Predicting ecosystem stability from community composition and biodiversity
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component speci...
Saved in:
Published in | Ecology letters Vol. 16; no. 5; pp. 617 - 625 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2013
Blackwell Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long‐term grassland biodiversity experiments, our prediction explained 22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re‐evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. |
---|---|
AbstractList | As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. [PUBLICATION ABSTRACT] |
Author | Grace, James B. De Luca, Enrica Berendse, Frank van Ruijven, Jasper Weigelt, Alexandra Loreau, Michel Isbell, Forest Haegeman, Bart Tilman, David de Mazancourt, Claire Roscher, Christiane Wilsey, Brian J. Schmid, Bernhard Wayne Polley, H. Larocque, Allen |
Author_xml | – sequence: 1 givenname: Claire surname: de Mazancourt fullname: de Mazancourt, Claire email: claire.demazancourt@ecoex-moulis.cnrs.fr organization: Redpath Museum, McGill University, 859 Sherbrooke Street West, H3A 2K6, Quebec, Montreal, Canada – sequence: 2 givenname: Forest surname: Isbell fullname: Isbell, Forest organization: Department of Biology, McGill University, 1205 avenue Docteur Penfield, H3A 1B1, Quebec, Montreal, Canada – sequence: 3 givenname: Allen surname: Larocque fullname: Larocque, Allen organization: Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, H3A 2K6, Quebec, Canada – sequence: 4 givenname: Frank surname: Berendse fullname: Berendse, Frank organization: Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands – sequence: 5 givenname: Enrica surname: De Luca fullname: De Luca, Enrica organization: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland – sequence: 6 givenname: James B. surname: Grace fullname: Grace, James B. organization: US Geological Survey, 700 Cajundome Blvd, LA, 70506, Lafayette, USA – sequence: 7 givenname: Bart surname: Haegeman fullname: Haegeman, Bart organization: INRIA research team MODEMIC, UMR MISTEA, 2 place VialaMontpellier, 34060, France – sequence: 8 givenname: H. surname: Wayne Polley fullname: Wayne Polley, H. organization: USDA Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 808 East Blackland Road, Texas, 76502, Temple, USA – sequence: 9 givenname: Christiane surname: Roscher fullname: Roscher, Christiane organization: Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany – sequence: 10 givenname: Bernhard surname: Schmid fullname: Schmid, Bernhard organization: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland – sequence: 11 givenname: David surname: Tilman fullname: Tilman, David organization: Department of Ecology, Evolution and Behavior, University of Minnesota, Minnesota, 55108, St. Paul, USA – sequence: 12 givenname: Jasper surname: van Ruijven fullname: van Ruijven, Jasper organization: Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands – sequence: 13 givenname: Alexandra surname: Weigelt fullname: Weigelt, Alexandra organization: Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany – sequence: 14 givenname: Brian J. surname: Wilsey fullname: Wilsey, Brian J. organization: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, 50011, Ames, USA – sequence: 15 givenname: Michel surname: Loreau fullname: Loreau, Michel organization: Department of Biology, McGill University, 1205 avenue Docteur Penfield, H3A 1B1, Quebec, Montreal, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27283700$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23438189$$D View this record in MEDLINE/PubMed https://hal.science/hal-02331250$$DView record in HAL |
BookMark | eNqNkttu1DAQhiNURA9wwQugSAgJLrb1KXHSu6psW6pVQQIEd5ZjT4qLYy920m3eHoc9ICGQ8M2MR98_Gv0zh9me8w6y7DlGxzi9E7BwjAmqqkfZAWYlniHCqr1dTr_uZ4cx3iGESc3xk2yfUEYrXNUH2fWHANqo3rjbHJSPY-yhy2MvG2NNP-Zt8F2ufNcNbvqmbOmj6Y13uXQ6b4zX5h5CKo1Ps8ettBGebeJR9vli_un8arZ4f_nu_GwxUyVD1azQkteMUo2KEjjUBGitC47qFmnUNAQ1peIF0zXQluMG85ZC0dYt061uuEL0KDtd913JW3BpcHDCyaBMFF4aYU0TZBjFagjC2SkshyYKRjnDPInfrMXfpBXLYLoJnWRXZwsx1ZJdFJMC3ePEvl6zy-B_DBB70ZmowFrpwA9RYFoQUieT-X-gtKI1IYwl9OUf6J0fgkuOJYpUjJYIF4l6saGGpgO9G3W7uQS82gAyKmnbIN3kwI7jpKIcTW6drDkVfIwBWqFML6cF9kEaKzAS0w2JdEPi1w39tmin2Db9G7vpvjIWxn-DYr6YbxWztcKkS3vYKWT4LpKPvBBfbi4Fu_n49hqxMm3tJzfQ49A |
CitedBy_id | crossref_primary_10_1098_rspb_2024_0567 crossref_primary_10_3389_fpls_2022_850854 crossref_primary_10_3390_su14148631 crossref_primary_10_1111_1365_2435_13080 crossref_primary_10_1016_j_baae_2017_06_002 crossref_primary_10_1002_ecy_3205 crossref_primary_10_1007_s10021_019_00455_w crossref_primary_10_1094_PBIOMES_10_22_0068_R crossref_primary_10_1016_j_agrformet_2024_110244 crossref_primary_10_1016_j_ecolind_2018_09_046 crossref_primary_10_1111_ele_13769 crossref_primary_10_1002_ecy_2922 crossref_primary_10_1007_s00442_019_04560_4 crossref_primary_10_1016_j_foreco_2020_118696 crossref_primary_10_1371_journal_pone_0148015 crossref_primary_10_1038_nature22899 crossref_primary_10_1111_oik_03103 crossref_primary_10_1111_1440_1703_12049 crossref_primary_10_1002_ecy_3332 crossref_primary_10_1111_ejss_13556 crossref_primary_10_1515_eje_2016_0007 crossref_primary_10_3389_frfst_2022_886808 crossref_primary_10_1016_j_scitotenv_2021_149482 crossref_primary_10_1016_j_ecolind_2022_109021 crossref_primary_10_1038_s41586_018_0138_7 crossref_primary_10_1093_icb_icx046 crossref_primary_10_1016_j_biombioe_2017_02_003 crossref_primary_10_1111_geb_13896 crossref_primary_10_1093_jpe_rtw096 crossref_primary_10_1007_s10342_020_01329_w crossref_primary_10_3389_fmicb_2023_1126257 crossref_primary_10_1093_femsec_fiaa206 crossref_primary_10_1111_1365_2745_14216 crossref_primary_10_1111_geb_13093 crossref_primary_10_1038_nature13014 crossref_primary_10_1111_ele_12648 crossref_primary_10_1038_s41586_023_05725_1 crossref_primary_10_1111_geb_13895 crossref_primary_10_1007_s00442_014_3081_9 crossref_primary_10_1038_srep20120 crossref_primary_10_1111_2041_210X_12363 crossref_primary_10_1098_rspb_2017_0507 crossref_primary_10_1007_s12064_017_0245_2 crossref_primary_10_1021_acs_est_3c00456 crossref_primary_10_1038_s42003_022_03471_0 crossref_primary_10_1111_mec_14356 crossref_primary_10_1038_s41598_018_33670_x crossref_primary_10_1016_j_ecolmodel_2018_02_013 crossref_primary_10_1111_oik_04699 crossref_primary_10_3390_insects13010035 crossref_primary_10_1146_annurev_ecolsys_120213_091917 crossref_primary_10_1111_1365_2435_14401 crossref_primary_10_1111_gcb_17365 crossref_primary_10_1111_gcb_17483 crossref_primary_10_1007_s00227_016_2879_x crossref_primary_10_1890_13_0895_1 crossref_primary_10_1111_ele_12861 crossref_primary_10_1016_j_ese_2024_100404 crossref_primary_10_1007_s12224_020_09372_6 crossref_primary_10_1080_02827581_2015_1072238 crossref_primary_10_1016_j_actao_2019_103450 crossref_primary_10_1111_fwb_13075 crossref_primary_10_1038_nature15374 crossref_primary_10_1890_14_0266_1 crossref_primary_10_1007_s44396_025_00001_0 crossref_primary_10_1002_ecy_4178 crossref_primary_10_1016_j_landurbplan_2016_05_009 crossref_primary_10_1016_j_ecolind_2018_02_010 crossref_primary_10_1111_1365_2435_13056 crossref_primary_10_3389_fevo_2022_866950 crossref_primary_10_1111_1365_2745_12728 crossref_primary_10_1111_ele_12073 crossref_primary_10_1007_s10841_024_00564_5 crossref_primary_10_1016_j_biocontrol_2022_105028 crossref_primary_10_1063_5_0137230 crossref_primary_10_1086_673915 crossref_primary_10_1111_oik_07621 crossref_primary_10_1002_ecy_3650 crossref_primary_10_1016_j_soilbio_2019_107598 crossref_primary_10_1002_ecs2_3178 crossref_primary_10_1111_oik_04591 crossref_primary_10_1038_s41467_022_35514_9 crossref_primary_10_1016_j_agee_2024_109259 crossref_primary_10_1515_forj_2017_0006 crossref_primary_10_1007_s12080_015_0279_3 crossref_primary_10_1111_jvs_13012 crossref_primary_10_1016_j_scitotenv_2021_146506 crossref_primary_10_1016_j_scitotenv_2022_156150 crossref_primary_10_3897_rio_7_e63850 crossref_primary_10_3390_d12020050 crossref_primary_10_1111_ele_12848 crossref_primary_10_1890_14_2466_1 crossref_primary_10_1016_j_ecolind_2024_112557 crossref_primary_10_3390_f10121113 crossref_primary_10_1016_j_ecoleng_2018_10_002 crossref_primary_10_1111_ele_12292 crossref_primary_10_1016_j_tree_2021_05_001 crossref_primary_10_3390_agronomy10020259 crossref_primary_10_1111_mec_16733 crossref_primary_10_1016_j_is_2019_101486 crossref_primary_10_1073_pnas_1715638115 crossref_primary_10_1111_1365_2745_13151 crossref_primary_10_1111_ele_12617 crossref_primary_10_1111_geb_13441 crossref_primary_10_1111_gcb_15025 crossref_primary_10_1002_ecs2_4486 crossref_primary_10_1038_s41467_020_19252_4 crossref_primary_10_1371_journal_pone_0311364 crossref_primary_10_1038_s41598_018_33262_9 crossref_primary_10_1002_ece3_6650 crossref_primary_10_1093_biosci_biy013 crossref_primary_10_1002_ecy_2639 crossref_primary_10_1007_s00442_018_4319_8 crossref_primary_10_1073_pnas_1920405117 crossref_primary_10_1111_ele_13232 crossref_primary_10_1111_j_1600_0706_2013_00338_x crossref_primary_10_3390_app11136214 crossref_primary_10_1111_1365_2745_13861 crossref_primary_10_1111_1365_2745_13187 crossref_primary_10_1111_1365_2745_13064 crossref_primary_10_1038_ncomms15211 crossref_primary_10_1111_gcb_13391 crossref_primary_10_1111_1365_2435_13257 crossref_primary_10_3390_d15080895 crossref_primary_10_1007_s10750_015_2378_y crossref_primary_10_1016_j_jtbi_2016_03_043 crossref_primary_10_3390_rs8030214 crossref_primary_10_1103_PhysRevX_11_011009 crossref_primary_10_1111_geb_13828 crossref_primary_10_1038_ncomms10697 crossref_primary_10_1111_1365_2656_14129 crossref_primary_10_1002_hyp_13983 crossref_primary_10_1002_eap_1807 crossref_primary_10_1038_s41559_022_01773_4 crossref_primary_10_1071_RJ18049 crossref_primary_10_1002_ecs2_2283 crossref_primary_10_1038_srep16832 crossref_primary_10_1111_1365_2745_14261 crossref_primary_10_1002_ecs2_2168 crossref_primary_10_1111_ele_13212 crossref_primary_10_1111_ele_13456 crossref_primary_10_1002_ecs2_4328 crossref_primary_10_1016_j_tree_2024_02_008 crossref_primary_10_1111_gcb_12643 crossref_primary_10_1080_01448765_2019_1584866 crossref_primary_10_1002_ecm_1490 crossref_primary_10_1111_jbi_13041 crossref_primary_10_1038_s41559_019_0862_x crossref_primary_10_1111_jvs_12803 crossref_primary_10_1038_s41559_019_0884_4 crossref_primary_10_1111_ele_12928 crossref_primary_10_1111_gcb_16680 crossref_primary_10_1007_s10021_017_0107_2 crossref_primary_10_1016_j_jas_2020_105168 crossref_primary_10_1111_ele_13102 crossref_primary_10_1111_2041_210X_12093 crossref_primary_10_1111_ele_13226 crossref_primary_10_1038_s41559_020_01315_w crossref_primary_10_1111_1365_2745_12789 crossref_primary_10_1111_ele_13340 crossref_primary_10_1002_ecy_2748 crossref_primary_10_1002_ecy_2065 crossref_primary_10_1098_rspb_2023_1185 crossref_primary_10_1093_ajae_aaz002 crossref_primary_10_1111_brv_12756 crossref_primary_10_3389_fpls_2016_00364 crossref_primary_10_3390_rs11040458 crossref_primary_10_1073_pnas_1805518115 crossref_primary_10_1007_s10021_015_9905_6 crossref_primary_10_1038_s42003_021_02800_z crossref_primary_10_3390_agronomy8020014 crossref_primary_10_1016_j_actao_2019_05_005 crossref_primary_10_1111_ele_12582 crossref_primary_10_1111_oik_02220 crossref_primary_10_1002_ecy_2154 crossref_primary_10_1111_1365_2745_13661 crossref_primary_10_1002_ecy_3486 crossref_primary_10_1016_j_quaint_2016_09_012 crossref_primary_10_1111_oik_10513 crossref_primary_10_1111_gcb_14442 crossref_primary_10_1007_s00027_021_00808_5 crossref_primary_10_1111_ele_12357 crossref_primary_10_1038_s44185_023_00034_2 crossref_primary_10_1126_sciadv_abg8531 crossref_primary_10_1007_s00442_018_4208_1 crossref_primary_10_1016_j_ecolind_2021_108464 crossref_primary_10_1002_ecy_1757 crossref_primary_10_1111_1365_2745_13898 crossref_primary_10_1007_s00704_018_2614_2 crossref_primary_10_1016_j_seares_2014_08_004 crossref_primary_10_1038_s41559_018_0647_7 crossref_primary_10_1111_jvs_12435 crossref_primary_10_1007_s00027_022_00857_4 crossref_primary_10_3389_ffgc_2024_1518578 crossref_primary_10_1016_j_foreco_2022_120695 crossref_primary_10_1038_s41467_019_13913_9 crossref_primary_10_1111_brv_12499 crossref_primary_10_1111_1365_2664_12329 crossref_primary_10_3354_meps10546 crossref_primary_10_1002_ece3_8532 crossref_primary_10_1111_1365_2435_13909 crossref_primary_10_1002_ecy_3347 crossref_primary_10_1111_oik_07379 crossref_primary_10_3389_fevo_2022_990835 crossref_primary_10_1128_spectrum_05091_22 crossref_primary_10_1111_jvs_12326 crossref_primary_10_1016_j_scitotenv_2023_166552 crossref_primary_10_1002_1438_390X_12091 crossref_primary_10_1002_mlf2_12042 crossref_primary_10_1016_j_soilbio_2015_07_001 crossref_primary_10_1002_ecs2_3308 crossref_primary_10_1007_s11829_022_09920_1 crossref_primary_10_1098_rspb_2024_0775 crossref_primary_10_1111_ele_12213 crossref_primary_10_1016_j_apsoil_2024_105556 crossref_primary_10_1016_j_ecolind_2014_08_038 crossref_primary_10_1016_j_jtbi_2017_11_026 crossref_primary_10_1016_j_tplants_2015_07_007 crossref_primary_10_1890_15_1951_1 crossref_primary_10_1098_rspb_2015_3005 crossref_primary_10_1111_1365_2745_13555 crossref_primary_10_1111_oik_10099 crossref_primary_10_1038_ncomms12457 crossref_primary_10_1016_j_jenvman_2018_06_094 crossref_primary_10_1016_j_ppees_2023_125718 crossref_primary_10_1002_ecy_4322 crossref_primary_10_1016_j_pedobi_2015_03_002 crossref_primary_10_3897_rio_8_e85873 crossref_primary_10_1038_ncomms12573 crossref_primary_10_1093_jpe_rtac098 crossref_primary_10_1002_ecs2_2226 |
Cites_doi | 10.1890/09-1162.1 10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2 10.1038/35083573 10.1111/j.1365-2656.2012.01972.x 10.1111/j.1939-7445.2007.tb00202.x 10.1086/338994 10.1038/163688a0 10.1086/286117 10.1038/nature01471 10.1086/589746 10.1038/35012234 10.1111/j.1442-9993.1992.tb00812.x 10.1016/j.jtbi.2009.01.010 10.1073/pnas.1104015108 10.1046/j.1461-0248.2003.00464.x 10.1086/283181 10.1038/nature04742 10.1073/pnas.96.4.1463 10.1111/j.1365-2745.2009.01521.x 10.1126/science.1133258 10.1371/journal.pone.0013382 10.1126/science.286.5439.542 10.1515/9781400834167 10.1016/S0169-5347(01)02283-2 10.2307/4012 10.1073/pnas.95.12.6837 10.1017/CBO9780511617799 10.1086/303402 10.2307/1929601 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 10.1093/acprof:oso/9780198525257.001.0001 10.1111/j.0030-1299.2007.16005.x 10.1890/04-0922 10.1086/303348 10.1890/11-1753.1 10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2 10.1046/j.1461-0248.2000.00144.x 10.1111/ele.12073 10.1111/j.1461-0248.2009.01299.x 10.1111/j.1365-2745.2011.01875.x 10.1098/rspb.2009.0523 10.2307/2265614 10.1038/296245a0 |
ContentType | Journal Article |
Copyright | 2013 Blackwell Publishing Ltd/CNRS 2014 INIST-CNRS 2013 Blackwell Publishing Ltd/CNRS. Copyright © 2013 Blackwell Publishing Ltd/CNRS Distributed under a Creative Commons Attribution 4.0 International License Wageningen University & Research |
Copyright_xml | – notice: 2013 Blackwell Publishing Ltd/CNRS – notice: 2014 INIST-CNRS – notice: 2013 Blackwell Publishing Ltd/CNRS. – notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 1XC QVL |
DOI | 10.1111/ele.12088 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Hyper Article en Ligne (HAL) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts |
DatabaseTitleList | Ecology Abstracts MEDLINE - Academic MEDLINE Entomology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | Hooper, David |
Editor_xml | – sequence: 16 givenname: David surname: Hooper fullname: Hooper, David |
EndPage | 625 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_437417 oai_HAL_hal_02331250v1 2948068481 23438189 27283700 10_1111_ele_12088 ELE12088 ark_67375_WNG_4NSDJ046_4 |
Genre | letter Letter Research Support, Non-U.S. Gov't Feature |
GeographicLocations | Netherlands Minnesota Texas Germany |
GeographicLocations_xml | – name: Germany – name: Netherlands – name: Texas – name: Minnesota |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 7ST 7U6 1XC - 02 0R 1AW 31 3N AAPBV ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AGJLS GA HZ IA KM NF P4A PQEST QVL RIG UNR WT Y3 |
ID | FETCH-LOGICAL-c6408-5da79433d056e7e92e39d5709f0d0bb20b6c754d9e3f71b17f3e5f9f4dfdb7c03 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Fri Feb 05 18:08:25 EST 2021 Fri May 09 12:19:38 EDT 2025 Thu Jul 10 21:32:03 EDT 2025 Fri Jul 11 16:04:38 EDT 2025 Fri Jul 25 10:54:54 EDT 2025 Thu Apr 03 06:58:37 EDT 2025 Mon Jul 21 09:16:16 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 02:29:39 EDT 2025 Wed Jan 22 17:01:26 EST 2025 Wed Oct 30 09:56:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Community structure overyielding Demography Stability environmental stochasticity Ecosystem demographic stochasticity prediction Biodiversity biodiversity stability |
Language | English |
License | CC BY 4.0 2013 Blackwell Publishing Ltd/CNRS. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6408-5da79433d056e7e92e39d5709f0d0bb20b6c754d9e3f71b17f3e5f9f4dfdb7c03 |
Notes | ark:/67375/WNG-4NSDJ046-4 istex:3F9683DF81BB62131083802135C7301DCD4E5C24 ArticleID:ELE12088 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 ObjectType-Correspondence-1 content type line 23 |
ORCID | 0000-0003-2325-4727 0000-0002-0122-495X 0000-0002-3721-1069 0000-0002-0628-5006 0000-0001-9689-769X |
OpenAccessLink | https://www.zora.uzh.ch/id/eprint/78222/1/DeMazancourtEtAlfinalMS.pdf |
PMID | 23438189 |
PQID | 1328436015 |
PQPubID | 32390 |
PageCount | 9 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_437417 hal_primary_oai_HAL_hal_02331250v1 proquest_miscellaneous_1352291467 proquest_miscellaneous_1338392244 proquest_journals_1328436015 pubmed_primary_23438189 pascalfrancis_primary_27283700 crossref_citationtrail_10_1111_ele_12088 crossref_primary_10_1111_ele_12088 wiley_primary_10_1111_ele_12088_ELE12088 istex_primary_ark_67375_WNG_4NSDJ046_4 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley |
References | Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, New York. Isbell, F.I., Polley, H.W. & Wilsey, B.J. (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett., 12, 443-451. Taylor, L.R. & Woiwod, I.P. (1982). Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters. J. Anim. Ecol., 51, 879-906. Diaz, S. & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol., 16, 646-655. Simpson, E.H. (1949). Measurement of Diversity. Nature, 163, 688-688. Thibaut, L.M., Connolly, S.R. & Sweatman, H.P.A. (2012). Diversity and stability of herbivorous fishes on coral reefs. Ecology, 93, 891-901. Almaraz, P., Green, A.J., Aguilera, E., Rendon, M.A. & Bustamante, J. (2012). Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol., 81, 1113-1125. Fowler, M.S. (2009). Increasing community size and connectance can increase stability in competitive communities. J. Theor. Biol., 258, 179-188. Loreau, M. (2010). From Populations to Ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton and Oxford. Ives, A.R., Dennis, B., Cottingham, K.L. & Carpenter, S.R. (2003). Estimating community stability and ecological interactions from time-series data. Ecol. Monogr., 73, 301-330. Loreau, M.. & de Mazancourt, C.. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., DOI: 10.1111/ele.12073. Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E. & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat., 151, 264-276. MacArthur, R. (1955). Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology, 36, 533-536. Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA, 96, 1463-1468. McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233. Anderson, R.M., Gordon, D.M., Crawley, M.J. & Hassell, M.P. (1982). Variability in the Abundance of Animal and Plant-Species. Nature, 296, 245-248. Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S. et al. (2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 5, e13382. Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350-363. Tilman, D., Reich, P.B. & Knops, J.M.H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632. Jansen, V.A.A. & Kokkoris, G.D. (2003). Complexity and stability revisited. Ecol. Lett., 6, 498-502. Roscher, C., Weigelt, A., Proulx, R., Marquard, E., Schumacher, J., Weisser, W.W. et al. (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol., 99, 1460-1469. Schmid, B. (1990). Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants, 4, 25-34. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35. McNaughton, S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat., 111, 515-525. Grace, J.B. (2006). Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK. Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2009). What drives community dynamics? Proc. Biol. Sci., 276, 2923-2929. Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J. et al. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91, 2213-2220. Hughes, J.B. & Roughgarden, J. (1998). Aggregate community properties and the strength of species' interactions. Proc. Natl Acad. Sci. USA, 95, 6837-6842. Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A. & Schmid, B. (2009). Positive biodiversity-productivity relationship due to increased plant density. J. Ecol., 97, 696-704. Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. Kilpatrick, A.M. & Ives, A.R. (2003). Species interactions can explain Taylor's power law for ecological time series. Nature, 422, 65-68. Ives, A.R. & Hughes, J.B. (2002). General relationships between species diversity and stability in competitive systems. Am. Nat., 159, 388-395. Elton, C.S. (1958). The ecology of invasions by animals and plants. University of Chicago Press, Chicago and London. Lehman, C.L. & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. Am. Nat., 156, 534-552. Grace, J.B. & Bollen, K.A. (2005). Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am., 86, 283-295. Ives, A.R., Gross, K. & Klug, J.L. (1999). Stability and variability in competitive communities. Science, 286, 542-544. van Ruijven, J. & Berendse, F. (2007). Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 116, 1323-1330. Hughes, J.B. & Roughgarden, J. (2000). Species diversity and biomass stability. Am. Nat., 155, 618-627. Ives, A.R. & Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science, 317, 58-62. May, R.M. (1973). Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn. Princeton University Press, Princeton. Ives, A.R., Klug, J.L. & Gross, K. (2000). Stability and species richness in complex communities. Ecol. Lett., 3, 399-411. Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474. Baumgärtner, S. (2007). The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model., 20, 87-127. Loreau, M. & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat., 172, E48-E66. Allan, E., Weisser, W., Weigelt, A., Roscher, C., Fischer, M. & Hillebrand, H. (2011). More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA, 108, 17034-17039. 2012; 81 2009; 40 2010 2000; 3 1982; 51 1999; 286 2009; 276 2005; 86 2002; 159 2011; 99 2006 1973 2000; 155 2003 2000; 156 2003; 73 1999; 80 1998; 151 1958 2009; 258 1996; 77 2009; 12 2012; 93 1955; 36 2011; 108 2007; 317 2007; 116 2009; 97 2003; 6 2000; 405 1949; 163 1982; 296 2005; 75 2001; 16 1999; 96 2013 2007; 20 1977; 111 2010; 91 1998; 95 2003; 422 2010; 5 2001; 412 2006; 441 2008; 172 1990; 4 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 May R.M. (e_1_2_8_33_1) 1973 Gonzalez A. (e_1_2_8_10_1) 2009 Schmid B. (e_1_2_8_40_1) 1990; 4 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – reference: Loreau, M. & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat., 172, E48-E66. – reference: May, R.M. (1973). Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn. Princeton University Press, Princeton. – reference: Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J. et al. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91, 2213-2220. – reference: Loreau, M. (2010). From Populations to Ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton and Oxford. – reference: Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA, 96, 1463-1468. – reference: Jansen, V.A.A. & Kokkoris, G.D. (2003). Complexity and stability revisited. Ecol. Lett., 6, 498-502. – reference: Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2009). What drives community dynamics? Proc. Biol. Sci., 276, 2923-2929. – reference: Hughes, J.B. & Roughgarden, J. (2000). Species diversity and biomass stability. Am. Nat., 155, 618-627. – reference: Thibaut, L.M., Connolly, S.R. & Sweatman, H.P.A. (2012). Diversity and stability of herbivorous fishes on coral reefs. Ecology, 93, 891-901. – reference: Anderson, R.M., Gordon, D.M., Crawley, M.J. & Hassell, M.P. (1982). Variability in the Abundance of Animal and Plant-Species. Nature, 296, 245-248. – reference: Isbell, F.I., Polley, H.W. & Wilsey, B.J. (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett., 12, 443-451. – reference: Allan, E., Weisser, W., Weigelt, A., Roscher, C., Fischer, M. & Hillebrand, H. (2011). More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA, 108, 17034-17039. – reference: McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233. – reference: Hughes, J.B. & Roughgarden, J. (1998). Aggregate community properties and the strength of species' interactions. Proc. Natl Acad. Sci. USA, 95, 6837-6842. – reference: MacArthur, R. (1955). Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology, 36, 533-536. – reference: Lehman, C.L. & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. Am. Nat., 156, 534-552. – reference: Loreau, M.. & de Mazancourt, C.. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., DOI: 10.1111/ele.12073. – reference: McNaughton, S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat., 111, 515-525. – reference: Diaz, S. & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol., 16, 646-655. – reference: Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A. & Schmid, B. (2009). Positive biodiversity-productivity relationship due to increased plant density. J. Ecol., 97, 696-704. – reference: Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, New York. – reference: Almaraz, P., Green, A.J., Aguilera, E., Rendon, M.A. & Bustamante, J. (2012). Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol., 81, 1113-1125. – reference: Grace, J.B. (2006). Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK. – reference: Schmid, B. (1990). Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants, 4, 25-34. – reference: Roscher, C., Weigelt, A., Proulx, R., Marquard, E., Schumacher, J., Weisser, W.W. et al. (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol., 99, 1460-1469. – reference: Kilpatrick, A.M. & Ives, A.R. (2003). Species interactions can explain Taylor's power law for ecological time series. Nature, 422, 65-68. – reference: Tilman, D., Reich, P.B. & Knops, J.M.H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632. – reference: Simpson, E.H. (1949). Measurement of Diversity. Nature, 163, 688-688. – reference: Ives, A.R., Klug, J.L. & Gross, K. (2000). Stability and species richness in complex communities. Ecol. Lett., 3, 399-411. – reference: Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350-363. – reference: Ives, A.R., Dennis, B., Cottingham, K.L. & Carpenter, S.R. (2003). Estimating community stability and ecological interactions from time-series data. Ecol. Monogr., 73, 301-330. – reference: Baumgärtner, S. (2007). The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model., 20, 87-127. – reference: Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S. et al. (2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 5, e13382. – reference: Ives, A.R., Gross, K. & Klug, J.L. (1999). Stability and variability in competitive communities. Science, 286, 542-544. – reference: van Ruijven, J. & Berendse, F. (2007). Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 116, 1323-1330. – reference: Ives, A.R. & Hughes, J.B. (2002). General relationships between species diversity and stability in competitive systems. Am. Nat., 159, 388-395. – reference: Fowler, M.S. (2009). Increasing community size and connectance can increase stability in competitive communities. J. Theor. Biol., 258, 179-188. – reference: Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35. – reference: Taylor, L.R. & Woiwod, I.P. (1982). Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters. J. Anim. Ecol., 51, 879-906. – reference: Elton, C.S. (1958). The ecology of invasions by animals and plants. University of Chicago Press, Chicago and London. – reference: Ives, A.R. & Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science, 317, 58-62. – reference: Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76. – reference: Grace, J.B. & Bollen, K.A. (2005). Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am., 86, 283-295. – reference: Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474. – reference: Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E. & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat., 151, 264-276. – volume: 20 start-page: 87 year: 2007 end-page: 127 article-title: The insurance value of biodiversity in the provision of ecosystem services publication-title: Nat. Resour. Model. – year: 1958 – volume: 422 start-page: 65 year: 2003 end-page: 68 article-title: Species interactions can explain Taylor's power law for ecological time series publication-title: Nature – volume: 96 start-page: 1463 year: 1999 end-page: 1468 article-title: Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis publication-title: Proc. Natl Acad. Sci. USA – volume: 73 start-page: 301 year: 2003 end-page: 330 article-title: Estimating community stability and ecological interactions from time‐series data publication-title: Ecol. Monogr. – volume: 12 start-page: 443 year: 2009 end-page: 451 article-title: Biodiversity, productivity and the temporal stability of productivity: patterns and processes publication-title: Ecol. Lett. – volume: 296 start-page: 245 year: 1982 end-page: 248 article-title: Variability in the Abundance of Animal and Plant‐Species publication-title: Nature – volume: 77 start-page: 350 year: 1996 end-page: 363 article-title: Biodiversity: Population versus ecosystem stability publication-title: Ecology – volume: 80 start-page: 1455 year: 1999 end-page: 1474 article-title: The ecological consequences of changes in biodiversity: A search for general principles publication-title: Ecology – volume: 40 start-page: 393 year: 2009 end-page: 414 – year: 2003 – volume: 108 start-page: 17034 year: 2011 end-page: 17039 article-title: More diverse plant communities have higher functioning over time due to turnover in complementary dominant species publication-title: Proc. Natl Acad. Sci. USA – year: 1973 – volume: 51 start-page: 879 year: 1982 end-page: 906 article-title: Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters publication-title: J. Anim. Ecol. – year: 2013 article-title: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms publication-title: Ecol. Lett. – volume: 258 start-page: 179 year: 2009 end-page: 188 article-title: Increasing community size and connectance can increase stability in competitive communities publication-title: J. Theor. Biol. – volume: 111 start-page: 515 year: 1977 end-page: 525 article-title: Diversity and stability of ecological communities: a comment on the role of empiricism in ecology publication-title: Am. Nat. – volume: 75 start-page: 3 year: 2005 end-page: 35 article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge publication-title: Ecol. Monogr. – volume: 441 start-page: 629 year: 2006 end-page: 632 article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment publication-title: Nature – volume: 3 start-page: 399 year: 2000 end-page: 411 article-title: Stability and species richness in complex communities publication-title: Ecol. Lett. – volume: 163 start-page: 688 year: 1949 end-page: 688 article-title: Measurement of Diversity publication-title: Nature – year: 2010 – volume: 93 start-page: 891 year: 2012 end-page: 901 article-title: Diversity and stability of herbivorous fishes on coral reefs publication-title: Ecology – volume: 86 start-page: 283 year: 2005 end-page: 295 article-title: Interpreting the results from multiple regression and structural equation models publication-title: Bull. Ecol. Soc. Am. – volume: 155 start-page: 618 year: 2000 end-page: 627 article-title: Species diversity and biomass stability publication-title: Am. Nat. – volume: 172 start-page: E48 year: 2008 end-page: E66 article-title: Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments publication-title: Am. Nat. – volume: 36 start-page: 533 year: 1955 end-page: 536 article-title: Fluctuations of Animal Populations, and a Measure of Community Stability publication-title: Ecology – volume: 412 start-page: 72 year: 2001 end-page: 76 article-title: Partitioning selection and complementarity in biodiversity experiments publication-title: Nature – volume: 286 start-page: 542 year: 1999 end-page: 544 article-title: Stability and variability in competitive communities publication-title: Science – volume: 405 start-page: 228 year: 2000 end-page: 233 article-title: The diversity‐stability debate publication-title: Nature – volume: 81 start-page: 1113 year: 2012 end-page: 1125 article-title: Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl publication-title: J. Anim. Ecol. – volume: 97 start-page: 696 year: 2009 end-page: 704 article-title: Positive biodiversity‐productivity relationship due to increased plant density publication-title: J. Ecol. – volume: 5 start-page: e13382 year: 2010 article-title: Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands publication-title: PLoS ONE – volume: 99 start-page: 1460 year: 2011 end-page: 1469 article-title: Identifying population‐ and community‐level mechanisms of diversity–stability relationships in experimental grasslands publication-title: J. Ecol. – year: 2006 – volume: 116 start-page: 1323 year: 2007 end-page: 1330 article-title: Contrasting effects of diversity on the temporal stability of plant populations publication-title: Oikos – volume: 151 start-page: 264 year: 1998 end-page: 276 article-title: The statistical inevitability of stability‐diversity relationships in community ecology publication-title: Am. Nat. – volume: 156 start-page: 534 year: 2000 end-page: 552 article-title: Biodiversity, stability, and productivity in competitive communities publication-title: Am. Nat. – volume: 317 start-page: 58 year: 2007 end-page: 62 article-title: Stability and diversity of ecosystems publication-title: Science – volume: 16 start-page: 646 year: 2001 end-page: 655 article-title: Vive la difference: plant functional diversity matters to ecosystem processes publication-title: Trends Ecol. Evol. – volume: 95 start-page: 6837 year: 1998 end-page: 6842 article-title: Aggregate community properties and the strength of species’ interactions publication-title: Proc. Natl Acad. Sci. USA – volume: 159 start-page: 388 year: 2002 end-page: 395 article-title: General relationships between species diversity and stability in competitive systems publication-title: Am. Nat. – volume: 4 start-page: 25 year: 1990 end-page: 34 article-title: Some ecological and evolutionary consequences of modular organization and clonal growth in plants publication-title: Evol. Trends Plants – volume: 6 start-page: 498 year: 2003 end-page: 502 article-title: Complexity and stability revisited publication-title: Ecol. Lett. – volume: 91 start-page: 2213 year: 2010 end-page: 2220 article-title: General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding publication-title: Ecology – volume: 276 start-page: 2923 year: 2009 end-page: 2929 article-title: What drives community dynamics? publication-title: Proc. Biol. Sci. – ident: e_1_2_8_13_1 doi: 10.1890/09-1162.1 – ident: e_1_2_8_12_1 doi: 10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2 – ident: e_1_2_8_30_1 doi: 10.1038/35083573 – ident: e_1_2_8_3_1 doi: 10.1111/j.1365-2656.2012.01972.x – ident: e_1_2_8_5_1 doi: 10.1111/j.1939-7445.2007.tb00202.x – ident: e_1_2_8_19_1 doi: 10.1086/338994 – ident: e_1_2_8_41_1 doi: 10.1038/163688a0 – ident: e_1_2_8_7_1 doi: 10.1086/286117 – ident: e_1_2_8_24_1 doi: 10.1038/nature01471 – ident: e_1_2_8_28_1 doi: 10.1086/589746 – ident: e_1_2_8_34_1 doi: 10.1038/35012234 – ident: e_1_2_8_8_1 doi: 10.1111/j.1442-9993.1992.tb00812.x – ident: e_1_2_8_9_1 doi: 10.1016/j.jtbi.2009.01.010 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1104015108 – ident: e_1_2_8_23_1 doi: 10.1046/j.1461-0248.2003.00464.x – ident: e_1_2_8_35_1 doi: 10.1086/283181 – ident: e_1_2_8_46_1 doi: 10.1038/nature04742 – ident: e_1_2_8_47_1 doi: 10.1073/pnas.96.4.1463 – ident: e_1_2_8_32_1 doi: 10.1111/j.1365-2745.2009.01521.x – ident: e_1_2_8_18_1 doi: 10.1126/science.1133258 – ident: e_1_2_8_37_1 doi: 10.1371/journal.pone.0013382 – start-page: 393 volume-title: Annu. Rev. Ecol. Evol. Sys year: 2009 ident: e_1_2_8_10_1 – ident: e_1_2_8_20_1 doi: 10.1126/science.286.5439.542 – ident: e_1_2_8_27_1 doi: 10.1515/9781400834167 – ident: e_1_2_8_6_1 doi: 10.1016/S0169-5347(01)02283-2 – ident: e_1_2_8_42_1 doi: 10.2307/4012 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.95.12.6837 – ident: e_1_2_8_11_1 doi: 10.1017/CBO9780511617799 – ident: e_1_2_8_26_1 doi: 10.1086/303402 – ident: e_1_2_8_31_1 doi: 10.2307/1929601 – ident: e_1_2_8_22_1 doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2 – ident: e_1_2_8_25_1 doi: 10.1093/acprof:oso/9780198525257.001.0001 – ident: e_1_2_8_39_1 doi: 10.1111/j.0030-1299.2007.16005.x – ident: e_1_2_8_14_1 doi: 10.1890/04-0922 – ident: e_1_2_8_16_1 doi: 10.1086/303348 – ident: e_1_2_8_43_1 doi: 10.1890/11-1753.1 – ident: e_1_2_8_45_1 doi: 10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2 – ident: e_1_2_8_21_1 doi: 10.1046/j.1461-0248.2000.00144.x – ident: e_1_2_8_29_1 doi: 10.1111/ele.12073 – volume-title: Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn year: 1973 ident: e_1_2_8_33_1 – ident: e_1_2_8_17_1 doi: 10.1111/j.1461-0248.2009.01299.x – ident: e_1_2_8_38_1 doi: 10.1111/j.1365-2745.2011.01875.x – volume: 4 start-page: 25 year: 1990 ident: e_1_2_8_40_1 article-title: Some ecological and evolutionary consequences of modular organization and clonal growth in plants publication-title: Evol. Trends Plants – ident: e_1_2_8_36_1 doi: 10.1098/rspb.2009.0523 – ident: e_1_2_8_44_1 doi: 10.2307/2265614 – ident: e_1_2_8_4_1 doi: 10.1038/296245a0 |
SSID | ssj0012971 |
Score | 2.5332558 |
Snippet | As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity... |
SourceID | wageningen hal proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 617 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Biodiversity Biodiversity loss Biological and medical sciences Biomass Community composition Community ecology competitive communities Computer Simulation consequences demographic stochasticity diversity dynamics Ecology, environment Ecosystem Ecosystem biology Ecosystem stability Ecosystems environmental stochasticity Fundamental and applied biological sciences. Psychology General aspects Germany Grasslands Life Sciences Minnesota Models, Biological Models, Theoretical Monoculture Netherlands overyielding Poaceae population Population Dynamics prediction productivity species interactions Species richness stability Stochastic Processes Synecology temporal stability Texas time-series variability |
Title | Predicting ecosystem stability from community composition and biodiversity |
URI | https://api.istex.fr/ark:/67375/WNG-4NSDJ046-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12088 https://www.ncbi.nlm.nih.gov/pubmed/23438189 https://www.proquest.com/docview/1328436015 https://www.proquest.com/docview/1338392244 https://www.proquest.com/docview/1352291467 https://hal.science/hal-02331250 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F437417 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIaTxwO9BYEwBIbSXVE5sx414mqCjqkaFgIk-IFlx7Ai0KUVNyyh_PXfOj1E0EOIpSXOJ6sud_Tn5_B3AMyGNHaZpFlllTISI2EbGYOKJIc8T6-JcSVrg_Gaajk_EZCZnW_CiWwvT6EP0L9woM3x_TQmem_qXJMdeeRAnmCTY_xJXiwDRu146CoexZrIlUpwuJ3zWqgoRi6e_cmMsuvKZmJBXybnfiSGZ1-iksqlucRn8vA4755jylV8DtQlt_dh0dBM-da1qKCmng9XSDIofvwk-_mezb8GNFrOGh02Q3YYtV92Ba00VyzXujbzy9fouTN4u6LsPMalDnNY2KtEh4k_PwF2HtJYlLJolKXhIdPaWMxbmlQ3Nl7ntaCL34ORo9OHlOGqLNURFKtgwkjYnrTluEVE55bLE8cxKxbKSWWZMwkxaKCls5nipYhOrkjtZZqWwpTWqYHwXtqt55R5AmBojWeGSYZorUcqcQKEwIlbMGctlFsBB99h00SqZU0GNM93NaNBJ2jspgKe96ddGvuNSI3z2_XkS3B4fHmv6DSOHIwRk3-IAnvvQ6M3yxSmR4pTUH6evtZi-fzVhItUigP2N2OkvSJRXGmIB7HXBpNsOo9YxR5zAcXYsA3jSn8ZUp-83eeXmK7LhBGcRkP3NBgF1RsNfAPebQL34A5z03IboP34RubqimlW1b3Ubf_p8tdDVGW3wDrUWHGEn3u_Ax-Wf_ahHxyO_8_DfTR_BTuILjBCFdA-2l4uVe4wwb2n2fT7_BJ55TTo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IUQ58KYYSjEIoV4c2d5dbyxxqSAlhDRC0Kq5oJXXuxZVKwflQQm_npn1owQVhDjFicdWdjzj_cb-9huAF1xo002SNDBS6wARsQm0xsTjXZbFxkaZFLTA-XCU9I_5YCzGa_CqWQtT6UO0D9woM9z9mhKcHkj_kuV4W-5EMWbJOmxSR29XUH1sxaNwIqvKLZ5gwRyzca0rRDye9tCV2Wj9C3EhN8m934kjmc3QTUXV3-IqAHoDti4w6Uu3CmoV3LrZ6eAWfG7GVZFSzjqLue7kP36TfPzfgd-GmzVs9ferOLsDa7a8C9eqRpZL3Oo58evlPRh8mNKrHyJT-1jZVkLRPkJQR8Jd-rScxc-rVSn4lRjtNW3Mz0rj69OJaZgi9-H4oHf0uh_U_RqCPOFhNxAmI7k5ZhBUWWnT2LLUCBmmRWhCreNQJ7kU3KSWFTLSkSyYFUVacFMYLfOQPYCNclLah-AnWoswt3E3ySQvREa4kGseydBqw0TqwV5z3VRei5lTT41z1RQ16CTlnOTB89b0a6XgcaURXvx2P2lu9_eHin7D0GGIAsNvkQcvXWy0Ztn0jHhxUqiT0VvFR5_eDEKeKO7B7krwtAfE0okNhR7sNNGk6nvGTEUMoQLDAll48KzdjdlOr3Cy0k4WZMMI0SIm-5sNYuqUZkAPtqtIvfwDjCTduug_dhm6qqS2VTM36joA1cViqspz-sAzzBRniDzxfHsuMP_sR9Ub9tzGo383fQrX-0eHQzV8N3r_GLZi12-EGKU7sDGfLuwTRH1zveuS-ydBF1FV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2EWg8cL8ExggIob2kcmI7TsTTRFtKKdUETPQByYpjR5s2pVMvjPLrOce5jKKBEE9JmpOoPjnH_px8_g4hL7nQJonjNDBS6wAQsQm0hsTjCcsiY8NMClzg_GEcD474cCImG-R1sxam0odoX7hhZrj-GhP83BS_JDn0yp0wgiTZJNs8pgmGdPdjqx0F41g12-IxzJcjNqllhZDG0166NhhtHiMVchu9-x0pktkcvFRU5S2uwp83yM4F5HzpFkGtY1s3OPVvka9NsypOymlnudCd_Mdvio__2e7b5GYNWv2DKsrukA1b3iXXqjKWK9jrOenr1T0yPJzhhx-kUvswr61kon0AoI6Cu_JxMYufV2tS4BD57DVpzM9K4-uTqWl4IvfJUb_3-c0gqKs1BHnMaRIIk6HYHDMAqay0aWRZaoSkaUEN1TqiOs6l4Ca1rJChDmXBrCjSgpvCaJlT9oBsldPSPiJ-rLWguY2SOJO8EBmiQq55KKnVhonUI_vNY1N5LWWOFTXOVDOlAScp5ySPvGhNzyv9jiuN4Nm351Fxe3AwUvgbRA4DDEi_hR555UKjNctmp8iKk0J9Gb9VfPypO6Q8Vtwje2ux014QSSc1RD2y2wSTqnuMuQoZAAUG02Phkeftach1_ICTlXa6RBuGeBYQ2d9sAFGnOP555GEVqJd_gKGgWwL-Y5eRq0osWjV3ra7jT10sZ6o8ww3cYa44A9wJ99t3cflnP6reqOd2Hv-76TNy_bDbV6N34_dPyE7kio0gnXSXbC1mS_sUIN9C77nU_gk0EVAN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+ecosystem+stability+from+community+composition+and+biodiversity&rft.jtitle=Ecology+letters&rft.au=Mazancourt%2C+Claire&rft.au=Isbell%2C+Forest&rft.au=Larocque%2C+Allen&rft.au=Berendse%2C+Frank&rft.date=2013-05-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=5&rft.spage=617&rft.epage=625&rft_id=info:doi/10.1111%2Fele.12088&rft.externalDBID=10.1111%252Fele.12088&rft.externalDocID=ELE12088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |