Unique features of transcription termination and initiation at closely spaced tandem human genes
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential...
Saved in:
Published in | Molecular systems biology Vol. 18; no. 4; pp. e10682 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2022
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.
Synopsis
Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes.
Co‐expression of closely spaced tandem human genes is common.
Short tandem intergenic regions (STIRs) are particularly G‐rich.
Several proteins, including AGO1 and AGO2, preferentially bind STIRs.
Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression.
Graphical Abstract
Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. |
---|---|
AbstractList | Abstract The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. image Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of 'tandem genes'-closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of 'tandem genes'-closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Synopsis Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of ‘tandem genes’—closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions. Synopsis Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. Co‐expression of closely spaced tandem human genes is common. Short tandem intergenic regions (STIRs) are particularly G‐rich. Several proteins, including AGO1 and AGO2, preferentially bind STIRs. Pol2 accumulates in STIRs, and perturbations related to Pol2 pausing preferentially regulate tandem gene expression. Graphical Abstract Hundreds of human genes are transcribed in close proximity to each other and on the same strand. A systematic computational analysis reveals unique genomic features associated with intergenic regions separating these tandem genes. |
Author | Ulitsky, Igor Nissani, Noa |
AuthorAffiliation | 1 Departments of Biological Regulation and Molecular Neuroscience Weizmann Institute of Science Rehovot Israel |
AuthorAffiliation_xml | – name: 1 Departments of Biological Regulation and Molecular Neuroscience Weizmann Institute of Science Rehovot Israel |
Author_xml | – sequence: 1 givenname: Noa orcidid: 0000-0001-8054-6465 surname: Nissani fullname: Nissani, Noa organization: Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science – sequence: 2 givenname: Igor orcidid: 0000-0003-0555-6561 surname: Ulitsky fullname: Ulitsky, Igor email: igor.ulitsky@weizmann.ac.il organization: Departments of Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35362230$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNURB-wZYkssWEzUz_jeIMEFY9KRSyga-M4N1OPEnuwHdD8e6zJMEwrVax8bX_n2PdxXp344KGqXhK8JIIKejmmdkkxJQTXDX1SnRHJ-YJTRU-O4tPqPKU1xqwhDX1WnTLBakoZPqt-3Hr3cwLUg8lThIRCj3I0PtnoNtkFjzLE0Xmzi43vkPMuu_02IzuEBMMWpY2x0KFcCBjR3TQaj1bgIT2vnvZmSPBiv15Utx8_fL_6vLj5-un66t3NwtYc04Wo206wjgmoQVrSMELAyp60fUOh7XpOQPHGKEyVKNtOWFqX9C0zguMGWnZRXc--XTBrvYluNHGrg3F6dxDiSpuYnR1Ag6FcCslY23HeK6oaSawyGLeWS-Bd8Xo7e22mdoTOgi8lGe6Z3r_x7k6vwi_dKEmx4MXgzd4ghlLdlPXokoVhMB7ClDSteV3IWtGCvn6ArsMUfSlVoYRQUtZUFurV8Y8OX_nbyAIsZ8DGkFKE_oAQrHeTosuk6MOkFAF_ILAu79paMnLD47Jmlv12A2z_84j-8u39sfRylqai8iuI_zJ95LE_x7fihA |
CitedBy_id | crossref_primary_10_1016_j_isci_2022_105543 crossref_primary_10_15252_embj_2022112443 |
Cites_doi | 10.1128/JVI.79.14.9254-9269.2005 10.1038/s41467-019-12328-w 10.1016/j.molcel.2020.02.014 10.1093/bioinformatics/btr261 10.1128/EC.05141-11 10.1002/j.1460-2075.1991.tb04998.x 10.1038/ng.3616 10.1158/0008-5472.CAN-17-3970 10.1101/gad.200303.112 10.15252/embr.201949315 10.7554/eLife.48725 10.1093/nar/gkp335 10.1002/j.1460-2075.1994.tb06904.x 10.1016/S1097-2765(00)80468-2 10.1016/j.molcel.2021.05.028 10.1093/nar/gkw571 10.1016/j.tig.2005.04.009 10.1016/j.molcel.2017.12.009 10.1038/cr.2010.75 10.1101/gad.316810.118 10.1038/s41467-019-13075-8 10.1101/gad.2.4.440 10.1016/j.bbagrm.2012.08.013 10.1128/MCB.26.10.3986-3996.2006 10.1016/j.molcel.2011.04.026 10.1111/tpj.13826 10.1093/bioinformatics/btr064 10.1093/nar/30.8.1842 10.1038/nature11233 10.1126/science.1145989 10.1038/nrg3296 10.1038/nature03035 10.1093/nar/gkv416 10.1038/nature13714 10.1016/S1097-2765(00)80352-4 10.1093/database/bar030 10.1093/bioinformatics/bty191 10.1016/j.molcel.2019.11.017 10.1093/nar/gku365 10.1093/nar/29.24.4920 10.1016/j.molcel.2015.06.008 10.1038/385357a0 10.1016/S0092-8674(01)00372-5 10.1016/j.molcel.2021.06.026 10.1016/j.molcel.2016.11.029 10.1128/MCB.01083-10 10.1093/bioinformatics/btab203 10.7554/eLife.03635 10.1038/s41586-019-1369-y 10.1093/emboj/17.16.4771 10.1038/nature13787 10.1073/pnas.1711120114 10.1101/gr.171405.113 10.1016/j.cell.2004.08.011 10.1038/nature03041 10.1016/j.molcel.2018.09.004 10.1038/s41576-019-0145-z 10.1007/s11427-013-4540-y 10.1126/science.aad9926 10.1186/s12859-021-04208-2 10.1093/nar/gkab1113 10.1126/science.1219651 10.1038/s41587-021-00869-9 10.1038/nrm.2017.10 10.1016/j.molcel.2017.12.029 10.1016/j.cell.2015.03.027 10.1186/gb-2007-8-2-r24 10.1016/0092-8674(84)90269-1 10.1101/gad.1975011 10.1038/nature16469 10.1016/j.celrep.2012.03.013 10.1261/rna.068288.118 10.1128/MCB.13.1.578 10.1093/nar/gkaa630 10.1073/pnas.1613181114 10.1128/MCB.01821-06 10.1016/j.molcel.2016.05.032 10.1101/gad.2027411 10.1038/nature02538 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022 The Authors. Published under the terms of the CC BY 4.0 license 2022 The Authors. Published under the terms of the CC BY 4.0 license. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2022 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
DOI | 10.15252/msb.202110682 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Noa Nissani & Igor Ulitsky |
EISSN | 1744-4292 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ea2475733bd44f929871c9a00bc47e4d PMC8972054 35362230 10_15252_msb_202110682 MSB202110682 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: lncIMPACT funderid: 10.13039/100010663 – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: lncIMPACT – fundername: ; grantid: lncIMPACT |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 2WC 39C 53G 5VS 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAJSJ AAMMB ABDBF ABUWG ACCMX ACGFO ACPRK ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGXDD AHMBA AIAGR AIDQK AIDYY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CAG CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBS EMB EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HH5 HK~ HMCUK HYE HZ~ IAO IGS IHR INH ITC KQ8 LK8 M1P M2O M48 M7P ML0 M~E NAO O5R O5S O9- OK1 OVT P2P PADUT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS RNTTT RPM SV3 TR2 TUS UKHRP WIN WOQ WOW XSB ~8M -Q- 4.4 AASML ADRAZ COF EBLON EJD GODZA H13 AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7TM 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6402-56bd53d35e6e7c18311ec7f1bf82ebdf41e948a90295bdfd5c26252c3a5408eb3 |
IEDL.DBID | M48 |
ISSN | 1744-4292 |
IngestDate | Wed Aug 27 01:26:24 EDT 2025 Thu Aug 21 18:22:13 EDT 2025 Thu Jul 10 21:57:31 EDT 2025 Wed Aug 13 08:52:28 EDT 2025 Mon Jul 21 06:05:06 EDT 2025 Thu Apr 24 22:53:41 EDT 2025 Tue Jul 01 04:10:35 EDT 2025 Sun Jul 06 04:45:03 EDT 2025 Tue Aug 12 01:10:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Argonaute proteins Pol2 transcription transcriptional interference tandem genes genome organization |
Language | English |
License | Attribution 2022 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6402-56bd53d35e6e7c18311ec7f1bf82ebdf41e948a90295bdfd5c26252c3a5408eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0555-6561 0000-0001-8054-6465 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/msb.202110682 |
PMID | 35362230 |
PQID | 2655977627 |
PQPubID | 29031 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ea2475733bd44f929871c9a00bc47e4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8972054 proquest_miscellaneous_2646720692 proquest_journals_2655977627 pubmed_primary_35362230 crossref_primary_10_15252_msb_202110682 crossref_citationtrail_10_15252_msb_202110682 wiley_primary_10_15252_msb_202110682_MSB202110682 springer_journals_10_15252_msb_202110682 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220401 April 2022 2022-04-00 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany – name: Hoboken |
PublicationTitle | Molecular systems biology |
PublicationTitleAbbrev | Mol Syst Biol |
PublicationTitleAlternate | Mol Syst Biol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | 2021; 22 2019; 10 2011; 10 2005; 21 2014; 24 2012; 13 2012; 489 2017; 114 2001; 105 2021; 37 1998; 17 2010; 20 2014; 3 2019; 20 2013; 56 2021; 39 1997; 385 2015; 43 2006; 26 2019; 25 2007; 8 2020; 48 2016; 352 2018; 72 2011; 25 2012; 26 2018; 34 2018; 78 2011; 27 2018; 32 2012; 336 2016; 48 2021; 81 2005; 79 2007; 27 2016; 44 2019; 8 2015; 59 2015; 161 2014; 516 2002; 30 1991a; 10 2022; 50 2017; 65 2016; 529 2011; 31 2020; 78 1999; 3 2020; 77 2001; 29 1991b; 10 2018; 69 2004; 429 2014; 42 1988; 2 2011; 2011 1993; 13 2012; 1 2004; 432 1984; 38 2011; 42 2016; 63 1994; 13 2017; 18 2018; 93 2020; 21 2007; 318 2004; 118 2009; 37 2019; 571 2013; 1829 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 35848129 - Mol Syst Biol. 2022 Jul;18(7):e11210. doi: 10.15252/msb.202211210 |
References_xml | – volume: 489 start-page: 101 year: 2012 end-page: 108 article-title: Landscape of transcription in human cells publication-title: Nature – volume: 571 start-page: 419 year: 2019 end-page: 423 article-title: scSLAM‐seq reveals core features of transcription dynamics in single cells publication-title: Nature – volume: 516 start-page: 436 year: 2014 end-page: 439 article-title: R‐loops induce repressive chromatin marks over mammalian gene terminators publication-title: Nature – volume: 38 start-page: 737 year: 1984 end-page: 744 article-title: Termination of transcription in the mouse alpha‐amylase gene Amy‐2a occurs at multiple sites downstream of the polyadenylation site publication-title: Cell – volume: 78 start-page: 5363 year: 2018 end-page: 5374 article-title: Spliceosome mutations induce R loop‐associated sensitivity to ATR inhibition in myelodysplastic syndromes publication-title: Cancer Res – volume: 352 start-page: aad9926 year: 2016 article-title: Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut publication-title: Science – volume: 2 start-page: 440 year: 1988 end-page: 452 article-title: A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II publication-title: Genes Dev – volume: 114 start-page: E8362 year: 2017 end-page: E8371 article-title: Comparative analysis reveals genomic features of stress‐induced transcriptional readthrough publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 1288 year: 2011 end-page: 1300 article-title: Transcription regulation by the noncoding RNA SRG1 requires Spt2‐dependent chromatin deposition in the wake of RNA polymerase II publication-title: Mol Cell Biol – volume: 25 start-page: 29 year: 2011 end-page: 40 article-title: Intergenic transcription causes repression by directing nucleosome assembly publication-title: Genes Dev – volume: 3 start-page: 405 year: 1999 end-page: 411 article-title: Distinct roles for CTD Ser‐2 and Ser‐5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme publication-title: Mol Cell – volume: 22 start-page: 290 year: 2021 article-title: TrancriptomeReconstructoR: data‐driven annotation of complex transcriptomes publication-title: BMC Bioinformatics – volume: 2011 start-page: bar030 year: 2011 article-title: Ensembl BioMarts: a hub for data retrieval across taxonomic space publication-title: Database – volume: 26 start-page: 3986 year: 2006 end-page: 3996 article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II publication-title: Mol Cell Biol – volume: 10 start-page: 5092 year: 2019 article-title: Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability publication-title: Nat Commun – volume: 65 start-page: 25 year: 2017 end-page: 38 article-title: Distinctive patterns of transcription and RNA processing for human lincRNAs publication-title: Mol Cell – volume: 25 start-page: 781 year: 2011 end-page: 788 article-title: H3K9 methyltransferase G9a and the related molecule GLP publication-title: Genes Dev – volume: 17 start-page: 4771 year: 1998 end-page: 4779 article-title: Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae publication-title: EMBO J – volume: 336 start-page: 1723 year: 2012 end-page: 1725 article-title: CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II publication-title: Science – volume: 77 start-page: 985 year: 2020 end-page: 998.e8 article-title: Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores publication-title: Mol Cell – volume: 37 start-page: 2834 year: 2021 end-page: 2840 article-title: STREME: Accurate and versatile sequence motif discovery publication-title: Bioinformatics – volume: 385 start-page: 357 year: 1997 end-page: 361 article-title: The C‐terminal domain of RNA polymerase II couples mRNA processing to transcription publication-title: Nature – volume: 3 year: 2014 article-title: Transcription mediated insulation and interference direct gene cluster expression switches publication-title: Elife – volume: 24 start-page: 896 year: 2014 end-page: 905 article-title: Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications publication-title: Genome Res – volume: 118 start-page: 555 year: 2004 end-page: 566 article-title: Chromatin architecture of the human genome: gene‐rich domains are enriched in open chromatin fibers publication-title: Cell – volume: 18 start-page: 263 year: 2017 end-page: 273 article-title: The code and beyond: transcription regulation by the RNA polymerase II carboxy‐terminal domain publication-title: Nat Rev Mol Cell Biol – volume: 50 start-page: D165 year: 2022 end-page: D173 article-title: JASPAR 2022: the 9th release of the open‐access database of transcription factor binding profiles publication-title: Nucleic Acids Res – volume: 20 start-page: 599 year: 2019 end-page: 614 article-title: Alternative cleavage and polyadenylation in health and disease publication-title: Nat Rev Genet – volume: 10 start-page: 4197 year: 1991b end-page: 4207 article-title: Transcriptional termination between the closely linked human complement genes C2 and factor B: common termination factor for C2 and c‐myc? publication-title: EMBO J – volume: 1829 start-page: 55 year: 2013 end-page: 62 article-title: Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription publication-title: Biochim Biophys Acta – volume: 30 start-page: 1842 year: 2002 end-page: 1850 article-title: Downstream sequence elements with different affinities for the hnRNP H/H’ protein influence the processing efficiency of mammalian polyadenylation signals publication-title: Nucleic Acids Res – volume: 432 start-page: 517 year: 2004 end-page: 522 article-title: The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II publication-title: Nature – volume: 10 start-page: 4359 year: 2019 article-title: BORDER proteins protect expression of neighboring genes by promoting 3’ Pol II pausing in plants publication-title: Nat Commun – volume: 44 start-page: 6853 year: 2016 end-page: 6867 article-title: Multiple P‐TEFbs cooperatively regulate the release of promoter‐proximally paused RNA polymerase II publication-title: Nucleic Acids Res – volume: 13 start-page: 770 year: 2012 end-page: 780 article-title: DNA secondary structures: stability and function of G‐quadruplex structures publication-title: Nat Rev Genet – volume: 48 start-page: 8243 year: 2020 end-page: 8254 article-title: Transcriptional interference at tandem lncRNA and protein‐coding genes: an emerging theme in regulation of cellular nutrient homeostasis publication-title: Nucleic Acids Res – volume: 529 start-page: 48 year: 2016 end-page: 53 article-title: SMN and symmetric arginine dimethylation of RNA polymerase II C‐terminal domain control termination publication-title: Nature – volume: 25 start-page: 557 year: 2019 end-page: 572 article-title: Predictive models of subcellular localization of long RNAs publication-title: RNA – volume: 20 start-page: 794 year: 2010 end-page: 801 article-title: PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis publication-title: Cell Res – volume: 26 start-page: 2119 year: 2012 end-page: 2137 article-title: The RNA polymerase II CTD coordinates transcription and RNA processing publication-title: Genes Dev – volume: 32 start-page: 1215 year: 2018 end-page: 1225 article-title: Dynamic turnover of paused Pol II complexes at human promoters publication-title: Genes Dev – volume: 37 start-page: W202 year: 2009 end-page: W208 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res – volume: 63 start-page: 167 year: 2016 end-page: 178 article-title: Prevalent, dynamic, and conserved R‐loop structures associate with specific epigenomic signatures in mammals publication-title: Mol Cell – volume: 3 start-page: 593 year: 1999 end-page: 600 article-title: Specific transcriptional pausing activates polyadenylation in a coupled in vitro system publication-title: Mol Cell – volume: 10 start-page: 1283 year: 2011 end-page: 1294 article-title: The Paf1 complex represses SER3 transcription in Saccharomyces cerevisiae by facilitating intergenic transcription‐dependent nucleosome occupancy of the SER3 promoter publication-title: Eukaryot Cell – volume: 48 start-page: 984 year: 2016 end-page: 994 article-title: Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters publication-title: Nat Genet – volume: 42 start-page: W187 year: 2014 end-page: W191 article-title: deepTools: a flexible platform for exploring deep‐sequencing data publication-title: Nucleic Acids Res – volume: 516 start-page: 272 year: 2014 end-page: 275 article-title: Regulation of RNA polymerase II activation by histone acetylation in single living cells publication-title: Nature – volume: 69 start-page: 412 year: 2018 end-page: 425 article-title: The augmented R‐loop is a unifying mechanism for myelodysplastic syndromes induced by high‐risk splicing factor mutations publication-title: Mol Cell – volume: 79 start-page: 9254 year: 2005 end-page: 9269 article-title: A downstream polyadenylation element in human papillomavirus type 16 L2 encodes multiple GGG motifs and interacts with hnRNP H publication-title: J Virol – volume: 69 start-page: 48 year: 2018 end-page: 61 article-title: Tyrosine‐1 of RNA polymerase II CTD controls global termination of gene transcription in mammals publication-title: Mol Cell – volume: 56 start-page: 968 year: 2013 end-page: 974 article-title: Systematic analysis of intron size and abundance parameters in diverse lineages publication-title: Sci China Life Sci – volume: 81 start-page: 3589 year: 2021 end-page: 3603 article-title: A BRD4‐mediated elongation control point primes transcribing RNA polymerase II for 3′‐processing and termination publication-title: Mol Cell – volume: 10 start-page: 4197 year: 1991a end-page: 4207 article-title: Transcriptional termination between the closely linked human complement genes C2 and factor B: common termination factor for C2 and c‐myc? publication-title: EMBO J – volume: 42 start-page: 794 year: 2011 end-page: 805 article-title: Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2‐dependent termination publication-title: Mol Cell – volume: 161 start-page: 526 year: 2015 end-page: 540 article-title: Mammalian NET‐Seq reveals genome‐wide nascent transcription coupled to RNA processing publication-title: Cell – volume: 27 start-page: 1568 year: 2007 end-page: 1580 article-title: Two G‐rich regulatory elements located adjacent to and 440 nucleotides downstream of the core poly(A) site of the intronless melanocortin receptor 1 gene are critical for efficient 3’ end processing publication-title: Mol Cell Biol – volume: 105 start-page: 669 year: 2001 end-page: 681 article-title: Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II publication-title: Cell – volume: 8 start-page: R24 year: 2007 article-title: Quantifying similarity between motifs publication-title: Genome Biol – volume: 8 year: 2019 article-title: Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C‐terminal domain of eukaryotic RNA polymerase II by P‐TEFb publication-title: Elife – volume: 72 start-page: 369 year: 2018 end-page: 379 article-title: RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co‐transcriptional splicing publication-title: Mol Cell – volume: 432 start-page: 522 year: 2004 end-page: 525 article-title: Human 5′→ 3′ exonuclease Xrn2 promotes transcription termination at co‐transcriptional cleavage sites publication-title: Nature – volume: 27 start-page: 1653 year: 2011 end-page: 1659 article-title: DREME: motif discovery in transcription factor ChIP‐seq data publication-title: Bioinformatics – volume: 59 start-page: 437 year: 2015 end-page: 448 article-title: Poly(A) signal‐dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the Poly(A) site publication-title: Mol Cell – volume: 81 start-page: 3096 year: 2021 end-page: 3109.e8 article-title: Two distinct mechanisms of RNA polymerase II elongation stimulation in vivo publication-title: Mol Cell – volume: 39 start-page: 825 year: 2021 end-page: 835 article-title: Single‐cell CUT&Tag profiles histone modifications and transcription factors in complex tissues publication-title: Nat Biotechnol – volume: 21 start-page: 339 year: 2005 end-page: 345 article-title: Transcriptional interference – a crash course publication-title: Trends Genet – volume: 114 start-page: E2347 year: 2017 end-page: E2356 article-title: SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage publication-title: Proc Natl Acad Sci USA – volume: 93 start-page: 1017 year: 2018 end-page: 1031 article-title: Defective XRN3‐mediated transcription termination in Arabidopsis affects the expression of protein‐coding genes publication-title: Plant J – volume: 13 start-page: 578 year: 1993 end-page: 587 article-title: Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements publication-title: Mol Cell Biol – volume: 27 start-page: 1017 year: 2011 end-page: 1018 article-title: FIMO: scanning for occurrences of a given motif publication-title: Bioinformatics – volume: 318 start-page: 1777 year: 2007 end-page: 1779 article-title: Serine‐7 of the RNA polymerase II CTD is specifically required for snRNA gene expression publication-title: Science – volume: 1 start-page: 543 year: 2012 end-page: 556 article-title: Differential GC content between exons and introns establishes distinct strategies of splice‐site recognition publication-title: Cell Rep – volume: 34 start-page: 3094 year: 2018 end-page: 3100 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics – volume: 29 start-page: 4920 year: 2001 end-page: 4929 article-title: Selected base sequence outside the target binding site of zinc finger protein Sp1 publication-title: Nucleic Acids Res – volume: 78 start-page: 261 year: 2020 end-page: 274 article-title: NELF regulates a promoter‐proximal step distinct from RNA Pol II pause‐release publication-title: Mol Cell – volume: 13 start-page: 5656 year: 1994 end-page: 5667 article-title: MAZ‐dependent termination between closely spaced human complement genes publication-title: EMBO J – volume: 21 year: 2020 article-title: Organismal benefits of transcription speed control at gene boundaries publication-title: EMBO Rep – volume: 43 start-page: W39 year: 2015 end-page: W49 article-title: The MEME suite publication-title: Nucleic Acids Res – volume: 429 start-page: 571 year: 2004 end-page: 574 article-title: Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene publication-title: Nature – ident: e_1_2_10_55_1 doi: 10.1128/JVI.79.14.9254-9269.2005 – ident: e_1_2_10_77_1 doi: 10.1038/s41467-019-12328-w – ident: e_1_2_10_3_1 doi: 10.1016/j.molcel.2020.02.014 – ident: e_1_2_10_9_1 doi: 10.1093/bioinformatics/btr261 – ident: e_1_2_10_57_1 doi: 10.1128/EC.05141-11 – ident: e_1_2_10_6_1 doi: 10.1002/j.1460-2075.1991.tb04998.x – ident: e_1_2_10_17_1 doi: 10.1038/ng.3616 – ident: e_1_2_10_51_1 doi: 10.1158/0008-5472.CAN-17-3970 – ident: e_1_2_10_37_1 doi: 10.1101/gad.200303.112 – ident: e_1_2_10_43_1 doi: 10.15252/embr.201949315 – ident: e_1_2_10_48_1 doi: 10.7554/eLife.48725 – ident: e_1_2_10_11_1 doi: 10.1093/nar/gkp335 – ident: e_1_2_10_8_1 doi: 10.1002/j.1460-2075.1994.tb06904.x – ident: e_1_2_10_36_1 doi: 10.1016/S1097-2765(00)80468-2 – ident: e_1_2_10_81_1 doi: 10.1016/j.molcel.2021.05.028 – ident: e_1_2_10_45_1 doi: 10.1093/nar/gkw571 – ident: e_1_2_10_63_1 doi: 10.1016/j.tig.2005.04.009 – ident: e_1_2_10_62_1 doi: 10.1016/j.molcel.2017.12.009 – ident: e_1_2_10_79_1 doi: 10.1038/cr.2010.75 – ident: e_1_2_10_25_1 doi: 10.1101/gad.316810.118 – ident: e_1_2_10_59_1 doi: 10.1038/s41467-019-13075-8 – ident: e_1_2_10_18_1 doi: 10.1101/gad.2.4.440 – ident: e_1_2_10_35_1 doi: 10.1016/j.bbagrm.2012.08.013 – ident: e_1_2_10_29_1 doi: 10.1128/MCB.26.10.3986-3996.2006 – ident: e_1_2_10_67_1 doi: 10.1016/j.molcel.2011.04.026 – ident: e_1_2_10_42_1 doi: 10.1111/tpj.13826 – ident: e_1_2_10_27_1 doi: 10.1093/bioinformatics/btr064 – ident: e_1_2_10_4_1 doi: 10.1093/nar/30.8.1842 – ident: e_1_2_10_20_1 doi: 10.1038/nature11233 – ident: e_1_2_10_23_1 doi: 10.1126/science.1145989 – ident: e_1_2_10_14_1 doi: 10.1038/nrg3296 – ident: e_1_2_10_73_1 doi: 10.1038/nature03035 – ident: e_1_2_10_7_1 doi: 10.1002/j.1460-2075.1991.tb04998.x – ident: e_1_2_10_12_1 doi: 10.1093/nar/gkv416 – ident: e_1_2_10_68_1 doi: 10.1038/nature13714 – ident: e_1_2_10_76_1 doi: 10.1016/S1097-2765(00)80352-4 – ident: e_1_2_10_41_1 doi: 10.1093/database/bar030 – ident: e_1_2_10_44_1 doi: 10.1093/bioinformatics/bty191 – ident: e_1_2_10_21_1 doi: 10.1016/j.molcel.2019.11.017 – ident: e_1_2_10_58_1 doi: 10.1093/nar/gku365 – ident: e_1_2_10_50_1 doi: 10.1093/nar/29.24.4920 – ident: e_1_2_10_78_1 doi: 10.1016/j.molcel.2015.06.008 – ident: e_1_2_10_49_1 doi: 10.1038/385357a0 – ident: e_1_2_10_22_1 doi: 10.1016/S0092-8674(01)00372-5 – ident: e_1_2_10_5_1 doi: 10.1016/j.molcel.2021.06.026 – ident: e_1_2_10_61_1 doi: 10.1016/j.molcel.2016.11.029 – ident: e_1_2_10_70_1 doi: 10.1128/MCB.01083-10 – ident: e_1_2_10_10_1 doi: 10.1093/bioinformatics/btab203 – ident: e_1_2_10_52_1 doi: 10.7554/eLife.03635 – ident: e_1_2_10_24_1 doi: 10.1038/s41586-019-1369-y – ident: e_1_2_10_28_1 doi: 10.1093/emboj/17.16.4771 – ident: e_1_2_10_66_1 doi: 10.1038/nature13787 – ident: e_1_2_10_72_1 doi: 10.1073/pnas.1711120114 – ident: e_1_2_10_71_1 doi: 10.1101/gr.171405.113 – ident: e_1_2_10_26_1 doi: 10.1016/j.cell.2004.08.011 – ident: e_1_2_10_40_1 doi: 10.1038/nature03041 – ident: e_1_2_10_54_1 doi: 10.1016/j.molcel.2018.09.004 – ident: e_1_2_10_30_1 doi: 10.1038/s41576-019-0145-z – ident: e_1_2_10_74_1 doi: 10.1007/s11427-013-4540-y – ident: e_1_2_10_56_1 doi: 10.1126/science.aad9926 – ident: e_1_2_10_38_1 doi: 10.1186/s12859-021-04208-2 – ident: e_1_2_10_15_1 doi: 10.1093/nar/gkab1113 – ident: e_1_2_10_47_1 doi: 10.1126/science.1219651 – ident: e_1_2_10_13_1 doi: 10.1038/s41587-021-00869-9 – ident: e_1_2_10_34_1 doi: 10.1038/nrm.2017.10 – ident: e_1_2_10_16_1 doi: 10.1016/j.molcel.2017.12.029 – ident: e_1_2_10_53_1 doi: 10.1016/j.cell.2015.03.027 – ident: e_1_2_10_31_1 doi: 10.1186/gb-2007-8-2-r24 – ident: e_1_2_10_32_1 doi: 10.1016/0092-8674(84)90269-1 – ident: e_1_2_10_33_1 doi: 10.1101/gad.1975011 – ident: e_1_2_10_75_1 doi: 10.1038/nature16469 – ident: e_1_2_10_2_1 doi: 10.1016/j.celrep.2012.03.013 – ident: e_1_2_10_80_1 doi: 10.1261/rna.068288.118 – ident: e_1_2_10_69_1 doi: 10.1128/MCB.13.1.578 – ident: e_1_2_10_65_1 doi: 10.1093/nar/gkaa630 – ident: e_1_2_10_39_1 doi: 10.1073/pnas.1613181114 – ident: e_1_2_10_19_1 doi: 10.1128/MCB.01821-06 – ident: e_1_2_10_60_1 doi: 10.1016/j.molcel.2016.05.032 – ident: e_1_2_10_64_1 doi: 10.1101/gad.2027411 – ident: e_1_2_10_46_1 doi: 10.1038/nature02538 – reference: 35848129 - Mol Syst Biol. 2022 Jul;18(7):e11210. doi: 10.15252/msb.202211210 |
SSID | ssj0038182 |
Score | 2.3762748 |
Snippet | The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the... Abstract The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e10682 |
SubjectTerms | Argonaute 2 protein Argonaute proteins Binding sites Chemical synthesis DNA-directed RNA polymerase Elongation EMBO09 Gene expression Genes genome organization Genomes Guanines Humans Interference Mammals Perturbation Pol2 transcription Promoter Regions, Genetic Ribonucleic acid RNA RNA polymerase RNA polymerase II RNA Polymerase II - genetics RNA Polymerase II - metabolism RNA, Messenger RNA-mediated interference Splicing tandem genes Transcription elongation Transcription initiation Transcription termination Transcription, Genetic transcriptional interference |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS9xAFB-KIHgRtdXGL6ZQaC_BZDIzyRxVlKWwvbQL3sbMVxXWrLjrwf_e9yYfNlTx0tvOZhJe3vdLXn6PkK8Q4RQvXJ5CLJApx-9ylAO7sjLUwlYmDwYfDUx_ysmM_7gSV3-N-sKesBYeuGXcia8ZLxG0zzjOAwRzyPCtqrPMWF567tD7Qszri6nWB2MYYh1Eo2CCndwtDdSCWOzIio1CUETqfy29_LdLcnhVOk5kYyS63CKbXQpJT1vSt8kH3-yQ9Xao5NNHcj2LmKw0-IjZuaSLQFcYkXr_QLsGmPi7bhy9xQaibrmidr5Y-vkTBVdjvaP4qMHf0TjLj_5Bz_iJzC4vfp9P0m6OAnAcysNUSONE4QrhpS8t2HCee1uG3ISKeeMCz73iVa0ypgQsnbAMqiJmixrSuQqq7V2y1iwa_5nQ2hqOKQdylbvc4TlWBFU5J4MvsoSkPWu17UDGcdbFXGOxgaLQIAo9iCIh34b99y28xps7z1BSwy6ExY5_gLLoTln0e8qSkMNezrqz1aVmMoLwSVYm5MtwGKwMX53UjV884h4IKCyTCujYa9VioKQQoOEM770cKcyI1PGR5vYmInlXCi4qeEK-96r1QtZbbMij6r3DLT39dTYs9v8H6w7IBsMvP2LT0iFZWz08-iPIx1bmOJreMzhvL9E priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkLKu_QgoyEBJeoiWM78amiqFWFVC6w0t5M_CqVtklptof--854nVQRlN7WGydy5j325BtCPoKHU7xyZQ6-QOYcv8tRDvTKytAK25gyGNwaOPkujxf821Is04bbkMoqR5sYDbXrLe6R7zEZodIkq_cv_uTYNQpPV1MLjYfkEUKXoVTXyynhQmfEElCjYILtnQ8GMkJMeWTDZo4o4vX_K8j8u1ZyOjCdh7PRHx1tk6cpkKRfNpx_Rh747jl5vGktef2C_FpEZFYafETuHGgf6Br90mglaCqDib_bztEzLCNKwzW1q37wq2sKBsd6R3HDwZ_T2NGPnqJ9fEkWR4c_vx7nqZsC0B2SxFxI40TlKuGlry1ocll6W4fShIZ54wIvveJNqwqmBAydsAxyI2arFoK6BnLuV2Sr6zv_htDWGo6BB1KVu9LhPVYE1Tgng6-KjOQjabVNUOPY8WKlMeVAVmhghZ5YkZFP0_yLDcjGnTMPkFPTLATHjn_0l6c66Zr2LeM14jwax3mA-A-SQqvaojCW1567jOyOfNZJYwd9K18Z-TBdBl3DA5S28_0VzgG3wgqpYB2vN2IxraQSIOcM372eCcxsqfMr3dnviOfdKHio4Bn5PIrW7bLuIkMZRe8eaumTHwfT4O3_33qHPGH4ZUcsStolW-vLK_8O4q21eR-V6gY9dCev priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYlpdBLaZs-3DxQoNBeTC1Zkq1jsiSEQHJpF3JTrVcb2HhDd3PIv--MVnZr0pDeVmvZyPMea_QNIR_Bw2lRe1aCL1ClwHM52oNeORU76VrLosVPA-cX6nQuzi7lZS6QxbMwf-_fSy75l-uVhSwO0xTVgql9KlndYIuGmZoNFhedDs-AjPfvmTichMv_r2Dyfk3kuDE6DVuT3zl5SV7kgJEebjj8ijwJ_WvybNNC8m6bfJ8nBFYaQ0LoXNFlpGv0P4M1oLncJf3uek-vsFwoD9fULZarsLijYFhc8BQ_LIRrmjr30R9oB9-Q-cnxt9lpmbsmAH0hGSylsl7WvpZBhcaBxjIWXBOZjS0P1kfBghZtpyuuJQy9dBxyIO7qDoK3FnLrt2SrX_bhPaGdswIDDKSq8MzjPU5G3XqvYqirgpQDaY3LkOLY2WJhMLVAVhhghRlZUZBP4_ybDZjGgzOPkFPjLATBTn-AbJisUyZ0XDSI52i9EBHiPEj-nO6qyjrRBOELsjvw2WTNXBmuEuSe4k1BDsbLoFO4UdL1YXmLc8B98EppWMe7jViMK6klyDPHd28mAjNZ6vRKf_Uz4Xa3Gh4qRUE-D6L1Z1kPkYEl0XuEWub869E4-PD_j98hzzme5kiFSLtka_3rNuxBjLW2-0nBfgPCpx81 priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ba9YwFA9jIvgiXqZWp0QQtpdimyZp8-hkYwiTgX6wt5jrHHxrZf32sP_ec9KLK24IvjVtUtKce5rzO4R8AAuneOXLHGyBzDnm5SgPcuVkNMI1towWtwZOvsrjFf9yJs5uZfEP-BDzhhtKRtLXKODG9lPFHkQNvewtxHcYwMgGlPADzK_FQ32Mn066GM0RG1IieY6FmUbYRnzDx8X4hVlK6P13uZx_n5ycf58undtknY6ekMejW0k_DXzwlGyF9hl5OBSavHlOfqwSTiuNIeF49rSLdINWatIZdDwUk65N6-kFHioamxvq1l0f1jcU1I8LnuL2Q7ikqb4fPUdtuUNWR4ffPx_nY20FoAKEjLmQ1ovKVyLIUDuQ67IMro6ljQ0L1kdeBsUbowqmBDS9cAwiJeYqAy5eAxH4C7Lddm14RahxlqMbgqvKfelxjBNRNd7LGKoiI_m0tNqNwONY_2KtMQBBUmgghZ5JkZG9uf-vAXLj3p4HSKm5F0Jlpxvd1bkeJU8Hw3iNqI_Wcx7BG4QQ0SlTFNbxOnCfkd2JznqU314zmYD5JKsz8n5-DJKHv1NMG7pr7ANGhhVSwTxeDmwxz6QSwPUMv71eMMxiqssn7cXPhO7dKHip4BnZn1jrz7TuW4Yysd4_VkuffDuYG6__Y8wb8ohh8kc6t7RLtjdX1-EtuGQb-y5J3W9X6ixS priority: 102 providerName: Wiley-Blackwell |
Title | Unique features of transcription termination and initiation at closely spaced tandem human genes |
URI | https://link.springer.com/article/10.15252/msb.202110682 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.202110682 https://www.ncbi.nlm.nih.gov/pubmed/35362230 https://www.proquest.com/docview/2655977627 https://www.proquest.com/docview/2646720692 https://pubmed.ncbi.nlm.nih.gov/PMC8972054 https://doaj.org/article/ea2475733bd44f929871c9a00bc47e4d |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdby2BfRrun-wgaDLYv3mxZku0PYyyhpQxSyrZAvnnWqy2k9pak0Pz3u5MfxbRlsC8hiiWj3EN3J51-R8g7sHA5T0wcgi2QIcd7ObkBvdLSlUJnKnYKtwamp_Jkxr_Nxfw2_6kl4Ore0A7rSc2Wi483fzZfQOE_t9V72KerlYJID0MZmcFyvA1WKcVqBlPenyigYWLN5UgeYommFsDx7viBgfI4_vc5n3dzKPuD1KGb6-3U8Q551jqY9GsjEbvkka2ekydNycnNC_Jr5hFbqbMe0XNFa0fXaK-61YO26TH-e1kZeonpRW1zTfWiXtnFhsJCpK2huBFhr6iv9EfPcd18SWbHRz8nJ2FbZQH4AcFjKKQyIjGJsNKmGjQ8jq1OXaxcxqwyjsc251mZRywX0DRCM4iZmE5KcPYyiMVfka2qruwbQkutODokSFVuYoNjtHB5Zox0NokCEnakLXQLQY6VMBYFhiLIigJYUfSsCMj7vv_vBnzjwZ5j5FTfC0Gz_Q_18rxodbCwJeMp4j8qw7kDvxCCRZ2XUaQ0Ty03ATno-Fx0glgw6SH6JEsD8rZ_DDqIBytlZetr7APmhkUyh3m8bsSin0kiQP4Z_vd0IDCDqQ6fVJcXHuc7y-GlggfkQydat9N6iAyxF71_UKuY_hj3jb3_GLNPnjK8BuIzmA7I1np5bQ_BOVurEXnM-Bl8pvN0RLbHR6dn36E1kZOR3-4Yea38C-e2Ni8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEgkvUxLGd5IAQBaot7fZCV9qbm_hRKm2T0myF9k_xG5lxHlUEhVNv642TOJ7nZ49nCHkNFi7niYlDsAUy5HguJzcgV1q6QuisjF2JSwPTAzmZ8a9zMV8jv_qzMBhW2etEr6hNrXGNfItJnypNsvTD2Y8Qq0bh7mpfQqNliz27-gmQrXm_-xno-4axnS-HnyZhV1UA3g9gKRSyNCIxibDSpho4Oo6tTl1cuozZ0jge25xnRR6xXEDTCM0AIzCdFODcZIA94bk3yE0wvBGCvXQ-ADw0fqxLDCnglq3TpgQEihBLZmxk-Hx9gL85tX_GZg4btGP32du_nXvkbue40o8tp90na7Z6QG61pSxXD8nRzGeCpc76TKENrR1doh3stRLtwm7876Iy9ATDlrrmkupF3djFioKC09ZQXOCwp9RXEKTHqI8fkdm1zPNjsl7VlX1CaKFLjo4Ozio3scF7tHB5Zox0NokCEvZTq3SX2hwrbCwUQhwkhQJSqIEUAXk79D9rk3pc2XMbKTX0wmTc_o_6_Fh1sq1swXiKeSVLw7kDfxNAqM6LKCo1Ty03Adns6aw6DdGoS34OyKvhMsg2btgUla0vsA-YMRbJHMax0bLFMJJEgFwx_PZ0xDCjoY6vVCffff7wLIeHCh6Qdz1rXQ7rqmmIPev9Z7bU9Nv20Hj6769-SW5PDqf7an_3YO8ZucPwVIkPiNok68vzC_scfL1l-cILGCVH1y3RvwGqx2SK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULYovxbupVUdQ9CU0mczk8uBDa11aa4ugkeJLmsylFrZJ6W6R_Vf-RM-ZXCRoEYS-7Wwm4eTcz2TmOwAvMcJlItKhj7Eg9gWdy8k02pWKbSlVWoW2oqWBg8N4NxcfjuTRCvzsz8K0-BDDghtZhvPXZODn2vYdewg19GxeYX1HBUyc8m5b5b5Z_sCibf52bwcl_Irz6fsv73b9rq8AUoDlki_jSstIR9LEJlGo02FoVGLDyqbcVNqK0GQiLbOAZxKHWiqOVQJXUYnpTYrVJz73BqxKDIXBBFa3vubf8t77UwDk7SFM4VMrqA4okmjeHFE8CoSuX8Dfktw_92oOH2zH6bSLh9M7sNYlsmyr1by7sGLqe3CzbW25vA_HuUOGZdY45NA5ayxbUFzsvRTrtuG432Wt2SltY-qGC6ZmzdzMlgwdnjKa0YKHOWOuoyA7If_8APJr4fpDmNRNbR4DK1UlKPEhrgodarpHSZulWsfWRIEHfs_aQnVQ59RxY1ZQyUOiKFAUxSAKD14P889bkI8rZ26TpIZZBM7t_mguTorO1gtTcpEQzmSlhbCYf2JRqrIyCColEiO0Bxu9nIvOY8wLHjsowJgnHrwYLqOt0wecsjbNJc3BsMaDOEM6HrVqMVASSbQzTu-ejBRmROr4Sn363eGJpxk-VAoP3vSq9Zusq9gQOtX7B7eKg8_bw2D9P-55Drc-7UyLj3uH-0_gNqeTJ27T1AZMFheX5inmg4vqWWeCDI6v2-p_ATv8asE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+features+of+transcription+termination+and+initiation+at+closely+spaced+tandem+human+genes&rft.jtitle=Molecular+systems+biology&rft.au=Nissani%2C+Noa&rft.au=Ulitsky%2C+Igor&rft.date=2022-04-01&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=18&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fmsb.202110682&rft.externalDBID=10.15252%252Fmsb.202110682&rft.externalDocID=MSB202110682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon |