Predicting ecosystem stability from community composition and biodiversity

As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component speci...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 16; no. 5; pp. 617 - 625
Main Authors de Mazancourt, Claire, Isbell, Forest, Larocque, Allen, Berendse, Frank, De Luca, Enrica, Grace, James B., Haegeman, Bart, Wayne Polley, H., Roscher, Christiane, Schmid, Bernhard, Tilman, David, van Ruijven, Jasper, Weigelt, Alexandra, Wilsey, Brian J., Loreau, Michel
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2013
Blackwell
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species’ responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long‐term grassland biodiversity experiments, our prediction explained 22–75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re‐evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.
AbstractList As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability.
As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity loss. Here, we develop a theory that predicts the temporal variability of community biomass from the properties of individual component species in monoculture. Our theory shows that biodiversity stabilises ecosystems through three main mechanisms: (1) asynchrony in species' responses to environmental fluctuations, (2) reduced demographic stochasticity due to overyielding in species mixtures and (3) reduced observation error (including spatial and sampling variability). Parameterised with empirical data from four long-term grassland biodiversity experiments, our prediction explained 22-75% of the observed variability, and captured much of the effect of species richness. Richness stabilised communities mainly by increasing community biomass and reducing the strength of demographic stochasticity. Our approach calls for a re-evaluation of the mechanisms explaining the effects of biodiversity on ecosystem stability. [PUBLICATION ABSTRACT]
Author Grace, James B.
De Luca, Enrica
Berendse, Frank
van Ruijven, Jasper
Weigelt, Alexandra
Loreau, Michel
Isbell, Forest
Haegeman, Bart
Tilman, David
de Mazancourt, Claire
Roscher, Christiane
Wilsey, Brian J.
Schmid, Bernhard
Wayne Polley, H.
Larocque, Allen
Author_xml – sequence: 1
  givenname: Claire
  surname: de Mazancourt
  fullname: de Mazancourt, Claire
  email: claire.demazancourt@ecoex-moulis.cnrs.fr
  organization: Redpath Museum, McGill University, 859 Sherbrooke Street West, H3A 2K6, Quebec, Montreal, Canada
– sequence: 2
  givenname: Forest
  surname: Isbell
  fullname: Isbell, Forest
  organization: Department of Biology, McGill University, 1205 avenue Docteur Penfield, H3A 1B1, Quebec, Montreal, Canada
– sequence: 3
  givenname: Allen
  surname: Larocque
  fullname: Larocque, Allen
  organization: Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, H3A 2K6, Quebec, Canada
– sequence: 4
  givenname: Frank
  surname: Berendse
  fullname: Berendse, Frank
  organization: Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
– sequence: 5
  givenname: Enrica
  surname: De Luca
  fullname: De Luca, Enrica
  organization: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
– sequence: 6
  givenname: James B.
  surname: Grace
  fullname: Grace, James B.
  organization: US Geological Survey, 700 Cajundome Blvd, LA, 70506, Lafayette, USA
– sequence: 7
  givenname: Bart
  surname: Haegeman
  fullname: Haegeman, Bart
  organization: INRIA research team MODEMIC, UMR MISTEA, 2 place VialaMontpellier, 34060, France
– sequence: 8
  givenname: H.
  surname: Wayne Polley
  fullname: Wayne Polley, H.
  organization: USDA Agricultural Research Service, Grassland, Soil and Water Research Laboratory, 808 East Blackland Road, Texas, 76502, Temple, USA
– sequence: 9
  givenname: Christiane
  surname: Roscher
  fullname: Roscher, Christiane
  organization: Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
– sequence: 10
  givenname: Bernhard
  surname: Schmid
  fullname: Schmid, Bernhard
  organization: Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
– sequence: 11
  givenname: David
  surname: Tilman
  fullname: Tilman, David
  organization: Department of Ecology, Evolution and Behavior, University of Minnesota, Minnesota, 55108, St. Paul, USA
– sequence: 12
  givenname: Jasper
  surname: van Ruijven
  fullname: van Ruijven, Jasper
  organization: Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
– sequence: 13
  givenname: Alexandra
  surname: Weigelt
  fullname: Weigelt, Alexandra
  organization: Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
– sequence: 14
  givenname: Brian J.
  surname: Wilsey
  fullname: Wilsey, Brian J.
  organization: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, 50011, Ames, USA
– sequence: 15
  givenname: Michel
  surname: Loreau
  fullname: Loreau, Michel
  organization: Department of Biology, McGill University, 1205 avenue Docteur Penfield, H3A 1B1, Quebec, Montreal, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27283700$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23438189$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02331250$$DView record in HAL
BookMark eNqNkttu1DAQhiNURA9wwQugSAgJLrb1KXHSu6psW6pVQQIEd5ZjT4qLYy920m3eHoc9ICGQ8M2MR98_Gv0zh9me8w6y7DlGxzi9E7BwjAmqqkfZAWYlniHCqr1dTr_uZ4cx3iGESc3xk2yfUEYrXNUH2fWHANqo3rjbHJSPY-yhy2MvG2NNP-Zt8F2ufNcNbvqmbOmj6Y13uXQ6b4zX5h5CKo1Ps8ettBGebeJR9vli_un8arZ4f_nu_GwxUyVD1azQkteMUo2KEjjUBGitC47qFmnUNAQ1peIF0zXQluMG85ZC0dYt061uuEL0KDtd913JW3BpcHDCyaBMFF4aYU0TZBjFagjC2SkshyYKRjnDPInfrMXfpBXLYLoJnWRXZwsx1ZJdFJMC3ePEvl6zy-B_DBB70ZmowFrpwA9RYFoQUieT-X-gtKI1IYwl9OUf6J0fgkuOJYpUjJYIF4l6saGGpgO9G3W7uQS82gAyKmnbIN3kwI7jpKIcTW6drDkVfIwBWqFML6cF9kEaKzAS0w2JdEPi1w39tmin2Db9G7vpvjIWxn-DYr6YbxWztcKkS3vYKWT4LpKPvBBfbi4Fu_n49hqxMm3tJzfQ49A
CitedBy_id crossref_primary_10_1098_rspb_2024_0567
crossref_primary_10_3389_fpls_2022_850854
crossref_primary_10_3390_su14148631
crossref_primary_10_1111_1365_2435_13080
crossref_primary_10_1016_j_baae_2017_06_002
crossref_primary_10_1002_ecy_3205
crossref_primary_10_1007_s10021_019_00455_w
crossref_primary_10_1094_PBIOMES_10_22_0068_R
crossref_primary_10_1016_j_agrformet_2024_110244
crossref_primary_10_1016_j_ecolind_2018_09_046
crossref_primary_10_1111_ele_13769
crossref_primary_10_1002_ecy_2922
crossref_primary_10_1007_s00442_019_04560_4
crossref_primary_10_1016_j_foreco_2020_118696
crossref_primary_10_1371_journal_pone_0148015
crossref_primary_10_1038_nature22899
crossref_primary_10_1111_oik_03103
crossref_primary_10_1111_1440_1703_12049
crossref_primary_10_1002_ecy_3332
crossref_primary_10_1111_ejss_13556
crossref_primary_10_1515_eje_2016_0007
crossref_primary_10_3389_frfst_2022_886808
crossref_primary_10_1016_j_scitotenv_2021_149482
crossref_primary_10_1016_j_ecolind_2022_109021
crossref_primary_10_1038_s41586_018_0138_7
crossref_primary_10_1093_icb_icx046
crossref_primary_10_1016_j_biombioe_2017_02_003
crossref_primary_10_1111_geb_13896
crossref_primary_10_1093_jpe_rtw096
crossref_primary_10_1007_s10342_020_01329_w
crossref_primary_10_3389_fmicb_2023_1126257
crossref_primary_10_1093_femsec_fiaa206
crossref_primary_10_1111_1365_2745_14216
crossref_primary_10_1111_geb_13093
crossref_primary_10_1038_nature13014
crossref_primary_10_1111_ele_12648
crossref_primary_10_1038_s41586_023_05725_1
crossref_primary_10_1111_geb_13895
crossref_primary_10_1007_s00442_014_3081_9
crossref_primary_10_1038_srep20120
crossref_primary_10_1111_2041_210X_12363
crossref_primary_10_1098_rspb_2017_0507
crossref_primary_10_1007_s12064_017_0245_2
crossref_primary_10_1021_acs_est_3c00456
crossref_primary_10_1038_s42003_022_03471_0
crossref_primary_10_1111_mec_14356
crossref_primary_10_1038_s41598_018_33670_x
crossref_primary_10_1016_j_ecolmodel_2018_02_013
crossref_primary_10_1111_oik_04699
crossref_primary_10_3390_insects13010035
crossref_primary_10_1146_annurev_ecolsys_120213_091917
crossref_primary_10_1111_1365_2435_14401
crossref_primary_10_1111_gcb_17365
crossref_primary_10_1111_gcb_17483
crossref_primary_10_1007_s00227_016_2879_x
crossref_primary_10_1890_13_0895_1
crossref_primary_10_1111_ele_12861
crossref_primary_10_1016_j_ese_2024_100404
crossref_primary_10_1007_s12224_020_09372_6
crossref_primary_10_1080_02827581_2015_1072238
crossref_primary_10_1016_j_actao_2019_103450
crossref_primary_10_1111_fwb_13075
crossref_primary_10_1038_nature15374
crossref_primary_10_1890_14_0266_1
crossref_primary_10_1007_s44396_025_00001_0
crossref_primary_10_1002_ecy_4178
crossref_primary_10_1016_j_landurbplan_2016_05_009
crossref_primary_10_1016_j_ecolind_2018_02_010
crossref_primary_10_1111_1365_2435_13056
crossref_primary_10_3389_fevo_2022_866950
crossref_primary_10_1111_1365_2745_12728
crossref_primary_10_1111_ele_12073
crossref_primary_10_1007_s10841_024_00564_5
crossref_primary_10_1016_j_biocontrol_2022_105028
crossref_primary_10_1063_5_0137230
crossref_primary_10_1086_673915
crossref_primary_10_1111_oik_07621
crossref_primary_10_1002_ecy_3650
crossref_primary_10_1016_j_soilbio_2019_107598
crossref_primary_10_1002_ecs2_3178
crossref_primary_10_1111_oik_04591
crossref_primary_10_1038_s41467_022_35514_9
crossref_primary_10_1016_j_agee_2024_109259
crossref_primary_10_1515_forj_2017_0006
crossref_primary_10_1007_s12080_015_0279_3
crossref_primary_10_1111_jvs_13012
crossref_primary_10_1016_j_scitotenv_2021_146506
crossref_primary_10_1016_j_scitotenv_2022_156150
crossref_primary_10_3897_rio_7_e63850
crossref_primary_10_3390_d12020050
crossref_primary_10_1111_ele_12848
crossref_primary_10_1890_14_2466_1
crossref_primary_10_1016_j_ecolind_2024_112557
crossref_primary_10_3390_f10121113
crossref_primary_10_1016_j_ecoleng_2018_10_002
crossref_primary_10_1111_ele_12292
crossref_primary_10_1016_j_tree_2021_05_001
crossref_primary_10_3390_agronomy10020259
crossref_primary_10_1111_mec_16733
crossref_primary_10_1016_j_is_2019_101486
crossref_primary_10_1073_pnas_1715638115
crossref_primary_10_1111_1365_2745_13151
crossref_primary_10_1111_ele_12617
crossref_primary_10_1111_geb_13441
crossref_primary_10_1111_gcb_15025
crossref_primary_10_1002_ecs2_4486
crossref_primary_10_1038_s41467_020_19252_4
crossref_primary_10_1371_journal_pone_0311364
crossref_primary_10_1038_s41598_018_33262_9
crossref_primary_10_1002_ece3_6650
crossref_primary_10_1093_biosci_biy013
crossref_primary_10_1002_ecy_2639
crossref_primary_10_1007_s00442_018_4319_8
crossref_primary_10_1073_pnas_1920405117
crossref_primary_10_1111_ele_13232
crossref_primary_10_1111_j_1600_0706_2013_00338_x
crossref_primary_10_3390_app11136214
crossref_primary_10_1111_1365_2745_13861
crossref_primary_10_1111_1365_2745_13187
crossref_primary_10_1111_1365_2745_13064
crossref_primary_10_1038_ncomms15211
crossref_primary_10_1111_gcb_13391
crossref_primary_10_1111_1365_2435_13257
crossref_primary_10_3390_d15080895
crossref_primary_10_1007_s10750_015_2378_y
crossref_primary_10_1016_j_jtbi_2016_03_043
crossref_primary_10_3390_rs8030214
crossref_primary_10_1103_PhysRevX_11_011009
crossref_primary_10_1111_geb_13828
crossref_primary_10_1038_ncomms10697
crossref_primary_10_1111_1365_2656_14129
crossref_primary_10_1002_hyp_13983
crossref_primary_10_1002_eap_1807
crossref_primary_10_1038_s41559_022_01773_4
crossref_primary_10_1071_RJ18049
crossref_primary_10_1002_ecs2_2283
crossref_primary_10_1038_srep16832
crossref_primary_10_1111_1365_2745_14261
crossref_primary_10_1002_ecs2_2168
crossref_primary_10_1111_ele_13212
crossref_primary_10_1111_ele_13456
crossref_primary_10_1002_ecs2_4328
crossref_primary_10_1016_j_tree_2024_02_008
crossref_primary_10_1111_gcb_12643
crossref_primary_10_1080_01448765_2019_1584866
crossref_primary_10_1002_ecm_1490
crossref_primary_10_1111_jbi_13041
crossref_primary_10_1038_s41559_019_0862_x
crossref_primary_10_1111_jvs_12803
crossref_primary_10_1038_s41559_019_0884_4
crossref_primary_10_1111_ele_12928
crossref_primary_10_1111_gcb_16680
crossref_primary_10_1007_s10021_017_0107_2
crossref_primary_10_1016_j_jas_2020_105168
crossref_primary_10_1111_ele_13102
crossref_primary_10_1111_2041_210X_12093
crossref_primary_10_1111_ele_13226
crossref_primary_10_1038_s41559_020_01315_w
crossref_primary_10_1111_1365_2745_12789
crossref_primary_10_1111_ele_13340
crossref_primary_10_1002_ecy_2748
crossref_primary_10_1002_ecy_2065
crossref_primary_10_1098_rspb_2023_1185
crossref_primary_10_1093_ajae_aaz002
crossref_primary_10_1111_brv_12756
crossref_primary_10_3389_fpls_2016_00364
crossref_primary_10_3390_rs11040458
crossref_primary_10_1073_pnas_1805518115
crossref_primary_10_1007_s10021_015_9905_6
crossref_primary_10_1038_s42003_021_02800_z
crossref_primary_10_3390_agronomy8020014
crossref_primary_10_1016_j_actao_2019_05_005
crossref_primary_10_1111_ele_12582
crossref_primary_10_1111_oik_02220
crossref_primary_10_1002_ecy_2154
crossref_primary_10_1111_1365_2745_13661
crossref_primary_10_1002_ecy_3486
crossref_primary_10_1016_j_quaint_2016_09_012
crossref_primary_10_1111_oik_10513
crossref_primary_10_1111_gcb_14442
crossref_primary_10_1007_s00027_021_00808_5
crossref_primary_10_1111_ele_12357
crossref_primary_10_1038_s44185_023_00034_2
crossref_primary_10_1126_sciadv_abg8531
crossref_primary_10_1007_s00442_018_4208_1
crossref_primary_10_1016_j_ecolind_2021_108464
crossref_primary_10_1002_ecy_1757
crossref_primary_10_1111_1365_2745_13898
crossref_primary_10_1007_s00704_018_2614_2
crossref_primary_10_1016_j_seares_2014_08_004
crossref_primary_10_1038_s41559_018_0647_7
crossref_primary_10_1111_jvs_12435
crossref_primary_10_1007_s00027_022_00857_4
crossref_primary_10_3389_ffgc_2024_1518578
crossref_primary_10_1016_j_foreco_2022_120695
crossref_primary_10_1038_s41467_019_13913_9
crossref_primary_10_1111_brv_12499
crossref_primary_10_1111_1365_2664_12329
crossref_primary_10_3354_meps10546
crossref_primary_10_1002_ece3_8532
crossref_primary_10_1111_1365_2435_13909
crossref_primary_10_1002_ecy_3347
crossref_primary_10_1111_oik_07379
crossref_primary_10_3389_fevo_2022_990835
crossref_primary_10_1128_spectrum_05091_22
crossref_primary_10_1111_jvs_12326
crossref_primary_10_1016_j_scitotenv_2023_166552
crossref_primary_10_1002_1438_390X_12091
crossref_primary_10_1002_mlf2_12042
crossref_primary_10_1016_j_soilbio_2015_07_001
crossref_primary_10_1002_ecs2_3308
crossref_primary_10_1007_s11829_022_09920_1
crossref_primary_10_1098_rspb_2024_0775
crossref_primary_10_1111_ele_12213
crossref_primary_10_1016_j_apsoil_2024_105556
crossref_primary_10_1016_j_ecolind_2014_08_038
crossref_primary_10_1016_j_jtbi_2017_11_026
crossref_primary_10_1016_j_tplants_2015_07_007
crossref_primary_10_1890_15_1951_1
crossref_primary_10_1098_rspb_2015_3005
crossref_primary_10_1111_1365_2745_13555
crossref_primary_10_1111_oik_10099
crossref_primary_10_1038_ncomms12457
crossref_primary_10_1016_j_jenvman_2018_06_094
crossref_primary_10_1016_j_ppees_2023_125718
crossref_primary_10_1002_ecy_4322
crossref_primary_10_1016_j_pedobi_2015_03_002
crossref_primary_10_3897_rio_8_e85873
crossref_primary_10_1038_ncomms12573
crossref_primary_10_1093_jpe_rtac098
crossref_primary_10_1002_ecs2_2226
Cites_doi 10.1890/09-1162.1
10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2
10.1038/35083573
10.1111/j.1365-2656.2012.01972.x
10.1111/j.1939-7445.2007.tb00202.x
10.1086/338994
10.1038/163688a0
10.1086/286117
10.1038/nature01471
10.1086/589746
10.1038/35012234
10.1111/j.1442-9993.1992.tb00812.x
10.1016/j.jtbi.2009.01.010
10.1073/pnas.1104015108
10.1046/j.1461-0248.2003.00464.x
10.1086/283181
10.1038/nature04742
10.1073/pnas.96.4.1463
10.1111/j.1365-2745.2009.01521.x
10.1126/science.1133258
10.1371/journal.pone.0013382
10.1126/science.286.5439.542
10.1515/9781400834167
10.1016/S0169-5347(01)02283-2
10.2307/4012
10.1073/pnas.95.12.6837
10.1017/CBO9780511617799
10.1086/303402
10.2307/1929601
10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
10.1093/acprof:oso/9780198525257.001.0001
10.1111/j.0030-1299.2007.16005.x
10.1890/04-0922
10.1086/303348
10.1890/11-1753.1
10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2
10.1046/j.1461-0248.2000.00144.x
10.1111/ele.12073
10.1111/j.1461-0248.2009.01299.x
10.1111/j.1365-2745.2011.01875.x
10.1098/rspb.2009.0523
10.2307/2265614
10.1038/296245a0
ContentType Journal Article
Copyright 2013 Blackwell Publishing Ltd/CNRS
2014 INIST-CNRS
2013 Blackwell Publishing Ltd/CNRS.
Copyright © 2013 Blackwell Publishing Ltd/CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Wageningen University & Research
Copyright_xml – notice: 2013 Blackwell Publishing Ltd/CNRS
– notice: 2014 INIST-CNRS
– notice: 2013 Blackwell Publishing Ltd/CNRS.
– notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
1XC
QVL
DOI 10.1111/ele.12088
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Hyper Article en Ligne (HAL)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList Ecology Abstracts
MEDLINE - Academic

MEDLINE
Entomology Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor Hooper, David
Editor_xml – sequence: 16
  givenname: David
  surname: Hooper
  fullname: Hooper, David
EndPage 625
ExternalDocumentID oai_library_wur_nl_wurpubs_437417
oai_HAL_hal_02331250v1
2948068481
23438189
27283700
10_1111_ele_12088
ELE12088
ark_67375_WNG_4NSDJ046_4
Genre letter
Letter
Research Support, Non-U.S. Gov't
Feature
GeographicLocations Netherlands
Minnesota
Texas
Germany
GeographicLocations_xml – name: Germany
– name: Netherlands
– name: Texas
– name: Minnesota
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
7ST
7U6
1XC
-
02
0R
1AW
31
3N
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AGJLS
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-c6408-5da79433d056e7e92e39d5709f0d0bb20b6c754d9e3f71b17f3e5f9f4dfdb7c03
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Feb 05 18:08:25 EST 2021
Fri May 09 12:19:38 EDT 2025
Thu Jul 10 21:32:03 EDT 2025
Fri Jul 11 16:04:38 EDT 2025
Fri Jul 25 10:54:54 EDT 2025
Thu Apr 03 06:58:37 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 02:29:39 EDT 2025
Wed Jan 22 17:01:26 EST 2025
Wed Oct 30 09:56:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Community structure
overyielding
Demography
Stability
environmental stochasticity
Ecosystem
demographic stochasticity
prediction
Biodiversity
biodiversity
stability
Language English
License CC BY 4.0
2013 Blackwell Publishing Ltd/CNRS.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6408-5da79433d056e7e92e39d5709f0d0bb20b6c754d9e3f71b17f3e5f9f4dfdb7c03
Notes  
ark:/67375/WNG-4NSDJ046-4
istex:3F9683DF81BB62131083802135C7301DCD4E5C24
ArticleID:ELE12088
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
ObjectType-Correspondence-1
content type line 23
ORCID 0000-0003-2325-4727
0000-0002-0122-495X
0000-0002-3721-1069
0000-0002-0628-5006
0000-0001-9689-769X
OpenAccessLink https://www.zora.uzh.ch/id/eprint/78222/1/DeMazancourtEtAlfinalMS.pdf
PMID 23438189
PQID 1328436015
PQPubID 32390
PageCount 9
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_437417
hal_primary_oai_HAL_hal_02331250v1
proquest_miscellaneous_1352291467
proquest_miscellaneous_1338392244
proquest_journals_1328436015
pubmed_primary_23438189
pascalfrancis_primary_27283700
crossref_citationtrail_10_1111_ele_12088
crossref_primary_10_1111_ele_12088
wiley_primary_10_1111_ele_12088_ELE12088
istex_primary_ark_67375_WNG_4NSDJ046_4
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley
References Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, New York.
Isbell, F.I., Polley, H.W. & Wilsey, B.J. (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett., 12, 443-451.
Taylor, L.R. & Woiwod, I.P. (1982). Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters. J. Anim. Ecol., 51, 879-906.
Diaz, S. & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol., 16, 646-655.
Simpson, E.H. (1949). Measurement of Diversity. Nature, 163, 688-688.
Thibaut, L.M., Connolly, S.R. & Sweatman, H.P.A. (2012). Diversity and stability of herbivorous fishes on coral reefs. Ecology, 93, 891-901.
Almaraz, P., Green, A.J., Aguilera, E., Rendon, M.A. & Bustamante, J. (2012). Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol., 81, 1113-1125.
Fowler, M.S. (2009). Increasing community size and connectance can increase stability in competitive communities. J. Theor. Biol., 258, 179-188.
Loreau, M. (2010). From Populations to Ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton and Oxford.
Ives, A.R., Dennis, B., Cottingham, K.L. & Carpenter, S.R. (2003). Estimating community stability and ecological interactions from time-series data. Ecol. Monogr., 73, 301-330.
Loreau, M.. & de Mazancourt, C.. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., DOI: 10.1111/ele.12073.
Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E. & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat., 151, 264-276.
MacArthur, R. (1955). Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology, 36, 533-536.
Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA, 96, 1463-1468.
McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233.
Anderson, R.M., Gordon, D.M., Crawley, M.J. & Hassell, M.P. (1982). Variability in the Abundance of Animal and Plant-Species. Nature, 296, 245-248.
Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S. et al. (2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 5, e13382.
Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350-363.
Tilman, D., Reich, P.B. & Knops, J.M.H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632.
Jansen, V.A.A. & Kokkoris, G.D. (2003). Complexity and stability revisited. Ecol. Lett., 6, 498-502.
Roscher, C., Weigelt, A., Proulx, R., Marquard, E., Schumacher, J., Weisser, W.W. et al. (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol., 99, 1460-1469.
Schmid, B. (1990). Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants, 4, 25-34.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35.
McNaughton, S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat., 111, 515-525.
Grace, J.B. (2006). Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK.
Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2009). What drives community dynamics? Proc. Biol. Sci., 276, 2923-2929.
Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J. et al. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91, 2213-2220.
Hughes, J.B. & Roughgarden, J. (1998). Aggregate community properties and the strength of species' interactions. Proc. Natl Acad. Sci. USA, 95, 6837-6842.
Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A. & Schmid, B. (2009). Positive biodiversity-productivity relationship due to increased plant density. J. Ecol., 97, 696-704.
Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
Kilpatrick, A.M. & Ives, A.R. (2003). Species interactions can explain Taylor's power law for ecological time series. Nature, 422, 65-68.
Ives, A.R. & Hughes, J.B. (2002). General relationships between species diversity and stability in competitive systems. Am. Nat., 159, 388-395.
Elton, C.S. (1958). The ecology of invasions by animals and plants. University of Chicago Press, Chicago and London.
Lehman, C.L. & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. Am. Nat., 156, 534-552.
Grace, J.B. & Bollen, K.A. (2005). Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am., 86, 283-295.
Ives, A.R., Gross, K. & Klug, J.L. (1999). Stability and variability in competitive communities. Science, 286, 542-544.
van Ruijven, J. & Berendse, F. (2007). Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 116, 1323-1330.
Hughes, J.B. & Roughgarden, J. (2000). Species diversity and biomass stability. Am. Nat., 155, 618-627.
Ives, A.R. & Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science, 317, 58-62.
May, R.M. (1973). Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn. Princeton University Press, Princeton.
Ives, A.R., Klug, J.L. & Gross, K. (2000). Stability and species richness in complex communities. Ecol. Lett., 3, 399-411.
Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474.
Baumgärtner, S. (2007). The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model., 20, 87-127.
Loreau, M. & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat., 172, E48-E66.
Allan, E., Weisser, W., Weigelt, A., Roscher, C., Fischer, M. & Hillebrand, H. (2011). More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA, 108, 17034-17039.
2012; 81
2009; 40
2010
2000; 3
1982; 51
1999; 286
2009; 276
2005; 86
2002; 159
2011; 99
2006
1973
2000; 155
2003
2000; 156
2003; 73
1999; 80
1998; 151
1958
2009; 258
1996; 77
2009; 12
2012; 93
1955; 36
2011; 108
2007; 317
2007; 116
2009; 97
2003; 6
2000; 405
1949; 163
1982; 296
2005; 75
2001; 16
1999; 96
2013
2007; 20
1977; 111
2010; 91
1998; 95
2003; 422
2010; 5
2001; 412
2006; 441
2008; 172
1990; 4
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
May R.M. (e_1_2_8_33_1) 1973
Gonzalez A. (e_1_2_8_10_1) 2009
Schmid B. (e_1_2_8_40_1) 1990; 4
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – reference: Loreau, M. & de Mazancourt, C. (2008). Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat., 172, E48-E66.
– reference: May, R.M. (1973). Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn. Princeton University Press, Princeton.
– reference: Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J. et al. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91, 2213-2220.
– reference: Loreau, M. (2010). From Populations to Ecosystems: theoretical foundations for a new ecological synthesis. Princeton University Press, Princeton and Oxford.
– reference: Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA, 96, 1463-1468.
– reference: Jansen, V.A.A. & Kokkoris, G.D. (2003). Complexity and stability revisited. Ecol. Lett., 6, 498-502.
– reference: Mutshinda, C.M., O'Hara, R.B. & Woiwod, I.P. (2009). What drives community dynamics? Proc. Biol. Sci., 276, 2923-2929.
– reference: Hughes, J.B. & Roughgarden, J. (2000). Species diversity and biomass stability. Am. Nat., 155, 618-627.
– reference: Thibaut, L.M., Connolly, S.R. & Sweatman, H.P.A. (2012). Diversity and stability of herbivorous fishes on coral reefs. Ecology, 93, 891-901.
– reference: Anderson, R.M., Gordon, D.M., Crawley, M.J. & Hassell, M.P. (1982). Variability in the Abundance of Animal and Plant-Species. Nature, 296, 245-248.
– reference: Isbell, F.I., Polley, H.W. & Wilsey, B.J. (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett., 12, 443-451.
– reference: Allan, E., Weisser, W., Weigelt, A., Roscher, C., Fischer, M. & Hillebrand, H. (2011). More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA, 108, 17034-17039.
– reference: McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233.
– reference: Hughes, J.B. & Roughgarden, J. (1998). Aggregate community properties and the strength of species' interactions. Proc. Natl Acad. Sci. USA, 95, 6837-6842.
– reference: MacArthur, R. (1955). Fluctuations of Animal Populations, and a Measure of Community Stability. Ecology, 36, 533-536.
– reference: Lehman, C.L. & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. Am. Nat., 156, 534-552.
– reference: Loreau, M.. & de Mazancourt, C.. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., DOI: 10.1111/ele.12073.
– reference: McNaughton, S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat., 111, 515-525.
– reference: Diaz, S. & Cabido, M. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol., 16, 646-655.
– reference: Marquard, E., Weigelt, A., Roscher, C., Gubsch, M., Lipowsky, A. & Schmid, B. (2009). Positive biodiversity-productivity relationship due to increased plant density. J. Ecol., 97, 696-704.
– reference: Lande, R., Engen, S. & Saether, B.-E. (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press, New York.
– reference: Almaraz, P., Green, A.J., Aguilera, E., Rendon, M.A. & Bustamante, J. (2012). Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol., 81, 1113-1125.
– reference: Grace, J.B. (2006). Structural equation modeling and natural systems. Cambridge University Press, Cambridge, UK.
– reference: Schmid, B. (1990). Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants, 4, 25-34.
– reference: Roscher, C., Weigelt, A., Proulx, R., Marquard, E., Schumacher, J., Weisser, W.W. et al. (2011). Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol., 99, 1460-1469.
– reference: Kilpatrick, A.M. & Ives, A.R. (2003). Species interactions can explain Taylor's power law for ecological time series. Nature, 422, 65-68.
– reference: Tilman, D., Reich, P.B. & Knops, J.M.H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629-632.
– reference: Simpson, E.H. (1949). Measurement of Diversity. Nature, 163, 688-688.
– reference: Ives, A.R., Klug, J.L. & Gross, K. (2000). Stability and species richness in complex communities. Ecol. Lett., 3, 399-411.
– reference: Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350-363.
– reference: Ives, A.R., Dennis, B., Cottingham, K.L. & Carpenter, S.R. (2003). Estimating community stability and ecological interactions from time-series data. Ecol. Monogr., 73, 301-330.
– reference: Baumgärtner, S. (2007). The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model., 20, 87-127.
– reference: Proulx, R., Wirth, C., Voigt, W., Weigelt, A., Roscher, C., Attinger, S. et al. (2010). Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 5, e13382.
– reference: Ives, A.R., Gross, K. & Klug, J.L. (1999). Stability and variability in competitive communities. Science, 286, 542-544.
– reference: van Ruijven, J. & Berendse, F. (2007). Contrasting effects of diversity on the temporal stability of plant populations. Oikos, 116, 1323-1330.
– reference: Ives, A.R. & Hughes, J.B. (2002). General relationships between species diversity and stability in competitive systems. Am. Nat., 159, 388-395.
– reference: Fowler, M.S. (2009). Increasing community size and connectance can increase stability in competitive communities. J. Theor. Biol., 258, 179-188.
– reference: Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3-35.
– reference: Taylor, L.R. & Woiwod, I.P. (1982). Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters. J. Anim. Ecol., 51, 879-906.
– reference: Elton, C.S. (1958). The ecology of invasions by animals and plants. University of Chicago Press, Chicago and London.
– reference: Ives, A.R. & Carpenter, S.R. (2007). Stability and diversity of ecosystems. Science, 317, 58-62.
– reference: Loreau, M. & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72-76.
– reference: Grace, J.B. & Bollen, K.A. (2005). Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am., 86, 283-295.
– reference: Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455-1474.
– reference: Doak, D.F., Bigger, D., Harding, E.K., Marvier, M.A., O'Malley, R.E. & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat., 151, 264-276.
– volume: 20
  start-page: 87
  year: 2007
  end-page: 127
  article-title: The insurance value of biodiversity in the provision of ecosystem services
  publication-title: Nat. Resour. Model.
– year: 1958
– volume: 422
  start-page: 65
  year: 2003
  end-page: 68
  article-title: Species interactions can explain Taylor's power law for ecological time series
  publication-title: Nature
– volume: 96
  start-page: 1463
  year: 1999
  end-page: 1468
  article-title: Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 73
  start-page: 301
  year: 2003
  end-page: 330
  article-title: Estimating community stability and ecological interactions from time‐series data
  publication-title: Ecol. Monogr.
– volume: 12
  start-page: 443
  year: 2009
  end-page: 451
  article-title: Biodiversity, productivity and the temporal stability of productivity: patterns and processes
  publication-title: Ecol. Lett.
– volume: 296
  start-page: 245
  year: 1982
  end-page: 248
  article-title: Variability in the Abundance of Animal and Plant‐Species
  publication-title: Nature
– volume: 77
  start-page: 350
  year: 1996
  end-page: 363
  article-title: Biodiversity: Population versus ecosystem stability
  publication-title: Ecology
– volume: 80
  start-page: 1455
  year: 1999
  end-page: 1474
  article-title: The ecological consequences of changes in biodiversity: A search for general principles
  publication-title: Ecology
– volume: 40
  start-page: 393
  year: 2009
  end-page: 414
– year: 2003
– volume: 108
  start-page: 17034
  year: 2011
  end-page: 17039
  article-title: More diverse plant communities have higher functioning over time due to turnover in complementary dominant species
  publication-title: Proc. Natl Acad. Sci. USA
– year: 1973
– volume: 51
  start-page: 879
  year: 1982
  end-page: 906
  article-title: Comparative Synoptic Dynamics.1. Relationships between Interspecific and Intraspecific Spatial and Temporal Variance Mean Population Parameters
  publication-title: J. Anim. Ecol.
– year: 2013
  article-title: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms
  publication-title: Ecol. Lett.
– volume: 258
  start-page: 179
  year: 2009
  end-page: 188
  article-title: Increasing community size and connectance can increase stability in competitive communities
  publication-title: J. Theor. Biol.
– volume: 111
  start-page: 515
  year: 1977
  end-page: 525
  article-title: Diversity and stability of ecological communities: a comment on the role of empiricism in ecology
  publication-title: Am. Nat.
– volume: 75
  start-page: 3
  year: 2005
  end-page: 35
  article-title: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge
  publication-title: Ecol. Monogr.
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment
  publication-title: Nature
– volume: 3
  start-page: 399
  year: 2000
  end-page: 411
  article-title: Stability and species richness in complex communities
  publication-title: Ecol. Lett.
– volume: 163
  start-page: 688
  year: 1949
  end-page: 688
  article-title: Measurement of Diversity
  publication-title: Nature
– year: 2010
– volume: 93
  start-page: 891
  year: 2012
  end-page: 901
  article-title: Diversity and stability of herbivorous fishes on coral reefs
  publication-title: Ecology
– volume: 86
  start-page: 283
  year: 2005
  end-page: 295
  article-title: Interpreting the results from multiple regression and structural equation models
  publication-title: Bull. Ecol. Soc. Am.
– volume: 155
  start-page: 618
  year: 2000
  end-page: 627
  article-title: Species diversity and biomass stability
  publication-title: Am. Nat.
– volume: 172
  start-page: E48
  year: 2008
  end-page: E66
  article-title: Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments
  publication-title: Am. Nat.
– volume: 36
  start-page: 533
  year: 1955
  end-page: 536
  article-title: Fluctuations of Animal Populations, and a Measure of Community Stability
  publication-title: Ecology
– volume: 412
  start-page: 72
  year: 2001
  end-page: 76
  article-title: Partitioning selection and complementarity in biodiversity experiments
  publication-title: Nature
– volume: 286
  start-page: 542
  year: 1999
  end-page: 544
  article-title: Stability and variability in competitive communities
  publication-title: Science
– volume: 405
  start-page: 228
  year: 2000
  end-page: 233
  article-title: The diversity‐stability debate
  publication-title: Nature
– volume: 81
  start-page: 1113
  year: 2012
  end-page: 1125
  article-title: Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl
  publication-title: J. Anim. Ecol.
– volume: 97
  start-page: 696
  year: 2009
  end-page: 704
  article-title: Positive biodiversity‐productivity relationship due to increased plant density
  publication-title: J. Ecol.
– volume: 5
  start-page: e13382
  year: 2010
  article-title: Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands
  publication-title: PLoS ONE
– volume: 99
  start-page: 1460
  year: 2011
  end-page: 1469
  article-title: Identifying population‐ and community‐level mechanisms of diversity–stability relationships in experimental grasslands
  publication-title: J. Ecol.
– year: 2006
– volume: 116
  start-page: 1323
  year: 2007
  end-page: 1330
  article-title: Contrasting effects of diversity on the temporal stability of plant populations
  publication-title: Oikos
– volume: 151
  start-page: 264
  year: 1998
  end-page: 276
  article-title: The statistical inevitability of stability‐diversity relationships in community ecology
  publication-title: Am. Nat.
– volume: 156
  start-page: 534
  year: 2000
  end-page: 552
  article-title: Biodiversity, stability, and productivity in competitive communities
  publication-title: Am. Nat.
– volume: 317
  start-page: 58
  year: 2007
  end-page: 62
  article-title: Stability and diversity of ecosystems
  publication-title: Science
– volume: 16
  start-page: 646
  year: 2001
  end-page: 655
  article-title: Vive la difference: plant functional diversity matters to ecosystem processes
  publication-title: Trends Ecol. Evol.
– volume: 95
  start-page: 6837
  year: 1998
  end-page: 6842
  article-title: Aggregate community properties and the strength of species’ interactions
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 159
  start-page: 388
  year: 2002
  end-page: 395
  article-title: General relationships between species diversity and stability in competitive systems
  publication-title: Am. Nat.
– volume: 4
  start-page: 25
  year: 1990
  end-page: 34
  article-title: Some ecological and evolutionary consequences of modular organization and clonal growth in plants
  publication-title: Evol. Trends Plants
– volume: 6
  start-page: 498
  year: 2003
  end-page: 502
  article-title: Complexity and stability revisited
  publication-title: Ecol. Lett.
– volume: 91
  start-page: 2213
  year: 2010
  end-page: 2220
  article-title: General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding
  publication-title: Ecology
– volume: 276
  start-page: 2923
  year: 2009
  end-page: 2929
  article-title: What drives community dynamics?
  publication-title: Proc. Biol. Sci.
– ident: e_1_2_8_13_1
  doi: 10.1890/09-1162.1
– ident: e_1_2_8_12_1
  doi: 10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2
– ident: e_1_2_8_30_1
  doi: 10.1038/35083573
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1365-2656.2012.01972.x
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1939-7445.2007.tb00202.x
– ident: e_1_2_8_19_1
  doi: 10.1086/338994
– ident: e_1_2_8_41_1
  doi: 10.1038/163688a0
– ident: e_1_2_8_7_1
  doi: 10.1086/286117
– ident: e_1_2_8_24_1
  doi: 10.1038/nature01471
– ident: e_1_2_8_28_1
  doi: 10.1086/589746
– ident: e_1_2_8_34_1
  doi: 10.1038/35012234
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1442-9993.1992.tb00812.x
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jtbi.2009.01.010
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1104015108
– ident: e_1_2_8_23_1
  doi: 10.1046/j.1461-0248.2003.00464.x
– ident: e_1_2_8_35_1
  doi: 10.1086/283181
– ident: e_1_2_8_46_1
  doi: 10.1038/nature04742
– ident: e_1_2_8_47_1
  doi: 10.1073/pnas.96.4.1463
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1365-2745.2009.01521.x
– ident: e_1_2_8_18_1
  doi: 10.1126/science.1133258
– ident: e_1_2_8_37_1
  doi: 10.1371/journal.pone.0013382
– start-page: 393
  volume-title: Annu. Rev. Ecol. Evol. Sys
  year: 2009
  ident: e_1_2_8_10_1
– ident: e_1_2_8_20_1
  doi: 10.1126/science.286.5439.542
– ident: e_1_2_8_27_1
  doi: 10.1515/9781400834167
– ident: e_1_2_8_6_1
  doi: 10.1016/S0169-5347(01)02283-2
– ident: e_1_2_8_42_1
  doi: 10.2307/4012
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.95.12.6837
– ident: e_1_2_8_11_1
  doi: 10.1017/CBO9780511617799
– ident: e_1_2_8_26_1
  doi: 10.1086/303402
– ident: e_1_2_8_31_1
  doi: 10.2307/1929601
– ident: e_1_2_8_22_1
  doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
– ident: e_1_2_8_25_1
  doi: 10.1093/acprof:oso/9780198525257.001.0001
– ident: e_1_2_8_39_1
  doi: 10.1111/j.0030-1299.2007.16005.x
– ident: e_1_2_8_14_1
  doi: 10.1890/04-0922
– ident: e_1_2_8_16_1
  doi: 10.1086/303348
– ident: e_1_2_8_43_1
  doi: 10.1890/11-1753.1
– ident: e_1_2_8_45_1
  doi: 10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2
– ident: e_1_2_8_21_1
  doi: 10.1046/j.1461-0248.2000.00144.x
– ident: e_1_2_8_29_1
  doi: 10.1111/ele.12073
– volume-title: Stability and complexity in model ecosystems. 2001, Princeton Landmarks in Biology edn
  year: 1973
  ident: e_1_2_8_33_1
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1461-0248.2009.01299.x
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1365-2745.2011.01875.x
– volume: 4
  start-page: 25
  year: 1990
  ident: e_1_2_8_40_1
  article-title: Some ecological and evolutionary consequences of modular organization and clonal growth in plants
  publication-title: Evol. Trends Plants
– ident: e_1_2_8_36_1
  doi: 10.1098/rspb.2009.0523
– ident: e_1_2_8_44_1
  doi: 10.2307/2265614
– ident: e_1_2_8_4_1
  doi: 10.1038/296245a0
SSID ssj0012971
Score 2.5332558
Snippet As biodiversity is declining at an unprecedented rate, an important current scientific challenge is to understand and predict the consequences of biodiversity...
SourceID wageningen
hal
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 617
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Biodiversity
Biodiversity loss
Biological and medical sciences
Biomass
Community composition
Community ecology
competitive communities
Computer Simulation
consequences
demographic stochasticity
diversity
dynamics
Ecology, environment
Ecosystem
Ecosystem biology
Ecosystem stability
Ecosystems
environmental stochasticity
Fundamental and applied biological sciences. Psychology
General aspects
Germany
Grasslands
Life Sciences
Minnesota
Models, Biological
Models, Theoretical
Monoculture
Netherlands
overyielding
Poaceae
population
Population Dynamics
prediction
productivity
species interactions
Species richness
stability
Stochastic Processes
Synecology
temporal stability
Texas
time-series
variability
Title Predicting ecosystem stability from community composition and biodiversity
URI https://api.istex.fr/ark:/67375/WNG-4NSDJ046-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12088
https://www.ncbi.nlm.nih.gov/pubmed/23438189
https://www.proquest.com/docview/1328436015
https://www.proquest.com/docview/1338392244
https://www.proquest.com/docview/1352291467
https://hal.science/hal-02331250
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F437417
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIaTxwO9BYEwBIbSXVE5sx414mqCjqkaFgIk-IFlx7Ai0KUVNyyh_PXfOj1E0EOIpSXOJ6sud_Tn5_B3AMyGNHaZpFlllTISI2EbGYOKJIc8T6-JcSVrg_Gaajk_EZCZnW_CiWwvT6EP0L9woM3x_TQmem_qXJMdeeRAnmCTY_xJXiwDRu146CoexZrIlUpwuJ3zWqgoRi6e_cmMsuvKZmJBXybnfiSGZ1-iksqlucRn8vA4755jylV8DtQlt_dh0dBM-da1qKCmng9XSDIofvwk-_mezb8GNFrOGh02Q3YYtV92Ba00VyzXujbzy9fouTN4u6LsPMalDnNY2KtEh4k_PwF2HtJYlLJolKXhIdPaWMxbmlQ3Nl7ntaCL34ORo9OHlOGqLNURFKtgwkjYnrTluEVE55bLE8cxKxbKSWWZMwkxaKCls5nipYhOrkjtZZqWwpTWqYHwXtqt55R5AmBojWeGSYZorUcqcQKEwIlbMGctlFsBB99h00SqZU0GNM93NaNBJ2jspgKe96ddGvuNSI3z2_XkS3B4fHmv6DSOHIwRk3-IAnvvQ6M3yxSmR4pTUH6evtZi-fzVhItUigP2N2OkvSJRXGmIB7HXBpNsOo9YxR5zAcXYsA3jSn8ZUp-83eeXmK7LhBGcRkP3NBgF1RsNfAPebQL34A5z03IboP34RubqimlW1b3Ubf_p8tdDVGW3wDrUWHGEn3u_Ax-Wf_ahHxyO_8_DfTR_BTuILjBCFdA-2l4uVe4wwb2n2fT7_BJ55TTo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IUQ58KYYSjEIoV4c2d5dbyxxqSAlhDRC0Kq5oJXXuxZVKwflQQm_npn1owQVhDjFicdWdjzj_cb-9huAF1xo002SNDBS6wARsQm0xsTjXZbFxkaZFLTA-XCU9I_5YCzGa_CqWQtT6UO0D9woM9z9mhKcHkj_kuV4W-5EMWbJOmxSR29XUH1sxaNwIqvKLZ5gwRyzca0rRDye9tCV2Wj9C3EhN8m934kjmc3QTUXV3-IqAHoDti4w6Uu3CmoV3LrZ6eAWfG7GVZFSzjqLue7kP36TfPzfgd-GmzVs9ferOLsDa7a8C9eqRpZL3Oo58evlPRh8mNKrHyJT-1jZVkLRPkJQR8Jd-rScxc-rVSn4lRjtNW3Mz0rj69OJaZgi9-H4oHf0uh_U_RqCPOFhNxAmI7k5ZhBUWWnT2LLUCBmmRWhCreNQJ7kU3KSWFTLSkSyYFUVacFMYLfOQPYCNclLah-AnWoswt3E3ySQvREa4kGseydBqw0TqwV5z3VRei5lTT41z1RQ16CTlnOTB89b0a6XgcaURXvx2P2lu9_eHin7D0GGIAsNvkQcvXWy0Ztn0jHhxUqiT0VvFR5_eDEKeKO7B7krwtAfE0okNhR7sNNGk6nvGTEUMoQLDAll48KzdjdlOr3Cy0k4WZMMI0SIm-5sNYuqUZkAPtqtIvfwDjCTduug_dhm6qqS2VTM36joA1cViqspz-sAzzBRniDzxfHsuMP_sR9Ub9tzGo383fQrX-0eHQzV8N3r_GLZi12-EGKU7sDGfLuwTRH1zveuS-ydBF1FV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2EWg8cL8ExggIob2kcmI7TsTTRFtKKdUETPQByYpjR5s2pVMvjPLrOce5jKKBEE9JmpOoPjnH_px8_g4hL7nQJonjNDBS6wAQsQm0hsTjCcsiY8NMClzg_GEcD474cCImG-R1sxam0odoX7hhZrj-GhP83BS_JDn0yp0wgiTZJNs8pgmGdPdjqx0F41g12-IxzJcjNqllhZDG0166NhhtHiMVchu9-x0pktkcvFRU5S2uwp83yM4F5HzpFkGtY1s3OPVvka9NsypOymlnudCd_Mdvio__2e7b5GYNWv2DKsrukA1b3iXXqjKWK9jrOenr1T0yPJzhhx-kUvswr61kon0AoI6Cu_JxMYufV2tS4BD57DVpzM9K4-uTqWl4IvfJUb_3-c0gqKs1BHnMaRIIk6HYHDMAqay0aWRZaoSkaUEN1TqiOs6l4Ca1rJChDmXBrCjSgpvCaJlT9oBsldPSPiJ-rLWguY2SOJO8EBmiQq55KKnVhonUI_vNY1N5LWWOFTXOVDOlAScp5ySPvGhNzyv9jiuN4Nm351Fxe3AwUvgbRA4DDEi_hR555UKjNctmp8iKk0J9Gb9VfPypO6Q8Vtwje2ux014QSSc1RD2y2wSTqnuMuQoZAAUG02Phkeftach1_ICTlXa6RBuGeBYQ2d9sAFGnOP555GEVqJd_gKGgWwL-Y5eRq0osWjV3ra7jT10sZ6o8ww3cYa44A9wJ99t3cflnP6reqOd2Hv-76TNy_bDbV6N34_dPyE7kio0gnXSXbC1mS_sUIN9C77nU_gk0EVAN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+ecosystem+stability+from+community+composition+and+biodiversity&rft.jtitle=Ecology+letters&rft.au=Mazancourt%2C+Claire&rft.au=Isbell%2C+Forest&rft.au=Larocque%2C+Allen&rft.au=Berendse%2C+Frank&rft.date=2013-05-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=5&rft.spage=617&rft.epage=625&rft_id=info:doi/10.1111%2Fele.12088&rft.externalDBID=10.1111%252Fele.12088&rft.externalDocID=ELE12088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon