Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis tha...
Saved in:
Published in | Molecular psychiatry Vol. 13; no. 2; pp. 147 - 161 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2008
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in
γ
-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD
67
) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA
A
receptor subunits (
α
1,
α
4,
β
3,
γ
2 and
δ
). Real-time qPCR and/or
in situ
hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD
67
, SST and
α
1 subunit mRNA levels, as assessed by
in situ
hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA
A
receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. |
---|---|
AbstractList | In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD
67
) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA
A
receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or
in situ
hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD
67
, SST and α1 subunit mRNA levels, as assessed by
in situ
hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA
A
receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma -aminobutyric acid (GABA)-mediated Inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD sub(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecysto-kinin (CCK)) and (3) GABA sub(A) receptor subunits ( alpha 1, alpha 4, beta 3, gamma 2 and delta ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD sub(67), SST and alpha 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA sub(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia Is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD 67 ) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA A receptor subunits ( α 1, α 4, β 3, γ 2 and δ ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD 67 , SST and α 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA A receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67kDa isoform of glutamic acid decarboxylase (GAD sub(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA sub(A) receptor subunits ( alpha 1, alpha 4, beta 3, gamma 2 and delta ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD sub(67), SST and alpha 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA sub(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.Molecular Psychiatry (2008) 13, 147-161; doi:10.1038/sj.mp.4002011; published online 1 May 2007 In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits. |
Audience | Academic |
Author | Hashimoto, T Mirnics, K Arion, D Maldonado-Avilés, J G Lewis, D A Unger, T Morris, H M Volk, D W |
AuthorAffiliation | 1 Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA 3 Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University, Nashville, TN, USA 2 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA |
AuthorAffiliation_xml | – name: 2 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA – name: 1 Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA – name: 3 Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University, Nashville, TN, USA |
Author_xml | – sequence: 1 givenname: T surname: Hashimoto fullname: Hashimoto, T organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh – sequence: 2 givenname: D surname: Arion fullname: Arion, D organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh – sequence: 3 givenname: T surname: Unger fullname: Unger, T organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh – sequence: 4 givenname: J G surname: Maldonado-Avilés fullname: Maldonado-Avilés, J G organization: Department of Neuroscience, University of Pittsburgh – sequence: 5 givenname: H M surname: Morris fullname: Morris, H M organization: Department of Neuroscience, University of Pittsburgh – sequence: 6 givenname: D W surname: Volk fullname: Volk, D W organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh – sequence: 7 givenname: K surname: Mirnics fullname: Mirnics, K organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University – sequence: 8 givenname: D A surname: Lewis fullname: Lewis, D A email: lewisda@upmc.edu organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Department of Neuroscience, University of Pittsburgh |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20011192$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17471287$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gyBVFIOCUxeM4jnNBWiooSJW4wNlyvOOuV4kdbC9fvx6HLl1atSAfbHmeeT0zfo-LA-cdFsVjIAsgtXgVN4txWjBCKAG4VxwBa3nVNK04yOe66SoGgh0WxzFuCJmDzYPiEFrWAhXtUeGWQ8KgkvUultaVZ8s3yyrgoBKuyhSUizrYKfkR52haY7nyIfo5HtRQTgFN8C7lo_Yh4ffSmzJu-w3qFMtvNq3LqNf2p5_WAZ1VD4v7Rg0RH-32k-Lzu7efTt9X5x_PPpwuzyvN6y5VgL1BXivTMUIbxk0vCNccmOi0JrxhoOte6x6Zxr4lQnOjKCIT1Biqa1qfFK8vdadtP-JKo8u9DHIKdlThh_TKyusRZ9fywn-VVAjKa5EFXu4Egv-yxZjkaKPGYVAO_TbKtulq4JTN5It_k4RCx0T7XxC6FqDuSAaf3QA3fhtcnpeknDUtzwXOck_vpCgA5xT4XupCDSitMz53q-d35RI6Ag3U7dzC4hYqrxWOVme_GZvvryU8-Xu8V3P946sMPN8BKmo1mGwkbeMVR7MVAbr5n6pLTgcfYzbTXorI2d8ybuQ4yZ2_M1_f4LVNv92bK7bDnVm7_mJWdxcY9qO6PeEXinMN3w |
CitedBy_id | crossref_primary_10_1093_brain_awq046 crossref_primary_10_1007_s12031_012_9940_0 crossref_primary_10_3389_fncel_2024_1440834 crossref_primary_10_1016_j_biopsych_2015_03_030 crossref_primary_10_1016_j_jpsychires_2023_08_007 crossref_primary_10_1016_j_pharmthera_2014_02_003 crossref_primary_10_1113_jphysiol_2011_224659 crossref_primary_10_1016_j_biopsych_2008_11_019 crossref_primary_10_1038_mp_2012_37 crossref_primary_10_3389_fncel_2023_1161608 crossref_primary_10_3389_fnins_2020_00673 crossref_primary_10_1093_schbul_sbaa184 crossref_primary_10_1093_schbul_sbz046 crossref_primary_10_3389_fcell_2021_693919 crossref_primary_10_1016_j_neuint_2011_06_009 crossref_primary_10_1038_s41598_017_11645_8 crossref_primary_10_1007_s11481_016_9652_2 crossref_primary_10_1016_j_neuroimage_2011_11_050 crossref_primary_10_1038_s41537_022_00255_7 crossref_primary_10_1016_j_neubiorev_2015_01_007 crossref_primary_10_1155_2016_9847696 crossref_primary_10_3389_fnmol_2018_00270 crossref_primary_10_1038_s41598_020_58449_x crossref_primary_10_3389_fnhum_2022_818711 crossref_primary_10_1176_appi_ajp_2009_08091445 crossref_primary_10_3389_fpsyt_2017_00118 crossref_primary_10_3390_biom10060947 crossref_primary_10_1523_JNEUROSCI_1919_19_2020 crossref_primary_10_1007_s00213_019_05285_1 crossref_primary_10_1007_s12272_019_01196_z crossref_primary_10_1007_s00406_018_0881_7 crossref_primary_10_1038_npp_2014_95 crossref_primary_10_1038_tp_2015_102 crossref_primary_10_7717_peerj_3173 crossref_primary_10_1016_j_pneurobio_2013_07_007 crossref_primary_10_1093_schbul_sbv139 crossref_primary_10_1016_j_brainres_2008_08_023 crossref_primary_10_1038_mp_2017_216 crossref_primary_10_31887_DCNS_2009_11_3_dalewis crossref_primary_10_1093_brain_awaa168 crossref_primary_10_1093_bfgp_elr036 crossref_primary_10_1007_s12035_024_03987_y crossref_primary_10_1016_j_biopsych_2009_01_004 crossref_primary_10_1177_1550059419868872 crossref_primary_10_1016_j_schres_2020_04_027 crossref_primary_10_1016_j_ijdevneu_2011_02_013 crossref_primary_10_1093_cercor_bhv051 crossref_primary_10_1016_j_jpsychires_2009_02_005 crossref_primary_10_1001_jamapsychiatry_2023_2972 crossref_primary_10_1016_j_neubiorev_2016_06_001 crossref_primary_10_1016_j_neuropharm_2011_01_022 crossref_primary_10_1097_YCO_0b013e328323d52e crossref_primary_10_1016_j_schres_2014_10_019 crossref_primary_10_1098_rspb_2017_1169 crossref_primary_10_1523_ENEURO_0360_18_2019 crossref_primary_10_1523_JNEUROSCI_6158_09_2010 crossref_primary_10_1176_appi_ajp_2012_12030305 crossref_primary_10_1016_j_schres_2014_10_011 crossref_primary_10_1038_npp_2009_36 crossref_primary_10_1186_1471_244X_8_87 crossref_primary_10_3109_10673221003747609 crossref_primary_10_1016_j_schres_2014_10_010 crossref_primary_10_1038_s41537_020_00109_0 crossref_primary_10_1016_j_biopsych_2015_07_022 crossref_primary_10_1016_j_biopsych_2014_05_010 crossref_primary_10_1016_j_biopsych_2010_08_020 crossref_primary_10_1016_j_jchemneu_2021_102040 crossref_primary_10_3389_fncir_2024_1286111 crossref_primary_10_1186_s11689_018_9237_x crossref_primary_10_1016_j_biopsych_2013_06_010 crossref_primary_10_1002_ajmg_b_32638 crossref_primary_10_1176_appi_ajp_2010_09060784 crossref_primary_10_1016_j_jpsychires_2021_02_054 crossref_primary_10_1016_j_biopsych_2006_12_021 crossref_primary_10_1093_ijnp_pyu055 crossref_primary_10_1016_j_biopsych_2023_04_003 crossref_primary_10_1371_journal_pone_0068010 crossref_primary_10_1016_j_neuroscience_2017_06_014 crossref_primary_10_1016_j_schres_2015_01_025 crossref_primary_10_1016_j_biopsych_2016_04_006 crossref_primary_10_1073_pnas_1205909109 crossref_primary_10_1093_schbul_sbn070 crossref_primary_10_1016_j_schres_2014_10_020 crossref_primary_10_3389_fnana_2021_670766 crossref_primary_10_1007_s00213_010_2039_9 crossref_primary_10_1016_j_neuropharm_2009_07_027 crossref_primary_10_1016_j_psyneuen_2012_07_011 crossref_primary_10_1038_tp_2017_154 crossref_primary_10_1093_schbul_sbp133 crossref_primary_10_1016_j_mcn_2018_02_001 crossref_primary_10_1016_j_pnpbp_2019_109681 crossref_primary_10_1093_schbul_sbt178 crossref_primary_10_1038_npp_2010_35 crossref_primary_10_1016_j_biopsych_2015_09_009 crossref_primary_10_1016_j_neuroscience_2016_07_028 crossref_primary_10_1007_s12035_017_0715_z crossref_primary_10_1016_j_pneurobio_2014_08_002 crossref_primary_10_1016_j_neuroimage_2022_119286 crossref_primary_10_1016_j_conb_2011_05_013 crossref_primary_10_1176_appi_ajp_2010_10030318 crossref_primary_10_3389_fcell_2022_769853 crossref_primary_10_1016_j_brainres_2011_03_004 crossref_primary_10_1016_j_neubiorev_2023_105064 crossref_primary_10_1093_cercor_bhy227 crossref_primary_10_1038_mp_2013_49 crossref_primary_10_1016_j_schres_2011_07_016 crossref_primary_10_1016_j_neuint_2016_05_006 crossref_primary_10_1371_journal_pone_0124114 crossref_primary_10_1016_j_biopsych_2015_07_005 crossref_primary_10_1038_nrg3934 crossref_primary_10_1155_2011_649325 crossref_primary_10_1038_mp_2009_144 crossref_primary_10_1016_j_biopsych_2025_01_010 crossref_primary_10_1017_S1462399411001955 crossref_primary_10_1038_npp_2013_146 crossref_primary_10_1038_tp_2013_64 crossref_primary_10_1159_000488030 crossref_primary_10_1016_j_biopsych_2016_09_018 crossref_primary_10_1016_j_nbd_2012_11_013 crossref_primary_10_1016_j_schres_2009_09_014 crossref_primary_10_1093_cercor_bhad346 crossref_primary_10_1111_j_1471_4159_2010_06617_x crossref_primary_10_1631_jzus_B2300743 crossref_primary_10_1016_j_neuropharm_2014_08_003 crossref_primary_10_1017_S1461145712001332 crossref_primary_10_1016_j_euroneuro_2024_02_010 crossref_primary_10_1016_j_psyneuen_2020_104744 crossref_primary_10_1016_j_psychres_2019_112621 crossref_primary_10_1523_JNEUROSCI_1423_13_2014 crossref_primary_10_1038_mp_2015_141 crossref_primary_10_1016_j_physbeh_2020_113184 crossref_primary_10_1177_1073858411422114 crossref_primary_10_1096_fj_201901093RRR crossref_primary_10_1523_JNEUROSCI_1970_16_2016 crossref_primary_10_1016_j_schres_2014_04_041 crossref_primary_10_1093_toxsci_kfaa040 crossref_primary_10_1016_j_nbd_2011_03_001 crossref_primary_10_1016_j_neuroimage_2020_117536 crossref_primary_10_1016_j_biopsycho_2015_10_013 crossref_primary_10_1007_s00406_010_0159_1 crossref_primary_10_1124_pharmrev_124_001117 crossref_primary_10_3934_Neuroscience_2015_4_294 crossref_primary_10_1093_cercor_bhq169 crossref_primary_10_1007_s00401_011_0881_4 crossref_primary_10_3389_fnbeh_2020_588400 crossref_primary_10_1155_2013_685917 crossref_primary_10_1017_S1461145710000106 crossref_primary_10_1176_appi_ajp_2015_15010019 crossref_primary_10_1038_npjschz_2014_4 crossref_primary_10_1016_j_biopsych_2014_01_001 crossref_primary_10_1016_j_pnpbp_2012_03_003 crossref_primary_10_3389_fncel_2022_992409 crossref_primary_10_1016_j_pneurobio_2010_06_010 crossref_primary_10_1016_j_jpsychires_2012_08_005 crossref_primary_10_1007_s00406_012_0367_y crossref_primary_10_1016_j_neuropharm_2011_08_010 crossref_primary_10_1038_s41598_020_57467_z crossref_primary_10_1186_s13041_020_00713_2 crossref_primary_10_1038_mp_2014_35 crossref_primary_10_1371_journal_pone_0200809 crossref_primary_10_3389_fnbeh_2016_00059 crossref_primary_10_1093_schbul_sbae083 crossref_primary_10_1111_j_1471_4159_2008_05524_x crossref_primary_10_1016_j_schres_2016_06_003 crossref_primary_10_1016_j_pnpbp_2017_03_018 crossref_primary_10_1038_npp_2013_126 crossref_primary_10_1523_ENEURO_0300_18_2019 crossref_primary_10_1093_ijnp_pyv105 crossref_primary_10_1038_srep33857 crossref_primary_10_1186_s13041_021_00805_7 crossref_primary_10_1016_j_schres_2015_05_040 crossref_primary_10_1038_s41398_019_0492_8 crossref_primary_10_1007_s13127_021_00534_8 crossref_primary_10_1016_j_jpsychires_2014_02_014 crossref_primary_10_1016_j_biopsych_2022_12_004 crossref_primary_10_1093_schbul_sbn022 crossref_primary_10_17116_jnevro2019119081124 crossref_primary_10_1038_npp_2008_172 crossref_primary_10_1176_appi_ajp_20220676 crossref_primary_10_1016_j_tins_2011_10_004 crossref_primary_10_1016_j_pnpbp_2024_111078 crossref_primary_10_1016_j_ijdevneu_2010_08_003 crossref_primary_10_1016_j_nbd_2013_07_008 crossref_primary_10_1093_schbul_sbaa159 crossref_primary_10_1007_s12640_010_9157_3 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_1016_j_brainres_2018_12_025 crossref_primary_10_1016_j_pbb_2011_09_015 crossref_primary_10_1016_j_schres_2024_06_031 crossref_primary_10_1038_npp_2010_75 crossref_primary_10_1177_0004867417728805 crossref_primary_10_3390_brainsci11030405 crossref_primary_10_1134_S1819712421040048 crossref_primary_10_1016_j_biopsych_2023_03_010 crossref_primary_10_1093_schbul_sbx051 crossref_primary_10_1016_j_jpsychires_2021_11_028 crossref_primary_10_1038_npp_2015_117 crossref_primary_10_1016_j_ijdevneu_2010_05_004 crossref_primary_10_1038_mp_2013_167 crossref_primary_10_1038_s41386_023_01728_8 crossref_primary_10_1016_j_schres_2020_06_032 crossref_primary_10_1016_j_biopsych_2021_02_009 crossref_primary_10_1016_j_neuropharm_2016_08_038 crossref_primary_10_1176_appi_ajp_2011_11010052 crossref_primary_10_1038_s41398_020_00988_y crossref_primary_10_1111_j_1399_5618_2011_00931_x crossref_primary_10_1111_j_1471_4159_2011_07237_x crossref_primary_10_1038_s41467_020_16218_4 crossref_primary_10_1038_sj_npp_1301563 crossref_primary_10_3109_01677060903305658 crossref_primary_10_1016_j_biopsych_2009_07_029 crossref_primary_10_1016_j_biopsych_2011_05_030 crossref_primary_10_1002_syn_21973 crossref_primary_10_1016_j_pnpbp_2015_09_006 crossref_primary_10_1016_j_biopsych_2013_05_031 crossref_primary_10_1371_journal_pone_0016886 crossref_primary_10_1016_j_biopsych_2024_12_022 crossref_primary_10_3389_fncel_2015_00472 crossref_primary_10_1016_j_neuropharm_2009_01_021 crossref_primary_10_1016_j_nbd_2014_10_005 crossref_primary_10_1038_mp_2016_147 crossref_primary_10_1016_j_neuron_2018_09_029 crossref_primary_10_3109_01677063_2011_597908 crossref_primary_10_1016_j_biopsych_2020_12_025 crossref_primary_10_1371_journal_pone_0052724 crossref_primary_10_1016_j_bcp_2017_05_009 crossref_primary_10_1038_mp_2015_222 crossref_primary_10_1016_j_neuron_2013_07_010 crossref_primary_10_1038_s41398_020_01108_6 crossref_primary_10_1016_j_psychres_2018_04_036 crossref_primary_10_1093_cercor_bhx169 crossref_primary_10_1017_S0033291724002344 crossref_primary_10_1038_mp_2013_152 crossref_primary_10_3389_fgene_2017_00028 crossref_primary_10_1038_mp_2014_192 crossref_primary_10_1016_j_neuron_2013_11_024 crossref_primary_10_1016_j_neuroscience_2010_06_011 crossref_primary_10_3389_fnana_2020_581685 crossref_primary_10_1016_j_neuroscience_2010_03_066 crossref_primary_10_1016_j_neubiorev_2009_10_010 crossref_primary_10_1093_schbul_sbv092 crossref_primary_10_2217_epi_10_22 crossref_primary_10_1016_j_biopsych_2014_06_026 crossref_primary_10_1523_JNEUROSCI_3542_14_2015 crossref_primary_10_1016_j_brs_2020_06_015 crossref_primary_10_3390_ijms24097680 crossref_primary_10_1016_j_scog_2017_02_001 crossref_primary_10_1016_j_neulet_2018_08_010 crossref_primary_10_1016_j_schres_2018_04_030 crossref_primary_10_1016_j_celrep_2021_109950 crossref_primary_10_1021_acschemneuro_2c00445 crossref_primary_10_1038_s41380_022_01654_z crossref_primary_10_1016_j_schres_2019_10_025 crossref_primary_10_1186_1756_6606_7_41 crossref_primary_10_1523_JNEUROSCI_5268_09_2010 crossref_primary_10_1007_s00406_016_0728_z crossref_primary_10_1016_j_schres_2014_12_026 crossref_primary_10_3389_fphar_2021_646088 crossref_primary_10_1016_j_nbd_2022_105772 crossref_primary_10_1371_journal_pone_0038211 crossref_primary_10_1016_j_nbd_2011_08_025 crossref_primary_10_1016_j_npep_2016_12_010 crossref_primary_10_1111_adb_12353 crossref_primary_10_1038_srep33095 crossref_primary_10_1007_s12640_010_9163_5 crossref_primary_10_1093_schbul_sbw035 crossref_primary_10_1016_j_neubiorev_2018_05_001 crossref_primary_10_1016_j_neuron_2013_03_028 crossref_primary_10_1016_j_pnpbp_2017_10_004 crossref_primary_10_1038_s41380_019_0537_7 crossref_primary_10_1016_j_brainres_2016_08_010 crossref_primary_10_1016_j_bbr_2015_09_007 crossref_primary_10_1126_sciadv_abn8367 crossref_primary_10_3390_ijms232415846 crossref_primary_10_1038_mp_2015_34 crossref_primary_10_1038_s41598_021_99793_w crossref_primary_10_1016_j_bionps_2020_100015 crossref_primary_10_1093_schbul_sbr029 crossref_primary_10_1016_j_neuropharm_2010_12_029 crossref_primary_10_3389_fpsyt_2018_00281 crossref_primary_10_3389_fnins_2021_677153 crossref_primary_10_1007_s11055_020_00952_9 crossref_primary_10_1016_j_neuroscience_2016_02_014 crossref_primary_10_1038_npp_2011_221 crossref_primary_10_1038_npp_2011_102 crossref_primary_10_1038_nrn2462 crossref_primary_10_1073_pnas_1312791110 crossref_primary_10_1038_mp_2014_171 crossref_primary_10_1176_appi_ajp_2015_15020150 crossref_primary_10_1002_syn_20514 crossref_primary_10_1016_j_nbd_2018_06_020 crossref_primary_10_1371_journal_pone_0035511 crossref_primary_10_1002_wcs_1 crossref_primary_10_1038_s41467_019_11335_1 crossref_primary_10_1016_j_biopsych_2011_09_014 crossref_primary_10_1016_j_neuroscience_2013_02_045 crossref_primary_10_1016_j_bbi_2024_08_007 crossref_primary_10_1073_pnas_1308706110 crossref_primary_10_1016_j_pharmthera_2016_11_005 crossref_primary_10_1038_mp_2010_52 crossref_primary_10_3390_ijms18040734 crossref_primary_10_1038_s41537_019_0078_8 crossref_primary_10_3390_ijms18040733 crossref_primary_10_1038_s41386_024_01854_x crossref_primary_10_1159_000488679 crossref_primary_10_1186_s13293_018_0214_6 crossref_primary_10_1038_s41431_019_0485_3 crossref_primary_10_1038_s42003_018_0277_2 crossref_primary_10_1152_jn_91161_2008 crossref_primary_10_1186_s40345_019_0161_0 crossref_primary_10_3389_fncir_2020_00013 crossref_primary_10_1038_npp_2013_300 crossref_primary_10_1038_s41398_021_01210_3 crossref_primary_10_1172_JCI37335 crossref_primary_10_31083_j_jin_2021_01_332 crossref_primary_10_1080_10253890_2021_1942828 crossref_primary_10_1038_s41380_021_01092_3 crossref_primary_10_1016_j_neubiorev_2023_105476 crossref_primary_10_1093_cercor_bhaa360 crossref_primary_10_1038_s41537_018_0044_x crossref_primary_10_1016_j_biopsych_2010_07_017 crossref_primary_10_1152_jn_00661_2020 crossref_primary_10_1007_s12031_017_1003_0 crossref_primary_10_1016_j_schres_2017_01_003 crossref_primary_10_1016_j_nbd_2013_01_009 crossref_primary_10_1016_j_schres_2013_07_010 crossref_primary_10_1038_mp_2010_1 crossref_primary_10_1016_j_bcp_2024_116298 crossref_primary_10_3390_jpm14080822 crossref_primary_10_1093_schbul_sbw022 crossref_primary_10_1007_s00441_013_1648_0 crossref_primary_10_1016_j_biopsych_2014_10_025 crossref_primary_10_1016_j_jpsychires_2009_12_007 crossref_primary_10_1016_j_bbi_2007_09_012 crossref_primary_10_1016_j_neubiorev_2023_105488 crossref_primary_10_1186_s13041_014_0075_9 crossref_primary_10_1016_j_biopsych_2008_08_015 crossref_primary_10_1016_j_pneurobio_2009_07_002 crossref_primary_10_1080_03235408_2023_2289218 crossref_primary_10_1038_s41380_023_02121_z crossref_primary_10_1093_cercor_bhz052 crossref_primary_10_1007_s11920_010_0124_8 crossref_primary_10_1016_j_psychres_2009_09_002 crossref_primary_10_1021_jm901688m crossref_primary_10_1111_j_1749_6632_2012_06543_x crossref_primary_10_1016_j_celrep_2020_107536 crossref_primary_10_1016_j_neuroimage_2012_03_008 crossref_primary_10_1016_j_nbd_2011_12_008 crossref_primary_10_1523_JNEUROSCI_4166_08_2008 crossref_primary_10_1007_s00221_009_2059_z crossref_primary_10_3389_fnmol_2021_827370 crossref_primary_10_1002_dneu_20825 crossref_primary_10_1093_cercor_bhu278 crossref_primary_10_1007_s10989_016_9568_y crossref_primary_10_1016_j_bbr_2013_10_051 crossref_primary_10_3109_00048670903393662 crossref_primary_10_1016_j_neuron_2017_07_034 crossref_primary_10_1002_syn_21924 crossref_primary_10_1007_BF03033811 crossref_primary_10_1016_j_neuroscience_2015_05_055 crossref_primary_10_1016_j_nbd_2011_06_001 crossref_primary_10_1016_j_pbiomolbio_2015_04_008 crossref_primary_10_1007_BF03033813 crossref_primary_10_1016_j_neuropharm_2015_04_012 crossref_primary_10_1176_appi_ajp_2008_08101484 crossref_primary_10_1523_JNEUROSCI_2820_08_2008 crossref_primary_10_3389_fncel_2015_00386 crossref_primary_10_1038_tp_2016_66 crossref_primary_10_1093_cercor_bhac207 crossref_primary_10_3389_fpsyt_2020_00677 crossref_primary_10_1038_nbt_3443 crossref_primary_10_1111_acn_12016 |
Cites_doi | 10.1038/nn1230 10.1016/j.biopsych.2006.02.003 10.1124/jpet.102.036665 10.1038/sj.mp.4001308 10.1002/cne.902480102 10.1038/sj.npp.1300710 10.1523/JNEUROSCI.20-01-00485.2000 10.1038/86730 10.1001/archpsyc.57.11.1061 10.1007/BF00249897 10.1093/cercor/11.12.1170 10.1176/jnp.6.4.348 10.1001/archpsyc.57.3.237 10.1176/appi.ajp.158.2.256 10.1038/nrn1648 10.1093/bioinformatics/bth035 10.1523/JNEUROSCI.04-10-02497.1984 10.1073/pnas.032069099 10.1002/cne.903280209 10.1023/A:1024126110356 10.1038/sj.mp.4001835 10.1124/mol.104.007385 10.1001/archpsyc.1986.01800020020004 10.1523/JNEUROSCI.14-04-02383.1994 10.1073/pnas.95.26.15718 10.1093/biostatistics/4.2.249 10.1523/JNEUROSCI.18-05-01693.1998 10.1002/cne.903410109 10.1002/cne.903590111 10.1093/cercor/5.6.550 10.1152/jn.00240.2003 10.1615/CritRevNeurobiol.v14.i1.10 10.1016/S0920-9964(01)00377-2 10.1073/pnas.0406555102 10.1016/0006-3223(95)00066-6 10.1523/JNEUROSCI.23-15-06315.2003 10.1523/JNEUROSCI.16-08-02701.1996 10.1016/j.biopsych.2004.10.019 10.1016/S0896-6273(00)00085-4 10.1093/cercor/12.10.1063 10.1016/S0022-3956(96)00041-6 10.1006/meth.2001.1262 10.1016/j.ymeth.2005.09.005 10.1113/jphysiol.2004.078915 10.1523/JNEUROSCI.23-07-02618.2003 10.1002/cne.903030406 10.1016/0024-3205(87)90341-9 10.1002/cne.903040206 10.1016/j.nbd.2004.10.020 10.1016/0006-3223(94)00206-I 10.1523/JNEUROSCI.0860-06.2006 10.1093/nar/gni054 10.1016/S0306-4522(99)00189-X 10.1001/archpsyc.57.1.65 10.1523/JNEUROSCI.4035-04.2005 10.1038/nrn1625 10.1002/cne.902830205 10.1016/j.brainresrev.2006.04.001 10.1038/sj.mp.4001739 10.1073/pnas.081071198 10.1073/pnas.95.25.15066 10.1016/0006-8993(94)91060-X 10.1523/JNEUROSCI.23-33-10650.2003 10.1016/j.tins.2004.01.008 10.1038/nrn1519 10.1016/0306-4522(94)90399-9 10.1176/ajp.156.11.1709 10.1016/0306-4522(96)00328-4 10.1001/archpsyc.1995.03950160008002 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2008 2008 INIST-CNRS COPYRIGHT 2008 Nature Publishing Group Copyright Nature Publishing Group Feb 2008 Nature Publishing Group 2008. 2008 Nature Publishing Group All rights reserved 2008 |
Copyright_xml | – notice: Springer Nature Limited 2008 – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2008 Nature Publishing Group – notice: Copyright Nature Publishing Group Feb 2008 – notice: Nature Publishing Group 2008. – notice: 2008 Nature Publishing Group All rights reserved 2008 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7TM 7X8 5PM |
DOI | 10.1038/sj.mp.4002011 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Proquest Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology ProQuest One Psychology Neurosciences Abstracts Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-5578 |
EndPage | 161 |
ExternalDocumentID | PMC2882638 1415284901 A190151378 17471287 20011192 10_1038_sj_mp_4002011 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States United States--US Pittsburgh Pennsylvania |
GeographicLocations_xml | – name: United States – name: United States--US – name: Pittsburgh Pennsylvania |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH067234 – fundername: NIMH NIH HHS grantid: R01 MH043784 – fundername: NIMH NIH HHS grantid: K02 MH070786 – fundername: NIMH NIH HHS grantid: R37 MH043784 – fundername: NIMH NIH HHS grantid: MH067234 – fundername: NIMH NIH HHS grantid: MH45156 – fundername: NIMH NIH HHS grantid: MH43784 – fundername: NIMH NIH HHS grantid: P50 MH045156 – fundername: NICHD NIH HHS grantid: P30 HD015052 – fundername: NIMH NIH HHS grantid: MH070786 |
GroupedDBID | --- -Q- 0R~ 123 29M 2WC 36B 39C 3V. 4.4 406 53G 70F 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ABZZP ACAOD ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AXYYD AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL EPS ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR IPY ITC IWAJR JSO JZLTJ KQ8 M1P M2M M7P NAO NQJWS O9- OK1 OVD P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG TUS UKHRP ~8M AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AADWK AAPBV AAWBL AAYFA AAYJO ABPTK ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADYYL AEDAW AEFTE AFNRJ AGEZK AGGBP AJCLW AJDOV AMRJV IQODW NYICJ ZA5 CGR CUY CVF ECM EIF NPM PMFND AEIIB 7TK 7XB 8FE 8FH 8FK ABRTQ K9. LK8 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7TM 7X8 5PM |
ID | FETCH-LOGICAL-c639t-1ebfe63af9402546fb806c61489cc06541c3bccbe4ceb708c6fa2ee482ff2c323 |
IEDL.DBID | 7X7 |
ISSN | 1359-4184 |
IngestDate | Thu Aug 21 13:55:56 EDT 2025 Mon Jul 21 09:41:07 EDT 2025 Fri Jul 11 03:39:37 EDT 2025 Fri Jul 11 02:57:52 EDT 2025 Sat Aug 23 14:36:30 EDT 2025 Sat Aug 23 14:25:48 EDT 2025 Tue Jun 17 22:22:18 EDT 2025 Tue Jun 10 21:13:08 EDT 2025 Fri May 30 10:49:41 EDT 2025 Sun Oct 22 16:05:38 EDT 2023 Tue Jul 01 00:21:37 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Fri Feb 21 02:39:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | microarray receptor quantitative PCR GABA neuropeptides GAD hybridization Human Molecular hybridization Enzyme Schizophrenia Lyases Glutamate decarboxylase Neuropeptide Psychosis Dorsolateral prefrontal cortex Polymerase chain reaction Carbon-carbon lyases Carboxy-lyases Neurotransmitter Genetics Molecular biology GABAA receptor Gabaergic receptor A in situ hybridization |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c639t-1ebfe63af9402546fb806c61489cc06541c3bccbe4ceb708c6fa2ee482ff2c323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2882638 |
PMID | 17471287 |
PQID | 221166216 |
PQPubID | 44096 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2882638 proquest_miscellaneous_759316248 proquest_miscellaneous_70219487 proquest_miscellaneous_19711390 proquest_journals_2645766387 proquest_journals_221166216 gale_infotracmisc_A190151378 gale_infotracacademiconefile_A190151378 pubmed_primary_17471287 pascalfrancis_primary_20011192 crossref_primary_10_1038_sj_mp_4002011 crossref_citationtrail_10_1038_sj_mp_4002011 springer_journals_10_1038_sj_mp_4002011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-01 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Basingstoke – name: England – name: New York |
PublicationTitle | Molecular psychiatry |
PublicationTitleAbbrev | Mol Psychiatry |
PublicationTitleAlternate | Mol Psychiatry |
PublicationYear | 2008 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Benes, Vincent, Marie, Khan (CR20) 1996; 75 Huntsman, Tran, Potkin, Bunney, Jones (CR22) 1998; 95 Impagnatiello, Guidotti, Pesold, Dwivedi, Caruncho, Pisu (CR69) 1998; 95 Ding, Cantor (CR47) 2004; 37 Fritschy, Mohler (CR65) 1995; 359 Weinberger, Berman, Zec (CR1) 1986; 43 Kawaguchi, Kubota (CR55) 1996; 16 Petryshen, Middleton, Tahl, Rockwell, Purcell, Aldinger (CR66) 2005; 10 Ohnuma, Augood, Arai, McKenna, Emson (CR8) 1999; 93 Bachus, Hyde, Herman, Egan, Kleinman (CR37) 1997; 31 González-Albo, Elston, DeFelipe (CR52) 2001; 11 Mimmack, Ryan, Baba, Navarro-Ruiz, Iritani, Faull (CR40) 2002; 99 Akbarian, Huntsman, Kim, Tafazzoli, Potkin, Bunney (CR70) 1995; 5 Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, Wu (CR72) 2004; 5 Lewis, Campbell, Morrison (CR17) 1986; 248 Somogyi, Klausberger (CR73) 2005; 562 Akbarian, Huang (CR38) 2006; 52 Mirnics, Middleton, Marquez, Lewis, Levitt (CR11) 2000; 28 Hashimoto, Volk, Eggan, Mirnics, Pierri, Sun (CR15) 2003; 23 Gabriel, Davidson, Haroutunian, Powchik, Bierer, Purohit (CR45) 1996; 39 Dorph-Petersen, Pierri, Perel, Sun, Sampson, Lewis (CR34) 2005; 30 DeLima, Morrison (CR54) 1989; 283 Schiffmann, Vanderhaeghen (CR59) 1991; 304 Guidotti, Auta, Davis, Gerevini, Dwivedi, Grayson (CR10) 2000; 57 Hashimoto, Bergen, Nguyen, Xu, Monteggia, Pierri (CR13) 2005; 25 Wei, Zhang, Peng, Houser, Mody (CR62) 2003; 23 Elvevåg, Goldberg (CR3) 2000; 14 Hanada, Mita, Nishino, Tanaka (CR19) 1987; 40 Irizarry, Hobbs, Collin, Beazer-Barclay, Antonellis, Scherf (CR26) 2003; 4 Lewis, Hashimoto, Volk (CR4) 2005; 6 Hakak, Walker, Li, Wong, Davis, Buxbaum (CR39) 2001; 98 Mirnics, Levitt, Lewis (CR43) 2006; 60 Baraban, Tallent (CR57) 2004; 27 Mirnics, Pevsner (CR28) 2004; 7 Volk, Austin, Pierri, Sampson, Lewis (CR12) 2001; 158 Condé, Lund, Jacobowitz, Baimbridge, Lewis (CR16) 1994; 341 Neter, Kutner, Nachtsheim, Wasserman (CR33) 1996 Akbarian, Kim, Potkin, Hagman, Tafazzoli, Bunney (CR7) 1995; 52 Jensen, Chiu, Sokolova, Lester, Mody (CR49) 2003; 90 Hayes, Cameron, Fernstrom, Lewis (CR27) 1991; 303 Hendry, Huntsman, Viñuela, Mohler, de Blas, Jones (CR64) 1994; 14 Ponomarev, Maiya, Harnett, Schafer, Ryabinin, Blednov (CR68) 2006; 26 Lepre, Rice, Tu, Stolovitzky (CR31) 2004; 20 Glantz, Lewis (CR24) 2000; 57 Volk, Pierri, Fritschy, Auh, Sampson, Lewis (CR21) 2002; 12 Stolovitzky, Kundaje, Held, Duggar, Haudenschild, Zhou (CR32) 2005; 102 Hendry, Jones, Emson (CR53) 1984; 4 Unger, Korade, Lazarov, Terrano, Sisodia, Mirnics (CR29) 2005; 37 Pierri, Chaudry, Woo, Lewis (CR48) 1999; 156 Dournaud, Cervera-Pierot, Hirsch, Javoy-Agid, Kordon, Agid (CR36) 1994; 61 Weickert, Hyde, Lipska, Herman, Weinberger, Kleinman (CR44) 2003; 8 Volk, Austin, Pierri, Sampson, Lewis (CR9) 2000; 57 Glorioso, Sabatini, Unger, Hashimoto, Monteggia, Lewis (CR30) 2006; 11 Mangan, Sun, Carpenter, Goodkin, Sieghart, Kapur (CR61) 2005; 67 Kim, Matzilevich, Walsh, Benes, Woo (CR71) 2005; 912 Farrant, Nusser (CR63) 2005; 6 Melchitzky, Lewis (CR56) 2005; 675 Rao, Williams, Goldman-Rakic (CR6) 2000; 20 Kawaguchi, Kondo (CR58) 2002; 31 Imbeaud, Graudens, Boulanger, Barlet, Zaborski, Eveno (CR25) 2005; 33 Hollingshead, Lewis, Mirnics (CR42) 2005; 18 Overstreet, Westbrook (CR50) 2003; 23 Nusser, Sieghart, Somogyi (CR60) 1998; 18 Kralic, Korpi, O'Buckley, Homanics, Morrow (CR67) 2002; 302 Vawter, Crook, Hyde, Kleinman, Weinberger, Becker (CR23) 2002; 58 Kubota, Hattori, Yui (CR51) 1994; 649 Sawaguchi, Matsumura, Kubota (CR5) 1989; 75 Goldman-Rakic (CR2) 1994; 6 Hughes, Mao, Jones, Burchard, Marton, Shannon (CR41) 2001; 19 Virgo, Humphries, Mortimer, Barnes, Hirsch, de Belleroche (CR46) 1995; 37 Livak, Schmittgen (CR35) 2001; 25 Torrey, Barci, Webster, Bartko, Meador-Woodruff, Knable (CR14) 2005; 57 Lund, Lewis (CR18) 1993; 328 P Dournaud (BF4002011_CR36) 1994; 61 S Akbarian (BF4002011_CR70) 1995; 5 PS Goldman-Rakic (BF4002011_CR2) 1994; 6 F Impagnatiello (BF4002011_CR69) 1998; 95 EF Torrey (BF4002011_CR14) 2005; 57 A Guidotti (BF4002011_CR10) 2000; 57 K-A Dorph-Petersen (BF4002011_CR34) 2005; 30 DA Lewis (BF4002011_CR4) 2005; 6 W Wei (BF4002011_CR62) 2003; 23 C Ding (BF4002011_CR47) 2004; 37 J Lepre (BF4002011_CR31) 2004; 20 B Elvevåg (BF4002011_CR3) 2000; 14 S Imbeaud (BF4002011_CR25) 2005; 33 JS Lund (BF4002011_CR18) 1993; 328 LS Overstreet (BF4002011_CR50) 2003; 23 SM Gabriel (BF4002011_CR45) 1996; 39 Y Kawaguchi (BF4002011_CR55) 1996; 16 SHC Hendry (BF4002011_CR64) 1994; 14 JE Kralic (BF4002011_CR67) 2002; 302 ML Mimmack (BF4002011_CR40) 2002; 99 T Sawaguchi (BF4002011_CR5) 1989; 75 K Jensen (BF4002011_CR49) 2003; 90 T Unger (BF4002011_CR29) 2005; 37 M Farrant (BF4002011_CR63) 2005; 6 FM Benes (BF4002011_CR20) 1996; 75 S Akbarian (BF4002011_CR7) 1995; 52 JN Pierri (BF4002011_CR48) 1999; 156 T Ohnuma (BF4002011_CR8) 1999; 93 MC González-Albo (BF4002011_CR52) 2001; 11 KJ Livak (BF4002011_CR35) 2001; 25 DW Volk (BF4002011_CR12) 2001; 158 LA Glantz (BF4002011_CR24) 2000; 57 SE Bachus (BF4002011_CR37) 1997; 31 TL Petryshen (BF4002011_CR66) 2005; 10 AM Kim (BF4002011_CR71) 2005; 912 J Neter (BF4002011_CR33) 1996 SG Rao (BF4002011_CR6) 2000; 20 K Mirnics (BF4002011_CR43) 2006; 60 SHC Hendry (BF4002011_CR53) 1984; 4 F Condé (BF4002011_CR16) 1994; 341 MM Huntsman (BF4002011_CR22) 1998; 95 SC Baraban (BF4002011_CR57) 2004; 27 DA Lewis (BF4002011_CR17) 1986; 248 H Markram (BF4002011_CR72) 2004; 5 TL Hayes (BF4002011_CR27) 1991; 303 TR Hughes (BF4002011_CR41) 2001; 19 T Hashimoto (BF4002011_CR13) 2005; 25 DW Volk (BF4002011_CR9) 2000; 57 MP Vawter (BF4002011_CR23) 2002; 58 K Mirnics (BF4002011_CR28) 2004; 7 AD DeLima (BF4002011_CR54) 1989; 283 DW Volk (BF4002011_CR21) 2002; 12 RA Irizarry (BF4002011_CR26) 2003; 4 Z Nusser (BF4002011_CR60) 1998; 18 K Mirnics (BF4002011_CR11) 2000; 28 Y Kubota (BF4002011_CR51) 1994; 649 PS Mangan (BF4002011_CR61) 2005; 67 J-M Fritschy (BF4002011_CR65) 1995; 359 DR Weinberger (BF4002011_CR1) 1986; 43 C Glorioso (BF4002011_CR30) 2006; 11 S Akbarian (BF4002011_CR38) 2006; 52 SN Schiffmann (BF4002011_CR59) 1991; 304 T Hashimoto (BF4002011_CR15) 2003; 23 S Hanada (BF4002011_CR19) 1987; 40 I Ponomarev (BF4002011_CR68) 2006; 26 Y Kawaguchi (BF4002011_CR58) 2002; 31 GA Stolovitzky (BF4002011_CR32) 2005; 102 D Hollingshead (BF4002011_CR42) 2005; 18 CS Weickert (BF4002011_CR44) 2003; 8 L Virgo (BF4002011_CR46) 1995; 37 DS Melchitzky (BF4002011_CR56) 2005; 675 P Somogyi (BF4002011_CR73) 2005; 562 Y Hakak (BF4002011_CR39) 2001; 98 |
References_xml | – volume: 7 start-page: 434 year: 2004 end-page: 439 ident: CR28 article-title: Progress in the use of microarray technology to study the neurobiology of disease publication-title: Nat Neurosci doi: 10.1038/nn1230 – volume: 60 start-page: 163 year: 2006 end-page: 176 ident: CR43 article-title: Critical appraisal of DNA microarrays in psychiatric genomics publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.02.003 – volume: 302 start-page: 1037 year: 2002 end-page: 1045 ident: CR67 article-title: Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.102.036665 – volume: 37 start-page: 1 year: 2004 end-page: 10 ident: CR47 article-title: Quantitative analysis of nucleic acids – the last few years of progress publication-title: J Biochem Mol Biol – volume: 8 start-page: 592 year: 2003 end-page: 610 ident: CR44 article-title: Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001308 – volume: 248 start-page: 1 year: 1986 end-page: 18 ident: CR17 article-title: An immunohistochemical characterization of somatostatin-28 and somatostatin-28 (1-12) in monkey prefrontal cortex publication-title: J Comp Neurol doi: 10.1002/cne.902480102 – volume: 30 start-page: 1649 year: 2005 end-page: 1661 ident: CR34 article-title: The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys publication-title: Neuropsychopharm doi: 10.1038/sj.npp.1300710 – volume: 20 start-page: 485 year: 2000 end-page: 494 ident: CR6 article-title: Destruction and creation of spatial tuning by disinhibition: GABA blockade of prefrontal cortical neurons engaged by working memory publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-01-00485.2000 – volume: 19 start-page: 342 year: 2001 end-page: 347 ident: CR41 article-title: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer publication-title: Nat Biotechnol doi: 10.1038/86730 – volume: 57 start-page: 1061 year: 2000 end-page: 1069 ident: CR10 article-title: Decrease in reelin and glutamic acid decarboxylase (GAD ) expression in schizophrenia and bipolar disorder publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.11.1061 – volume: 75 start-page: 457 year: 1989 end-page: 469 ident: CR5 article-title: Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys publication-title: Exp Brain Res doi: 10.1007/BF00249897 – volume: 11 start-page: 1170 year: 2001 end-page: 1181 ident: CR52 article-title: The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles publication-title: Cereb Cortex doi: 10.1093/cercor/11.12.1170 – volume: 52 start-page: 258 year: 1995 end-page: 266 ident: CR7 article-title: Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics publication-title: Arch Gen Psychiatry – volume: 912 start-page: 1 year: 2005 ident: CR71 article-title: Parvalbumin-containing neurons and disturbances of prefrontal cortical circuitry in schizophrenia publication-title: Soc Neurosci Abstr – volume: 6 start-page: 348 year: 1994 end-page: 357 ident: CR2 article-title: Working memory dysfunction in schizophrenia publication-title: J Neuropsychiatry Clin Neurosci doi: 10.1176/jnp.6.4.348 – volume: 57 start-page: 237 year: 2000 end-page: 245 ident: CR9 article-title: Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.3.237 – volume: 158 start-page: 256 year: 2001 end-page: 265 ident: CR12 article-title: GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.158.2.256 – volume: 6 start-page: 312 year: 2005 end-page: 324 ident: CR4 article-title: Cortical inhibitory neurons and schizophrenia publication-title: Nat Rev Neurosci doi: 10.1038/nrn1648 – volume: 20 start-page: 1033 year: 2004 end-page: 1044 ident: CR31 article-title: Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth035 – year: 1996 ident: CR33 publication-title: Applied Linear Statistical Models – volume: 4 start-page: 2497 year: 1984 end-page: 2517 ident: CR53 article-title: Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-10-02497.1984 – volume: 99 start-page: 4680 year: 2002 end-page: 4685 ident: CR40 article-title: Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.032069099 – volume: 328 start-page: 282 year: 1993 end-page: 312 ident: CR18 article-title: Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics publication-title: J Comp Neurol doi: 10.1002/cne.903280209 – volume: 31 start-page: 277 year: 2002 end-page: 287 ident: CR58 article-title: Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex publication-title: J Neurocytol doi: 10.1023/A:1024126110356 – volume: 11 start-page: 633 year: 2006 end-page: 648 ident: CR30 article-title: Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001835 – volume: 67 start-page: 775 year: 2005 end-page: 788 ident: CR61 article-title: Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors publication-title: Mol Pharmacol doi: 10.1124/mol.104.007385 – volume: 43 start-page: 114 year: 1986 end-page: 124 ident: CR1 article-title: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1986.01800020020004 – volume: 14 start-page: 2383 year: 1994 end-page: 2401 ident: CR64 article-title: GABA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-04-02383.1994 – volume: 95 start-page: 15718 year: 1998 end-page: 15723 ident: CR69 article-title: A decrease of reelin expression as a putative vulnerability factor in schizophrenia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.26.15718 – volume: 675 start-page: 6 year: 2005 ident: CR56 article-title: Synaptic targets of somatostatin-labeled axon terminals in monkey prefrontal cortex publication-title: Soc Neurosci Abstr – volume: 4 start-page: 249 year: 2003 end-page: 264 ident: CR26 article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 18 start-page: 1693 year: 1998 end-page: 1703 ident: CR60 article-title: Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-05-01693.1998 – volume: 341 start-page: 95 year: 1994 end-page: 116 ident: CR16 article-title: Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: distribution and morphology publication-title: J Comp Neurol doi: 10.1002/cne.903410109 – volume: 359 start-page: 154 year: 1995 end-page: 194 ident: CR65 article-title: GABA -receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits publication-title: J Comp Neurol doi: 10.1002/cne.903590111 – volume: 5 start-page: 550 year: 1995 end-page: 560 ident: CR70 article-title: GABA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls publication-title: Cereb Cortex doi: 10.1093/cercor/5.6.550 – volume: 90 start-page: 2690 year: 2003 end-page: 2701 ident: CR49 article-title: GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus publication-title: J Neurophysiol doi: 10.1152/jn.00240.2003 – volume: 14 start-page: 1 year: 2000 end-page: 21 ident: CR3 article-title: Cognitive impairment in schizophrenia is the core of the disorder publication-title: Crit Rev Neurobiol doi: 10.1615/CritRevNeurobiol.v14.i1.10 – volume: 58 start-page: 11 year: 2002 end-page: 20 ident: CR23 article-title: Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00377-2 – volume: 102 start-page: 1402 year: 2005 end-page: 1407 ident: CR32 article-title: Statistical analysis of MPSS measurements: application to the study of LPS-activated macrophage gene expression publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406555102 – volume: 39 start-page: 82 year: 1996 end-page: 91 ident: CR45 article-title: Neuropeptide deficits in schizophrenia vs. Alzheimer's disease cerebral cortex publication-title: Biol Psychiatry doi: 10.1016/0006-3223(95)00066-6 – volume: 23 start-page: 6315 year: 2003 end-page: 6326 ident: CR15 article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-15-06315.2003 – volume: 16 start-page: 2701 year: 1996 end-page: 2715 ident: CR55 article-title: Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-08-02701.1996 – volume: 57 start-page: 252 year: 2005 end-page: 260 ident: CR14 article-title: Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2004.10.019 – volume: 28 start-page: 53 year: 2000 end-page: 67 ident: CR11 article-title: Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex publication-title: Neuron doi: 10.1016/S0896-6273(00)00085-4 – volume: 12 start-page: 1063 year: 2002 end-page: 1070 ident: CR21 article-title: Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia publication-title: Cereb Cortex doi: 10.1093/cercor/12.10.1063 – volume: 31 start-page: 233 year: 1997 end-page: 256 ident: CR37 article-title: Abnormal cholesystokinin mRNA levels in entorhinal cortex of schizophrenics publication-title: J Psychiatry Res doi: 10.1016/S0022-3956(96)00041-6 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR35 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 37 start-page: 261 year: 2005 end-page: 273 ident: CR29 article-title: True and false discovery in DNA microarray experiments: transcriptome changes in the hippocampus of presenilin 1 mutant mice publication-title: Methods doi: 10.1016/j.ymeth.2005.09.005 – volume: 562 start-page: 9 year: 2005 end-page: 26 ident: CR73 article-title: Defined types of cortical interneurone structure space and spike timing in the hippocampus publication-title: J Physiol doi: 10.1113/jphysiol.2004.078915 – volume: 23 start-page: 2618 year: 2003 end-page: 2626 ident: CR50 article-title: Synapse density regulates independence at unitary inhibitory synapses publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-07-02618.2003 – volume: 303 start-page: 584 year: 1991 end-page: 599 ident: CR27 article-title: A comparative analysis of the distribution of prosomatostatin-derived peptides in human and monkey neocortex publication-title: J Comp Neurol doi: 10.1002/cne.903030406 – volume: 40 start-page: 239 year: 1987 end-page: 266 ident: CR19 article-title: H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics publication-title: Life Sci doi: 10.1016/0024-3205(87)90341-9 – volume: 304 start-page: 219 year: 1991 end-page: 233 ident: CR59 article-title: Distribution of cells containing mRNA encoding cholecystokinin in the rat central nervous system publication-title: J Comp Neurol doi: 10.1002/cne.903040206 – volume: 18 start-page: 649 year: 2005 end-page: 655 ident: CR42 article-title: Platform influence on DNA microarray data in postmortem brain research publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2004.10.020 – volume: 37 start-page: 694 year: 1995 end-page: 701 ident: CR46 article-title: Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia publication-title: Biol Psychiatry doi: 10.1016/0006-3223(94)00206-I – volume: 26 start-page: 5673 year: 2006 end-page: 5683 ident: CR68 article-title: Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0860-06.2006 – volume: 33 start-page: 1 year: 2005 end-page: 12 ident: CR25 article-title: Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces publication-title: Nucleic Acids Res doi: 10.1093/nar/gni054 – volume: 75 start-page: 1021 year: 1996 end-page: 1031 ident: CR20 article-title: Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects publication-title: Neuroscience – volume: 93 start-page: 441 year: 1999 end-page: 448 ident: CR8 article-title: Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA receptor -1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression publication-title: Neuroscience doi: 10.1016/S0306-4522(99)00189-X – volume: 57 start-page: 65 year: 2000 end-page: 73 ident: CR24 article-title: Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.1.65 – volume: 25 start-page: 372 year: 2005 end-page: 383 ident: CR13 article-title: Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4035-04.2005 – volume: 156 start-page: 1709 year: 1999 end-page: 1719 ident: CR48 article-title: Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects publication-title: Am J Psychiatry – volume: 6 start-page: 215 year: 2005 end-page: 229 ident: CR63 article-title: Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors publication-title: Nat Rev Neurosci doi: 10.1038/nrn1625 – volume: 283 start-page: 212 year: 1989 end-page: 227 ident: CR54 article-title: Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey publication-title: J Comp Neurol doi: 10.1002/cne.902830205 – volume: 52 start-page: 293 year: 2006 end-page: 304 ident: CR38 article-title: Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders publication-title: Brain Res Brain Res Rev doi: 10.1016/j.brainresrev.2006.04.001 – volume: 10 start-page: 1074 year: 2005 end-page: 1088 ident: CR66 article-title: Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001739 – volume: 98 start-page: 4746 year: 2001 end-page: 4751 ident: CR39 article-title: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.081071198 – volume: 95 start-page: 15066 year: 1998 end-page: 15071 ident: CR22 article-title: Altered ratios of alternatively spliced long and short gamma 2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.25.15066 – volume: 649 start-page: 159 year: 1994 end-page: 173 ident: CR51 article-title: Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex publication-title: Brain Res doi: 10.1016/0006-8993(94)91060-X – volume: 23 start-page: 10650 year: 2003 end-page: 10661 ident: CR62 article-title: Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-33-10650.2003 – volume: 27 start-page: 135 year: 2004 end-page: 142 ident: CR57 article-title: Interneuron diversity series: interneuronal neuropeptides – endogenous regulators of neuronal excitability publication-title: Trends Neurosci doi: 10.1016/j.tins.2004.01.008 – volume: 5 start-page: 793 year: 2004 end-page: 807 ident: CR72 article-title: Interneurons of the neocortical inhibitory system publication-title: Nat Rev Neurosci doi: 10.1038/nrn1519 – volume: 61 start-page: 755 year: 1994 end-page: 764 ident: CR36 article-title: Somatostatin messenger RNA-containing neurons in Alzheimer's disease: an hybridization study in hippocampus, parahippocampal cortex and frontal cortex publication-title: Neuroscience doi: 10.1016/0306-4522(94)90399-9 – volume: 52 start-page: 293 year: 2006 ident: BF4002011_CR38 publication-title: Brain Res Brain Res Rev doi: 10.1016/j.brainresrev.2006.04.001 – volume: 31 start-page: 277 year: 2002 ident: BF4002011_CR58 publication-title: J Neurocytol doi: 10.1023/A:1024126110356 – volume-title: Applied Linear Statistical Models year: 1996 ident: BF4002011_CR33 – volume: 912 start-page: 1 year: 2005 ident: BF4002011_CR71 publication-title: Soc Neurosci Abstr – volume: 6 start-page: 215 year: 2005 ident: BF4002011_CR63 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1625 – volume: 302 start-page: 1037 year: 2002 ident: BF4002011_CR67 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.102.036665 – volume: 5 start-page: 550 year: 1995 ident: BF4002011_CR70 publication-title: Cereb Cortex doi: 10.1093/cercor/5.6.550 – volume: 16 start-page: 2701 year: 1996 ident: BF4002011_CR55 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-08-02701.1996 – volume: 40 start-page: 239 year: 1987 ident: BF4002011_CR19 publication-title: Life Sci doi: 10.1016/0024-3205(87)90341-9 – volume: 95 start-page: 15066 year: 1998 ident: BF4002011_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.25.15066 – volume: 283 start-page: 212 year: 1989 ident: BF4002011_CR54 publication-title: J Comp Neurol doi: 10.1002/cne.902830205 – volume: 61 start-page: 755 year: 1994 ident: BF4002011_CR36 publication-title: Neuroscience doi: 10.1016/0306-4522(94)90399-9 – volume: 37 start-page: 261 year: 2005 ident: BF4002011_CR29 publication-title: Methods doi: 10.1016/j.ymeth.2005.09.005 – volume: 156 start-page: 1709 year: 1999 ident: BF4002011_CR48 publication-title: Am J Psychiatry doi: 10.1176/ajp.156.11.1709 – volume: 58 start-page: 11 year: 2002 ident: BF4002011_CR23 publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00377-2 – volume: 28 start-page: 53 year: 2000 ident: BF4002011_CR11 publication-title: Neuron doi: 10.1016/S0896-6273(00)00085-4 – volume: 60 start-page: 163 year: 2006 ident: BF4002011_CR43 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.02.003 – volume: 31 start-page: 233 year: 1997 ident: BF4002011_CR37 publication-title: J Psychiatry Res doi: 10.1016/S0022-3956(96)00041-6 – volume: 19 start-page: 342 year: 2001 ident: BF4002011_CR41 publication-title: Nat Biotechnol doi: 10.1038/86730 – volume: 341 start-page: 95 year: 1994 ident: BF4002011_CR16 publication-title: J Comp Neurol doi: 10.1002/cne.903410109 – volume: 39 start-page: 82 year: 1996 ident: BF4002011_CR45 publication-title: Biol Psychiatry doi: 10.1016/0006-3223(95)00066-6 – volume: 57 start-page: 1061 year: 2000 ident: BF4002011_CR10 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.11.1061 – volume: 37 start-page: 1 year: 2004 ident: BF4002011_CR47 publication-title: J Biochem Mol Biol – volume: 57 start-page: 237 year: 2000 ident: BF4002011_CR9 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.3.237 – volume: 6 start-page: 348 year: 1994 ident: BF4002011_CR2 publication-title: J Neuropsychiatry Clin Neurosci doi: 10.1176/jnp.6.4.348 – volume: 99 start-page: 4680 year: 2002 ident: BF4002011_CR40 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.032069099 – volume: 4 start-page: 249 year: 2003 ident: BF4002011_CR26 publication-title: Biostatistics doi: 10.1093/biostatistics/4.2.249 – volume: 25 start-page: 402 year: 2001 ident: BF4002011_CR35 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 90 start-page: 2690 year: 2003 ident: BF4002011_CR49 publication-title: J Neurophysiol doi: 10.1152/jn.00240.2003 – volume: 98 start-page: 4746 year: 2001 ident: BF4002011_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.081071198 – volume: 4 start-page: 2497 year: 1984 ident: BF4002011_CR53 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.04-10-02497.1984 – volume: 20 start-page: 485 year: 2000 ident: BF4002011_CR6 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-01-00485.2000 – volume: 303 start-page: 584 year: 1991 ident: BF4002011_CR27 publication-title: J Comp Neurol doi: 10.1002/cne.903030406 – volume: 8 start-page: 592 year: 2003 ident: BF4002011_CR44 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001308 – volume: 23 start-page: 2618 year: 2003 ident: BF4002011_CR50 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-07-02618.2003 – volume: 14 start-page: 2383 year: 1994 ident: BF4002011_CR64 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.14-04-02383.1994 – volume: 93 start-page: 441 year: 1999 ident: BF4002011_CR8 publication-title: Neuroscience doi: 10.1016/S0306-4522(99)00189-X – volume: 158 start-page: 256 year: 2001 ident: BF4002011_CR12 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.158.2.256 – volume: 25 start-page: 372 year: 2005 ident: BF4002011_CR13 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4035-04.2005 – volume: 30 start-page: 1649 year: 2005 ident: BF4002011_CR34 publication-title: Neuropsychopharm doi: 10.1038/sj.npp.1300710 – volume: 6 start-page: 312 year: 2005 ident: BF4002011_CR4 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1648 – volume: 23 start-page: 6315 year: 2003 ident: BF4002011_CR15 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-15-06315.2003 – volume: 20 start-page: 1033 year: 2004 ident: BF4002011_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth035 – volume: 248 start-page: 1 year: 1986 ident: BF4002011_CR17 publication-title: J Comp Neurol doi: 10.1002/cne.902480102 – volume: 95 start-page: 15718 year: 1998 ident: BF4002011_CR69 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.26.15718 – volume: 57 start-page: 65 year: 2000 ident: BF4002011_CR24 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.1.65 – volume: 18 start-page: 649 year: 2005 ident: BF4002011_CR42 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2004.10.020 – volume: 75 start-page: 457 year: 1989 ident: BF4002011_CR5 publication-title: Exp Brain Res doi: 10.1007/BF00249897 – volume: 328 start-page: 282 year: 1993 ident: BF4002011_CR18 publication-title: J Comp Neurol doi: 10.1002/cne.903280209 – volume: 649 start-page: 159 year: 1994 ident: BF4002011_CR51 publication-title: Brain Res doi: 10.1016/0006-8993(94)91060-X – volume: 7 start-page: 434 year: 2004 ident: BF4002011_CR28 publication-title: Nat Neurosci doi: 10.1038/nn1230 – volume: 43 start-page: 114 year: 1986 ident: BF4002011_CR1 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1986.01800020020004 – volume: 10 start-page: 1074 year: 2005 ident: BF4002011_CR66 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001739 – volume: 359 start-page: 154 year: 1995 ident: BF4002011_CR65 publication-title: J Comp Neurol doi: 10.1002/cne.903590111 – volume: 14 start-page: 1 year: 2000 ident: BF4002011_CR3 publication-title: Crit Rev Neurobiol doi: 10.1615/CritRevNeurobiol.v14.i1.10 – volume: 27 start-page: 135 year: 2004 ident: BF4002011_CR57 publication-title: Trends Neurosci doi: 10.1016/j.tins.2004.01.008 – volume: 304 start-page: 219 year: 1991 ident: BF4002011_CR59 publication-title: J Comp Neurol doi: 10.1002/cne.903040206 – volume: 23 start-page: 10650 year: 2003 ident: BF4002011_CR62 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-33-10650.2003 – volume: 11 start-page: 1170 year: 2001 ident: BF4002011_CR52 publication-title: Cereb Cortex doi: 10.1093/cercor/11.12.1170 – volume: 75 start-page: 1021 year: 1996 ident: BF4002011_CR20 publication-title: Neuroscience doi: 10.1016/0306-4522(96)00328-4 – volume: 12 start-page: 1063 year: 2002 ident: BF4002011_CR21 publication-title: Cereb Cortex doi: 10.1093/cercor/12.10.1063 – volume: 37 start-page: 694 year: 1995 ident: BF4002011_CR46 publication-title: Biol Psychiatry doi: 10.1016/0006-3223(94)00206-I – volume: 102 start-page: 1402 year: 2005 ident: BF4002011_CR32 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0406555102 – volume: 675 start-page: 6 year: 2005 ident: BF4002011_CR56 publication-title: Soc Neurosci Abstr – volume: 562 start-page: 9 year: 2005 ident: BF4002011_CR73 publication-title: J Physiol doi: 10.1113/jphysiol.2004.078915 – volume: 67 start-page: 775 year: 2005 ident: BF4002011_CR61 publication-title: Mol Pharmacol doi: 10.1124/mol.104.007385 – volume: 26 start-page: 5673 year: 2006 ident: BF4002011_CR68 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0860-06.2006 – volume: 5 start-page: 793 year: 2004 ident: BF4002011_CR72 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1519 – volume: 57 start-page: 252 year: 2005 ident: BF4002011_CR14 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2004.10.019 – volume: 33 start-page: 1 year: 2005 ident: BF4002011_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gni054 – volume: 52 start-page: 258 year: 1995 ident: BF4002011_CR7 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1995.03950160008002 – volume: 11 start-page: 633 year: 2006 ident: BF4002011_CR30 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001835 – volume: 18 start-page: 1693 year: 1998 ident: BF4002011_CR60 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-05-01693.1998 |
SSID | ssj0014765 |
Score | 2.4469988 |
Snippet | In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Acids Adult Adult and adolescent clinical studies Aged Animals Antipsychotic Agents - pharmacology Antipsychotics Behavioral Sciences Benzodiazepines - pharmacology Biological and medical sciences Biological Psychology Case-Control Studies Chloroquinolinols - pharmacology Cholecystokinin DNA microarrays Female GABA GABA Plasma Membrane Transport Proteins - genetics GABA Plasma Membrane Transport Proteins - metabolism Gene Expression Regulation - drug effects Gene Expression Regulation - physiology Genetic aspects Glutamate decarboxylase Glutamate Decarboxylase - genetics Glutamate Decarboxylase - metabolism Glutamic acid Health aspects Humans Hybridization Hypotheses Macaca fascicularis Male Medical sciences Medicine Medicine & Public Health Memory Mental disorders Middle Aged Monkeys & apes Neurons Neuropeptide Y Neuropeptides Neuropeptides - genetics Neuropeptides - metabolism Neurosciences Neurotransmission Neurotransmitters Olanzapine Oligonucleotide Array Sequence Analysis - methods original-article Pharmacotherapy Physiological aspects Prefrontal cortex Prefrontal Cortex - metabolism Properties Protein Subunits - genetics Protein Subunits - metabolism Proteins Psychiatry Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Receptors, GABA-A - genetics Receptors, GABA-A - metabolism Schizophrenia Schizophrenia - pathology Short term memory Somatostatin Transcriptomes γ-Aminobutyric acid A receptors |
Title | Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia |
URI | https://link.springer.com/article/10.1038/sj.mp.4002011 https://www.ncbi.nlm.nih.gov/pubmed/17471287 https://www.proquest.com/docview/221166216 https://www.proquest.com/docview/2645766387 https://www.proquest.com/docview/19711390 https://www.proquest.com/docview/70219487 https://www.proquest.com/docview/759316248 https://pubmed.ncbi.nlm.nih.gov/PMC2882638 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgExISQvwmbBQ_IHghW2ynsfOEMrQxITEhxKS-RYlja5vaJCytNP577hw3I9DyUlXyxXHuzvZn-_wdIW8NFzaNVRHaWKZhzI0ISws_qZlyqcvSRI5i4-tZcnoef5lNZ37DrfNhlesx0Q3UVaNxj_wQJm6AxuAt8mP7M8SsUXi66lNo3CW7SF2GXi1nw4KLxdKlkmRiiqedKvYcm5FQh93VwaI9iBEtMTaak_zI_KAtOtCS7dNbbMKf_4ZR_nWW6qaok0fkoceWNOud4TG5Y-on5F6fbfLXU1Jnc0ehjI5GL2v6OTvKQneXxVR0iXOWG0GahcFSAIa0ajCbdoFPzWkL7Ua2A_irMUL3hjaWdqsSN3I6ivu5tPszgu8ZOT85_vHpNPTpFkINMGUZMgNWSkQBtsMr8oktVZRoJApNtcY7qEyLUuvSxNqUMlI6sQU3JlbcWq4FF8_JTt3U5iWhwgBsqYwWLLGw_lPKRlVR2qQyYAVmq4B8WCs8156LHFNizHN3Ji5U3l3lizb39gnIu0G87Uk4tgm-R-vl2DmhPl34OwbQKqS5yjMHf5iQKiD7I0noVHpUPBnZf3gthqCBq_GA7K0dIve9vss5rKaThLMEat9QOnhwQN4MxfhijHOrTbPqcpZKBpg82i4hAZRB54I66DaJaQp65zF8xIveQW-VhlsQHB-WI9cdBJBsfFxSX1440nEOSzFoO2h47eS3X7bRFq_-r4M9cr8PvcHIoH2ys7xemdeA75blxHXiCdk9Oj779v03qjdT0A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQSQtyEltYPHC-kje1sjgeEwlG29HhqpX1zE8cWrXaTQHYF_VP8RmacowR2eevLaiVPHMcznsMef0PIC82Fif0odY0fxq7PtXAzAz-xHvFQZZn2LMTG0XEwPvW_TEaTNfKruwuDaZWdTrSKOi8V7pHvguEG1xikJXxXfXOxahSernYlNBqxONCXPyBkq9_ufwT-vuR879PJh7HbVhVwFVjjucs0DCYQKQwRb4IHJou8QCEeZqwUXrVkSmRKZdpXOgu9SAUm5Vr7ETeGK4FAB6Dyb4Dh9TDYCyd9gMf80JauZGKEp6uR32J6eiLarS92ZtWOj94ZYwMb2FqCO1VaA1dMU05jmb_7b9rmX2e31iTu3SN3W1-WJo3w3SdrunhAbjbVLS8fkiKZWshmFGx6XtDPyfvEtXdndE7naCOtxipnGlvBEaV5idW7U3xqSisYN6IrwF-FGcE_aWlovchw46imuH9M6z8zBh-R02thxGOyXpSFfkqo0OAm5VoJFhiIN6PIeHmamSDXwAVmcoe86SZcqhb7HEtwTKU9gxeRrC_krJItfxzyqievGtCPVYSvkXsSlQH0p9L2TgOMCmG1ZGLdLSbCyCGbA0pYxGrQvDXgf_9aTHlj4IU7ZKMTCNlqmVpyiN6DgLMAel_S2q8Yh2z3zfhizKsrdLmoJYtDBjGAt5oiBCcQFjP0QVdRjGKYd-7DRzxpBPRq0nDLg-PD4UB0ewIENx-2FOdfLcg5h9APxg4z3An51Zct5cWz_8_BNrk1Pjk6lIf7xwcb5HaT9oNZSZtkff59oZ-DbznPtuyCpuTsujXIbyHTkFM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBICPEmtLQ-8LiQbmxn8zgglNIuLYVVhajUm5s4tmi1mwSyK-hf49cxk1cJ7HLrZbWSJ47jGc_DHn9DyHPNhQndILaN64e2y7WwEwM_oR5xXyWJdiqIjU8T7-DE_XA6Ol0jv9q7MJhW2erESlGnucI98iEYbnCNQVr8oWnSIo73xm-LbzZWkMKT1racRi0iR_ryB4Rv5ZvDPeD1C87H-1_eHdhNhQFbgWWe20zDwDwRw3DxVrhnksDxFGJjhkrhtUumRKJUol2lE98JlGdirrUbcGO4Egh6AOp_3ceoaEDWd_cnx5-7MwzXrwpZMjHCs9bAbRA-HREMy4udWbHjoq_GWM8iNnbhdhGXwCNTF9dY5v3-m8T510luZSDHd8mdxrOlUS2K98iazu6TG3Wty8sHJIumFYAzijk9z-j7aDeyq5s0OqVztJiV_spnGlvBLaVpjrW8Y3xqSgsYN2ItwF-F-cE_aW5ouUhwG6mkuJtMyz_zBx-Sk2thxSMyyPJMPyFUaHCaUq0E8wxEn0FgnDROjJdq4AIzqUVetxMuVYOEjgU5prI6kReBLC_krJANfyzysiMvagiQVYSvkHsSVQP0p-LmhgOMCkG2ZFQ5X0z4gUU2e5SwpFWveavH_-61mADHwCe3yEYrELLROaXkEMt7Hmce9L6ktVs_FtnumvHFmGWX6XxRShb6DCICZzWFDy4hLG3og66iGIUw79yFj3hcC-jVpOEGCMeH_Z7odgQIdd5vyc6_VpDnHAJBGDvMcCvkV1-2lBdP_z8H2-QmaA_58XBytEFu1TlAmKK0SQbz7wv9DBzNebLVrGhKzq5bifwGeAGV7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+in+GABA-related+transcriptome+in+the+dorsolateral+prefrontal+cortex+of+subjects+with+schizophrenia&rft.jtitle=Molecular+psychiatry&rft.au=Hashimoto%2C+T&rft.au=Arion%2C+D&rft.au=Unger%2C+T&rft.au=Maldonado-Aviles%2C+J+G&rft.date=2008-02-01&rft.issn=1359-4184&rft.volume=13&rft.issue=2&rft.spage=147&rft.epage=161&rft_id=info:doi/10.1038%2Fsj.mp.4002011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4184&client=summon |