Numerical Simulation of Effect of Tuyere Angle and Wall Scaffolding on Unsteady Gas and Particle Flows Including Raceway in Blast Furnace
We have performed the numerical simulation for the particle and gas flows in the raceway region in a blast furnace of which dimension is almost the same as that of the commercial blast furnace using Distinct Element Method for the computation of the multi-body interaction among coke particles, Hard...
Saved in:
Published in | ISIJ International Vol. 47; no. 5; pp. 659 - 668 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Iron and Steel Institute of Japan
2007
Iron and Steel Institute of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have performed the numerical simulation for the particle and gas flows in the raceway region in a blast furnace of which dimension is almost the same as that of the commercial blast furnace using Distinct Element Method for the computation of the multi-body interaction among coke particles, Hard Sphere Model for two body interaction of powder particles based on Direct Simulation of Monte-Carlo Method, and Finite Difference Method for the numerical analysis of Navier–Stokes equations with the interaction terms between gas and particles for the gas flows. In the present simulation we have calculated the particle and gas flows in the raceway regions in which tuyere angles are 0, 3, 7 and 11 degree downward. The downward inclination of tuyere means that the air injects to the higher pressure side. This would stabilize the air flow and the raceway would become stable. However if the inclination angle is too high, the flow becomes unstable by various conditions near the bottom of blast furnace. The coke particle flow rate from the center region of blast furnace and its flow width increase with increasing the tuyere downward angle from the horizontal and attains the maximum value at near 7 degree. It means that the coke particle flow becomes widely uniform at about 7 degree tuyere angle except the region near the furnace wall. We have also calculated the effect of scaffolding on the furnace wall on the particle and gas flows. The coke particle flow distributions with scaffolding on the wall become narrower. The scaffolding is nearer to the raceway, the effect of that becomes stronger. The raceway is not spherical and becomes unstable in cases with scaffolding on the wall. The coke particle velocity becomes higher by the narrow coke particle flow distribution caused by the existence of the scaffolding on the wall and it concentrates coke particles on the upper part of raceway near the furnace wall. The coke particle flow is dammed by the scaffolding and the wide area in which the coke particle velocity is very low is formed on the scaffolding. The gas flow distribution with scaffolding becomes non-uniform, particularly in the area between the softening melting cohesive zones and the scaffolding due to their interaction. The gas flow is also dammed up by the scaffolding and softening melting cohesive zones. The existence of scaffolding near softening melting cohesive zones strongly affects the gas flow. |
---|---|
AbstractList | We have performed the numerical simulation for the particle and gas flows in the raceway region in a blast furnace of which dimension is almost the same as that of the commercial blast furnace using Distinct Element Method for the computation of the multi-body interaction among coke particles, Hard Sphere Model for two body interaction of powder particles based on Direct Simulation of Monte-Carlo Method, and Finite Difference Method for the numerical analysis of Navier–Stokes equations with the interaction terms between gas and particles for the gas flows. In the present simulation we have calculated the particle and gas flows in the raceway regions in which tuyere angles are 0, 3, 7 and 11 degree downward. The downward inclination of tuyere means that the air injects to the higher pressure side. This would stabilize the air flow and the raceway would become stable. However if the inclination angle is too high, the flow becomes unstable by various conditions near the bottom of blast furnace. The coke particle flow rate from the center region of blast furnace and its flow width increase with increasing the tuyere downward angle from the horizontal and attains the maximum value at near 7 degree. It means that the coke particle flow becomes widely uniform at about 7 degree tuyere angle except the region near the furnace wall. We have also calculated the effect of scaffolding on the furnace wall on the particle and gas flows. The coke particle flow distributions with scaffolding on the wall become narrower. The scaffolding is nearer to the raceway, the effect of that becomes stronger. The raceway is not spherical and becomes unstable in cases with scaffolding on the wall. The coke particle velocity becomes higher by the narrow coke particle flow distribution caused by the existence of the scaffolding on the wall and it concentrates coke particles on the upper part of raceway near the furnace wall. The coke particle flow is dammed by the scaffolding and the wide area in which the coke particle velocity is very low is formed on the scaffolding. The gas flow distribution with scaffolding becomes non-uniform, particularly in the area between the softening melting cohesive zones and the scaffolding due to their interaction. The gas flow is also dammed up by the scaffolding and softening melting cohesive zones. The existence of scaffolding near softening melting cohesive zones strongly affects the gas flow. |
Author | Umekage, Toshihiko Yuu, Shinichi Kadowaki, Masatomo |
Author_xml | – sequence: 1 fullname: Umekage, Toshihiko organization: Department of Mechanical Engineering, Kyushu Institute of Technology – sequence: 2 fullname: Kadowaki, Masatomo organization: Department of Mechanical Engineering, Kyushu Institute of Technology – sequence: 3 fullname: Yuu, Shinichi organization: Ohtake R&D Consultant Office |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18886298$$DView record in Pascal Francis |
BookMark | eNptkE9P3DAQxa2KSt1SvoMv9JatHcdxfATEUiT6Ry2oR2vijBcjr0PtRGg_Qr91ze6KHuhlZg6_997ovSdHcYxICOVsWQspP_nsH3ycMEWY_BghLBu1bKV-QxZcNKqSTcuOyIJpLisupX5HTnL2PWN10zWCiwX583XeYPIWAv3pN3PY-dDR0Uvn0E7P1-28xYT0LK4DUogD_QWh0BacG8Pg45oWxV3ME8KwpVeQd9B3SJO3RbEK41Om19GGeQf_AItPsKU-0vMAeaKrubxv8QN56yBkPDnsY3K3ury9-FzdfLu6vji7qWwr9FTVvXaOaUAHnIESdhgQh8FyVkvVd7JVbOg1Y7xThRCiH3gxb6Quh2s4imPyce_7mMbfM-bJbHy2GAJEHOdsaq07pZgqYLcHbRpzTujMY_IbSFvDmXmu37yq3zTKlPqL9PSQAblU6xJE6_M_fdd1ba27wn3Zcw95gjW-AIfu_h8g96PkvHD2HpLBKP4CWpetQg |
CitedBy_id | crossref_primary_10_4028_www_scientific_net_AMR_194_196_38 crossref_primary_10_1016_j_ces_2019_04_025 crossref_primary_10_1016_j_powtec_2016_11_039 crossref_primary_10_1016_j_partic_2019_09_004 crossref_primary_10_4028_www_scientific_net_AMM_313_314_1003 crossref_primary_10_1002_srin_202000227 crossref_primary_10_2355_isijinternational_ISIJINT_2020_167 crossref_primary_10_4028_www_scientific_net_AMM_268_270_1794 crossref_primary_10_1016_j_powtec_2011_07_020 crossref_primary_10_1002_srin_202000071 crossref_primary_10_1016_j_cej_2021_133529 crossref_primary_10_1007_s11663_016_0831_6 crossref_primary_10_1016_S1006_706X_15_60006_1 crossref_primary_10_1016_j_apt_2023_104037 crossref_primary_10_1016_j_powtec_2010_12_005 crossref_primary_10_1002_srin_201700071 crossref_primary_10_1016_j_ces_2024_120101 crossref_primary_10_2355_isijinternational_50_914 crossref_primary_10_1016_j_ijhydene_2023_07_307 crossref_primary_10_1016_j_pecs_2021_100952 crossref_primary_10_1016_j_fuel_2023_129339 crossref_primary_10_2355_isijinternational_54_1457 crossref_primary_10_2355_tetsutohagane_100_256 crossref_primary_10_1179_1743281211Y_0000000018 crossref_primary_10_1016_S1006_706X_11_60058_7 crossref_primary_10_2355_isijinternational_ISIJINT_2020_138 crossref_primary_10_1016_j_fuel_2023_130345 crossref_primary_10_1016_S1006_706X_11_60108_8 crossref_primary_10_2355_tetsutohagane_100_198 crossref_primary_10_2355_isijinternational_ISIJINT_2021_371 crossref_primary_10_1002_aic_15358 crossref_primary_10_1016_j_fuproc_2020_106369 |
Cites_doi | 10.1016/S0307-904X(01)00052-X 10.2355/isijinternational.45.1416 10.1016/0009-2509(77)80012-2 10.2355/isijinternational.44.2150 10.1016/0009-2509(73)85081-X 10.1016/S0032-5910(99)00223-5 10.2355/isijinternational.45.1406 10.1016/S0032-5910(01)00292-3 10.2355/isijinternational.45.1432 10.2355/tetsutohagane1955.83.2_91 10.1299/jsmeb.42.9 10.1016/S0009-2509(01)00384-0 10.1016/S0032-5910(03)00121-9 10.1016/S0032-5910(99)00277-6 |
ContentType | Journal Article |
Copyright | 2007 by The Iron and Steel Institute of Japan 2008 INIST-CNRS |
Copyright_xml | – notice: 2007 by The Iron and Steel Institute of Japan – notice: 2008 INIST-CNRS |
DBID | IQODW AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.2355/isijinternational.47.659 |
DatabaseName | Pascal-Francis CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1347-5460 |
EndPage | 668 |
ExternalDocumentID | 10_2355_isijinternational_47_659 18886298 article_isijinternational_47_5_47_5_659_article_char_en |
GroupedDBID | 2WC 5GY AAFWJ ABEFU ABTAH AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD GROUPED_DOAJ HH5 JSF JSH KQ8 OK1 RJT RZJ SJN TKC XJN ZY4 ~02 IQODW AAYXX CITATION 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c639t-2b9ff09aefa10a73cddeeddc10257b85670db900187fa133bd1ace459bd1f41e3 |
ISSN | 0915-1559 |
IngestDate | Fri Apr 12 10:23:53 EDT 2024 Fri Aug 23 03:49:38 EDT 2024 Sun Oct 22 16:08:39 EDT 2023 Thu Aug 17 20:28:55 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | raceway Pig iron manufacture Blast furnace Gas flow Coke distinct element method tuyere angle Numerical simulation wall scaffolding coke particle Navier-Stokes equation Finite difference method |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c639t-2b9ff09aefa10a73cddeeddc10257b85670db900187fa133bd1ace459bd1f41e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/isijinternational/47/5/47_5_659/_article/-char/en |
PQID | 29987707 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_29987707 crossref_primary_10_2355_isijinternational_47_659 pascalfrancis_primary_18886298 jstage_primary_article_isijinternational_47_5_47_5_659_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2007 2007-00-00 20070101 |
PublicationDateYYYYMMDD | 2007-01-01 |
PublicationDate_xml | – year: 2007 text: 2007 |
PublicationDecade | 2000 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | ISIJ International |
PublicationTitleAlternate | ISIJ Int. |
PublicationYear | 2007 |
Publisher | The Iron and Steel Institute of Japan Iron and Steel Institute of Japan |
Publisher_xml | – name: The Iron and Steel Institute of Japan – name: Iron and Steel Institute of Japan |
References | 15) Y. Matsui, Y. Yamaguchi, M. Sawayama, S. Kitano, N. Nagai and T. Imai: ISIJ Int., 45 (2005), 1432. 2) B. H. Xu, A. B. Yu, S. J. Chew and P. Zulli: J. Soc. Powder Technol., 109 (2000), 13. 7) T. Nouchi, A. B. Yu and K. Takeda: Powder Technol., 134 (2003), 98. 14) K. Kitayama, S. Wakabayashi, T. Inada, K. Takatani and H. Yamaoka: Tetsu-to-Hagané, 83 (1997), 91. 1) H. Yamaoka and K. Nakano: Science and Technology-Promotion of Scientific Research, Interim Report 2001, MEXT, Tokyo, (2001), 1. 10) S. Yuu, H. Nishikawa and T. Umekage: Powder Technol., 118 (2001), 32. 3) S. J. Zhang, A. B. Yu, P. Zulli, B. Wright and P. Austin: Appl. Math. Modell., 26 (2002), 141. 5) J. K. Walters: Chem. Eng. Sci. a, 28 (1973), 13. 12) S. Yuu, T. Umekage and T. Miyahara: ISIJ Int., 45 (2005), 1406. 9) S. Yuu, T. Umekage and Y. Johno: Powder Technol., 110 (2000), 158. 6) J. K. Walters: Chem. Eng. Sci. b, 28 (1973), 779. 11) S. Yuu, S. Katamaki, H. Kohno and T. Umekage: JSME Int. J. B, 42 (1999), 9. 4) H. Takahashi, H. Kawai and Y. Suzuki: Chem. Eng. Sci., 57 (2002), 215. 13) T. Umekage, S. Yuu and M. Kadowaki: ISIJ Int., 45 (2005), 1416. 8) H. Nogami, H. Yamaoka and K. Takatani: ISIJ Int., 44 (2004), 2150. H. Nogami, H. Yamaoka and K. Takatani (8) 2004; 44 S. Yuu, S. Katamaki, H. Kohno and T. Umekage (11) 1999; 42 1 2 3 Y. Matsui, Y. Yamaguchi, M. Sawayama, S. Kitano, N. Nagai and T. Imai (15) 2005; 45 4 5 T. Umekage, S. Yuu and M. Kadowaki (13) 2005; 45 6 7 9 S. Yuu, T. Umekage and T. Miyahara (12) 2005; 45 KATAYAMA KENJI (14) 1997; 83 10 |
References_xml | – ident: 3 doi: 10.1016/S0307-904X(01)00052-X – ident: 1 – volume: 45 start-page: 1416 issn: 0021-1583 year: 2005 ident: 13 publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1416 contributor: fullname: T. Umekage, S. Yuu and M. Kadowaki – ident: 6 doi: 10.1016/0009-2509(77)80012-2 – volume: 44 start-page: 2150 issn: 0021-1583 year: 2004 ident: 8 publication-title: ISIJ Int. doi: 10.2355/isijinternational.44.2150 contributor: fullname: H. Nogami, H. Yamaoka and K. Takatani – ident: 5 doi: 10.1016/0009-2509(73)85081-X – ident: 2 doi: 10.1016/S0032-5910(99)00223-5 – volume: 45 start-page: 1406 issn: 0021-1583 year: 2005 ident: 12 publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1406 contributor: fullname: S. Yuu, T. Umekage and T. Miyahara – ident: 10 doi: 10.1016/S0032-5910(01)00292-3 – volume: 45 start-page: 1432 issn: 0021-1583 year: 2005 ident: 15 publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1432 contributor: fullname: Y. Matsui, Y. Yamaguchi, M. Sawayama, S. Kitano, N. Nagai and T. Imai – volume: 83 start-page: 91 issn: 0021-1575 issue: 2 year: 1997 ident: 14 publication-title: Tetsu-to-Hagané doi: 10.2355/tetsutohagane1955.83.2_91 contributor: fullname: KATAYAMA KENJI – volume: 42 start-page: 9 issn: 0913-185X year: 1999 ident: 11 publication-title: JSME Int. J. B doi: 10.1299/jsmeb.42.9 contributor: fullname: S. Yuu, S. Katamaki, H. Kohno and T. Umekage – ident: 4 doi: 10.1016/S0009-2509(01)00384-0 – ident: 7 doi: 10.1016/S0032-5910(03)00121-9 – ident: 9 doi: 10.1016/S0032-5910(99)00277-6 |
SSID | ssib002484313 ssj0027274 |
Score | 2.0519707 |
Snippet | We have performed the numerical simulation for the particle and gas flows in the raceway region in a blast furnace of which dimension is almost the same as... |
SourceID | proquest crossref pascalfrancis jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 659 |
SubjectTerms | Applied sciences blast furnace coke particle distinct element method Exact sciences and technology finite difference method Metals. Metallurgy Navier–Stokes equation numerical simulation raceway tuyere angle wall scaffolding |
Title | Numerical Simulation of Effect of Tuyere Angle and Wall Scaffolding on Unsteady Gas and Particle Flows Including Raceway in Blast Furnace |
URI | https://www.jstage.jst.go.jp/article/isijinternational/47/5/47_5_659/_article/-char/en https://search.proquest.com/docview/29987707 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ISIJ International, 2007, Vol.47(5), pp.659-668 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfK4AGEEH9F-TP8wFuVESdOkzwCoqxFm4C20niKnNih2dpkWhJN8A34jHwZzrkkTdiQYOIlSlPbveb3k32-O98R8lIqZvqh5EboC9PgKgoNH7RsQyqTKUs6nJn6NPLB4Xh_yWdHztFg8LMTtVQW4V70_dJzJVdBFZ4BrvqU7D8g2w4KD-Ae8IUrIAzXv8L4sER_y3o0TzZ1Ha4qVBBTEsPdogSVWqce-bpGPwG6oiMRx-h20s6CZVpB_W30XmDG5o_1b40m6-w813PIuqwafxaRtrVpI8kbULuL0URLGfXCiabz6axvaGxAXW7UicBS7ossXyWr5CRrJ3whs3OBNbQPRC6KbNN-96UsKyPtSh_iXCU9Q4XbkkoTfnpWB1fPC6XW_UiIGagFadcyyRxDe0txicJ52eau4XAsPdBM3Jiqsyao05mFx01f_IR1e35fKyzQtADgJE-Ok-472ePuXjtALxN3_e6DC10C7gYOXqBn0LTT5-aAptfIdQtmPR1v-uFTd6_ngfJmb60DFqYMb_49hp1pKV_9ScaeLnXjGLYTOk_E7VORA_NiLMxyQceoFKfFXXKn3vHQ1yjuPTJQ6X1yq5MH8wH50RKZbolMs5gikfUdEplWRKaAMNVEph0iU-jREJkCkatGDZFpRWTaEpnWRKZJSisi05rID8ly8m7xdt-oa4QYEejWhWGFfhybvlCxYKZw7QiWayVlBHqz44aeM3ZNGfpV6UloYduhZDAYd2B-YjFnyn5EdtIsVY8JjYUfC8Ggk4y47Tq-tBiPdD5Cy5aceUPCmrcdnGIqmAC20BqhyykBCA3JBGFpe1yRREOy24N1K4HneWPLB-leNDgHsEJot59IVVbmASicnuua7pP_JctTchM9HNoQ-YzsFGeleg6qeRHuVhT_BVVv-Fw |
link.rule.ids | 315,786,790,4038,27945,27946,27947 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Simulation+of+Effect+of+Tuyere+Angle+and+Wall+Scaffolding+on+Unsteady+Gas+and+Particle+Flows+Including+Raceway+in+Blast+Furnace&rft.jtitle=ISIJ+International&rft.au=Umekage%2C+Toshihiko&rft.au=Kadowaki%2C+Masatomo&rft.au=Yuu%2C+Shinichi&rft.date=2007&rft.pub=The+Iron+and+Steel+Institute+of+Japan&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=47&rft.issue=5&rft.spage=659&rft.epage=668&rft_id=info:doi/10.2355%2Fisijinternational.47.659&rft.externalDocID=article_isijinternational_47_5_47_5_659_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon |