SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b

The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granul...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 19; no. 8; p. e1011582
Main Authors Aloise, Chiara, Schipper, Jelle G., van Vliet, Arno, Oymans, Judith, Donselaar, Tim, Hurdiss, Daniel L., de Groot, Raoul J., van Kuppeveld, Frank J. M.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 22.08.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding—prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
AbstractList The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited [beta]-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding—prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. SARS-CoV-2 nucleocapsid protein N is an antagonist of innate immunity but how it averts virus detection by intracellular sensors remains subject to debate. We provide evidence that SARS-CoV-2 N, by sequestering dsRNA through domain N2b, prevents PKR-mediated activation of the integrated stress response as well as detection by RIG-I-like receptors and ensuing type I interferon expression. This function, conserved in human coronavirus 229E, is not affected by mutations that prevent posttranslational modifications, previously implicated in immune evasion, or that target its binding to stress granule scaffold proteins. Our findings further our understanding of how SARS-CoV-2 evades innate immunity, how this may drive viral evolution and why increased N expression may have been a selective advantage to SARS-CoV-2 variants of concern.
Audience Academic
Author Schipper, Jelle G.
Oymans, Judith
de Groot, Raoul J.
van Kuppeveld, Frank J. M.
Aloise, Chiara
Hurdiss, Daniel L.
van Vliet, Arno
Donselaar, Tim
AuthorAffiliation Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
University of Maryland, UNITED STATES
AuthorAffiliation_xml – name: Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
– name: University of Maryland, UNITED STATES
Author_xml – sequence: 1
  givenname: Chiara
  surname: Aloise
  fullname: Aloise, Chiara
– sequence: 2
  givenname: Jelle G.
  surname: Schipper
  fullname: Schipper, Jelle G.
– sequence: 3
  givenname: Arno
  surname: van Vliet
  fullname: van Vliet, Arno
– sequence: 4
  givenname: Judith
  surname: Oymans
  fullname: Oymans, Judith
– sequence: 5
  givenname: Tim
  surname: Donselaar
  fullname: Donselaar, Tim
– sequence: 6
  givenname: Daniel L.
  surname: Hurdiss
  fullname: Hurdiss, Daniel L.
– sequence: 7
  givenname: Raoul J.
  orcidid: 0000-0002-2207-9472
  surname: de Groot
  fullname: de Groot, Raoul J.
– sequence: 8
  givenname: Frank J. M.
  orcidid: 0000-0001-5800-749X
  surname: van Kuppeveld
  fullname: van Kuppeveld, Frank J. M.
BookMark eNqVkl2L1DAUhousuB_6DwQL3uhFxyRtPsabZRj8GFxGmVFvQ5qknQydpCap6L833emCsyyCFNJw8rxvcl7OZXZmndVZ9hyCGSwpfLN3g7eim_W9iDMIIMQMPcouIMZlQUtanf21P88uQ9gDUMESkifZeUkJoAjML7KwXWy2xdJ9L1BuB9lpJ0UfjMp776I2Njd2Z2oTQx53Ov_yaVMctDIiapVOom797TZEr0PI09I7G3RivRvaXb5ZL4raWGVsmyt3EMlvjeqn2eNGdEE_m_5X2bf3774uPxY3nz-sloubQpJyHgsiFBRKIgYV0bSBigFEaIUlaCo8r1Qq1Yo1QCNAGKVzoBSUUpZUzrFukCivshdH375zgU95BY4YwRikAHAiVkdCObHnvTcH4X9zJwy_LTjfcuGjSbHwhirNREVrRmWl55qxGhCpcC0kxZqB5HU93TbUKSOpbfSiOzE9PbFmx1v3k0NQ0RJX42teTQ7e_Rh0iPxggtRdJ6x2w_hwTEqEEGYJfXkPfbi9iWpF6sDYxqWL5WjKF5SMQ1ARmqjZA1T6lD4YmYauMal-Inh9IkhM1L9iK4YQ-Gq7-Q92fcq-PbLSuxC8brg0UUTjxrxMl4Li4-TftcrHyefT5CdxdU98l_w_ZX8ADHEJsg
CitedBy_id crossref_primary_10_1016_j_bmcl_2024_130014
crossref_primary_10_1371_journal_ppat_1012831
crossref_primary_10_1002_jmr_70002
crossref_primary_10_1016_j_jbc_2024_107831
Cites_doi 10.1016/j.molcel.2019.07.029
10.1146/annurev-biochem-060713-035802
10.1038/289414a0
10.20411/pai.v6i2.460
10.1128/JVI.00480-11
10.1261/rna.062000.117
10.1128/jvi.63.4.1822-1826.1989
10.1038/s41392-022-00878-3
10.3389/fchem.2020.624765
10.1016/j.jmb.2022.167516
10.1128/JVI.74.11.4967-4978.2000
10.1038/s41586-020-2286-9
10.1016/j.antiviral.2013.12.009
10.1083/jcb.200212128
10.1128/mBio.00258-16
10.1128/JVI.01275-13
10.1016/j.molcel.2015.06.033
10.1128/jvi.00412-22
10.1091/mbc.01-05-0221
10.1128/JVI.00902-18
10.1186/s43556-020-00001-4
10.1002/pro.3943
10.1006/viro.1997.8867
10.1002/j.1460-2075.1994.tb06431.x
10.1038/s41419-019-2178-9
10.1083/jcb.201609081
10.1128/JVI.02103-20
10.1038/s41421-021-00306-w
10.1016/j.jmb.2007.02.069
10.7554/eLife.18413
10.1371/journal.pone.0043031
10.1128/JVI.00440-09
10.1006/meth.2001.1262
10.1091/mbc.e04-08-0715
10.1038/s41421-021-00275-0
10.1128/JVI.02201-16
10.1371/journal.ppat.1008690
10.1016/j.jbc.2021.100821
10.1016/j.scib.2021.01.013
10.1016/j.cell.2020.03.046
10.1128/JVI.00922-18
10.1073/pnas.1618310114
10.1128/JVI.01010-19
10.1042/BJ20121873
10.4161/rna.6.3.8526
10.3389/fmolb.2020.00219
10.1371/journal.pone.0043283
10.1016/j.molcel.2020.11.025
10.1038/s41564-020-0759-0
10.1126/sciadv.abl4895
10.1073/pnas.1519657113
10.1016/j.bbamcr.2020.118876
10.1146/annurev-immunol-042718-041356
10.1016/j.virol.2021.12.004
10.1038/s41467-021-26498-z
10.1016/j.bbagen.2007.10.014
10.1016/j.cell.2020.03.049
10.1038/s41467-020-20768-y
10.1128/JVI.02791-14
10.1128/JVI.03866-13
10.1371/journal.ppat.1005982
10.1002/pro.3909
10.1016/j.jmb.2007.11.093
10.1038/s41586-021-04352-y
10.1371/journal.pbio.0030005
10.1038/s41556-021-00710-0
10.1002/wrna.1534
10.1128/JVI.01287-10
10.1371/journal.ppat.1006195
10.1093/nar/27.22.4369
10.1111/j.1742-4658.2008.06564.x
10.1016/j.isci.2021.103562
10.1371/journal.ppat.1009100
10.1093/nar/18.18.5401
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Aloise et al 2023 Aloise et al
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Aloise et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Aloise et al 2023 Aloise et al
DBID AAYXX
CITATION
ISN
ISR
3V.
7QL
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1371/journal.ppat.1011582
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SARS-CoV-2 N protein inhibits the PKR-mediated stress response via RNA-binding domain N2b
EISSN 1553-7374
ExternalDocumentID 2865506075
oai_doaj_org_article_f7de8a47b87c4e9e88b06cd5bac75e80
PMC10473545
A763760467
10_1371_journal_ppat_1011582
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GrantInformation_xml – fundername: ;
  grantid: OCENW.KLEIN.344
– fundername: ;
  grantid: 813343
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
~8M
PMFND
3V.
7QL
7U9
7XB
8FK
AZQEC
C1K
COVID
DWQXO
GNUQQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
M~E
ID FETCH-LOGICAL-c639t-6ad1adc281d6e7f1d8026745c0f4594d7f1bd8f0e20687790dd1ccc37c95ef2a3
IEDL.DBID M48
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 29 00:48:04 EST 2024
Wed Aug 27 01:29:49 EDT 2025
Thu Aug 21 18:36:22 EDT 2025
Fri Jul 11 05:05:58 EDT 2025
Fri Jul 25 12:12:21 EDT 2025
Tue Jun 17 22:24:15 EDT 2025
Tue Jun 10 21:19:26 EDT 2025
Fri Jun 27 05:46:43 EDT 2025
Fri Jun 27 05:27:36 EDT 2025
Tue Jul 01 03:52:17 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-6ad1adc281d6e7f1d8026745c0f4594d7f1bd8f0e20687790dd1ccc37c95ef2a3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-5800-749X
0000-0002-2207-9472
OpenAccessLink https://doaj.org/article/f7de8a47b87c4e9e88b06cd5bac75e80
PMID 37607209
PQID 2865506075
PQPubID 1436335
PageCount e1011582
ParticipantIDs plos_journals_2865506075
doaj_primary_oai_doaj_org_article_f7de8a47b87c4e9e88b06cd5bac75e80
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10473545
proquest_miscellaneous_2856322258
proquest_journals_2865506075
gale_infotracmisc_A763760467
gale_infotracacademiconefile_A763760467
gale_incontextgauss_ISR_A763760467
gale_incontextgauss_ISN_A763760467
crossref_citationtrail_10_1371_journal_ppat_1011582
crossref_primary_10_1371_journal_ppat_1011582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230822
PublicationDateYYYYMMDD 2023-08-22
PublicationDate_xml – month: 8
  year: 2023
  text: 20230822
  day: 22
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS pathogens
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Donovan (ppat.1011582.ref005) 2017; 23
B Gao (ppat.1011582.ref032) 2021; 17
E Nikolakaki (ppat.1011582.ref061) 2008; 1780
S Hofmann (ppat.1011582.ref014) 2021; 1868
DE Gordon (ppat.1011582.ref037) 2020; 583
F Borghese (ppat.1011582.ref064) 2011; 85
HH Rabouw (ppat.1011582.ref031) 2020; 5
KR Hurst (ppat.1011582.ref046) 2010; 84
KM Scherer (ppat.1011582.ref072) 2022; 8
Y Wu (ppat.1011582.ref011) 2022
SL Schwartz (ppat.1011582.ref007) 2019; 10
R Zhou (ppat.1011582.ref059) 2020; 1
JS Yoo (ppat.1011582.ref021) 2014; 10
H Liu (ppat.1011582.ref036) 2022; 96
J Nejepinska (ppat.1011582.ref044) 2012; 7
F Borghese (ppat.1011582.ref065) 2019; 93
GM Duke (ppat.1011582.ref077) 1989; 63
DH Wreschner (ppat.1011582.ref002) 1981; 289
M Biswal (ppat.1011582.ref040) 2022; 434
M Yoneyama (ppat.1011582.ref010) 2016; 159
AG Hinnebusch (ppat.1011582.ref008) 2014; 83
JL Llácer (ppat.1011582.ref009) 2015; 59
JR Wheeler (ppat.1011582.ref017) 2016; 5
HH Rabouw (ppat.1011582.ref027) 2016; 12
S Wang (ppat.1011582.ref063) 2021; 23
JB Andersen (ppat.1011582.ref003) 2009; 6
A Kaminski (ppat.1011582.ref067) 1994; 13
EF Pettersen (ppat.1011582.ref079) 2021; 30
CK Chang (ppat.1011582.ref047) 2014; 103
E Kindler (ppat.1011582.ref025) 2017; 13
J Zhao (ppat.1011582.ref026) 2020; 95
R Molenkamp (ppat.1011582.ref052) 1997; 239
SA Goldstein (ppat.1011582.ref030) 2017; 91
Y Zheng (ppat.1011582.ref069) 2022; 7
S Lu (ppat.1011582.ref075) 2021; 12
M Takeda (ppat.1011582.ref058) 2008; 380
JM Burke (ppat.1011582.ref006) 2019; 75
E Nikolakaki (ppat.1011582.ref050) 2020; 7
CY Chen (ppat.1011582.ref056) 2007; 368
S Nabeel-Shah (ppat.1011582.ref068) 2022; 25
L Kuo (ppat.1011582.ref053) 2014; 88
W Huang (ppat.1011582.ref055) 2021; 7
M Yang (ppat.1011582.ref057) 2020; 8
LG Thorne (ppat.1011582.ref073) 2022; 602
S Leary (ppat.1011582.ref074) 2021; 6
KJ Livak (ppat.1011582.ref078) 2001; 25
CA Koetzner (ppat.1011582.ref051) 2022; 567
L Luo (ppat.1011582.ref034) 2021; 66
S. Hur (ppat.1011582.ref001) 2019; 37
CR Carlson (ppat.1011582.ref062) 2020; 80
LC Reineke (ppat.1011582.ref022) 2015; 89
J Guillén-Boixet (ppat.1011582.ref018) 2020; 181
W Yang (ppat.1011582.ref023) 2019; 10
Y Li (ppat.1011582.ref004) 2016; 113
Z-Q Zheng (ppat.1011582.ref035) 2021; 7
KR Hurst (ppat.1011582.ref054) 2013; 87
MP Robertson (ppat.1011582.ref060) 2005; 3
T Kruse (ppat.1011582.ref038) 2021; 12
J Li (ppat.1011582.ref039) 2021; 2
DC Dinesh (ppat.1011582.ref071) 2020; 16
KH Mellits (ppat.1011582.ref041) 1990; 18
Q Ye (ppat.1011582.ref048) 2020; 29
H Tourrière (ppat.1011582.ref015) 2003; 160
T Gantke (ppat.1011582.ref043) 2013; 452
JM Thornbrough (ppat.1011582.ref029) 2016; 7
CA de Haan (ppat.1011582.ref070) 2000; 74
N Gilks (ppat.1011582.ref016) 2004; 15
T Cai (ppat.1011582.ref033) 2021; 297
LJ Visser (ppat.1011582.ref066) 2019; 93
K Nakagawa (ppat.1011582.ref028) 2018; 92
X Deng (ppat.1011582.ref024) 2017; 114
K Onomoto (ppat.1011582.ref020) 2012; 7
MD Panas (ppat.1011582.ref013) 2016; 215
P Yang (ppat.1011582.ref019) 2020; 181
Z Yang (ppat.1011582.ref076) 2022; 10
F Terenzi (ppat.1011582.ref042) 1999; 27
N Kedersha (ppat.1011582.ref012) 2002; 13
KR Hurst (ppat.1011582.ref045) 2009; 83
TY Peng (ppat.1011582.ref049) 2008; 275
References_xml – volume: 75
  start-page: 1203
  issue: 6
  year: 2019
  ident: ppat.1011582.ref006
  article-title: RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2019.07.029
– volume: 83
  start-page: 779
  year: 2014
  ident: ppat.1011582.ref008
  article-title: The scanning mechanism of eukaryotic translation initiation
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-060713-035802
– volume: 289
  start-page: 414
  issue: 5796
  year: 1981
  ident: ppat.1011582.ref002
  article-title: Interferon action—sequence specificity of the ppp(A2′p)nA-dependent ribonuclease.
  publication-title: Nature
  doi: 10.1038/289414a0
– volume: 10
  start-page: e1004012
  issue: 3
  year: 2014
  ident: ppat.1011582.ref021
  article-title: DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation.
  publication-title: PLoS Pathog.PubMed Central PMCID
– volume: 6
  start-page: 27
  issue: 2
  year: 2021
  ident: ppat.1011582.ref074
  article-title: Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level.
  publication-title: Pathog Immun.
  doi: 10.20411/pai.v6i2.460
– volume: 85
  start-page: 9614
  issue: 18
  year: 2011
  ident: ppat.1011582.ref064
  article-title: The Leader Protein of Cardioviruses Inhibits Stress Granule Assembly
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00480-11
– volume: 23
  start-page: 1660
  issue: 11
  year: 2017
  ident: ppat.1011582.ref005
  article-title: Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery
  publication-title: Rna
  doi: 10.1261/rna.062000.117
– volume: 63
  start-page: 1822
  issue: 4
  year: 1989
  ident: ppat.1011582.ref077
  article-title: Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts.
  publication-title: J Virol
  doi: 10.1128/jvi.63.4.1822-1826.1989
– volume: 7
  start-page: 22
  issue: 1
  year: 2022
  ident: ppat.1011582.ref069
  article-title: SARS-CoV-2 NSP5 and N protein counteract the RIG-I signaling pathway by suppressing the formation of stress granules.
  publication-title: Signal Transduction and Targeted Therapy
  doi: 10.1038/s41392-022-00878-3
– volume: 8
  start-page: 624765
  year: 2020
  ident: ppat.1011582.ref057
  article-title: Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences.
  publication-title: Front Chem.
  doi: 10.3389/fchem.2020.624765
– volume: 434
  start-page: 167516
  issue: 9
  year: 2022
  ident: ppat.1011582.ref040
  article-title: SARS-CoV-2 Nucleocapsid Protein Targets a Conserved Surface Groove of the NTF2-like Domain of G3BP1
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2022.167516
– volume: 74
  start-page: 4967
  issue: 11
  year: 2000
  ident: ppat.1011582.ref070
  article-title: Assembly of the coronavirus envelope: homotypic interactions between the M proteins
  publication-title: J Virol
  doi: 10.1128/JVI.74.11.4967-4978.2000
– volume: 583
  start-page: 459
  issue: 7816
  year: 2020
  ident: ppat.1011582.ref037
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
  doi: 10.1038/s41586-020-2286-9
– volume: 103
  start-page: 39
  year: 2014
  ident: ppat.1011582.ref047
  article-title: The SARS coronavirus nucleocapsid protein—forms and functions
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2013.12.009
– volume: 160
  start-page: 823
  issue: 6
  year: 2003
  ident: ppat.1011582.ref015
  article-title: The RasGAP-associated endoribonuclease G3BP assembles stress granules
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200212128
– volume: 7
  start-page: e00258
  issue: 2
  year: 2016
  ident: ppat.1011582.ref029
  article-title: Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation.
  publication-title: mBio
  doi: 10.1128/mBio.00258-16
– volume: 87
  start-page: 9159
  issue: 16
  year: 2013
  ident: ppat.1011582.ref054
  article-title: Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex
  publication-title: J Virol
  doi: 10.1128/JVI.01275-13
– volume: 59
  start-page: 399
  issue: 3
  year: 2015
  ident: ppat.1011582.ref009
  article-title: Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.06.033
– volume: 96
  start-page: e0041222
  issue: 12
  year: 2022
  ident: ppat.1011582.ref036
  article-title: SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication
  publication-title: J Virol
  doi: 10.1128/jvi.00412-22
– volume: 13
  start-page: 195
  issue: 1
  year: 2002
  ident: ppat.1011582.ref012
  article-title: Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules.
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.01-05-0221
– volume: 159
  start-page: 279
  issue: 3
  year: 2016
  ident: ppat.1011582.ref010
  article-title: Regulation of antiviral innate immune signaling by stress-induced RNA granules
  publication-title: The Journal of Biochemistry
– volume: 92
  issue: 20
  year: 2018
  ident: ppat.1011582.ref028
  article-title: Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication
  publication-title: J Virol
  doi: 10.1128/JVI.00902-18
– volume: 1
  start-page: 2
  issue: 1
  year: 2020
  ident: ppat.1011582.ref059
  article-title: Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein.
  publication-title: Mol Biomed.
  doi: 10.1186/s43556-020-00001-4
– start-page: 12
  year: 2022
  ident: ppat.1011582.ref011
  article-title: The Regulation of Integrated Stress Response Signaling Pathway on Viral Infection and Viral Antagonism.
  publication-title: Frontiers in Microbiology
– volume: 30
  start-page: 70
  issue: 1
  year: 2021
  ident: ppat.1011582.ref079
  article-title: UCSF ChimeraX: Structure visualization for researchers, educators, and developers
  publication-title: Protein Sci
  doi: 10.1002/pro.3943
– volume: 239
  start-page: 78
  issue: 1
  year: 1997
  ident: ppat.1011582.ref052
  article-title: Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal
  publication-title: Virology
  doi: 10.1006/viro.1997.8867
– volume: 13
  start-page: 1673
  issue: 7
  year: 1994
  ident: ppat.1011582.ref067
  article-title: Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site
  publication-title: Embo j
  doi: 10.1002/j.1460-2075.1994.tb06431.x
– volume: 10
  start-page: 946
  issue: 12
  year: 2019
  ident: ppat.1011582.ref023
  article-title: G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response.
  publication-title: Cell Death & Disease.
  doi: 10.1038/s41419-019-2178-9
– volume: 215
  start-page: 313
  issue: 3
  year: 2016
  ident: ppat.1011582.ref013
  article-title: Mechanistic insights into mammalian stress granule dynamics
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201609081
– volume: 95
  issue: 7
  year: 2020
  ident: ppat.1011582.ref026
  article-title: Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation
  publication-title: J Virol
  doi: 10.1128/JVI.02103-20
– volume: 7
  start-page: 69
  issue: 1
  year: 2021
  ident: ppat.1011582.ref055
  article-title: Molecular determinants for regulation of G3BP1/2 phase separation by the SARS-CoV-2 nucleocapsid protein
  publication-title: Cell Discovery
  doi: 10.1038/s41421-021-00306-w
– volume: 368
  start-page: 1075
  issue: 4
  year: 2007
  ident: ppat.1011582.ref056
  article-title: Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.02.069
– volume: 5
  start-page: e18413
  year: 2016
  ident: ppat.1011582.ref017
  article-title: Distinct stages in stress granule assembly and disassembly.
  publication-title: eLife.
  doi: 10.7554/eLife.18413
– volume: 7
  start-page: e43031
  issue: 8
  year: 2012
  ident: ppat.1011582.ref020
  article-title: Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043031
– volume: 83
  start-page: 7221
  issue: 14
  year: 2009
  ident: ppat.1011582.ref045
  article-title: Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein
  publication-title: J Virol
  doi: 10.1128/JVI.00440-09
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: ppat.1011582.ref078
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 15
  start-page: 5383
  issue: 12
  year: 2004
  ident: ppat.1011582.ref016
  article-title: Stress granule assembly is mediated by prion-like aggregation of TIA-1
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e04-08-0715
– volume: 7
  start-page: 38
  issue: 1
  year: 2021
  ident: ppat.1011582.ref035
  article-title: SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication
  publication-title: Cell Discovery
  doi: 10.1038/s41421-021-00275-0
– volume: 91
  issue: 5
  year: 2017
  ident: ppat.1011582.ref030
  article-title: Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L
  publication-title: J Virol
  doi: 10.1128/JVI.02201-16
– volume: 17
  start-page: e1008690
  issue: 2
  year: 2021
  ident: ppat.1011582.ref032
  article-title: Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008690
– volume: 297
  start-page: 100821
  issue: 1
  year: 2021
  ident: ppat.1011582.ref033
  article-title: Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2021.100821
– volume: 66
  start-page: 1194
  issue: 12
  year: 2021
  ident: ppat.1011582.ref034
  article-title: SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production.
  publication-title: Sci Bull (Beijing).
  doi: 10.1016/j.scib.2021.01.013
– volume: 181
  start-page: 325
  issue: 2
  year: 2020
  ident: ppat.1011582.ref019
  article-title: G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.046
– volume: 93
  issue: 2
  year: 2019
  ident: ppat.1011582.ref066
  article-title: Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation
  publication-title: J Virol
  doi: 10.1128/JVI.00922-18
– volume: 114
  start-page: E4251
  issue: 21
  year: 2017
  ident: ppat.1011582.ref024
  article-title: Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1618310114
– volume: 93
  issue: 19
  year: 2019
  ident: ppat.1011582.ref065
  article-title: The Leader Protein of Theiler’s Virus Prevents the Activation of PKR
  publication-title: J Virol
  doi: 10.1128/JVI.01010-19
– volume: 452
  start-page: 359
  issue: 2
  year: 2013
  ident: ppat.1011582.ref043
  article-title: Ebola virus VP35 induces high-level production of recombinant TPL-2-ABIN-2-NF-κB1 p105 complex in co-transfected HEK-293 cells
  publication-title: Biochem J
  doi: 10.1042/BJ20121873
– volume: 6
  start-page: 305
  issue: 3
  year: 2009
  ident: ppat.1011582.ref003
  article-title: Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence
  publication-title: RNA Biol
  doi: 10.4161/rna.6.3.8526
– volume: 7
  start-page: 219
  year: 2020
  ident: ppat.1011582.ref050
  article-title: SR/RS Motifs as Critical Determinants of Coronavirus Life Cycle.
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.00219
– volume: 7
  start-page: e43283
  issue: 8
  year: 2012
  ident: ppat.1011582.ref044
  article-title: Deep Sequencing Reveals Complex Spurious Transcription from Transiently Transfected Plasmids.
  publication-title: PLOS ONE.
  doi: 10.1371/journal.pone.0043283
– volume: 80
  start-page: 1092
  issue: 6
  year: 2020
  ident: ppat.1011582.ref062
  article-title: Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.11.025
– volume: 5
  start-page: 1361
  issue: 11
  year: 2020
  ident: ppat.1011582.ref031
  article-title: Inhibition of the integrated stress response by viral proteins that block p-eIF2–eIF2B association.
  publication-title: Nature Microbiology.
  doi: 10.1038/s41564-020-0759-0
– volume: 8
  start-page: eabl4895
  issue: 1
  year: 2022
  ident: ppat.1011582.ref072
  article-title: SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress.
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abl4895
– volume: 113
  start-page: 2241
  issue: 8
  year: 2016
  ident: ppat.1011582.ref004
  article-title: Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1519657113
– volume: 1868
  start-page: 118876
  issue: 1
  year: 2021
  ident: ppat.1011582.ref014
  article-title: Molecular mechanisms of stress granule assembly and disassembly
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2020.118876
– volume: 37
  start-page: 349
  issue: 1
  year: 2019
  ident: ppat.1011582.ref001
  article-title: Double-Stranded RNA Sensors and Modulators in Innate Immunity
  publication-title: Annual Review of Immunology
  doi: 10.1146/annurev-immunol-042718-041356
– volume: 567
  start-page: 1
  year: 2022
  ident: ppat.1011582.ref051
  article-title: Analysis of a crucial interaction between the coronavirus nucleocapsid protein and the major membrane-bound subunit of the viral replicase-transcriptase complex
  publication-title: Virology
  doi: 10.1016/j.virol.2021.12.004
– volume: 12
  start-page: 6761
  issue: 1
  year: 2021
  ident: ppat.1011582.ref038
  article-title: Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-26498-z
– volume: 1780
  start-page: 214
  issue: 2
  year: 2008
  ident: ppat.1011582.ref061
  article-title: RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2007.10.014
– volume: 181
  start-page: 346
  issue: 2
  year: 2020
  ident: ppat.1011582.ref018
  article-title: RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.049
– volume: 12
  start-page: 502
  issue: 1
  year: 2021
  ident: ppat.1011582.ref075
  article-title: The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-20768-y
– volume: 89
  start-page: 2575
  issue: 5
  year: 2015
  ident: ppat.1011582.ref022
  article-title: The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses
  publication-title: J Virol
  doi: 10.1128/JVI.02791-14
– volume: 88
  start-page: 4451
  issue: 8
  year: 2014
  ident: ppat.1011582.ref053
  article-title: Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein
  publication-title: J Virol
  doi: 10.1128/JVI.03866-13
– volume: 12
  start-page: e1005982
  issue: 10
  year: 2016
  ident: ppat.1011582.ref027
  article-title: Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005982
– volume: 29
  start-page: 1890
  issue: 9
  year: 2020
  ident: ppat.1011582.ref048
  article-title: Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein
  publication-title: Protein Sci
  doi: 10.1002/pro.3909
– volume: 380
  start-page: 608
  issue: 4
  year: 2008
  ident: ppat.1011582.ref058
  article-title: Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.11.093
– volume: 602
  start-page: 487
  issue: 7897
  year: 2022
  ident: ppat.1011582.ref073
  article-title: Evolution of enhanced innate immune evasion by SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04352-y
– volume: 3
  start-page: e5
  issue: 1
  year: 2005
  ident: ppat.1011582.ref060
  article-title: . The structure of a rigorously conserved RNA element within the SARS virus genome
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030005
– volume: 23
  start-page: 718
  issue: 7
  year: 2021
  ident: ppat.1011582.ref063
  article-title: Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity
  publication-title: Nature Cell Biology
  doi: 10.1038/s41556-021-00710-0
– volume: 10
  issue: 12
  year: 2022
  ident: ppat.1011582.ref076
  article-title: Engagement of the G3BP2-TRIM25 Interaction by Nucleocapsid Protein Suppresses the Type I Interferon Response in SARS-CoV-2-Infected Cells.
  publication-title: Vaccines (Basel).
– volume: 2
  start-page: 99
  issue: 1
  year: 2021
  ident: ppat.1011582.ref039
  article-title: Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis.
  publication-title: Med (N Y).
– volume: 10
  start-page: e1534
  issue: 4
  year: 2019
  ident: ppat.1011582.ref007
  article-title: RNA regulation of the antiviral protein 2’-5’-oligoadenylate synthetase.
  publication-title: Wiley Interdiscip Rev RNA.
  doi: 10.1002/wrna.1534
– volume: 84
  start-page: 10276
  issue: 19
  year: 2010
  ident: ppat.1011582.ref046
  article-title: An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA
  publication-title: J Virol
  doi: 10.1128/JVI.01287-10
– volume: 13
  start-page: e1006195
  issue: 2
  year: 2017
  ident: ppat.1011582.ref025
  article-title: Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006195
– volume: 27
  start-page: 4369
  issue: 22
  year: 1999
  ident: ppat.1011582.ref042
  article-title: The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/27.22.4369
– volume: 275
  start-page: 4152
  issue: 16
  year: 2008
  ident: ppat.1011582.ref049
  article-title: Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization.
  publication-title: Febs j.
  doi: 10.1111/j.1742-4658.2008.06564.x
– volume: 25
  start-page: 103562
  issue: 1
  year: 2022
  ident: ppat.1011582.ref068
  article-title: SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response.
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103562
– volume: 16
  start-page: e1009100
  issue: 12
  year: 2020
  ident: ppat.1011582.ref071
  article-title: Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009100
– volume: 18
  start-page: 5401
  issue: 18
  year: 1990
  ident: ppat.1011582.ref041
  article-title: Removal of double-stranded contaminants from RNA transcripts: synthesis of adenovirus VA RNA 1 from a T7 vector
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/18.18.5401
SSID ssj0041316
Score 2.4719782
Snippet The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e1011582
SubjectTerms Analysis
Antiviral drugs
Binding
Biological response modifiers
Biology and life sciences
Coronaviruses
COVID-19
Double-stranded RNA
Genomes
Innate immunity
Interferon
Kinases
Medicine and health sciences
Microscopy
Middle East respiratory syndrome
Mode of action
N protein
Nucleocapsids
Packaging
Plasmids
Post-translation
Proteins
Research and Analysis Methods
Respiratory diseases
Sensors
Sequestering
Severe acute respiratory syndrome coronavirus 2
Stress response
Viral diseases
Viral infections
Viruses
β-Interferon
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgiftLTKqsIPq3NfmX3Hs9iqYqH3FnpW9iv2IM2OZq7B_97Zza5owGlL75mJ0syM7vz22TmN4S8k6qUNSBPNjXeMcWTZk5wybzwEOCFtlxhcfK3eXl2rr5c6Itbrb4wJ6ynB-4Vd1ybmKxTxlsTVJoma31Rhqi9C0Ynm0_rEPN2h6l-D4adOTc9xaY4zMiyHIrmpOHHg40-rNcu00dzbcUoKGXu_v0OfbC-arsR_BwnT96KRqePyMMBRtJZ__iPyb3UPCH3-8aSv5-SbjlbLNlJ-5MJ2iBjMUSsNfgdzbQMq4aumsuVX206CviPfv-6YLmCBNAn3fNHRNrXkdCbPo020aGnD13MZ3igxqhHY3vtYL658M_I-emnHydnbGivwALAkg0rXeQuBgGItUym5tFiNyqlQ1ErPVURLvlo6yKJorRISxgjDyFIE6Y61cLJ5-SgaZt0SKh0SUVuo_M8qsIBavcBI6HkEkxUpwmRO_1WYeAexxYYV1X-oWbgDNLrrUKrVINVJoTt71r33Bt3yH9E0-1lkTk7XwB_qgZ_qu7ypwl5i4avkBujweSbX27bddXn5byawV5sygJCyz-FFiOh94NQ3cLLBjcUPIDKkHNrJHk0koQVHkbDh-iEu3fuqlxNXJSA9uDOnWP-ffjNfhgnxYS6JrVblNEl_mTTdkLsyKFH6huPNKvLTECO9B4SoPeL_6Hwl-SBAOCI3-mFOCIHm5ttegVAb-Nf5zX9BzpwUgc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lj9MwELagCIkL4qktLMggJE5mEzuJ3RMqK1YLiAq1LNpb5Fd2K-0moWkP_HtmHDcQicc1nrw89sxne-YbQl6JrBAVIE82k0azLPU50zwVzHADDp7nKs0wOfnzojg9yz6e5-dxw62LYZV7mxgMtWss7pEfhQzKpAAP97b9zrBqFJ6uxhIaN8ktpC7DkC55Piy4wD6H0qdYGodJURQxdU7I9Chq6k3b6kAineaKj1xTYPAf7PSkvWq6EQgdh1D-5pNO7pG7EUzSea_9--SGrx-Q2315yR8PSbeaL1fsuPnGOK2Rtxj8VgujjwZyhnVN1_Xl2qy3HQUUSL98WrKQRwIYlA4sEo722SR00wfTehor-9DlYo7LavR91DXXGp634OYROTt5__X4lMUiC8wCONmyQrtUO8sBtxZeVqlTWJMqy21SZfksc3DJOFUlnieFQnJC51JrrZB2lvuKa_GYTOqm9geECu0zlyqnTeqyRAN2Nxb9oUiFV0nlp0Ts-7e0kYEcC2FcleFYTcJKpO-3ErVSRq1MCRvuansGjv_Iv0PVDbLInx0uNJuLMk7HspLOK51Jo6TN_MwrZZLCutxoK3P42Cl5iYovkSGjxhCcC73ruvLDalHOwSLLIgEH81eh5UjodRSqGvhZq2PaA3QZMm-NJA9HkjDP7aj5AAfh_p-78teMgDv3A_PPzS-GZnwohtXVvtmhTF7gUVuupkSNBvSo-8Yt9foy0JAjyYcAAP7k329_Su5wAIa4D8_5IZlsNzv_DIDc1jwPs_UnccVIKg
  priority: 102
  providerName: ProQuest
Title SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b
URI https://www.proquest.com/docview/2865506075
https://www.proquest.com/docview/2856322258
https://pubmed.ncbi.nlm.nih.gov/PMC10473545
https://doaj.org/article/f7de8a47b87c4e9e88b06cd5bac75e80
http://dx.doi.org/10.1371/journal.ppat.1011582
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBddymAvY580axe0MdiTij9kS3kYIy0t3UZDSZaRN6Mvt4HUTuME1v9-d7JjZmjZXq2TsE93up8s3e8I-RTzNM4BebKh0Irx0CVMRWHMdKQhwEeJDDkmJ1-O04sZ_z5P5ntkV7O1UWD14NYO60nN1svj33f3X8Hhv_iqDSLcdTperZQnhA4TCYvyPsQmga56ydtzBVixfTFULJbDRJymTTLdY6N0gpXn9G9X7t5qWVYdWNq9VPlXlDp_QZ438JKOant4SfZc8Yo8rQtO3r8m1XQ0mbLT8heLaIFMxhDJVmCP1NM1LAq6KG4WerGpKOBCevVjwnxmCaBS2vJKWFrnl9B1fb3W0abWD52MR7jRxmhIbXmrYLxxpN-Q2fnZz9ML1pRdYAbgyoalyobKmgiQbOpEHlqJVap4YoKcJ0Nu4ZG2Mg9cFKQS6QqtDY0xsTDDxOWRit-SXlEW7oDQWDluQ2mVDi0PFKB5bTBCxmHsZJC7Pol3-s1Mw0mOpTGWmT9oE7A3qfWW4axkzaz0CWt7rWpOjn_In-DUtbLIqO0flOvrrHHQLBfWScWFlsJwN3RS6iA1NtHKiARetk8-4sRnyJlR4KWca7WtquzbdJyNYI0WaQAh51GhSUfocyOUl_CxRjWJEKAy5OLqSB51JMHzTaf5AI1w981V5rOMgxRQIPTcGebDzR_aZhwUL9oVrtyiTJLi4Vsi-0R2DLqjvm5LsbjxxORI-xEDJH_3P2o4JM8iAIz4fz6Kjkhvs9669wDwNnpAnoi5GJD9k7Px1WTgf5MMvB__AXvKU3c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviE-tMMAgEE9miZ0P9wGhbmxq6RZN7Yb2ljm2s1UaSWhaof1T_I3c5aMQiY-nvcYXt_Fd7ncX-35HyBvhBSKFyJMNwkQxz7U-U9wVLOEJADz3pethcfJRFIxOvc9n_tkG-dHWwuCxytYnVo7a5Bq_ke9UFZROAAj3sfjGsGsU7q62LTRqs5jY6--QspUfxp9Av285P9g_2RuxpqsA04DGSxYo4yqjOQRqgQ1T10hswuT52kk9f-AZuJQYmTqWO4FENj5jXK21CPXAtylXAua9RTY9AalMj2zu7kfH09b3AyJUzVaxGQ8LRRA0xXoidHca23hfFKqirXZ9yTtgWPUMWCNDr7jKy07Y2z20-RsKHtwn95rwlQ5re3tANmz2kNyuG1pePyLlbDidsb38C-M0Q6ZkQMoC7J1WdBDzjM6zy3kyX5YU4k56PJmyqnIFol665q0wtK5foYv6-K6lTS8hOo2GmMgj2lKTf1UwX8STx-T0RhTwhPSyPLNbhAplPeNKoxLXeI6CbCHRiMDCFVY6qe0T0a5vrBvOc2y9cRVXG3kh5D71usWolbjRSp-w9V1FzfnxH_ldVN1aFhm7qwv54iJuHECchsZK5YWJDLVnB1bKxAm08ROlQx_-bJ-8RsXHyMmR4aGfC7Uqy3g8i-IhYEAYOABpfxWadoTeNUJpDg-rVVNoAUuGXF8dye2OJHgW3RneQiNsn7mMf72DcGdrmH8efrUexknxIF9m8xXK-AFu7vmyT2THoDvL1x3J5pcV8TnSiggI-Z_--9dfkjujk6PD-HAcTZ6RuxzCUtwF4Hyb9JaLlX0OYeQyedG8u5Sc37S7-Ang54cJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEYgXxKdWGGAQiCfTxE5i9wGhslFtFKqpZahvwbGdrdJIQtMK7V_jr-MuH4VIfDztNb44iX2-313s-x0hz0UQiRQ8TzaUiWaB70KmuS9YwhMAeB4qP8Dk5I_T6PAkeL8IFzvkR5sLg8cqW5tYGWqbG_xHPqgyKL0IEG6QNscijg_Gb4pvDCtI4U5rW06jVpGJu_gO4Vv5-ugA5voF5-N3n_YPWVNhgBlA5jWLtPW1NRyctsjJ1LcKCzIFofHSIBwGFi4lVqWe416kkJnPWt8YI6QZhi7lWkC_V8hVKUIf15hcbIM9wIaq7CqW5WFSRFGTtiekP2i05FVR6IrA2g8V78BiVT1gixG94jwvOw5w9_jmb3g4vkVuNo4sHdWad5vsuOwOuVaXtry4S8r5aDZn-_lnxmmGnMmAmQVoPq2IIZYZXWZny2S5Lil4oPR4MmNVDgv4v3TLYGFpnclCV_VBXkebqkJ0Nh1hSI-4S23-VUN_U57cIyeXMvz3SS_LM7dLqNAusL6yOvFt4GmIGxKDWCx84ZSXuj4R7fjGpmE_xyIc53G1pSchCqrHLcZZiZtZ6RO2vauo2T_-I_8Wp24ri9zd1YV8dRo3piBOpXVKBzJR0gRu6JRKvMjYMNFGhvCyffIMJz5Gdo4M9fxUb8oyPppP4xGggYw8ALe_Cs06Qi8boTSHjzW6SbmAIUPWr47kXkcSbIzpNO-iErbfXMa_ViPc2Srmn5ufbpuxUzzSl7l8gzJhhNt8oeoT1VHozvB1W7LlWUWBjgQjApz_B_9--hNyHYxE_OFoOnlIbnDwT3E7gPM90luvNu4R-JPr5HG1cCn5ctmW4ieFTYnZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+nucleocapsid+protein+inhibits+the+PKR-mediated+integrated+stress+response+through+RNA-binding+domain+N2b&rft.jtitle=PLoS+pathogens&rft.au=Aloise%2C+Chiara&rft.au=Schipper%2C+Jelle+G&rft.au=van+Vliet%2C+Arno&rft.au=Oymans%2C+Judith&rft.date=2023-08-22&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=19&rft.issue=8&rft.spage=e1011582&rft_id=info:doi/10.1371%2Fjournal.ppat.1011582&rft.externalDBID=ISR&rft.externalDocID=A763760467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon