crossref_primary_10_3389_fpsyt_2021_598119
crossref_primary_10_1039_C9CS00309F
crossref_primary_10_3390_nu12061769
crossref_primary_10_3748_wjg_v28_i4_449
crossref_primary_10_1016_j_fct_2017_05_068
crossref_primary_10_3748_wjg_v23_i12_2106
crossref_primary_10_1016_j_cmet_2022_04_001
crossref_primary_10_3390_nu13061755
crossref_primary_10_1016_j_ctcp_2018_02_014
crossref_primary_10_1186_s13054_025_05309_7
crossref_primary_10_3390_ijms23020662
crossref_primary_10_1186_s12876_014_0209_7
crossref_primary_10_1080_21688370_2024_2342619
crossref_primary_10_1007_s10803_021_04966_1
crossref_primary_10_1007_s13410_019_00715_4
crossref_primary_10_1016_j_diabres_2014_08_017
crossref_primary_10_3748_wjg_v21_i19_5813
crossref_primary_10_4103_0366_6999_205855
crossref_primary_10_1042_CS20180087
crossref_primary_10_3390_ph14111084
crossref_primary_10_3390_antib11020023
crossref_primary_10_3390_medicina55100710
crossref_primary_10_3390_microorganisms8111727
crossref_primary_10_1016_j_jacig_2023_100093
crossref_primary_10_3390_medicina61030391
crossref_primary_10_1016_j_clnesp_2022_09_014
crossref_primary_10_3390_metabo12100987
crossref_primary_10_3390_ijms22147671
crossref_primary_10_3892_mmr_2022_12742
crossref_primary_10_1002_jpen_1874
crossref_primary_10_17116_dokgastro20211003147
crossref_primary_10_18097_pbmc20226805309
crossref_primary_10_1007_s13312_023_2812_1
crossref_primary_10_1016_j_transproceed_2014_09_041
crossref_primary_10_1080_21688370_2019_1612661
crossref_primary_10_1016_j_nupar_2023_11_002
crossref_primary_10_1155_2016_1980686
crossref_primary_10_1186_s40885_020_00139_x
crossref_primary_10_3748_wjg_v22_i11_3117
crossref_primary_10_32388_JE31EO_5
crossref_primary_10_1038_s41467_023_36497_x
crossref_primary_10_3390_nu13031018
crossref_primary_10_3389_fmed_2021_649818
crossref_primary_10_1186_s13063_021_05146_3
crossref_primary_10_2217_bmm_2020_0353
crossref_primary_10_1186_s13075_023_03069_9
crossref_primary_10_18678_dtfd_779517
crossref_primary_10_1080_09637486_2016_1202214
crossref_primary_10_1016_j_intimp_2024_112020
crossref_primary_10_1007_s12403_023_00578_5
crossref_primary_10_1097_j_pain_0000000000000481
crossref_primary_10_3390_nu16081228
crossref_primary_10_3389_fimmu_2022_912336
crossref_primary_10_1038_s41598_018_22599_w
crossref_primary_10_1111_imm_13713
crossref_primary_10_1007_s40670_018_00686_x
crossref_primary_10_1016_j_fbio_2023_102459
crossref_primary_10_1002_jcla_23941
crossref_primary_10_1371_journal_pone_0101093
crossref_primary_10_5005_jp_journals_10071_23218
crossref_primary_10_3390_ijms24098344
crossref_primary_10_1016_j_jnutbio_2023_109409
crossref_primary_10_1093_bib_bby109
crossref_primary_10_1007_s12035_023_03512_7
crossref_primary_10_7759_cureus_57173
crossref_primary_10_1186_s12916_024_03771_8
crossref_primary_10_1007_s00431_021_04102_2
crossref_primary_10_1016_j_clim_2017_03_001
crossref_primary_10_3390_nu11102392
crossref_primary_10_17116_dokgastro20221101128
crossref_primary_10_1002_mnfr_201801040
crossref_primary_10_3389_fimmu_2017_00598
crossref_primary_10_3390_nu10111793
Cites_doi 10.1038/329506a0
10.1016/j.jpeds.2006.06.003
10.1080/00365520500235334
10.1371/journal.pone.0009576
10.4049/jimmunol.173.3.1925
10.1159/000327822
10.1136/gutjnl-2011-300123
10.1016/S0016-5085(09)62182-X
10.1007/BF00454879
10.1084/jem.20061884
10.1152/ajpgi.1999.276.4.G951
10.1136/gut.2005.085373
10.1136/gut.2007.133132
10.1038/ng1680
10.1111/j.1749-6632.2000.tb05244.x
10.1038/mi.2010.5
10.2337/db05-1593
10.1111/j.1365-2249.2010.04139.x
10.1073/pnas.0405692101
10.1016/S0140-6736(00)02169-3
10.1038/scientificamerican0809-54
10.1152/ajpgi.00303.2007
10.1016/j.humimm.2010.01.016
10.1111/j.1365-2036.2007.03413.x
10.2353/ajpath.2008.080192
10.1152/physrev.00003.2008
10.1038/ncpgasthep0259
10.7326/0003-4819-98-3-378
10.1161/01.RES.0000076889.23082.F1
10.1053/gast.2002.36578
10.1007/s00125-010-1903-9
10.2217/14622416.9.8.989
10.1111/j.1399-5448.2009.00541.x
10.1038/ng0410-281
10.1096/fj.10-158972
10.1136/gut.2011.240978
10.1371/journal.pone.0011501
10.1007/s00428-009-0879-7
10.1111/j.1600-0714.2007.00589.x
10.1073/pnas.0500178102
10.1016/j.cca.2010.12.006
10.1182/blood.V98.13.3693
10.1242/jcs.113.24.4435
10.1002/dmrr.748
10.1152/ajpgi.2001.280.5.G910
10.1136/gut.52.2.218
10.1373/clinchem.2007.098780
10.1097/00005176-200406003-00003
10.1007/s00726-005-0292-8
10.1053/gast.2002.35381
10.1073/pnas.0906773106
ContentType Journal Article
Copyright 2012 New York Academy of Sciences.
Copyright_xml – notice: 2012 New York Academy of Sciences.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1111/j.1749-6632.2012.06538.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts


MEDLINE - Academic
AIDS and Cancer Research Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 33
ExternalDocumentID PMC3384703
3966402151
22731712
10_1111_j_1749_6632_2012_06538_x
NYAS6538
ark_67375_WNG_NB96RFKV_Z
Genre article
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: DK-078699
– fundername: NIDDK NIH HHS
  grantid: R01 DK048373
– fundername: NIDDK NIH HHS
  grantid: DK-48373
– fundername: NIDDK NIH HHS
  grantid: R21 DK078699
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHDLI
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c6408-f953d899e589ad09947eb2b4ccce7d9342bd7bd0ae5ddce7a8e3a70518e912293
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Thu Aug 21 17:52:08 EDT 2025
Thu Jul 10 18:13:34 EDT 2025
Fri Jul 11 02:30:21 EDT 2025
Fri Jul 25 12:10:32 EDT 2025
Mon Jul 21 05:50:27 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 04:00:44 EDT 2025
Wed Aug 20 07:26:18 EDT 2025
Wed Oct 30 09:50:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012 New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6408-f953d899e589ad09947eb2b4ccce7d9342bd7bd0ae5ddce7a8e3a70518e912293
Notes ArticleID:NYAS6538
istex:77E630BAA3B2F1DCD42571E809C0BFB735DC33FE
ark:/67375/WNG-NB96RFKV-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3384703
PMID 22731712
PQID 1768590163
PQPubID 946344
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3384703
proquest_miscellaneous_1038304348
proquest_miscellaneous_1022377189
proquest_journals_1768590163
pubmed_primary_22731712
crossref_primary_10_1111_j_1749_6632_2012_06538_x
crossref_citationtrail_10_1111_j_1749_6632_2012_06538_x
wiley_primary_10_1111_j_1749_6632_2012_06538_x_NYAS6538
istex_primary_ark_67375_WNG_NB96RFKV_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2012
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
References Okada, H., C. Kuhn & H. Feillet. 2010. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 2010: 1-9.
Arentz-Hansen, H., S. McAdam, O. Molberg, et al . 2003. Celiac lesion T cells recognized epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology 123:803-809.
Papp, M., I. Foldi, E. Nemes, et al . 2008. Haptoglobin polymorphism: a novel genetic risk factor for celiac disease development and its clinical manifestations. Clin. Chem. 54: 697-704.
Tao, B., M. Pietropaolo, M. Atkinson, et al . 2010. Estimating the cost of type 1 diabetes in the USA propensity score matching method. PLoS One 5: 1-11.
Fasano, A. 2000. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann. N. Y. Acad. Sci. 915: 214-222.
Funda, D.P. & A. Kaas, H. Tlaskalová-Hogenová & K. Buschard. 2008. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab. Res. Rev. 24: 59-63.
Watts, T., I. Berti, A. Sapone, et al . 2005. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc. Natl. Acad. Sci. USA 102: 2916-2921.
Monsuur, A.J., P.I. de Bakker, B.Z. Alizadeh, et al . 2005. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat. Genet. 37: 1341-1344.
Wicher, K.B. & E. Fries. 2004. Prohaptoglobin is proteolytically cleaved in the endoplasmic reticulum by the complement C1r-like protein. Proc. Natl. Acad. Sci. USA 101: 14390-14395.
Paterson, B.M., K.M. Lammers, M.C. Arrieta, et al . 2007. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in celiac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26: 757-766.
Bjorkman, P.J., M.A. Saper, B. Samraoui, et al . 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506-512.
Fasano, A. 2011. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91: 151-175.
Lammers, K.M., R. Lu, J. Brownley, et al . 2008. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135: 194-204.
van der Merwe, J.Q., M.D. Hollenberg & W.K. MacNaughton. 2008. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G441-G451.
Szakál, D.N., H. Gyorffy, A. Arató, et al . 2010. Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch. 456: 245-250.
Arrieta, M.C., L. Bistritz & J.B. Meddings. 2006. Alterations in intestinal permeability. Gut 55: 1512-1520.
Sapone, A., L. de Magistris, M. Pietzak, et al . 2006. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55: 1443-1449.
Márquez, L. et al . 2012. Effects of haptoglobin polymorphisms and deficiency on susceptibility to inflammatory bowel disease and on severity of murine colitis. Gut 61: 528-534.
Wolters, V.M., B.Z. Alizadeh, M.E. Weijerman, et al . 2010. Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability. Hum. Immunol. 71: 392-396.
Melamed-Frank, M., O. Lache, B.I. Enav, et al . 2001. Structure-function analysis of the antioxidant properties of haptoglobin. Blood 98: 3693-3698.
Asleh, R., S. Marsh, M. Shilkrut, et al . 2003. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res. 92: 1193-1200.
Nikulina, M. et al . 2004. Wheat gluten causes dendritic cell maturation and chemokine secretion. J. Immunol. 173: 1925-1933.
Goldblum, S.E., U. Rai, A. Tripathi, et al . 2011. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 25: 144-158.
Clemente, M.G., S. De Virgiliis, J.S. Kang, et al . 2003. Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function. Gut 52: 218-223.
Feldman, M. & L.R. Schiller. 1983. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann. Intern. Med. 98: 378-384.
De Magistris, L., M. Secondulfo, D. Iafusco, et al . 1996. Altered mannitol absorption in diabetic children. Ital. J. Gastroenterol. 28: 367.
Drago, S., A.R. El, P.M. Di, et al . 2006. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 41: 408-419.
Meddings, J.B., J. Jarand, S.J. Urbanski, et al . 1999. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am. J. Physiol. 276: G951-G957.
Paterson, B.M., K.M. Lammers, M.C. Arrieta, et al . 2007. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26: 757-766.
Visser, J.T., K. Lammers, A. Hoogendijk, et al . 2010. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia. 53: 2621-2628.
Madara, J.L. & J.S. Trier. 1980. Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab. Inves. 43: 254-261.
Napolioni, V., P. Giannì, F.M. Carpi, et al . 2011. Haptoglobin (HP) polymorphisms and human longevity: a cross-sectional association study in a Central Italy population. Clin. Chim. Acta. 412: 574-577.
Wang, W., S. Uzzau, S.E. Goldblum & A. Fasano. 2000. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113: 4435-4440.
Brorsson, C., N. Tue Hansen, R. Bergholdt, et al . 2010. The type 1 diabetes-HLA susceptibility interactome-identification of HLA genotype-specific disease genes for type 1 diabetes. PLoS One. 5: e9576.
Plenge, R.M. 2010. Unlocking the pathogenesis of celiac disease. Nat. Genet. 42: 281-282.
Fasano, A. 2008. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am. J. Pathol. 173: 1243-1252.
Chieppa, M., M. Rescigno, A.Y. Huang & R.N. Germain. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203: 2841-2852.
Fasano, A. 2009. Surprises from celiac disease. Sci. Am. 301: 54-61.
Simpson, M., M. Mojibian, K. Barriga, et al . 2009. An exploration of Glo-3A antibody levels in children at increased risk for type 1 diabetes mellitus. Pediatr. Diabetes 10: 563-572.
Tripathi, A., K.M. Lammers, S. Goldblum, et al . 2009. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl. Acad. Sci. USA 106: 16799-16804.
Wan, C. et al . 2007. Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene. Amino. Acids 32: 101-108.
Fasano, A. & T. Shea-Donohue. 2005. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 416-422.
El Asmar, R., P. Panigrahi, P. Bamford, et al . 2002. Host-dependent activation of the Zonulin system is involved in the impairment of the gut barrier function following bacterial colonization. Gastroenterology 123: 1607-1615.
Schumann, M., D. Günzel, N. Buergel, et al . 2012. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61: 220-228.
Wapenaar, M.C., A.J. Monsuur, A.A. van Bodegraven, et al . 2008. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57: 463-467.
Branski, D., A. Fasano & R. Troncone. 2006. Latest developments in the pathogenesis and treatment of celiac disease. J. Pediatr. 149: 295-300
Mooradian, A.D., J.E. Morley, A.S. Levine, et al . 1996. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29: 221-224.
Fasano, A., T. Not, W. Wang, et al . 2000. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355: 1518-1519.
Hollande, F., E.M. Blanc, J.P. Bali, et al . 2001. HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G910-G921.
Blum, S., U. Milman, C. Shapira & A.P. Levy. 2008. Pharmacogenomic application of the haptoglobin genotype in the prevention of diabetic cardiovascular disease. Pharmacogenomics 9: 989-991.
Kelly, C.P., P.H. Green, J.A. Murray, et al . 2009. Safety, tolerability and effects on intestinal permeability of larazotide acetate in celiac disease: results of a phase IIB 6-week gluten-challenge clinical trial. Gastro. 136,5: A-474.
Jin, M., E. Barron, S. He, et al . 2002. Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest. Ophthalmol. Vis. Sci. 43: 2782-2790.
Ménard, S., N. Cerf-Bensussan & M. Heyman. 2010. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal. Immunol. 3: 247-259.
Mowat, A.M., O.R. Millington & F.G. Chirdo. 2004. Anatomical and cellular basis of immunity and tolerance in the intestine. J. Pediatr. Gastroenterol. Nutr. 39: S723-S724.
Chen, Y. C. et al . 2011. Haptoglobin polymorphism as a
2012; 61
2010; 53
1980; 43
2008; 9
1983; 98
2007; 32
2003; 52
1996; 29
1996; 28
2009; 10
2003; 92
2001
2004; 39
2005; 102
2004; 173
2002; 43
2008; 24
2011; 25
2005; 37
2010; 3
2006; 203
2010; 5
2003; 123
2007; 26
2010; 71
2001; 98
2004; 101
2011; 412
2000; 915
2010; 2010
2000; 113
2000; 355
2010
2006; 55
2001; 280
1987; 329
2009; 136,5
2011; 33
2008; 57
2008; 54
2006; 41
2011; 91
2010; 456
2002; 123
1999; 276
2005; 2
2008; 135
2006; 149
2009; 301
2008; 294
2008; 173
2009; 106
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
Fasano A. (e_1_2_7_40_2) 2001
e_1_2_7_45_2
Kelly C.P. (e_1_2_7_59_2) 2009; 136
e_1_2_7_47_2
e_1_2_7_49_2
e_1_2_7_28_2
Madara J.L. (e_1_2_7_34_2) 1980; 43
Wang W. (e_1_2_7_13_2) 2000; 113
Jin M. (e_1_2_7_26_2) 2002; 43
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
De Magistris L. (e_1_2_7_44_2) 1996; 28
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
References_xml – reference: Schumann, M., D. Günzel, N. Buergel, et al . 2012. Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease. Gut 61: 220-228.
– reference: Jin, M., E. Barron, S. He, et al . 2002. Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest. Ophthalmol. Vis. Sci. 43: 2782-2790.
– reference: De Magistris, L., M. Secondulfo, D. Iafusco, et al . 1996. Altered mannitol absorption in diabetic children. Ital. J. Gastroenterol. 28: 367.
– reference: Wan, C. et al . 2007. Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene. Amino. Acids 32: 101-108.
– reference: Márquez, L. et al . 2012. Effects of haptoglobin polymorphisms and deficiency on susceptibility to inflammatory bowel disease and on severity of murine colitis. Gut 61: 528-534.
– reference: Ménard, S., N. Cerf-Bensussan & M. Heyman. 2010. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal. Immunol. 3: 247-259.
– reference: Fasano, A. 2011. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91: 151-175.
– reference: Meddings, J.B., J. Jarand, S.J. Urbanski, et al . 1999. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am. J. Physiol. 276: G951-G957.
– reference: Melamed-Frank, M., O. Lache, B.I. Enav, et al . 2001. Structure-function analysis of the antioxidant properties of haptoglobin. Blood 98: 3693-3698.
– reference: Brorsson, C., N. Tue Hansen, R. Bergholdt, et al . 2010. The type 1 diabetes-HLA susceptibility interactome-identification of HLA genotype-specific disease genes for type 1 diabetes. PLoS One. 5: e9576.
– reference: Wicher, K.B. & E. Fries. 2004. Prohaptoglobin is proteolytically cleaved in the endoplasmic reticulum by the complement C1r-like protein. Proc. Natl. Acad. Sci. USA 101: 14390-14395.
– reference: Branski, D., A. Fasano & R. Troncone. 2006. Latest developments in the pathogenesis and treatment of celiac disease. J. Pediatr. 149: 295-300
– reference: Arrieta, M.C., L. Bistritz & J.B. Meddings. 2006. Alterations in intestinal permeability. Gut 55: 1512-1520.
– reference: Papp, M., I. Foldi, E. Nemes, et al . 2008. Haptoglobin polymorphism: a novel genetic risk factor for celiac disease development and its clinical manifestations. Clin. Chem. 54: 697-704.
– reference: Mowat, A.M., O.R. Millington & F.G. Chirdo. 2004. Anatomical and cellular basis of immunity and tolerance in the intestine. J. Pediatr. Gastroenterol. Nutr. 39: S723-S724.
– reference: Hollande, F., E.M. Blanc, J.P. Bali, et al . 2001. HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G910-G921.
– reference: Visser, J.T., K. Lammers, A. Hoogendijk, et al . 2010. Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes-prone BioBreeding rat. Diabetologia. 53: 2621-2628.
– reference: Chieppa, M., M. Rescigno, A.Y. Huang & R.N. Germain. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203: 2841-2852.
– reference: Fasano, A. 2000. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann. N. Y. Acad. Sci. 915: 214-222.
– reference: Drago, S., A.R. El, P.M. Di, et al . 2006. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 41: 408-419.
– reference: Wapenaar, M.C., A.J. Monsuur, A.A. van Bodegraven, et al . 2008. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57: 463-467.
– reference: Funda, D.P. & A. Kaas, H. Tlaskalová-Hogenová & K. Buschard. 2008. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. Diabetes Metab. Res. Rev. 24: 59-63.
– reference: Simpson, M., M. Mojibian, K. Barriga, et al . 2009. An exploration of Glo-3A antibody levels in children at increased risk for type 1 diabetes mellitus. Pediatr. Diabetes 10: 563-572.
– reference: Bjorkman, P.J., M.A. Saper, B. Samraoui, et al . 1987. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506-512.
– reference: Chen, Y. C. et al . 2011. Haptoglobin polymorphism as a risk factor for chronic kidney disease: a case-control study. Am. J. Nephrol. 33: 510-514.
– reference: Fasano, A. 2009. Surprises from celiac disease. Sci. Am. 301: 54-61.
– reference: Monsuur, A.J., P.I. de Bakker, B.Z. Alizadeh, et al . 2005. Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat. Genet. 37: 1341-1344.
– reference: Arentz-Hansen, H., S. McAdam, O. Molberg, et al . 2003. Celiac lesion T cells recognized epitopes that cluster in regions of gliadin rich in proline residues. Gastroenterology 123:803-809.
– reference: Asleh, R., S. Marsh, M. Shilkrut, et al . 2003. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res. 92: 1193-1200.
– reference: Mooradian, A.D., J.E. Morley, A.S. Levine, et al . 1996. Abnormal intestinal permeability to sugars in diabetes mellitus. Diabetologia 29: 221-224.
– reference: Paterson, B.M., K.M. Lammers, M.C. Arrieta, et al . 2007. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26: 757-766.
– reference: Goldblum, S.E., U. Rai, A. Tripathi, et al . 2011. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 25: 144-158.
– reference: Fasano, A. 2008. Physiological, pathological, and therapeutic implications of zonulin-mediated intestinal barrier modulation: living life on the edge of the wall. Am. J. Pathol. 173: 1243-1252.
– reference: Madara, J.L. & J.S. Trier. 1980. Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab. Inves. 43: 254-261.
– reference: Fasano, A., T. Not, W. Wang, et al . 2000. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355: 1518-1519.
– reference: Blum, S., U. Milman, C. Shapira & A.P. Levy. 2008. Pharmacogenomic application of the haptoglobin genotype in the prevention of diabetic cardiovascular disease. Pharmacogenomics 9: 989-991.
– reference: Szakál, D.N., H. Gyorffy, A. Arató, et al . 2010. Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease. Virchows Arch. 456: 245-250.
– reference: Feldman, M. & L.R. Schiller. 1983. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann. Intern. Med. 98: 378-384.
– reference: Okada, H., C. Kuhn & H. Feillet. 2010. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 2010: 1-9.
– reference: Tao, B., M. Pietropaolo, M. Atkinson, et al . 2010. Estimating the cost of type 1 diabetes in the USA propensity score matching method. PLoS One 5: 1-11.
– reference: El Asmar, R., P. Panigrahi, P. Bamford, et al . 2002. Host-dependent activation of the Zonulin system is involved in the impairment of the gut barrier function following bacterial colonization. Gastroenterology 123: 1607-1615.
– reference: Fasano, A. & T. Shea-Donohue. 2005. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2: 416-422.
– reference: Watts, T., I. Berti, A. Sapone, et al . 2005. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc. Natl. Acad. Sci. USA 102: 2916-2921.
– reference: Nikulina, M. et al . 2004. Wheat gluten causes dendritic cell maturation and chemokine secretion. J. Immunol. 173: 1925-1933.
– reference: Lammers, K.M., R. Lu, J. Brownley, et al . 2008. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 135: 194-204.
– reference: Napolioni, V., P. Giannì, F.M. Carpi, et al . 2011. Haptoglobin (HP) polymorphisms and human longevity: a cross-sectional association study in a Central Italy population. Clin. Chim. Acta. 412: 574-577.
– reference: Wang, W., S. Uzzau, S.E. Goldblum & A. Fasano. 2000. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113: 4435-4440.
– reference: Plenge, R.M. 2010. Unlocking the pathogenesis of celiac disease. Nat. Genet. 42: 281-282.
– reference: van der Merwe, J.Q., M.D. Hollenberg & W.K. MacNaughton. 2008. EGF receptor transactivation and MAP kinase mediate proteinase-activated receptor-2-induced chloride secretion in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G441-G451.
– reference: Clemente, M.G., S. De Virgiliis, J.S. Kang, et al . 2003. Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function. Gut 52: 218-223.
– reference: Sapone, A., L. de Magistris, M. Pietzak, et al . 2006. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 55: 1443-1449.
– reference: Paterson, B.M., K.M. Lammers, M.C. Arrieta, et al . 2007. The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in celiac disease subjects: a proof of concept study. Aliment. Pharmacol. Ther. 26: 757-766.
– reference: Kelly, C.P., P.H. Green, J.A. Murray, et al . 2009. Safety, tolerability and effects on intestinal permeability of larazotide acetate in celiac disease: results of a phase IIB 6-week gluten-challenge clinical trial. Gastro. 136,5: A-474.
– reference: Tripathi, A., K.M. Lammers, S. Goldblum, et al . 2009. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl. Acad. Sci. USA 106: 16799-16804.
– reference: Wolters, V.M., B.Z. Alizadeh, M.E. Weijerman, et al . 2010. Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability. Hum. Immunol. 71: 392-396.
– volume: 92
  start-page: 1193
  year: 2003
  end-page: 1200
  article-title: Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease
  publication-title: Circ. Res.
– volume: 276
  start-page: G951
  year: 1999
  end-page: G957
  article-title: Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat
  publication-title: Am. J. Physiol.
– volume: 26
  start-page: 757
  year: 2007
  end-page: 766
  article-title: The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT‐1001 in coeliac disease subjects: a proof of concept study
  publication-title: Aliment. Pharmacol. Ther.
– volume: 294
  start-page: G441
  year: 2008
  end-page: G451
  article-title: EGF receptor transactivation and MAP kinase mediate proteinase‐activated receptor‐2‐induced chloride secretion in intestinal epithelial cells
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 43
  start-page: 254
  year: 1980
  end-page: 261
  article-title: Structural abnormalities of jejunal epithelial cell membranes in celiac sprue
  publication-title: Lab. Inves.
– volume: 29
  start-page: 221
  year: 1996
  end-page: 224
  article-title: Abnormal intestinal permeability to sugars in diabetes mellitus
  publication-title: Diabetologia
– volume: 123
  start-page: 803
  year: 2003
  end-page: 809
  article-title: Celiac lesion T cells recognized epitopes that cluster in regions of gliadin rich in proline residues
  publication-title: Gastroenterology
– volume: 456
  start-page: 245
  year: 2010
  end-page: 250
  article-title: Mucosal expression of claudins 2, 3 and 4 in proximal and distal part of duodenum in children with coeliac disease
  publication-title: Virchows Arch.
– volume: 9
  start-page: 989
  year: 2008
  end-page: 991
  article-title: Pharmacogenomic application of the haptoglobin genotype in the prevention of diabetic cardiovascular disease
  publication-title: Pharmacogenomics
– volume: 41
  start-page: 408
  year: 2006
  end-page: 419
  article-title: Gliadin, zonulin and gut permeability: effects on celiac and non‐celiac intestinal mucosa and intestinal cell lines
  publication-title: Scand. J. Gastroenterol.
– volume: 106
  start-page: 16799
  year: 2009
  end-page: 16804
  article-title: Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin‐2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 98
  start-page: 3693
  year: 2001
  end-page: 3698
  article-title: Structure‐function analysis of the antioxidant properties of haptoglobin
  publication-title: Blood
– volume: 53
  start-page: 2621
  year: 2010
  end-page: 2628
  article-title: Restoration of impaired intestinal barrier function by the hydrolysed casein diet contributes to the prevention of type 1 diabetes in the diabetes‐prone BioBreeding rat
  publication-title: Diabetologia.
– volume: 33
  start-page: 510
  year: 2011
  end-page: 514.
  article-title: Haptoglobin polymorphism as a risk factor for chronic kidney disease: a case‐control study
  publication-title: Am. J. Nephrol.
– volume: 37
  start-page: 1341
  year: 2005
  end-page: 1344
  article-title: Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect
  publication-title: Nat. Genet.
– volume: 915
  start-page: 214
  year: 2000
  end-page: 222
  article-title: Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 173
  start-page: 1243
  year: 2008
  end-page: 1252
  article-title: Physiological, pathological, and therapeutic implications of zonulin‐mediated intestinal barrier modulation: living life on the edge of the wall
  publication-title: Am. J. Pathol.
– volume: 55
  start-page: 1512
  year: 2006
  end-page: 1520
  article-title: Alterations in intestinal permeability
  publication-title: Gut
– volume: 52
  start-page: 218
  year: 2003
  end-page: 223
  article-title: Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function
  publication-title: Gut
– volume: 39
  start-page: S723
  year: 2004
  end-page: S724
  article-title: Anatomical and cellular basis of immunity and tolerance in the intestine
  publication-title: J. Pediatr. Gastroenterol. Nutr.
– volume: 113
  start-page: 4435
  year: 2000
  end-page: 4440
  article-title: Human zonulin, a potential modulator of intestinal tight junctions
  publication-title: J. Cell Sci.
– volume: 149
  start-page: 295
  year: 2006
  end-page: 300
  article-title: Latest developments in the pathogenesis and treatment of celiac disease
  publication-title: J. Pediatr.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 9
  article-title: The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update
  publication-title: Clin. Exp. Immunol.
– volume: 26
  start-page: 757
  year: 2007
  end-page: 766
  article-title: The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT‐1001 in celiac disease subjects: a proof of concept study
  publication-title: Aliment. Pharmacol. Ther.
– volume: 355
  start-page: 1518
  year: 2000
  end-page: 1519
  article-title: Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease
  publication-title: Lancet
– volume: 5
  start-page: 1
  year: 2010
  end-page: 11
  article-title: Estimating the cost of type 1 diabetes in the USA propensity score matching method
  publication-title: PLoS One
– volume: 5
  start-page: e9576
  year: 2010
  article-title: The type 1 diabetes—HLA susceptibility interactome—identification of HLA genotype‐specific disease genes for type 1 diabetes
  publication-title: PLoS One.
– volume: 173
  start-page: 1925
  year: 2004
  end-page: 1933
  article-title: Wheat gluten causes dendritic cell maturation and chemokine secretion
  publication-title: J. Immunol.
– volume: 203
  start-page: 2841
  year: 2006
  end-page: 2852
  article-title: Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement
  publication-title: J. Exp. Med.
– volume: 412
  start-page: 574
  year: 2011
  end-page: 577
  article-title: Haptoglobin (HP) polymorphisms and human longevity: a cross‐sectional association study in a Central Italy population
  publication-title: Clin. Chim. Acta
– volume: 32
  start-page: 101
  year: 2007
  end-page: 108
  article-title: Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene
  publication-title: Amino. Acids
– volume: 10
  start-page: 563
  year: 2009
  end-page: 572
  article-title: An exploration of Glo‐3A antibody levels in children at increased risk for type 1 diabetes mellitus
  publication-title: Pediatr. Diabetes
– volume: 102
  start-page: 2916
  year: 2005
  end-page: 2921
  article-title: Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic‐prone rats
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 135
  start-page: 194
  year: 2008
  end-page: 204
  article-title: Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3
  publication-title: Gastroenterology
– volume: 25
  start-page: 144
  year: 2011
  end-page: 158
  article-title: The active Zot domain (aa 288–293) increases ZO‐1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO‐1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation
  publication-title: FASEB J
– volume: 123
  start-page: 1607
  year: 2002
  end-page: 1615
  article-title: Host‐dependent activation of the Zonulin system is involved in the impairment of the gut barrier function following bacterial colonization
  publication-title: Gastroenterology
– volume: 57
  start-page: 463
  year: 2008
  end-page: 467
  article-title: Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis
  publication-title: Gut
– volume: 54
  start-page: 697
  year: 2008
  end-page: 704
  article-title: Haptoglobin polymorphism: a novel genetic risk factor for celiac disease development and its clinical manifestations
  publication-title: Clin. Chem.
– volume: 55
  start-page: 1443
  year: 2006
  end-page: 1449
  article-title: Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives
  publication-title: Diabetes
– volume: 101
  start-page: 14390
  year: 2004
  end-page: 14395
  article-title: Prohaptoglobin is proteolytically cleaved in the endoplasmic reticulum by the complement C1r‐like protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 301
  start-page: 54
  year: 2009
  end-page: 61
  article-title: Surprises from celiac disease
  publication-title: Sci. Am.
– start-page: 281
  year: 2010
  end-page: 282
  article-title: Unlocking the pathogenesis of celiac disease
  publication-title: Nat. Genet
– volume: 98
  start-page: 378
  year: 1983
  end-page: 384
  article-title: Disorders of gastrointestinal motility associated with diabetes mellitus
  publication-title: Ann. Intern. Med.
– volume: 136,5
  start-page: A
  year: 2009
  end-page: 474
  article-title: Safety, tolerability and effects on intestinal permeability of larazotide acetate in celiac disease: results of a phase IIB 6‐week gluten‐challenge clinical trial
  publication-title: Gastro.
– volume: 91
  start-page: 151
  year: 2011
  end-page: 175
  article-title: Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer
  publication-title: Physiol. Rev.
– volume: 43
  start-page: 2782
  year: 2002
  end-page: 2790
  article-title: Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 3
  start-page: 247
  year: 2010
  end-page: 259
  article-title: Multiple facets of intestinal permeability and epithelial handling of dietary antigens
  publication-title: Mucosal. Immunol.
– volume: 329
  start-page: 506
  year: 1987
  end-page: 512
  article-title: Structure of the human class I histocompatibility antigen, HLA‐A2
  publication-title: Nature
– volume: 280
  start-page: G910
  year: 2001
  end-page: G921
  article-title: HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 61
  start-page: 528
  year: 2012
  end-page: 534
  article-title: Effects of haptoglobin polymorphisms and deficiency on susceptibility to inflammatory bowel disease and on severity of murine colitis
  publication-title: Gut
– volume: 61
  start-page: 220
  year: 2012
  end-page: 228
  article-title: Cell polarity‐determining proteins Par‐3 and PP‐1 are involved in epithelial tight junction defects in coeliac disease
  publication-title: Gut
– volume: 2
  start-page: 416
  year: 2005
  end-page: 422
  article-title: Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases
  publication-title: Nat. Clin. Pract. Gastroenterol. Hepatol.
– volume: 71
  start-page: 392
  year: 2010
  end-page: 396
  article-title: Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability
  publication-title: Hum. Immunol.
– volume: 28
  start-page: 367
  year: 1996
  article-title: Altered mannitol absorption in diabetic children
  publication-title: Ital. J. Gastroenterol.
– volume: 24
  start-page: 59
  year: 2008
  end-page: 63
  article-title: Gluten‐free but also gluten‐enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes
  publication-title: Diabetes Metab. Res. Rev.
– start-page: 697
  year: 2001
  end-page: 722
– ident: e_1_2_7_21_2
  doi: 10.1038/329506a0
– ident: e_1_2_7_32_2
  doi: 10.1016/j.jpeds.2006.06.003
– ident: e_1_2_7_24_2
  doi: 10.1080/00365520500235334
– ident: e_1_2_7_42_2
  doi: 10.1371/journal.pone.0009576
– ident: e_1_2_7_39_2
  doi: 10.4049/jimmunol.173.3.1925
– volume: 43
  start-page: 2782
  year: 2002
  ident: e_1_2_7_26_2
  article-title: Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor
  publication-title: Invest. Ophthalmol. Vis. Sci.
– ident: e_1_2_7_56_2
  doi: 10.1159/000327822
– ident: e_1_2_7_37_2
  doi: 10.1136/gutjnl-2011-300123
– volume: 136
  start-page: A
  year: 2009
  ident: e_1_2_7_59_2
  article-title: Safety, tolerability and effects on intestinal permeability of larazotide acetate in celiac disease: results of a phase IIB 6‐week gluten‐challenge clinical trial
  publication-title: Gastro.
  doi: 10.1016/S0016-5085(09)62182-X
– ident: e_1_2_7_45_2
  doi: 10.1007/BF00454879
– ident: e_1_2_7_11_2
  doi: 10.1084/jem.20061884
– ident: e_1_2_7_46_2
  doi: 10.1152/ajpgi.1999.276.4.G951
– ident: e_1_2_7_6_2
  doi: 10.1136/gut.2005.085373
– ident: e_1_2_7_8_2
  doi: 10.1136/gut.2007.133132
– ident: e_1_2_7_9_2
  doi: 10.1038/ng1680
– ident: e_1_2_7_15_2
  doi: 10.1111/j.1749-6632.2000.tb05244.x
– ident: e_1_2_7_10_2
  doi: 10.1038/mi.2010.5
– ident: e_1_2_7_16_2
  doi: 10.2337/db05-1593
– ident: e_1_2_7_2_2
  doi: 10.1111/j.1365-2249.2010.04139.x
– ident: e_1_2_7_23_2
  doi: 10.1073/pnas.0405692101
– ident: e_1_2_7_14_2
  doi: 10.1016/S0140-6736(00)02169-3
– ident: e_1_2_7_57_2
  doi: 10.1038/scientificamerican0809-54
– ident: e_1_2_7_27_2
  doi: 10.1152/ajpgi.00303.2007
– ident: e_1_2_7_35_2
  doi: 10.1016/j.humimm.2010.01.016
– ident: e_1_2_7_18_2
  doi: 10.1111/j.1365-2036.2007.03413.x
– ident: e_1_2_7_41_2
  doi: 10.2353/ajpath.2008.080192
– ident: e_1_2_7_19_2
  doi: 10.1152/physrev.00003.2008
– ident: e_1_2_7_4_2
– ident: e_1_2_7_7_2
  doi: 10.1038/ncpgasthep0259
– ident: e_1_2_7_43_2
  doi: 10.7326/0003-4819-98-3-378
– ident: e_1_2_7_22_2
  doi: 10.1161/01.RES.0000076889.23082.F1
– ident: e_1_2_7_29_2
  doi: 10.1053/gast.2002.36578
– ident: e_1_2_7_48_2
  doi: 10.1007/s00125-010-1903-9
– start-page: 697
  volume-title: Tight Junctions
  year: 2001
  ident: e_1_2_7_40_2
– ident: e_1_2_7_51_2
  doi: 10.2217/14622416.9.8.989
– ident: e_1_2_7_49_2
  doi: 10.1111/j.1399-5448.2009.00541.x
– ident: e_1_2_7_33_2
  doi: 10.1038/ng0410-281
– ident: e_1_2_7_28_2
  doi: 10.1096/fj.10-158972
– ident: e_1_2_7_58_2
  doi: 10.1111/j.1365-2036.2007.03413.x
– volume: 28
  start-page: 367
  year: 1996
  ident: e_1_2_7_44_2
  article-title: Altered mannitol absorption in diabetic children
  publication-title: Ital. J. Gastroenterol.
– ident: e_1_2_7_54_2
  doi: 10.1136/gut.2011.240978
– ident: e_1_2_7_5_2
  doi: 10.1371/journal.pone.0011501
– ident: e_1_2_7_36_2
  doi: 10.1007/s00428-009-0879-7
– ident: e_1_2_7_31_2
  doi: 10.1111/j.1600-0714.2007.00589.x
– volume: 43
  start-page: 254
  year: 1980
  ident: e_1_2_7_34_2
  article-title: Structural abnormalities of jejunal epithelial cell membranes in celiac sprue
  publication-title: Lab. Inves.
– ident: e_1_2_7_17_2
  doi: 10.1073/pnas.0500178102
– ident: e_1_2_7_53_2
  doi: 10.1016/j.cca.2010.12.006
– ident: e_1_2_7_50_2
  doi: 10.1182/blood.V98.13.3693
– volume: 113
  start-page: 4435
  year: 2000
  ident: e_1_2_7_13_2
  article-title: Human zonulin, a potential modulator of intestinal tight junctions
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.24.4435
– ident: e_1_2_7_47_2
  doi: 10.1002/dmrr.748
– ident: e_1_2_7_3_2
– ident: e_1_2_7_25_2
  doi: 10.1152/ajpgi.2001.280.5.G910
– ident: e_1_2_7_30_2
  doi: 10.1136/gut.52.2.218
– ident: e_1_2_7_52_2
  doi: 10.1373/clinchem.2007.098780
– ident: e_1_2_7_12_2
  doi: 10.1097/00005176-200406003-00003
– ident: e_1_2_7_55_2
  doi: 10.1007/s00726-005-0292-8
– ident: e_1_2_7_38_2
  doi: 10.1053/gast.2002.35381
– ident: e_1_2_7_20_2
  doi: 10.1073/pnas.0906773106
SSID ssj0012847
Score 2.5245528
SecondaryResourceType review_article
Snippet Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to...
Recent studies indicate that beside digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Absorption
Amino Acid Sequence
Antigens
Autoimmune diseases
Autoimmune Diseases - physiopathology
autoimmunity
Cholera Toxin - physiology
Gliadin - chemistry
Gliadin - metabolism
Haptoglobins
Humans
Intestinal Mucosa - physiopathology
intestine
Molecular Sequence Data
Nutrients
Physiology
Protein Precursors
tight junctions
Tight Junctions - physiology
zonulin
Title Zonulin, regulation of tight junctions, and autoimmune diseases
URI https://api.istex.fr/ark:/67375/WNG-NB96RFKV-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2012.06538.x
https://www.ncbi.nlm.nih.gov/pubmed/22731712
https://www.proquest.com/docview/1768590163
https://www.proquest.com/docview/1022377189
https://www.proquest.com/docview/1038304348
https://pubmed.ncbi.nlm.nih.gov/PMC3384703
Volume 1258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEB6kRfBFbf0VrWUFEYXmSLJJNvskd-pZFO-hWq19WTbZPa0nidzloPrXO7PZC71apIhvIdkNyWRm9pvNzDcAjzl1L4-lDfMyopKcKA0xjNChMDEvDVGaT2m_490k3z9M3xxlRz7_iWphOn6IfsONLMP5azJwXS7WjVykMsQVk-qpaEsvR-MdEJ6k1C3CRwc9k5Tzws4pC3TKCGrOJ_VccKO1lWqThH56EQz9M5vyLMp1y9T4BsxWL9hlp8wGy7YcVL_OcT_-HwnchOsezbJhp35bcMXW23C162_5cxu2vOdYsKee3vrZLXh-3NSU_r7H5vaLbx7GmilraZuAfcN11pnCHtO1YXrZNidUwmKZ_5W0uA2H41cfXuyHvo1DWOVpVIRTmXGDYZ3NCqkNItJUYDhfplVVWWEkT5PSiNJE2mYGhSh0YbkW6CwKK-ME4cgd2Kib2t4DliN-yqZRhV9QY2RndVomWSJjgygyMzIPQKw-mao8xzm12viuzsQ6KDNFMlMkM-Vkpk4DiPuZPzqej0vMeeK0op-g5zPKkxOZ-jR5rSYjmR-M335UxwHsrNRGeRexwHvmBRX-5jyAR_1lNG76Y6Nr2yxxDCIsLhA-yL-N4QWaGE-LAO52mtg_UILgNBZxgnJZ09F-AJGLr1-pT746knHO0WIifDbhVPDSQlGTz8P3dHj_n2c-gGt0vkuK3oGNdr60DxH6teUubA5HL0fjXWfcvwFTcUiU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VrRBcgJY_Q4FFAgRSHdle22sfECqUkJLWh9JC6WVZezdQimyUOCLl1XiVPkxnbMdqSoUqpB64RfFutNn52W_Gs98APObUvdyNjR2mDl3JcXwbwwhlC-3yVBOl-YDyHZtJ2Nvx3-0Gu3Pwe3oXpuaHaBNuZBmVvyYDp4T0rJULP7bxyKQLVZTTC9F6O5OmwrJvDn9i_DZ6sb6Gwn7ied032697dtNiwM5C34nsQRxwjSGHCaJYaURLvsBQM_WzLDNCx9z3Ui1S7SgTaI1fqchwJVCRIxO7nkdMTOj_F6ihOBH3r2213FWV36-OAYHHAMKo02VEZ6x85mxcIDFPzgK-f9ZvnsTV1cHYvQZH0y2t62EOOuMy7WS_TrFN_qd7fh2uNoCdrdYWtghzJl-CS3ULz8MlWGyc44g9axi8n9-Al3tFThX-K2xovjT90VgxYCVlQtg3hBKVta8wlWumxmWxT7d0DGvelo1uws6F_KVbMJ8XubkDLESIGAycDFVGYfBqlJ96gRe7GoFyoOPQAjHVEZk1NO7UTeS7PBHOoYwkyUiSjGQlIzmxwG1n_qipTM4x52mlhu0ENTygUkARyI_JW5m8isOtbv-D3LNgeaqnsvGCI_zNMKK7zSG34FH7GP0XvZRSuSnGOAZBJBeIkOK_jeERehHuRxbcrlW_XZCH-NsVrof7MmMU7QDiT599ku9_rXjUOUcTdXBtotL5c2-KTD6tvqePd_955kO43Nve3JAb60n_HlyhMXUN-DLMl8OxuY9It0wfVB6FweeLNqdjqwCmcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aNoF4ATZuhQFGAgTSUiVxEscPCA1K2ShEaGww9mKc2IUxlEy9iI6ftr-yP8M5SRqtY0IT0h54qxq7cn0u_o5zzncAHnLqXu5J60SpSyU5buBgGKEdYTyeGqI079N9x7skWtsK3myH23NwOK2Fqfghmgs3sozSX5OB75v-rJGLQDp4YlI9FV3pRWi87UmdYNmzBz8xfBs-W--grB_5fvfV5ss1p-4w4GRR4MZOX4bcYMRhw1hqg2ApEBhppkGWZVYYyQM_NSI1rrahMfiVji3XAvU4ttLzfSJiQve_EESupLYRnY2Guqp0--UpIPAUQBR1MovolJXPHI0LJOXJabj3z_TN47C6PBe7V-BouqNVOsxeezxK29mvE2ST_-eWX4XLNVxnq5V9LcKczZfgQtXA82AJFmvXOGRPav7up9fg-U6RU37_ChvYr3V3NFb02YjuQdh3BBKlra8wnRumx6Nil2p0LKvflQ2vw9a5_KUbMJ8Xub0FLEKAGPbdDDVGY-hqdZD6oS89gzA5NDJqgZiqiMpqEnfqJfJDHQvmUEaKZKRIRqqUkZq0wGtm7ldEJmeY87jUwmaCHuxRIqAI1afktUpeyGij2_uodlqwPFVTVfvAIf5mFFNlc8Rb8KB5jN6LXknp3BZjHIMQkgvER_JvY3iMPoQHcQtuVprfLMhH9O0Jz8d9mbGJZgCxp88-yXe_lSzqnKOFurg2Uar8mTdFJZ9XP9DH2_888z5cfN_pqrfrSe8OXKIhVQL4MsyPBmN7F2HuKL1X-hMGX87bmn4D8AKlIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zonulin%2C+regulation+of+tight+junctions%2C+and+autoimmune+diseases&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Fasano%2C+Alessio&rft.date=2012-07-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1258&rft.issue=1&rft.spage=25&rft.epage=33&rft_id=info:doi/10.1111%2Fj.1749-6632.2012.06538.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1749_6632_2012_06538_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon