SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granul...
Saved in:
Published in | PLoS pathogens Vol. 19; no. 8; p. e1011582 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
22.08.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding—prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. |
---|---|
AbstractList | The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited [beta]-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding—prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. SARS-CoV-2 nucleocapsid protein N is an antagonist of innate immunity but how it averts virus detection by intracellular sensors remains subject to debate. We provide evidence that SARS-CoV-2 N, by sequestering dsRNA through domain N2b, prevents PKR-mediated activation of the integrated stress response as well as detection by RIG-I-like receptors and ensuing type I interferon expression. This function, conserved in human coronavirus 229E, is not affected by mutations that prevent posttranslational modifications, previously implicated in immune evasion, or that target its binding to stress granule scaffold proteins. Our findings further our understanding of how SARS-CoV-2 evades innate immunity, how this may drive viral evolution and why increased N expression may have been a selective advantage to SARS-CoV-2 variants of concern. |
Audience | Academic |
Author | Schipper, Jelle G. Oymans, Judith de Groot, Raoul J. van Kuppeveld, Frank J. M. Aloise, Chiara Hurdiss, Daniel L. van Vliet, Arno Donselaar, Tim |
AuthorAffiliation | Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands University of Maryland, UNITED STATES |
AuthorAffiliation_xml | – name: Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands – name: University of Maryland, UNITED STATES |
Author_xml | – sequence: 1 givenname: Chiara surname: Aloise fullname: Aloise, Chiara – sequence: 2 givenname: Jelle G. surname: Schipper fullname: Schipper, Jelle G. – sequence: 3 givenname: Arno surname: van Vliet fullname: van Vliet, Arno – sequence: 4 givenname: Judith surname: Oymans fullname: Oymans, Judith – sequence: 5 givenname: Tim surname: Donselaar fullname: Donselaar, Tim – sequence: 6 givenname: Daniel L. surname: Hurdiss fullname: Hurdiss, Daniel L. – sequence: 7 givenname: Raoul J. orcidid: 0000-0002-2207-9472 surname: de Groot fullname: de Groot, Raoul J. – sequence: 8 givenname: Frank J. M. orcidid: 0000-0001-5800-749X surname: van Kuppeveld fullname: van Kuppeveld, Frank J. M. |
BookMark | eNqVkl2L1DAUhousuB_6DwQL3uhFxyRtPsabZRj8GFxGmVFvQ5qknQydpCap6L833emCsyyCFNJw8rxvcl7OZXZmndVZ9hyCGSwpfLN3g7eim_W9iDMIIMQMPcouIMZlQUtanf21P88uQ9gDUMESkifZeUkJoAjML7KwXWy2xdJ9L1BuB9lpJ0UfjMp776I2Njd2Z2oTQx53Ov_yaVMctDIiapVOom797TZEr0PI09I7G3RivRvaXb5ZL4raWGVsmyt3EMlvjeqn2eNGdEE_m_5X2bf3774uPxY3nz-sloubQpJyHgsiFBRKIgYV0bSBigFEaIUlaCo8r1Qq1Yo1QCNAGKVzoBSUUpZUzrFukCivshdH375zgU95BY4YwRikAHAiVkdCObHnvTcH4X9zJwy_LTjfcuGjSbHwhirNREVrRmWl55qxGhCpcC0kxZqB5HU93TbUKSOpbfSiOzE9PbFmx1v3k0NQ0RJX42teTQ7e_Rh0iPxggtRdJ6x2w_hwTEqEEGYJfXkPfbi9iWpF6sDYxqWL5WjKF5SMQ1ARmqjZA1T6lD4YmYauMal-Inh9IkhM1L9iK4YQ-Gq7-Q92fcq-PbLSuxC8brg0UUTjxrxMl4Li4-TftcrHyefT5CdxdU98l_w_ZX8ADHEJsg |
CitedBy_id | crossref_primary_10_1016_j_bmcl_2024_130014 crossref_primary_10_1371_journal_ppat_1012831 crossref_primary_10_1002_jmr_70002 crossref_primary_10_1016_j_jbc_2024_107831 |
Cites_doi | 10.1016/j.molcel.2019.07.029 10.1146/annurev-biochem-060713-035802 10.1038/289414a0 10.20411/pai.v6i2.460 10.1128/JVI.00480-11 10.1261/rna.062000.117 10.1128/jvi.63.4.1822-1826.1989 10.1038/s41392-022-00878-3 10.3389/fchem.2020.624765 10.1016/j.jmb.2022.167516 10.1128/JVI.74.11.4967-4978.2000 10.1038/s41586-020-2286-9 10.1016/j.antiviral.2013.12.009 10.1083/jcb.200212128 10.1128/mBio.00258-16 10.1128/JVI.01275-13 10.1016/j.molcel.2015.06.033 10.1128/jvi.00412-22 10.1091/mbc.01-05-0221 10.1128/JVI.00902-18 10.1186/s43556-020-00001-4 10.1002/pro.3943 10.1006/viro.1997.8867 10.1002/j.1460-2075.1994.tb06431.x 10.1038/s41419-019-2178-9 10.1083/jcb.201609081 10.1128/JVI.02103-20 10.1038/s41421-021-00306-w 10.1016/j.jmb.2007.02.069 10.7554/eLife.18413 10.1371/journal.pone.0043031 10.1128/JVI.00440-09 10.1006/meth.2001.1262 10.1091/mbc.e04-08-0715 10.1038/s41421-021-00275-0 10.1128/JVI.02201-16 10.1371/journal.ppat.1008690 10.1016/j.jbc.2021.100821 10.1016/j.scib.2021.01.013 10.1016/j.cell.2020.03.046 10.1128/JVI.00922-18 10.1073/pnas.1618310114 10.1128/JVI.01010-19 10.1042/BJ20121873 10.4161/rna.6.3.8526 10.3389/fmolb.2020.00219 10.1371/journal.pone.0043283 10.1016/j.molcel.2020.11.025 10.1038/s41564-020-0759-0 10.1126/sciadv.abl4895 10.1073/pnas.1519657113 10.1016/j.bbamcr.2020.118876 10.1146/annurev-immunol-042718-041356 10.1016/j.virol.2021.12.004 10.1038/s41467-021-26498-z 10.1016/j.bbagen.2007.10.014 10.1016/j.cell.2020.03.049 10.1038/s41467-020-20768-y 10.1128/JVI.02791-14 10.1128/JVI.03866-13 10.1371/journal.ppat.1005982 10.1002/pro.3909 10.1016/j.jmb.2007.11.093 10.1038/s41586-021-04352-y 10.1371/journal.pbio.0030005 10.1038/s41556-021-00710-0 10.1002/wrna.1534 10.1128/JVI.01287-10 10.1371/journal.ppat.1006195 10.1093/nar/27.22.4369 10.1111/j.1742-4658.2008.06564.x 10.1016/j.isci.2021.103562 10.1371/journal.ppat.1009100 10.1093/nar/18.18.5401 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Public Library of Science 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Aloise et al 2023 Aloise et al |
Copyright_xml | – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Aloise et al 2023 Aloise et al |
DBID | AAYXX CITATION ISN ISR 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1011582 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | SARS-CoV-2 N protein inhibits the PKR-mediated stress response via RNA-binding domain N2b |
EISSN | 1553-7374 |
ExternalDocumentID | 2865506075 oai_doaj_org_article_f7de8a47b87c4e9e88b06cd5bac75e80 PMC10473545 A763760467 10_1371_journal_ppat_1011582 |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GrantInformation_xml | – fundername: ; grantid: OCENW.KLEIN.344 – fundername: ; grantid: 813343 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M PMFND 3V. 7QL 7U9 7XB 8FK AZQEC C1K COVID DWQXO GNUQQ H94 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO M~E |
ID | FETCH-LOGICAL-c639t-6ad1adc281d6e7f1d8026745c0f4594d7f1bd8f0e20687790dd1ccc37c95ef2a3 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 29 00:48:04 EST 2024 Wed Aug 27 01:29:49 EDT 2025 Thu Aug 21 18:36:22 EDT 2025 Fri Jul 11 05:05:58 EDT 2025 Fri Jul 25 12:12:21 EDT 2025 Tue Jun 17 22:24:15 EDT 2025 Tue Jun 10 21:19:26 EDT 2025 Fri Jun 27 05:46:43 EDT 2025 Fri Jun 27 05:27:36 EDT 2025 Tue Jul 01 03:52:17 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c639t-6ad1adc281d6e7f1d8026745c0f4594d7f1bd8f0e20687790dd1ccc37c95ef2a3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0001-5800-749X 0000-0002-2207-9472 |
OpenAccessLink | https://doaj.org/article/f7de8a47b87c4e9e88b06cd5bac75e80 |
PMID | 37607209 |
PQID | 2865506075 |
PQPubID | 1436335 |
PageCount | e1011582 |
ParticipantIDs | plos_journals_2865506075 doaj_primary_oai_doaj_org_article_f7de8a47b87c4e9e88b06cd5bac75e80 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10473545 proquest_miscellaneous_2856322258 proquest_journals_2865506075 gale_infotracmisc_A763760467 gale_infotracacademiconefile_A763760467 gale_incontextgauss_ISR_A763760467 gale_incontextgauss_ISN_A763760467 crossref_citationtrail_10_1371_journal_ppat_1011582 crossref_primary_10_1371_journal_ppat_1011582 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230822 |
PublicationDateYYYYMMDD | 2023-08-22 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230822 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Donovan (ppat.1011582.ref005) 2017; 23 B Gao (ppat.1011582.ref032) 2021; 17 E Nikolakaki (ppat.1011582.ref061) 2008; 1780 S Hofmann (ppat.1011582.ref014) 2021; 1868 DE Gordon (ppat.1011582.ref037) 2020; 583 F Borghese (ppat.1011582.ref064) 2011; 85 HH Rabouw (ppat.1011582.ref031) 2020; 5 KR Hurst (ppat.1011582.ref046) 2010; 84 KM Scherer (ppat.1011582.ref072) 2022; 8 Y Wu (ppat.1011582.ref011) 2022 SL Schwartz (ppat.1011582.ref007) 2019; 10 R Zhou (ppat.1011582.ref059) 2020; 1 JS Yoo (ppat.1011582.ref021) 2014; 10 H Liu (ppat.1011582.ref036) 2022; 96 J Nejepinska (ppat.1011582.ref044) 2012; 7 F Borghese (ppat.1011582.ref065) 2019; 93 GM Duke (ppat.1011582.ref077) 1989; 63 DH Wreschner (ppat.1011582.ref002) 1981; 289 M Biswal (ppat.1011582.ref040) 2022; 434 M Yoneyama (ppat.1011582.ref010) 2016; 159 AG Hinnebusch (ppat.1011582.ref008) 2014; 83 JL Llácer (ppat.1011582.ref009) 2015; 59 JR Wheeler (ppat.1011582.ref017) 2016; 5 HH Rabouw (ppat.1011582.ref027) 2016; 12 S Wang (ppat.1011582.ref063) 2021; 23 JB Andersen (ppat.1011582.ref003) 2009; 6 A Kaminski (ppat.1011582.ref067) 1994; 13 EF Pettersen (ppat.1011582.ref079) 2021; 30 CK Chang (ppat.1011582.ref047) 2014; 103 E Kindler (ppat.1011582.ref025) 2017; 13 J Zhao (ppat.1011582.ref026) 2020; 95 R Molenkamp (ppat.1011582.ref052) 1997; 239 SA Goldstein (ppat.1011582.ref030) 2017; 91 Y Zheng (ppat.1011582.ref069) 2022; 7 S Lu (ppat.1011582.ref075) 2021; 12 M Takeda (ppat.1011582.ref058) 2008; 380 JM Burke (ppat.1011582.ref006) 2019; 75 E Nikolakaki (ppat.1011582.ref050) 2020; 7 CY Chen (ppat.1011582.ref056) 2007; 368 S Nabeel-Shah (ppat.1011582.ref068) 2022; 25 L Kuo (ppat.1011582.ref053) 2014; 88 W Huang (ppat.1011582.ref055) 2021; 7 M Yang (ppat.1011582.ref057) 2020; 8 LG Thorne (ppat.1011582.ref073) 2022; 602 S Leary (ppat.1011582.ref074) 2021; 6 KJ Livak (ppat.1011582.ref078) 2001; 25 CA Koetzner (ppat.1011582.ref051) 2022; 567 L Luo (ppat.1011582.ref034) 2021; 66 S. Hur (ppat.1011582.ref001) 2019; 37 CR Carlson (ppat.1011582.ref062) 2020; 80 LC Reineke (ppat.1011582.ref022) 2015; 89 J Guillén-Boixet (ppat.1011582.ref018) 2020; 181 W Yang (ppat.1011582.ref023) 2019; 10 Y Li (ppat.1011582.ref004) 2016; 113 Z-Q Zheng (ppat.1011582.ref035) 2021; 7 KR Hurst (ppat.1011582.ref054) 2013; 87 MP Robertson (ppat.1011582.ref060) 2005; 3 T Kruse (ppat.1011582.ref038) 2021; 12 J Li (ppat.1011582.ref039) 2021; 2 DC Dinesh (ppat.1011582.ref071) 2020; 16 KH Mellits (ppat.1011582.ref041) 1990; 18 Q Ye (ppat.1011582.ref048) 2020; 29 H Tourrière (ppat.1011582.ref015) 2003; 160 T Gantke (ppat.1011582.ref043) 2013; 452 JM Thornbrough (ppat.1011582.ref029) 2016; 7 CA de Haan (ppat.1011582.ref070) 2000; 74 N Gilks (ppat.1011582.ref016) 2004; 15 T Cai (ppat.1011582.ref033) 2021; 297 LJ Visser (ppat.1011582.ref066) 2019; 93 K Nakagawa (ppat.1011582.ref028) 2018; 92 X Deng (ppat.1011582.ref024) 2017; 114 K Onomoto (ppat.1011582.ref020) 2012; 7 MD Panas (ppat.1011582.ref013) 2016; 215 P Yang (ppat.1011582.ref019) 2020; 181 Z Yang (ppat.1011582.ref076) 2022; 10 F Terenzi (ppat.1011582.ref042) 1999; 27 N Kedersha (ppat.1011582.ref012) 2002; 13 KR Hurst (ppat.1011582.ref045) 2009; 83 TY Peng (ppat.1011582.ref049) 2008; 275 |
References_xml | – volume: 75 start-page: 1203 issue: 6 year: 2019 ident: ppat.1011582.ref006 article-title: RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs publication-title: Mol Cell doi: 10.1016/j.molcel.2019.07.029 – volume: 83 start-page: 779 year: 2014 ident: ppat.1011582.ref008 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu Rev Biochem doi: 10.1146/annurev-biochem-060713-035802 – volume: 289 start-page: 414 issue: 5796 year: 1981 ident: ppat.1011582.ref002 article-title: Interferon action—sequence specificity of the ppp(A2′p)nA-dependent ribonuclease. publication-title: Nature doi: 10.1038/289414a0 – volume: 10 start-page: e1004012 issue: 3 year: 2014 ident: ppat.1011582.ref021 article-title: DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. publication-title: PLoS Pathog.PubMed Central PMCID – volume: 6 start-page: 27 issue: 2 year: 2021 ident: ppat.1011582.ref074 article-title: Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. publication-title: Pathog Immun. doi: 10.20411/pai.v6i2.460 – volume: 85 start-page: 9614 issue: 18 year: 2011 ident: ppat.1011582.ref064 article-title: The Leader Protein of Cardioviruses Inhibits Stress Granule Assembly publication-title: Journal of Virology doi: 10.1128/JVI.00480-11 – volume: 23 start-page: 1660 issue: 11 year: 2017 ident: ppat.1011582.ref005 article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery publication-title: Rna doi: 10.1261/rna.062000.117 – volume: 63 start-page: 1822 issue: 4 year: 1989 ident: ppat.1011582.ref077 article-title: Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. publication-title: J Virol doi: 10.1128/jvi.63.4.1822-1826.1989 – volume: 7 start-page: 22 issue: 1 year: 2022 ident: ppat.1011582.ref069 article-title: SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules. publication-title: Signal Transduction and Targeted Therapy doi: 10.1038/s41392-022-00878-3 – volume: 8 start-page: 624765 year: 2020 ident: ppat.1011582.ref057 article-title: Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences. publication-title: Front Chem. doi: 10.3389/fchem.2020.624765 – volume: 434 start-page: 167516 issue: 9 year: 2022 ident: ppat.1011582.ref040 article-title: SARS-CoV-2 Nucleocapsid Protein Targets a Conserved Surface Groove of the NTF2-like Domain of G3BP1 publication-title: J Mol Biol doi: 10.1016/j.jmb.2022.167516 – volume: 74 start-page: 4967 issue: 11 year: 2000 ident: ppat.1011582.ref070 article-title: Assembly of the coronavirus envelope: homotypic interactions between the M proteins publication-title: J Virol doi: 10.1128/JVI.74.11.4967-4978.2000 – volume: 583 start-page: 459 issue: 7816 year: 2020 ident: ppat.1011582.ref037 article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing publication-title: Nature doi: 10.1038/s41586-020-2286-9 – volume: 103 start-page: 39 year: 2014 ident: ppat.1011582.ref047 article-title: The SARS coronavirus nucleocapsid protein—forms and functions publication-title: Antiviral Res doi: 10.1016/j.antiviral.2013.12.009 – volume: 160 start-page: 823 issue: 6 year: 2003 ident: ppat.1011582.ref015 article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules publication-title: J Cell Biol doi: 10.1083/jcb.200212128 – volume: 7 start-page: e00258 issue: 2 year: 2016 ident: ppat.1011582.ref029 article-title: Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. publication-title: mBio doi: 10.1128/mBio.00258-16 – volume: 87 start-page: 9159 issue: 16 year: 2013 ident: ppat.1011582.ref054 article-title: Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex publication-title: J Virol doi: 10.1128/JVI.01275-13 – volume: 59 start-page: 399 issue: 3 year: 2015 ident: ppat.1011582.ref009 article-title: Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex publication-title: Mol Cell doi: 10.1016/j.molcel.2015.06.033 – volume: 96 start-page: e0041222 issue: 12 year: 2022 ident: ppat.1011582.ref036 article-title: SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication publication-title: J Virol doi: 10.1128/jvi.00412-22 – volume: 13 start-page: 195 issue: 1 year: 2002 ident: ppat.1011582.ref012 article-title: Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. publication-title: Mol Biol Cell doi: 10.1091/mbc.01-05-0221 – volume: 159 start-page: 279 issue: 3 year: 2016 ident: ppat.1011582.ref010 article-title: Regulation of antiviral innate immune signaling by stress-induced RNA granules publication-title: The Journal of Biochemistry – volume: 92 issue: 20 year: 2018 ident: ppat.1011582.ref028 article-title: Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication publication-title: J Virol doi: 10.1128/JVI.00902-18 – volume: 1 start-page: 2 issue: 1 year: 2020 ident: ppat.1011582.ref059 article-title: Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein. publication-title: Mol Biomed. doi: 10.1186/s43556-020-00001-4 – start-page: 12 year: 2022 ident: ppat.1011582.ref011 article-title: The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism. publication-title: Frontiers in Microbiology – volume: 30 start-page: 70 issue: 1 year: 2021 ident: ppat.1011582.ref079 article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers publication-title: Protein Sci doi: 10.1002/pro.3943 – volume: 239 start-page: 78 issue: 1 year: 1997 ident: ppat.1011582.ref052 article-title: Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal publication-title: Virology doi: 10.1006/viro.1997.8867 – volume: 13 start-page: 1673 issue: 7 year: 1994 ident: ppat.1011582.ref067 article-title: Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site publication-title: Embo j doi: 10.1002/j.1460-2075.1994.tb06431.x – volume: 10 start-page: 946 issue: 12 year: 2019 ident: ppat.1011582.ref023 article-title: G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. publication-title: Cell Death & Disease. doi: 10.1038/s41419-019-2178-9 – volume: 215 start-page: 313 issue: 3 year: 2016 ident: ppat.1011582.ref013 article-title: Mechanistic insights into mammalian stress granule dynamics publication-title: J Cell Biol doi: 10.1083/jcb.201609081 – volume: 95 issue: 7 year: 2020 ident: ppat.1011582.ref026 article-title: Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation publication-title: J Virol doi: 10.1128/JVI.02103-20 – volume: 7 start-page: 69 issue: 1 year: 2021 ident: ppat.1011582.ref055 article-title: Molecular determinants for regulation of G3BP1/2 phase separation by the SARS-CoV-2 nucleocapsid protein publication-title: Cell Discovery doi: 10.1038/s41421-021-00306-w – volume: 368 start-page: 1075 issue: 4 year: 2007 ident: ppat.1011582.ref056 article-title: Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.02.069 – volume: 5 start-page: e18413 year: 2016 ident: ppat.1011582.ref017 article-title: Distinct stages in stress granule assembly and disassembly. publication-title: eLife. doi: 10.7554/eLife.18413 – volume: 7 start-page: e43031 issue: 8 year: 2012 ident: ppat.1011582.ref020 article-title: Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity publication-title: PLoS One doi: 10.1371/journal.pone.0043031 – volume: 83 start-page: 7221 issue: 14 year: 2009 ident: ppat.1011582.ref045 article-title: Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein publication-title: J Virol doi: 10.1128/JVI.00440-09 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: ppat.1011582.ref078 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 15 start-page: 5383 issue: 12 year: 2004 ident: ppat.1011582.ref016 article-title: Stress granule assembly is mediated by prion-like aggregation of TIA-1 publication-title: Mol Biol Cell doi: 10.1091/mbc.e04-08-0715 – volume: 7 start-page: 38 issue: 1 year: 2021 ident: ppat.1011582.ref035 article-title: SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication publication-title: Cell Discovery doi: 10.1038/s41421-021-00275-0 – volume: 91 issue: 5 year: 2017 ident: ppat.1011582.ref030 article-title: Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L publication-title: J Virol doi: 10.1128/JVI.02201-16 – volume: 17 start-page: e1008690 issue: 2 year: 2021 ident: ppat.1011582.ref032 article-title: Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008690 – volume: 297 start-page: 100821 issue: 1 year: 2021 ident: ppat.1011582.ref033 article-title: Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication publication-title: J Biol Chem doi: 10.1016/j.jbc.2021.100821 – volume: 66 start-page: 1194 issue: 12 year: 2021 ident: ppat.1011582.ref034 article-title: SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. publication-title: Sci Bull (Beijing). doi: 10.1016/j.scib.2021.01.013 – volume: 181 start-page: 325 issue: 2 year: 2020 ident: ppat.1011582.ref019 article-title: G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules publication-title: Cell doi: 10.1016/j.cell.2020.03.046 – volume: 93 issue: 2 year: 2019 ident: ppat.1011582.ref066 article-title: Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation publication-title: J Virol doi: 10.1128/JVI.00922-18 – volume: 114 start-page: E4251 issue: 21 year: 2017 ident: ppat.1011582.ref024 article-title: Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1618310114 – volume: 93 issue: 19 year: 2019 ident: ppat.1011582.ref065 article-title: The Leader Protein of Theiler’s Virus Prevents the Activation of PKR publication-title: J Virol doi: 10.1128/JVI.01010-19 – volume: 452 start-page: 359 issue: 2 year: 2013 ident: ppat.1011582.ref043 article-title: Ebola virus VP35 induces high-level production of recombinant TPL-2-ABIN-2-NF-κB1 p105 complex in co-transfected HEK-293 cells publication-title: Biochem J doi: 10.1042/BJ20121873 – volume: 6 start-page: 305 issue: 3 year: 2009 ident: ppat.1011582.ref003 article-title: Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence publication-title: RNA Biol doi: 10.4161/rna.6.3.8526 – volume: 7 start-page: 219 year: 2020 ident: ppat.1011582.ref050 article-title: SR/RS Motifs as Critical Determinants of Coronavirus Life Cycle. publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.00219 – volume: 7 start-page: e43283 issue: 8 year: 2012 ident: ppat.1011582.ref044 article-title: Deep Sequencing Reveals Complex Spurious Transcription from Transiently Transfected Plasmids. publication-title: PLOS ONE. doi: 10.1371/journal.pone.0043283 – volume: 80 start-page: 1092 issue: 6 year: 2020 ident: ppat.1011582.ref062 article-title: Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions publication-title: Mol Cell doi: 10.1016/j.molcel.2020.11.025 – volume: 5 start-page: 1361 issue: 11 year: 2020 ident: ppat.1011582.ref031 article-title: Inhibition of the integrated stress response by viral proteins that block p-eIF2–eIF2B association. publication-title: Nature Microbiology. doi: 10.1038/s41564-020-0759-0 – volume: 8 start-page: eabl4895 issue: 1 year: 2022 ident: ppat.1011582.ref072 article-title: SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. publication-title: Sci Adv. doi: 10.1126/sciadv.abl4895 – volume: 113 start-page: 2241 issue: 8 year: 2016 ident: ppat.1011582.ref004 article-title: Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1519657113 – volume: 1868 start-page: 118876 issue: 1 year: 2021 ident: ppat.1011582.ref014 article-title: Molecular mechanisms of stress granule assembly and disassembly publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2020.118876 – volume: 37 start-page: 349 issue: 1 year: 2019 ident: ppat.1011582.ref001 article-title: Double-Stranded RNA Sensors and Modulators in Innate Immunity publication-title: Annual Review of Immunology doi: 10.1146/annurev-immunol-042718-041356 – volume: 567 start-page: 1 year: 2022 ident: ppat.1011582.ref051 article-title: Analysis of a crucial interaction between the coronavirus nucleocapsid protein and the major membrane-bound subunit of the viral replicase-transcriptase complex publication-title: Virology doi: 10.1016/j.virol.2021.12.004 – volume: 12 start-page: 6761 issue: 1 year: 2021 ident: ppat.1011582.ref038 article-title: Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities publication-title: Nature Communications doi: 10.1038/s41467-021-26498-z – volume: 1780 start-page: 214 issue: 2 year: 2008 ident: ppat.1011582.ref061 article-title: RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2007.10.014 – volume: 181 start-page: 346 issue: 2 year: 2020 ident: ppat.1011582.ref018 article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation publication-title: Cell doi: 10.1016/j.cell.2020.03.049 – volume: 12 start-page: 502 issue: 1 year: 2021 ident: ppat.1011582.ref075 article-title: The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein publication-title: Nature Communications doi: 10.1038/s41467-020-20768-y – volume: 89 start-page: 2575 issue: 5 year: 2015 ident: ppat.1011582.ref022 article-title: The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses publication-title: J Virol doi: 10.1128/JVI.02791-14 – volume: 88 start-page: 4451 issue: 8 year: 2014 ident: ppat.1011582.ref053 article-title: Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein publication-title: J Virol doi: 10.1128/JVI.03866-13 – volume: 12 start-page: e1005982 issue: 10 year: 2016 ident: ppat.1011582.ref027 article-title: Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005982 – volume: 29 start-page: 1890 issue: 9 year: 2020 ident: ppat.1011582.ref048 article-title: Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein publication-title: Protein Sci doi: 10.1002/pro.3909 – volume: 380 start-page: 608 issue: 4 year: 2008 ident: ppat.1011582.ref058 article-title: Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.11.093 – volume: 602 start-page: 487 issue: 7897 year: 2022 ident: ppat.1011582.ref073 article-title: Evolution of enhanced innate immune evasion by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04352-y – volume: 3 start-page: e5 issue: 1 year: 2005 ident: ppat.1011582.ref060 article-title: . The structure of a rigorously conserved RNA element within the SARS virus genome publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030005 – volume: 23 start-page: 718 issue: 7 year: 2021 ident: ppat.1011582.ref063 article-title: Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity publication-title: Nature Cell Biology doi: 10.1038/s41556-021-00710-0 – volume: 10 issue: 12 year: 2022 ident: ppat.1011582.ref076 article-title: Engagement of the G3BP2-TRIM25 Interaction by Nucleocapsid Protein Suppresses the Type I Interferon Response in SARS-CoV-2-Infected Cells. publication-title: Vaccines (Basel). – volume: 2 start-page: 99 issue: 1 year: 2021 ident: ppat.1011582.ref039 article-title: Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. publication-title: Med (N Y). – volume: 10 start-page: e1534 issue: 4 year: 2019 ident: ppat.1011582.ref007 article-title: RNA regulation of the antiviral protein 2’-5’-oligoadenylate synthetase. publication-title: Wiley Interdiscip Rev RNA. doi: 10.1002/wrna.1534 – volume: 84 start-page: 10276 issue: 19 year: 2010 ident: ppat.1011582.ref046 article-title: An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA publication-title: J Virol doi: 10.1128/JVI.01287-10 – volume: 13 start-page: e1006195 issue: 2 year: 2017 ident: ppat.1011582.ref025 article-title: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006195 – volume: 27 start-page: 4369 issue: 22 year: 1999 ident: ppat.1011582.ref042 article-title: The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors publication-title: Nucleic Acids Research doi: 10.1093/nar/27.22.4369 – volume: 275 start-page: 4152 issue: 16 year: 2008 ident: ppat.1011582.ref049 article-title: Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. publication-title: Febs j. doi: 10.1111/j.1742-4658.2008.06564.x – volume: 25 start-page: 103562 issue: 1 year: 2022 ident: ppat.1011582.ref068 article-title: SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response. publication-title: iScience doi: 10.1016/j.isci.2021.103562 – volume: 16 start-page: e1009100 issue: 12 year: 2020 ident: ppat.1011582.ref071 article-title: Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009100 – volume: 18 start-page: 5401 issue: 18 year: 1990 ident: ppat.1011582.ref041 article-title: Removal of double-stranded contaminants from RNA transcripts: synthesis of adenovirus VA RNA 1 from a T7 vector publication-title: Nucleic Acids Research doi: 10.1093/nar/18.18.5401 |
SSID | ssj0041316 |
Score | 2.4719782 |
Snippet | The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e1011582 |
SubjectTerms | Analysis Antiviral drugs Binding Biological response modifiers Biology and life sciences Coronaviruses COVID-19 Double-stranded RNA Genomes Innate immunity Interferon Kinases Medicine and health sciences Microscopy Middle East respiratory syndrome Mode of action N protein Nucleocapsids Packaging Plasmids Post-translation Proteins Research and Analysis Methods Respiratory diseases Sensors Sequestering Severe acute respiratory syndrome coronavirus 2 Stress response Viral diseases Viral infections Viruses β-Interferon |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiftLTKqsIPq3NfmX3Hs9iqYqH3FnpW9iv2IM2OZq7B_97Zza5owGlL75mJ0syM7vz22TmN4S8k6qUNSBPNjXeMcWTZk5wybzwEOCFtlxhcfK3eXl2rr5c6Itbrb4wJ6ynB-4Vd1ybmKxTxlsTVJoma31Rhqi9C0Ynm0_rEPN2h6l-D4adOTc9xaY4zMiyHIrmpOHHg40-rNcu00dzbcUoKGXu_v0OfbC-arsR_BwnT96KRqePyMMBRtJZ__iPyb3UPCH3-8aSv5-SbjlbLNlJ-5MJ2iBjMUSsNfgdzbQMq4aumsuVX206CviPfv-6YLmCBNAn3fNHRNrXkdCbPo020aGnD13MZ3igxqhHY3vtYL658M_I-emnHydnbGivwALAkg0rXeQuBgGItUym5tFiNyqlQ1ErPVURLvlo6yKJorRISxgjDyFIE6Y61cLJ5-SgaZt0SKh0SUVuo_M8qsIBavcBI6HkEkxUpwmRO_1WYeAexxYYV1X-oWbgDNLrrUKrVINVJoTt71r33Bt3yH9E0-1lkTk7XwB_qgZ_qu7ypwl5i4avkBujweSbX27bddXn5byawV5sygJCyz-FFiOh94NQ3cLLBjcUPIDKkHNrJHk0koQVHkbDh-iEu3fuqlxNXJSA9uDOnWP-ffjNfhgnxYS6JrVblNEl_mTTdkLsyKFH6huPNKvLTECO9B4SoPeL_6Hwl-SBAOCI3-mFOCIHm5ttegVAb-Nf5zX9BzpwUgc priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELagCIkL4qktLMggJE5mEzuJ3RMqK1YLiAq1LNpb5Fd2K-0moWkP_HtmHDcQicc1nrw89sxne-YbQl6JrBAVIE82k0azLPU50zwVzHADDp7nKs0wOfnzojg9yz6e5-dxw62LYZV7mxgMtWss7pEfhQzKpAAP97b9zrBqFJ6uxhIaN8ktpC7DkC55Piy4wD6H0qdYGodJURQxdU7I9Chq6k3b6kAineaKj1xTYPAf7PSkvWq6EQgdh1D-5pNO7pG7EUzSea_9--SGrx-Q2315yR8PSbeaL1fsuPnGOK2Rtxj8VgujjwZyhnVN1_Xl2qy3HQUUSL98WrKQRwIYlA4sEo722SR00wfTehor-9DlYo7LavR91DXXGp634OYROTt5__X4lMUiC8wCONmyQrtUO8sBtxZeVqlTWJMqy21SZfksc3DJOFUlnieFQnJC51JrrZB2lvuKa_GYTOqm9geECu0zlyqnTeqyRAN2Nxb9oUiFV0nlp0Ts-7e0kYEcC2FcleFYTcJKpO-3ErVSRq1MCRvuansGjv_Iv0PVDbLInx0uNJuLMk7HspLOK51Jo6TN_MwrZZLCutxoK3P42Cl5iYovkSGjxhCcC73ruvLDalHOwSLLIgEH81eh5UjodRSqGvhZq2PaA3QZMm-NJA9HkjDP7aj5AAfh_p-78teMgDv3A_PPzS-GZnwohtXVvtmhTF7gUVuupkSNBvSo-8Yt9foy0JAjyYcAAP7k329_Su5wAIa4D8_5IZlsNzv_DIDc1jwPs_UnccVIKg priority: 102 providerName: ProQuest |
Title | SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b |
URI | https://www.proquest.com/docview/2865506075 https://www.proquest.com/docview/2856322258 https://pubmed.ncbi.nlm.nih.gov/PMC10473545 https://doaj.org/article/f7de8a47b87c4e9e88b06cd5bac75e80 http://dx.doi.org/10.1371/journal.ppat.1011582 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddymAvY580axe0MdiTij9kS3kYIy0t3UZDSZaRN6Mvt4HUTuME1v9-d7JjZmjZXq2TsE93up8s3e8I-RTzNM4BebKh0Irx0CVMRWHMdKQhwEeJDDkmJ1-O04sZ_z5P5ntkV7O1UWD14NYO60nN1svj33f3X8Hhv_iqDSLcdTperZQnhA4TCYvyPsQmga56ydtzBVixfTFULJbDRJymTTLdY6N0gpXn9G9X7t5qWVYdWNq9VPlXlDp_QZ438JKOant4SfZc8Yo8rQtO3r8m1XQ0mbLT8heLaIFMxhDJVmCP1NM1LAq6KG4WerGpKOBCevVjwnxmCaBS2vJKWFrnl9B1fb3W0abWD52MR7jRxmhIbXmrYLxxpN-Q2fnZz9ML1pRdYAbgyoalyobKmgiQbOpEHlqJVap4YoKcJ0Nu4ZG2Mg9cFKQS6QqtDY0xsTDDxOWRit-SXlEW7oDQWDluQ2mVDi0PFKB5bTBCxmHsZJC7Pol3-s1Mw0mOpTGWmT9oE7A3qfWW4axkzaz0CWt7rWpOjn_In-DUtbLIqO0flOvrrHHQLBfWScWFlsJwN3RS6iA1NtHKiARetk8-4sRnyJlR4KWca7WtquzbdJyNYI0WaQAh51GhSUfocyOUl_CxRjWJEKAy5OLqSB51JMHzTaf5AI1w981V5rOMgxRQIPTcGebDzR_aZhwUL9oVrtyiTJLi4Vsi-0R2DLqjvm5LsbjxxORI-xEDJH_3P2o4JM8iAIz4fz6Kjkhvs9669wDwNnpAnoi5GJD9k7Px1WTgf5MMvB__AXvKU3c |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviE-tMMAgEE9miZ0P9wGhbmxq6RZN7Yb2ljm2s1UaSWhaof1T_I3c5aMQiY-nvcYXt_Fd7ncX-35HyBvhBSKFyJMNwkQxz7U-U9wVLOEJADz3pethcfJRFIxOvc9n_tkG-dHWwuCxytYnVo7a5Bq_ke9UFZROAAj3sfjGsGsU7q62LTRqs5jY6--QspUfxp9Av285P9g_2RuxpqsA04DGSxYo4yqjOQRqgQ1T10hswuT52kk9f-AZuJQYmTqWO4FENj5jXK21CPXAtylXAua9RTY9AalMj2zu7kfH09b3AyJUzVaxGQ8LRRA0xXoidHca23hfFKqirXZ9yTtgWPUMWCNDr7jKy07Y2z20-RsKHtwn95rwlQ5re3tANmz2kNyuG1pePyLlbDidsb38C-M0Q6ZkQMoC7J1WdBDzjM6zy3kyX5YU4k56PJmyqnIFol665q0wtK5foYv6-K6lTS8hOo2GmMgj2lKTf1UwX8STx-T0RhTwhPSyPLNbhAplPeNKoxLXeI6CbCHRiMDCFVY6qe0T0a5vrBvOc2y9cRVXG3kh5D71usWolbjRSp-w9V1FzfnxH_ldVN1aFhm7qwv54iJuHECchsZK5YWJDLVnB1bKxAm08ROlQx_-bJ-8RsXHyMmR4aGfC7Uqy3g8i-IhYEAYOABpfxWadoTeNUJpDg-rVVNoAUuGXF8dye2OJHgW3RneQiNsn7mMf72DcGdrmH8efrUexknxIF9m8xXK-AFu7vmyT2THoDvL1x3J5pcV8TnSiggI-Z_--9dfkjujk6PD-HAcTZ6RuxzCUtwF4Hyb9JaLlX0OYeQyedG8u5Sc37S7-Ang54cJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxKdWGGAQiCfTxE5i9wGhslFtFKqpZahvwbGdrdJIQtMK7V_jr-MuH4VIfDztNb44iX2-313s-x0hz0UQiRQ8TzaUiWaB70KmuS9YwhMAeB4qP8Dk5I_T6PAkeL8IFzvkR5sLg8cqW5tYGWqbG_xHPqgyKL0IEG6QNscijg_Gb4pvDCtI4U5rW06jVpGJu_gO4Vv5-ugA5voF5-N3n_YPWVNhgBlA5jWLtPW1NRyctsjJ1LcKCzIFofHSIBwGFi4lVqWe416kkJnPWt8YI6QZhi7lWkC_V8hVKUIf15hcbIM9wIaq7CqW5WFSRFGTtiekP2i05FVR6IrA2g8V78BiVT1gixG94jwvOw5w9_jmb3g4vkVuNo4sHdWad5vsuOwOuVaXtry4S8r5aDZn-_lnxmmGnMmAmQVoPq2IIZYZXWZny2S5Lil4oPR4MmNVDgv4v3TLYGFpnclCV_VBXkebqkJ0Nh1hSI-4S23-VUN_U57cIyeXMvz3SS_LM7dLqNAusL6yOvFt4GmIGxKDWCx84ZSXuj4R7fjGpmE_xyIc53G1pSchCqrHLcZZiZtZ6RO2vauo2T_-I_8Wp24ri9zd1YV8dRo3piBOpXVKBzJR0gRu6JRKvMjYMNFGhvCyffIMJz5Gdo4M9fxUb8oyPppP4xGggYw8ALe_Cs06Qi8boTSHjzW6SbmAIUPWr47kXkcSbIzpNO-iErbfXMa_ViPc2Srmn5ufbpuxUzzSl7l8gzJhhNt8oeoT1VHozvB1W7LlWUWBjgQjApz_B_9--hNyHYxE_OFoOnlIbnDwT3E7gPM90luvNu4R-JPr5HG1cCn5ctmW4ieFTYnZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+nucleocapsid+protein+inhibits+the+PKR-mediated+integrated+stress+response+through+RNA-binding+domain+N2b&rft.jtitle=PLoS+pathogens&rft.au=Aloise%2C+Chiara&rft.au=Schipper%2C+Jelle+G&rft.au=van+Vliet%2C+Arno&rft.au=Oymans%2C+Judith&rft.date=2023-08-22&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=19&rft.issue=8&rft.spage=e1011582&rft_id=info:doi/10.1371%2Fjournal.ppat.1011582&rft.externalDBID=ISR&rft.externalDocID=A763760467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |