Unique features of transcription termination and initiation at closely spaced tandem human genes

The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 18; no. 4; pp. e10682 - n/a
Main Authors Nissani, Noa, Ulitsky, Igor
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2022
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Synopsis Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. Graphical Abstract Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes.
AbstractList Abstract The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. image Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of 'tandem genes'-closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of 'tandem genes'-closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Synopsis Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes.
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Synopsis Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. Graphical Abstract Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes.
Author Ulitsky, Igor
Nissani, Noa
AuthorAffiliation 1 Departments of Biological Regulation and Molecular Neuroscience Weizmann Institute of Science Rehovot Israel
AuthorAffiliation_xml – name: 1 Departments of Biological Regulation and Molecular Neuroscience Weizmann Institute of Science Rehovot Israel
Author_xml – sequence: 1
  givenname: Noa
  orcidid: 0000-0001-8054-6465
  surname: Nissani
  fullname: Nissani, Noa
  organization: Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science
– sequence: 2
  givenname: Igor
  orcidid: 0000-0003-0555-6561
  surname: Ulitsky
  fullname: Ulitsky, Igor
  email: igor.ulitsky@weizmann.ac.il
  organization: Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35362230$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-wZYkssWEzUz_jeIMEFY9KRSyga-M4N1OPEnuwHdD8e6zJMEwrVax8bX_n2PdxXp344KGqXhK8JIIKejmmdkkxJQTXDX1SnRHJ-YJTRU-O4tPqPKU1xqwhDX1WnTLBakoZPqt-3Hr3cwLUg8lThIRCj3I0PtnoNtkFjzLE0Xmzi43vkPMuu_02IzuEBMMWpY2x0KFcCBjR3TQaj1bgIT2vnvZmSPBiv15Utx8_fL_6vLj5-un66t3NwtYc04Wo206wjgmoQVrSMELAyp60fUOh7XpOQPHGKEyVKNtOWFqX9C0zguMGWnZRXc--XTBrvYluNHGrg3F6dxDiSpuYnR1Ag6FcCslY23HeK6oaSawyGLeWS-Bd8Xo7e22mdoTOgi8lGe6Z3r_x7k6vwi_dKEmx4MXgzd4ghlLdlPXokoVhMB7ClDSteV3IWtGCvn6ArsMUfSlVoYRQUtZUFurV8Y8OX_nbyAIsZ8DGkFKE_oAQrHeTosuk6MOkFAF_ILAu79paMnLD47Jmlv12A2z_84j-8u39sfRylqai8iuI_zJ95LE_x7fihA
CitedBy_id crossref_primary_10_1016_j_isci_2022_105543
crossref_primary_10_15252_embj_2022112443
Cites_doi 10.1128/JVI.79.14.9254-9269.2005
10.1038/s41467-019-12328-w
10.1016/j.molcel.2020.02.014
10.1093/bioinformatics/btr261
10.1128/EC.05141-11
10.1002/j.1460-2075.1991.tb04998.x
10.1038/ng.3616
10.1158/0008-5472.CAN-17-3970
10.1101/gad.200303.112
10.15252/embr.201949315
10.7554/eLife.48725
10.1093/nar/gkp335
10.1002/j.1460-2075.1994.tb06904.x
10.1016/S1097-2765(00)80468-2
10.1016/j.molcel.2021.05.028
10.1093/nar/gkw571
10.1016/j.tig.2005.04.009
10.1016/j.molcel.2017.12.009
10.1038/cr.2010.75
10.1101/gad.316810.118
10.1038/s41467-019-13075-8
10.1101/gad.2.4.440
10.1016/j.bbagrm.2012.08.013
10.1128/MCB.26.10.3986-3996.2006
10.1016/j.molcel.2011.04.026
10.1111/tpj.13826
10.1093/bioinformatics/btr064
10.1093/nar/30.8.1842
10.1038/nature11233
10.1126/science.1145989
10.1038/nrg3296
10.1038/nature03035
10.1093/nar/gkv416
10.1038/nature13714
10.1016/S1097-2765(00)80352-4
10.1093/database/bar030
10.1093/bioinformatics/bty191
10.1016/j.molcel.2019.11.017
10.1093/nar/gku365
10.1093/nar/29.24.4920
10.1016/j.molcel.2015.06.008
10.1038/385357a0
10.1016/S0092-8674(01)00372-5
10.1016/j.molcel.2021.06.026
10.1016/j.molcel.2016.11.029
10.1128/MCB.01083-10
10.1093/bioinformatics/btab203
10.7554/eLife.03635
10.1038/s41586-019-1369-y
10.1093/emboj/17.16.4771
10.1038/nature13787
10.1073/pnas.1711120114
10.1101/gr.171405.113
10.1016/j.cell.2004.08.011
10.1038/nature03041
10.1016/j.molcel.2018.09.004
10.1038/s41576-019-0145-z
10.1007/s11427-013-4540-y
10.1126/science.aad9926
10.1186/s12859-021-04208-2
10.1093/nar/gkab1113
10.1126/science.1219651
10.1038/s41587-021-00869-9
10.1038/nrm.2017.10
10.1016/j.molcel.2017.12.029
10.1016/j.cell.2015.03.027
10.1186/gb-2007-8-2-r24
10.1016/0092-8674(84)90269-1
10.1101/gad.1975011
10.1038/nature16469
10.1016/j.celrep.2012.03.013
10.1261/rna.068288.118
10.1128/MCB.13.1.578
10.1093/nar/gkaa630
10.1073/pnas.1613181114
10.1128/MCB.01821-06
10.1016/j.molcel.2016.05.032
10.1101/gad.2027411
10.1038/nature02538
ContentType Journal Article
Copyright The Author(s) 2022
2022 The Authors. Published under the terms of the CC BY 4.0 license
2022 The Authors. Published under the terms of the CC BY 4.0 license.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.15252/msb.202110682
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Noa Nissani & Igor Ulitsky
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ea2475733bd44f929871c9a00bc47e4d
PMC8972054
35362230
10_15252_msb_202110682
MSB202110682
Genre article
Journal Article
GrantInformation_xml – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: lncIMPACT
  funderid: 10.13039/100010663
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: lncIMPACT
– fundername: ;
  grantid: lncIMPACT
GroupedDBID ---
0R~
123
1OC
24P
29M
2WC
39C
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IGS
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
O9-
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
-Q-
4.4
AASML
ADRAZ
COF
EBLON
EJD
GODZA
H13
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6402-56bd53d35e6e7c18311ec7f1bf82ebdf41e948a90295bdfd5c26252c3a5408eb3
IEDL.DBID M48
ISSN 1744-4292
IngestDate Wed Aug 27 01:26:24 EDT 2025
Thu Aug 21 18:22:13 EDT 2025
Thu Jul 10 21:57:31 EDT 2025
Wed Aug 13 08:52:28 EDT 2025
Mon Jul 21 06:05:06 EDT 2025
Thu Apr 24 22:53:41 EDT 2025
Tue Jul 01 04:10:35 EDT 2025
Sun Jul 06 04:45:03 EDT 2025
Tue Aug 12 01:10:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Argonaute proteins
Pol2 transcription
transcriptional interference
tandem genes
genome organization
Language English
License Attribution
2022 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6402-56bd53d35e6e7c18311ec7f1bf82ebdf41e948a90295bdfd5c26252c3a5408eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0555-6561
0000-0001-8054-6465
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.202110682
PMID 35362230
PQID 2655977627
PQPubID 29031
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ea2475733bd44f929871c9a00bc47e4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8972054
proquest_miscellaneous_2646720692
proquest_journals_2655977627
pubmed_primary_35362230
crossref_primary_10_15252_msb_202110682
crossref_citationtrail_10_15252_msb_202110682
wiley_primary_10_15252_msb_202110682_MSB202110682
springer_journals_10_15252_msb_202110682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220401
April 2022
2022-04-00
2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220401
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2022
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2021; 22
2019; 10
2011; 10
2005; 21
2014; 24
2012; 13
2012; 489
2017; 114
2001; 105
2021; 37
1998; 17
2010; 20
2014; 3
2019; 20
2013; 56
2021; 39
1997; 385
2015; 43
2006; 26
2019; 25
2007; 8
2020; 48
2016; 352
2018; 72
2011; 25
2012; 26
2018; 34
2018; 78
2011; 27
2018; 32
2012; 336
2016; 48
2021; 81
2005; 79
2007; 27
2016; 44
2019; 8
2015; 59
2015; 161
2014; 516
2002; 30
1991a; 10
2022; 50
2017; 65
2016; 529
2011; 31
2020; 78
1999; 3
2020; 77
2001; 29
1991b; 10
2018; 69
2004; 429
2014; 42
1988; 2
2011; 2011
1993; 13
2012; 1
2004; 432
1984; 38
2011; 42
2016; 63
1994; 13
2017; 18
2018; 93
2020; 21
2007; 318
2004; 118
2009; 37
2019; 571
2013; 1829
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
35848129 - Mol Syst Biol. 2022 Jul;18(7):e11210. doi: 10.15252/msb.202211210
References_xml – volume: 489
  start-page: 101
  year: 2012
  end-page: 108
  article-title: Landscape of transcription in human cells
  publication-title: Nature
– volume: 571
  start-page: 419
  year: 2019
  end-page: 423
  article-title: scSLAM‐seq reveals core features of transcription dynamics in single cells
  publication-title: Nature
– volume: 516
  start-page: 436
  year: 2014
  end-page: 439
  article-title: R‐loops induce repressive chromatin marks over mammalian gene terminators
  publication-title: Nature
– volume: 38
  start-page: 737
  year: 1984
  end-page: 744
  article-title: Termination of transcription in the mouse alpha‐amylase gene Amy‐2a occurs at multiple sites downstream of the polyadenylation site
  publication-title: Cell
– volume: 78
  start-page: 5363
  year: 2018
  end-page: 5374
  article-title: Spliceosome mutations induce R loop‐associated sensitivity to ATR inhibition in myelodysplastic syndromes
  publication-title: Cancer Res
– volume: 352
  start-page: aad9926
  year: 2016
  article-title: Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut
  publication-title: Science
– volume: 2
  start-page: 440
  year: 1988
  end-page: 452
  article-title: A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II
  publication-title: Genes Dev
– volume: 114
  start-page: E8362
  year: 2017
  end-page: E8371
  article-title: Comparative analysis reveals genomic features of stress‐induced transcriptional readthrough
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 1288
  year: 2011
  end-page: 1300
  article-title: Transcription regulation by the noncoding RNA SRG1 requires Spt2‐dependent chromatin deposition in the wake of RNA polymerase II
  publication-title: Mol Cell Biol
– volume: 25
  start-page: 29
  year: 2011
  end-page: 40
  article-title: Intergenic transcription causes repression by directing nucleosome assembly
  publication-title: Genes Dev
– volume: 3
  start-page: 405
  year: 1999
  end-page: 411
  article-title: Distinct roles for CTD Ser‐2 and Ser‐5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme
  publication-title: Mol Cell
– volume: 22
  start-page: 290
  year: 2021
  article-title: TrancriptomeReconstructoR: data‐driven annotation of complex transcriptomes
  publication-title: BMC Bioinformatics
– volume: 2011
  start-page: bar030
  year: 2011
  article-title: Ensembl BioMarts: a hub for data retrieval across taxonomic space
  publication-title: Database
– volume: 26
  start-page: 3986
  year: 2006
  end-page: 3996
  article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 5092
  year: 2019
  article-title: Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability
  publication-title: Nat Commun
– volume: 65
  start-page: 25
  year: 2017
  end-page: 38
  article-title: Distinctive patterns of transcription and RNA processing for human lincRNAs
  publication-title: Mol Cell
– volume: 25
  start-page: 781
  year: 2011
  end-page: 788
  article-title: H3K9 methyltransferase G9a and the related molecule GLP
  publication-title: Genes Dev
– volume: 17
  start-page: 4771
  year: 1998
  end-page: 4779
  article-title: Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae
  publication-title: EMBO J
– volume: 336
  start-page: 1723
  year: 2012
  end-page: 1725
  article-title: CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II
  publication-title: Science
– volume: 77
  start-page: 985
  year: 2020
  end-page: 998.e8
  article-title: Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores
  publication-title: Mol Cell
– volume: 37
  start-page: 2834
  year: 2021
  end-page: 2840
  article-title: STREME: Accurate and versatile sequence motif discovery
  publication-title: Bioinformatics
– volume: 385
  start-page: 357
  year: 1997
  end-page: 361
  article-title: The C‐terminal domain of RNA polymerase II couples mRNA processing to transcription
  publication-title: Nature
– volume: 3
  year: 2014
  article-title: Transcription mediated insulation and interference direct gene cluster expression switches
  publication-title: Elife
– volume: 24
  start-page: 896
  year: 2014
  end-page: 905
  article-title: Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications
  publication-title: Genome Res
– volume: 118
  start-page: 555
  year: 2004
  end-page: 566
  article-title: Chromatin architecture of the human genome: gene‐rich domains are enriched in open chromatin fibers
  publication-title: Cell
– volume: 18
  start-page: 263
  year: 2017
  end-page: 273
  article-title: The code and beyond: transcription regulation by the RNA polymerase II carboxy‐terminal domain
  publication-title: Nat Rev Mol Cell Biol
– volume: 50
  start-page: D165
  year: 2022
  end-page: D173
  article-title: JASPAR 2022: the 9th release of the open‐access database of transcription factor binding profiles
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 599
  year: 2019
  end-page: 614
  article-title: Alternative cleavage and polyadenylation in health and disease
  publication-title: Nat Rev Genet
– volume: 10
  start-page: 4197
  year: 1991b
  end-page: 4207
  article-title: Transcriptional termination between the closely linked human complement genes C2 and factor B: common termination factor for C2 and c‐myc?
  publication-title: EMBO J
– volume: 1829
  start-page: 55
  year: 2013
  end-page: 62
  article-title: Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription
  publication-title: Biochim Biophys Acta
– volume: 30
  start-page: 1842
  year: 2002
  end-page: 1850
  article-title: Downstream sequence elements with different affinities for the hnRNP H/H’ protein influence the processing efficiency of mammalian polyadenylation signals
  publication-title: Nucleic Acids Res
– volume: 432
  start-page: 517
  year: 2004
  end-page: 522
  article-title: The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
  publication-title: Nature
– volume: 10
  start-page: 4359
  year: 2019
  article-title: BORDER proteins protect expression of neighboring genes by promoting 3’ Pol II pausing in plants
  publication-title: Nat Commun
– volume: 44
  start-page: 6853
  year: 2016
  end-page: 6867
  article-title: Multiple P‐TEFbs cooperatively regulate the release of promoter‐proximally paused RNA polymerase II
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 770
  year: 2012
  end-page: 780
  article-title: DNA secondary structures: stability and function of G‐quadruplex structures
  publication-title: Nat Rev Genet
– volume: 48
  start-page: 8243
  year: 2020
  end-page: 8254
  article-title: Transcriptional interference at tandem lncRNA and protein‐coding genes: an emerging theme in regulation of cellular nutrient homeostasis
  publication-title: Nucleic Acids Res
– volume: 529
  start-page: 48
  year: 2016
  end-page: 53
  article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C‐terminal domain control termination
  publication-title: Nature
– volume: 25
  start-page: 557
  year: 2019
  end-page: 572
  article-title: Predictive models of subcellular localization of long RNAs
  publication-title: RNA
– volume: 20
  start-page: 794
  year: 2010
  end-page: 801
  article-title: PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis
  publication-title: Cell Res
– volume: 26
  start-page: 2119
  year: 2012
  end-page: 2137
  article-title: The RNA polymerase II CTD coordinates transcription and RNA processing
  publication-title: Genes Dev
– volume: 32
  start-page: 1215
  year: 2018
  end-page: 1225
  article-title: Dynamic turnover of paused Pol II complexes at human promoters
  publication-title: Genes Dev
– volume: 37
  start-page: W202
  year: 2009
  end-page: W208
  article-title: MEME SUITE: tools for motif discovery and searching
  publication-title: Nucleic Acids Res
– volume: 63
  start-page: 167
  year: 2016
  end-page: 178
  article-title: Prevalent, dynamic, and conserved R‐loop structures associate with specific epigenomic signatures in mammals
  publication-title: Mol Cell
– volume: 3
  start-page: 593
  year: 1999
  end-page: 600
  article-title: Specific transcriptional pausing activates polyadenylation in a coupled in vitro system
  publication-title: Mol Cell
– volume: 10
  start-page: 1283
  year: 2011
  end-page: 1294
  article-title: The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcription‐dependent nucleosome occupancy of the SER3 promoter
  publication-title: Eukaryot Cell
– volume: 48
  start-page: 984
  year: 2016
  end-page: 994
  article-title: Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters
  publication-title: Nat Genet
– volume: 42
  start-page: W187
  year: 2014
  end-page: W191
  article-title: deepTools: a flexible platform for exploring deep‐sequencing data
  publication-title: Nucleic Acids Res
– volume: 516
  start-page: 272
  year: 2014
  end-page: 275
  article-title: Regulation of RNA polymerase II activation by histone acetylation in single living cells
  publication-title: Nature
– volume: 69
  start-page: 412
  year: 2018
  end-page: 425
  article-title: The augmented R‐loop is a unifying mechanism for myelodysplastic syndromes induced by high‐risk splicing factor mutations
  publication-title: Mol Cell
– volume: 79
  start-page: 9254
  year: 2005
  end-page: 9269
  article-title: A downstream polyadenylation element in human papillomavirus type 16 L2 encodes multiple GGG motifs and interacts with hnRNP H
  publication-title: J Virol
– volume: 69
  start-page: 48
  year: 2018
  end-page: 61
  article-title: Tyrosine‐1 of RNA polymerase II CTD controls global termination of gene transcription in mammals
  publication-title: Mol Cell
– volume: 56
  start-page: 968
  year: 2013
  end-page: 974
  article-title: Systematic analysis of intron size and abundance parameters in diverse lineages
  publication-title: Sci China Life Sci
– volume: 81
  start-page: 3589
  year: 2021
  end-page: 3603
  article-title: A BRD4‐mediated elongation control point primes transcribing RNA polymerase II for 3′‐processing and termination
  publication-title: Mol Cell
– volume: 10
  start-page: 4197
  year: 1991a
  end-page: 4207
  article-title: Transcriptional termination between the closely linked human complement genes C2 and factor B: common termination factor for C2 and c‐myc?
  publication-title: EMBO J
– volume: 42
  start-page: 794
  year: 2011
  end-page: 805
  article-title: Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2‐dependent termination
  publication-title: Mol Cell
– volume: 161
  start-page: 526
  year: 2015
  end-page: 540
  article-title: Mammalian NET‐Seq reveals genome‐wide nascent transcription coupled to RNA processing
  publication-title: Cell
– volume: 27
  start-page: 1568
  year: 2007
  end-page: 1580
  article-title: Two G‐rich regulatory elements located adjacent to and 440 nucleotides downstream of the core poly(A) site of the intronless melanocortin receptor 1 gene are critical for efficient 3’ end processing
  publication-title: Mol Cell Biol
– volume: 105
  start-page: 669
  year: 2001
  end-page: 681
  article-title: Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II
  publication-title: Cell
– volume: 8
  start-page: R24
  year: 2007
  article-title: Quantifying similarity between motifs
  publication-title: Genome Biol
– volume: 8
  year: 2019
  article-title: Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C‐terminal domain of eukaryotic RNA polymerase II by P‐TEFb
  publication-title: Elife
– volume: 72
  start-page: 369
  year: 2018
  end-page: 379
  article-title: RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co‐transcriptional splicing
  publication-title: Mol Cell
– volume: 432
  start-page: 522
  year: 2004
  end-page: 525
  article-title: Human 5′→ 3′ exonuclease Xrn2 promotes transcription termination at co‐transcriptional cleavage sites
  publication-title: Nature
– volume: 27
  start-page: 1653
  year: 2011
  end-page: 1659
  article-title: DREME: motif discovery in transcription factor ChIP‐seq data
  publication-title: Bioinformatics
– volume: 59
  start-page: 437
  year: 2015
  end-page: 448
  article-title: Poly(A) signal‐dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the Poly(A) site
  publication-title: Mol Cell
– volume: 81
  start-page: 3096
  year: 2021
  end-page: 3109.e8
  article-title: Two distinct mechanisms of RNA polymerase II elongation stimulation in vivo
  publication-title: Mol Cell
– volume: 39
  start-page: 825
  year: 2021
  end-page: 835
  article-title: Single‐cell CUT&Tag profiles histone modifications and transcription factors in complex tissues
  publication-title: Nat Biotechnol
– volume: 21
  start-page: 339
  year: 2005
  end-page: 345
  article-title: Transcriptional interference – a crash course
  publication-title: Trends Genet
– volume: 114
  start-page: E2347
  year: 2017
  end-page: E2356
  article-title: SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage
  publication-title: Proc Natl Acad Sci USA
– volume: 93
  start-page: 1017
  year: 2018
  end-page: 1031
  article-title: Defective XRN3‐mediated transcription termination in Arabidopsis affects the expression of protein‐coding genes
  publication-title: Plant J
– volume: 13
  start-page: 578
  year: 1993
  end-page: 587
  article-title: Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements
  publication-title: Mol Cell Biol
– volume: 27
  start-page: 1017
  year: 2011
  end-page: 1018
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
– volume: 318
  start-page: 1777
  year: 2007
  end-page: 1779
  article-title: Serine‐7 of the RNA polymerase II CTD is specifically required for snRNA gene expression
  publication-title: Science
– volume: 1
  start-page: 543
  year: 2012
  end-page: 556
  article-title: Differential GC content between exons and introns establishes distinct strategies of splice‐site recognition
  publication-title: Cell Rep
– volume: 34
  start-page: 3094
  year: 2018
  end-page: 3100
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
– volume: 29
  start-page: 4920
  year: 2001
  end-page: 4929
  article-title: Selected base sequence outside the target binding site of zinc finger protein Sp1
  publication-title: Nucleic Acids Res
– volume: 78
  start-page: 261
  year: 2020
  end-page: 274
  article-title: NELF regulates a promoter‐proximal step distinct from RNA Pol II pause‐release
  publication-title: Mol Cell
– volume: 13
  start-page: 5656
  year: 1994
  end-page: 5667
  article-title: MAZ‐dependent termination between closely spaced human complement genes
  publication-title: EMBO J
– volume: 21
  year: 2020
  article-title: Organismal benefits of transcription speed control at gene boundaries
  publication-title: EMBO Rep
– volume: 43
  start-page: W39
  year: 2015
  end-page: W49
  article-title: The MEME suite
  publication-title: Nucleic Acids Res
– volume: 429
  start-page: 571
  year: 2004
  end-page: 574
  article-title: Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene
  publication-title: Nature
– ident: e_1_2_10_55_1
  doi: 10.1128/JVI.79.14.9254-9269.2005
– ident: e_1_2_10_77_1
  doi: 10.1038/s41467-019-12328-w
– ident: e_1_2_10_3_1
  doi: 10.1016/j.molcel.2020.02.014
– ident: e_1_2_10_9_1
  doi: 10.1093/bioinformatics/btr261
– ident: e_1_2_10_57_1
  doi: 10.1128/EC.05141-11
– ident: e_1_2_10_6_1
  doi: 10.1002/j.1460-2075.1991.tb04998.x
– ident: e_1_2_10_17_1
  doi: 10.1038/ng.3616
– ident: e_1_2_10_51_1
  doi: 10.1158/0008-5472.CAN-17-3970
– ident: e_1_2_10_37_1
  doi: 10.1101/gad.200303.112
– ident: e_1_2_10_43_1
  doi: 10.15252/embr.201949315
– ident: e_1_2_10_48_1
  doi: 10.7554/eLife.48725
– ident: e_1_2_10_11_1
  doi: 10.1093/nar/gkp335
– ident: e_1_2_10_8_1
  doi: 10.1002/j.1460-2075.1994.tb06904.x
– ident: e_1_2_10_36_1
  doi: 10.1016/S1097-2765(00)80468-2
– ident: e_1_2_10_81_1
  doi: 10.1016/j.molcel.2021.05.028
– ident: e_1_2_10_45_1
  doi: 10.1093/nar/gkw571
– ident: e_1_2_10_63_1
  doi: 10.1016/j.tig.2005.04.009
– ident: e_1_2_10_62_1
  doi: 10.1016/j.molcel.2017.12.009
– ident: e_1_2_10_79_1
  doi: 10.1038/cr.2010.75
– ident: e_1_2_10_25_1
  doi: 10.1101/gad.316810.118
– ident: e_1_2_10_59_1
  doi: 10.1038/s41467-019-13075-8
– ident: e_1_2_10_18_1
  doi: 10.1101/gad.2.4.440
– ident: e_1_2_10_35_1
  doi: 10.1016/j.bbagrm.2012.08.013
– ident: e_1_2_10_29_1
  doi: 10.1128/MCB.26.10.3986-3996.2006
– ident: e_1_2_10_67_1
  doi: 10.1016/j.molcel.2011.04.026
– ident: e_1_2_10_42_1
  doi: 10.1111/tpj.13826
– ident: e_1_2_10_27_1
  doi: 10.1093/bioinformatics/btr064
– ident: e_1_2_10_4_1
  doi: 10.1093/nar/30.8.1842
– ident: e_1_2_10_20_1
  doi: 10.1038/nature11233
– ident: e_1_2_10_23_1
  doi: 10.1126/science.1145989
– ident: e_1_2_10_14_1
  doi: 10.1038/nrg3296
– ident: e_1_2_10_73_1
  doi: 10.1038/nature03035
– ident: e_1_2_10_7_1
  doi: 10.1002/j.1460-2075.1991.tb04998.x
– ident: e_1_2_10_12_1
  doi: 10.1093/nar/gkv416
– ident: e_1_2_10_68_1
  doi: 10.1038/nature13714
– ident: e_1_2_10_76_1
  doi: 10.1016/S1097-2765(00)80352-4
– ident: e_1_2_10_41_1
  doi: 10.1093/database/bar030
– ident: e_1_2_10_44_1
  doi: 10.1093/bioinformatics/bty191
– ident: e_1_2_10_21_1
  doi: 10.1016/j.molcel.2019.11.017
– ident: e_1_2_10_58_1
  doi: 10.1093/nar/gku365
– ident: e_1_2_10_50_1
  doi: 10.1093/nar/29.24.4920
– ident: e_1_2_10_78_1
  doi: 10.1016/j.molcel.2015.06.008
– ident: e_1_2_10_49_1
  doi: 10.1038/385357a0
– ident: e_1_2_10_22_1
  doi: 10.1016/S0092-8674(01)00372-5
– ident: e_1_2_10_5_1
  doi: 10.1016/j.molcel.2021.06.026
– ident: e_1_2_10_61_1
  doi: 10.1016/j.molcel.2016.11.029
– ident: e_1_2_10_70_1
  doi: 10.1128/MCB.01083-10
– ident: e_1_2_10_10_1
  doi: 10.1093/bioinformatics/btab203
– ident: e_1_2_10_52_1
  doi: 10.7554/eLife.03635
– ident: e_1_2_10_24_1
  doi: 10.1038/s41586-019-1369-y
– ident: e_1_2_10_28_1
  doi: 10.1093/emboj/17.16.4771
– ident: e_1_2_10_66_1
  doi: 10.1038/nature13787
– ident: e_1_2_10_72_1
  doi: 10.1073/pnas.1711120114
– ident: e_1_2_10_71_1
  doi: 10.1101/gr.171405.113
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cell.2004.08.011
– ident: e_1_2_10_40_1
  doi: 10.1038/nature03041
– ident: e_1_2_10_54_1
  doi: 10.1016/j.molcel.2018.09.004
– ident: e_1_2_10_30_1
  doi: 10.1038/s41576-019-0145-z
– ident: e_1_2_10_74_1
  doi: 10.1007/s11427-013-4540-y
– ident: e_1_2_10_56_1
  doi: 10.1126/science.aad9926
– ident: e_1_2_10_38_1
  doi: 10.1186/s12859-021-04208-2
– ident: e_1_2_10_15_1
  doi: 10.1093/nar/gkab1113
– ident: e_1_2_10_47_1
  doi: 10.1126/science.1219651
– ident: e_1_2_10_13_1
  doi: 10.1038/s41587-021-00869-9
– ident: e_1_2_10_34_1
  doi: 10.1038/nrm.2017.10
– ident: e_1_2_10_16_1
  doi: 10.1016/j.molcel.2017.12.029
– ident: e_1_2_10_53_1
  doi: 10.1016/j.cell.2015.03.027
– ident: e_1_2_10_31_1
  doi: 10.1186/gb-2007-8-2-r24
– ident: e_1_2_10_32_1
  doi: 10.1016/0092-8674(84)90269-1
– ident: e_1_2_10_33_1
  doi: 10.1101/gad.1975011
– ident: e_1_2_10_75_1
  doi: 10.1038/nature16469
– ident: e_1_2_10_2_1
  doi: 10.1016/j.celrep.2012.03.013
– ident: e_1_2_10_80_1
  doi: 10.1261/rna.068288.118
– ident: e_1_2_10_69_1
  doi: 10.1128/MCB.13.1.578
– ident: e_1_2_10_65_1
  doi: 10.1093/nar/gkaa630
– ident: e_1_2_10_39_1
  doi: 10.1073/pnas.1613181114
– ident: e_1_2_10_19_1
  doi: 10.1128/MCB.01821-06
– ident: e_1_2_10_60_1
  doi: 10.1016/j.molcel.2016.05.032
– ident: e_1_2_10_64_1
  doi: 10.1101/gad.2027411
– ident: e_1_2_10_46_1
  doi: 10.1038/nature02538
– reference: 35848129 - Mol Syst Biol. 2022 Jul;18(7):e11210. doi: 10.15252/msb.202211210
SSID ssj0038182
Score 2.3762748
Snippet The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the...
Abstract The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e10682
SubjectTerms Argonaute 2 protein
Argonaute proteins
Binding sites
Chemical synthesis
DNA-directed RNA polymerase
Elongation
EMBO09
Gene expression
Genes
genome organization
Genomes
Guanines
Humans
Interference
Mammals
Perturbation
Pol2 transcription
Promoter Regions, Genetic
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
RNA, Messenger
RNA-mediated interference
Splicing
tandem genes
Transcription elongation
Transcription initiation
Transcription termination
Transcription, Genetic
transcriptional interference
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFB-KIHgRtdXGL6ZQaC_BZDIzyRxVlKWwvbQL3sbMVxXWrLjrwf_e9yYfNlTx0tvOZhJe3vdLXn6PkK8Q4RQvXJ5CLJApx-9ylAO7sjLUwlYmDwYfDUx_ysmM_7gSV3-N-sKesBYeuGXcia8ZLxG0zzjOAwRzyPCtqrPMWF567tD7Qszri6nWB2MYYh1Eo2CCndwtDdSCWOzIio1CUETqfy29_LdLcnhVOk5kYyS63CKbXQpJT1vSt8kH3-yQ9Xao5NNHcj2LmKw0-IjZuaSLQFcYkXr_QLsGmPi7bhy9xQaibrmidr5Y-vkTBVdjvaP4qMHf0TjLj_5Bz_iJzC4vfp9P0m6OAnAcysNUSONE4QrhpS8t2HCee1uG3ISKeeMCz73iVa0ypgQsnbAMqiJmixrSuQqq7V2y1iwa_5nQ2hqOKQdylbvc4TlWBFU5J4MvsoSkPWu17UDGcdbFXGOxgaLQIAo9iCIh34b99y28xps7z1BSwy6ExY5_gLLoTln0e8qSkMNezrqz1aVmMoLwSVYm5MtwGKwMX53UjV884h4IKCyTCujYa9VioKQQoOEM770cKcyI1PGR5vYmInlXCi4qeEK-96r1QtZbbMij6r3DLT39dTYs9v8H6w7IBsMvP2LT0iFZWz08-iPIx1bmOJreMzhvL9E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKu_QgoyEBJeoiWM78amiqFWFVC6w0t5M_CqVtklptof--854nVQRlN7WGydy5j325BtCPoKHU7xyZQ6-QOYcv8tRDvTKytAK25gyGNwaOPkujxf821Is04bbkMoqR5sYDbXrLe6R7zEZodIkq_cv_uTYNQpPV1MLjYfkEUKXoVTXyynhQmfEElCjYILtnQ8GMkJMeWTDZo4o4vX_K8j8u1ZyOjCdh7PRHx1tk6cpkKRfNpx_Rh747jl5vGktef2C_FpEZFYafETuHGgf6Br90mglaCqDib_bztEzLCNKwzW1q37wq2sKBsd6R3HDwZ_T2NGPnqJ9fEkWR4c_vx7nqZsC0B2SxFxI40TlKuGlry1ocll6W4fShIZ54wIvveJNqwqmBAydsAxyI2arFoK6BnLuV2Sr6zv_htDWGo6BB1KVu9LhPVYE1Tgng6-KjOQjabVNUOPY8WKlMeVAVmhghZ5YkZFP0_yLDcjGnTMPkFPTLATHjn_0l6c66Zr2LeM14jwax3mA-A-SQqvaojCW1567jOyOfNZJYwd9K18Z-TBdBl3DA5S28_0VzgG3wgqpYB2vN2IxraQSIOcM372eCcxsqfMr3dnviOfdKHio4Bn5PIrW7bLuIkMZRe8eaumTHwfT4O3_33qHPGH4ZUcsStolW-vLK_8O4q21eR-V6gY9dCev
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYlpdBLaZs-3DxQoNBeTC1Zkq1jsiSEQHJpF3JTrVcb2HhDd3PIv--MVnZr0pDeVmvZyPMea_QNIR_Bw2lRe1aCL1ClwHM52oNeORU76VrLosVPA-cX6nQuzi7lZS6QxbMwf-_fSy75l-uVhSwO0xTVgql9KlndYIuGmZoNFhedDs-AjPfvmTichMv_r2Dyfk3kuDE6DVuT3zl5SV7kgJEebjj8ijwJ_WvybNNC8m6bfJ8nBFYaQ0LoXNFlpGv0P4M1oLncJf3uek-vsFwoD9fULZarsLijYFhc8BQ_LIRrmjr30R9oB9-Q-cnxt9lpmbsmAH0hGSylsl7WvpZBhcaBxjIWXBOZjS0P1kfBghZtpyuuJQy9dBxyIO7qDoK3FnLrt2SrX_bhPaGdswIDDKSq8MzjPU5G3XqvYqirgpQDaY3LkOLY2WJhMLVAVhhghRlZUZBP4_ybDZjGgzOPkFPjLATBTn-AbJisUyZ0XDSI52i9EBHiPEj-nO6qyjrRBOELsjvw2WTNXBmuEuSe4k1BDsbLoFO4UdL1YXmLc8B98EppWMe7jViMK6klyDPHd28mAjNZ6vRKf_Uz4Xa3Gh4qRUE-D6L1Z1kPkYEl0XuEWub869E4-PD_j98hzzme5kiFSLtka_3rNuxBjLW2-0nBfgPCpx81
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ba9YwFA9jIvgiXqZWp0QQtpdimyZp8-hkYwiTgX6wt5jrHHxrZf32sP_ec9KLK24IvjVtUtKce5rzO4R8AAuneOXLHGyBzDnm5SgPcuVkNMI1towWtwZOvsrjFf9yJs5uZfEP-BDzhhtKRtLXKODG9lPFHkQNvewtxHcYwMgGlPADzK_FQ32Mn066GM0RG1IieY6FmUbYRnzDx8X4hVlK6P13uZx_n5ycf58undtknY6ekMejW0k_DXzwlGyF9hl5OBSavHlOfqwSTiuNIeF49rSLdINWatIZdDwUk65N6-kFHioamxvq1l0f1jcU1I8LnuL2Q7ikqb4fPUdtuUNWR4ffPx_nY20FoAKEjLmQ1ovKVyLIUDuQ67IMro6ljQ0L1kdeBsUbowqmBDS9cAwiJeYqAy5eAxH4C7Lddm14RahxlqMbgqvKfelxjBNRNd7LGKoiI_m0tNqNwONY_2KtMQBBUmgghZ5JkZG9uf-vAXLj3p4HSKm5F0Jlpxvd1bkeJU8Hw3iNqI_Wcx7BG4QQ0SlTFNbxOnCfkd2JznqU314zmYD5JKsz8n5-DJKHv1NMG7pr7ANGhhVSwTxeDmwxz6QSwPUMv71eMMxiqssn7cXPhO7dKHip4BnZn1jrz7TuW4Yysd4_VkuffDuYG6__Y8wb8ohh8kc6t7RLtjdX1-EtuGQb-y5J3W9X6ixS
  priority: 102
  providerName: Wiley-Blackwell
Title Unique features of transcription termination and initiation at closely spaced tandem human genes
URI https://link.springer.com/article/10.15252/msb.202110682
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.202110682
https://www.ncbi.nlm.nih.gov/pubmed/35362230
https://www.proquest.com/docview/2655977627
https://www.proquest.com/docview/2646720692
https://pubmed.ncbi.nlm.nih.gov/PMC8972054
https://doaj.org/article/ea2475733bd44f929871c9a00bc47e4d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdby2BfRrun-wgaDLYv3mxZku0PYyyhpQxSyrZAvnnWqy2k9pak0Pz3u5MfxbRlsC8hiiWj3EN3J51-R8g7sHA5T0wcgi2QIcd7ObkBvdLSlUJnKnYKtwamp_Jkxr_Nxfw2_6kl4Ore0A7rSc2Wi483fzZfQOE_t9V72KerlYJID0MZmcFyvA1WKcVqBlPenyigYWLN5UgeYommFsDx7viBgfI4_vc5n3dzKPuD1KGb6-3U8Q551jqY9GsjEbvkka2ekydNycnNC_Jr5hFbqbMe0XNFa0fXaK-61YO26TH-e1kZeonpRW1zTfWiXtnFhsJCpK2huBFhr6iv9EfPcd18SWbHRz8nJ2FbZQH4AcFjKKQyIjGJsNKmGjQ8jq1OXaxcxqwyjsc251mZRywX0DRCM4iZmE5KcPYyiMVfka2qruwbQkutODokSFVuYoNjtHB5Zox0NokCEnakLXQLQY6VMBYFhiLIigJYUfSsCMj7vv_vBnzjwZ5j5FTfC0Gz_Q_18rxodbCwJeMp4j8qw7kDvxCCRZ2XUaQ0Ty03ATno-Fx0glgw6SH6JEsD8rZ_DDqIBytlZetr7APmhkUyh3m8bsSin0kiQP4Z_vd0IDCDqQ6fVJcXHuc7y-GlggfkQydat9N6iAyxF71_UKuY_hj3jb3_GLNPnjK8BuIzmA7I1np5bQ_BOVurEXnM-Bl8pvN0RLbHR6dn36E1kZOR3-4Yea38C-e2Ni8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEgkvUxLGd5IAQBaot7fZCV9qbm_hRKm2T0myF9k_xG5lxHlUEhVNv642TOJ7nZ49nCHkNFi7niYlDsAUy5HguJzcgV1q6QuisjF2JSwPTAzmZ8a9zMV8jv_qzMBhW2etEr6hNrXGNfItJnypNsvTD2Y8Qq0bh7mpfQqNliz27-gmQrXm_-xno-4axnS-HnyZhV1UA3g9gKRSyNCIxibDSpho4Oo6tTl1cuozZ0jge25xnRR6xXEDTCM0AIzCdFODcZIA94bk3yE0wvBGCvXQ-ADw0fqxLDCnglq3TpgQEihBLZmxk-Hx9gL85tX_GZg4btGP32du_nXvkbue40o8tp90na7Z6QG61pSxXD8nRzGeCpc76TKENrR1doh3stRLtwm7876Iy9ATDlrrmkupF3djFioKC09ZQXOCwp9RXEKTHqI8fkdm1zPNjsl7VlX1CaKFLjo4Ozio3scF7tHB5Zox0NokCEvZTq3SX2hwrbCwUQhwkhQJSqIEUAXk79D9rk3pc2XMbKTX0wmTc_o_6_Fh1sq1swXiKeSVLw7kDfxNAqM6LKCo1Ty03Adns6aw6DdGoS34OyKvhMsg2btgUla0vsA-YMRbJHMax0bLFMJJEgFwx_PZ0xDCjoY6vVCffff7wLIeHCh6Qdz1rXQ7rqmmIPev9Z7bU9Nv20Hj6769-SW5PDqf7an_3YO8ZucPwVIkPiNok68vzC_scfL1l-cILGCVH1y3RvwGqx2SK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYovxbupVUdQ9CU0mczk8uBDa11aa4ugkeJLmsylFrZJ6W6R_Vf-RM-ZXCRoEYS-7Wwm4eTcz2TmOwAvMcJlItKhj7Eg9gWdy8k02pWKbSlVWoW2oqWBg8N4NxcfjuTRCvzsz8K0-BDDghtZhvPXZODn2vYdewg19GxeYX1HBUyc8m5b5b5Z_sCibf52bwcl_Irz6fsv73b9rq8AUoDlki_jSstIR9LEJlGo02FoVGLDyqbcVNqK0GQiLbOAZxKHWiqOVQJXUYnpTYrVJz73BqxKDIXBBFa3vubf8t77UwDk7SFM4VMrqA4okmjeHFE8CoSuX8Dfktw_92oOH2zH6bSLh9M7sNYlsmyr1by7sGLqe3CzbW25vA_HuUOGZdY45NA5ayxbUFzsvRTrtuG432Wt2SltY-qGC6ZmzdzMlgwdnjKa0YKHOWOuoyA7If_8APJr4fpDmNRNbR4DK1UlKPEhrgodarpHSZulWsfWRIEHfs_aQnVQ59RxY1ZQyUOiKFAUxSAKD14P889bkI8rZ26TpIZZBM7t_mguTorO1gtTcpEQzmSlhbCYf2JRqrIyCColEiO0Bxu9nIvOY8wLHjsowJgnHrwYLqOt0wecsjbNJc3BsMaDOEM6HrVqMVASSbQzTu-ejBRmROr4Sn363eGJpxk-VAoP3vSq9Zusq9gQOtX7B7eKg8_bw2D9P-55Drc-7UyLj3uH-0_gNqeTJ27T1AZMFheX5inmg4vqWWeCDI6v2-p_ATv8asE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+features+of+transcription+termination+and+initiation+at+closely+spaced+tandem+human+genes&rft.jtitle=Molecular+systems+biology&rft.au=Nissani%2C+Noa&rft.au=Ulitsky%2C+Igor&rft.date=2022-04-01&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=18&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fmsb.202110682&rft.externalDBID=10.15252%252Fmsb.202110682&rft.externalDocID=MSB202110682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon