Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis tha...

Full description

Saved in:
Bibliographic Details
Published inMolecular psychiatry Vol. 13; no. 2; pp. 147 - 161
Main Authors Hashimoto, T, Arion, D, Unger, T, Maldonado-Avilés, J G, Morris, H M, Volk, D W, Mirnics, K, Lewis, D A
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2008
Nature Publishing Group
Subjects
GAD
Online AccessGet full text

Cover

Loading…
Abstract In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD 67 ) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA A receptor subunits ( α 1, α 4, β 3, γ 2 and δ ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD 67 , SST and α 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA A receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
AbstractList In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD 67 ) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA A receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD 67 , SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA A receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma -aminobutyric acid (GABA)-mediated Inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD sub(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecysto-kinin (CCK)) and (3) GABA sub(A) receptor subunits ( alpha 1, alpha 4, beta 3, gamma 2 and delta ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD sub(67), SST and alpha 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA sub(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia Is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD 67 ) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA A receptor subunits ( α 1, α 4, β 3, γ 2 and δ ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD 67 , SST and α 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA A receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma -aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67kDa isoform of glutamic acid decarboxylase (GAD sub(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA sub(A) receptor subunits ( alpha 1, alpha 4, beta 3, gamma 2 and delta ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD sub(67), SST and alpha 1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA sub(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.Molecular Psychiatry (2008) 13, 147-161; doi:10.1038/sj.mp.4002011; published online 1 May 2007
In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in gamma-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD(67)) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABA(A) receptor subunits (alpha1, alpha4, beta3, gamma2 and delta). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD(67), SST and alpha1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABA(A) receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.
Audience Academic
Author Hashimoto, T
Mirnics, K
Arion, D
Maldonado-Avilés, J G
Lewis, D A
Unger, T
Morris, H M
Volk, D W
AuthorAffiliation 1 Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA
3 Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University, Nashville, TN, USA
2 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
AuthorAffiliation_xml – name: 2 Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
– name: 1 Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA
– name: 3 Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University, Nashville, TN, USA
Author_xml – sequence: 1
  givenname: T
  surname: Hashimoto
  fullname: Hashimoto, T
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh
– sequence: 2
  givenname: D
  surname: Arion
  fullname: Arion, D
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh
– sequence: 3
  givenname: T
  surname: Unger
  fullname: Unger, T
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh
– sequence: 4
  givenname: J G
  surname: Maldonado-Avilés
  fullname: Maldonado-Avilés, J G
  organization: Department of Neuroscience, University of Pittsburgh
– sequence: 5
  givenname: H M
  surname: Morris
  fullname: Morris, H M
  organization: Department of Neuroscience, University of Pittsburgh
– sequence: 6
  givenname: D W
  surname: Volk
  fullname: Volk, D W
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh
– sequence: 7
  givenname: K
  surname: Mirnics
  fullname: Mirnics, K
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Department of Psychiatry and Vanderbilt Kennedy Center for Human Development Vanderbilt University
– sequence: 8
  givenname: D A
  surname: Lewis
  fullname: Lewis, D A
  email: lewisda@upmc.edu
  organization: Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Department of Neuroscience, University of Pittsburgh
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20011192$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17471287$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gyBVFIOCUxeM4jnNBWiooSJW4wNlyvOOuV4kdbC9fvx6HLl1atSAfbHmeeT0zfo-LA-cdFsVjIAsgtXgVN4txWjBCKAG4VxwBa3nVNK04yOe66SoGgh0WxzFuCJmDzYPiEFrWAhXtUeGWQ8KgkvUultaVZ8s3yyrgoBKuyhSUizrYKfkR52haY7nyIfo5HtRQTgFN8C7lo_Yh4ffSmzJu-w3qFMtvNq3LqNf2p5_WAZ1VD4v7Rg0RH-32k-Lzu7efTt9X5x_PPpwuzyvN6y5VgL1BXivTMUIbxk0vCNccmOi0JrxhoOte6x6Zxr4lQnOjKCIT1Biqa1qfFK8vdadtP-JKo8u9DHIKdlThh_TKyusRZ9fywn-VVAjKa5EFXu4Egv-yxZjkaKPGYVAO_TbKtulq4JTN5It_k4RCx0T7XxC6FqDuSAaf3QA3fhtcnpeknDUtzwXOck_vpCgA5xT4XupCDSitMz53q-d35RI6Ag3U7dzC4hYqrxWOVme_GZvvryU8-Xu8V3P946sMPN8BKmo1mGwkbeMVR7MVAbr5n6pLTgcfYzbTXorI2d8ybuQ4yZ2_M1_f4LVNv92bK7bDnVm7_mJWdxcY9qO6PeEXinMN3w
CitedBy_id crossref_primary_10_1093_brain_awq046
crossref_primary_10_1007_s12031_012_9940_0
crossref_primary_10_3389_fncel_2024_1440834
crossref_primary_10_1016_j_biopsych_2015_03_030
crossref_primary_10_1016_j_jpsychires_2023_08_007
crossref_primary_10_1016_j_pharmthera_2014_02_003
crossref_primary_10_1113_jphysiol_2011_224659
crossref_primary_10_1016_j_biopsych_2008_11_019
crossref_primary_10_1038_mp_2012_37
crossref_primary_10_3389_fncel_2023_1161608
crossref_primary_10_3389_fnins_2020_00673
crossref_primary_10_1093_schbul_sbaa184
crossref_primary_10_1093_schbul_sbz046
crossref_primary_10_3389_fcell_2021_693919
crossref_primary_10_1016_j_neuint_2011_06_009
crossref_primary_10_1038_s41598_017_11645_8
crossref_primary_10_1007_s11481_016_9652_2
crossref_primary_10_1016_j_neuroimage_2011_11_050
crossref_primary_10_1038_s41537_022_00255_7
crossref_primary_10_1016_j_neubiorev_2015_01_007
crossref_primary_10_1155_2016_9847696
crossref_primary_10_3389_fnmol_2018_00270
crossref_primary_10_1038_s41598_020_58449_x
crossref_primary_10_3389_fnhum_2022_818711
crossref_primary_10_1176_appi_ajp_2009_08091445
crossref_primary_10_3389_fpsyt_2017_00118
crossref_primary_10_3390_biom10060947
crossref_primary_10_1523_JNEUROSCI_1919_19_2020
crossref_primary_10_1007_s00213_019_05285_1
crossref_primary_10_1007_s12272_019_01196_z
crossref_primary_10_1007_s00406_018_0881_7
crossref_primary_10_1038_npp_2014_95
crossref_primary_10_1038_tp_2015_102
crossref_primary_10_7717_peerj_3173
crossref_primary_10_1016_j_pneurobio_2013_07_007
crossref_primary_10_1093_schbul_sbv139
crossref_primary_10_1016_j_brainres_2008_08_023
crossref_primary_10_1038_mp_2017_216
crossref_primary_10_31887_DCNS_2009_11_3_dalewis
crossref_primary_10_1093_brain_awaa168
crossref_primary_10_1093_bfgp_elr036
crossref_primary_10_1007_s12035_024_03987_y
crossref_primary_10_1016_j_biopsych_2009_01_004
crossref_primary_10_1177_1550059419868872
crossref_primary_10_1016_j_schres_2020_04_027
crossref_primary_10_1016_j_ijdevneu_2011_02_013
crossref_primary_10_1093_cercor_bhv051
crossref_primary_10_1016_j_jpsychires_2009_02_005
crossref_primary_10_1001_jamapsychiatry_2023_2972
crossref_primary_10_1016_j_neubiorev_2016_06_001
crossref_primary_10_1016_j_neuropharm_2011_01_022
crossref_primary_10_1097_YCO_0b013e328323d52e
crossref_primary_10_1016_j_schres_2014_10_019
crossref_primary_10_1098_rspb_2017_1169
crossref_primary_10_1523_ENEURO_0360_18_2019
crossref_primary_10_1523_JNEUROSCI_6158_09_2010
crossref_primary_10_1176_appi_ajp_2012_12030305
crossref_primary_10_1016_j_schres_2014_10_011
crossref_primary_10_1038_npp_2009_36
crossref_primary_10_1186_1471_244X_8_87
crossref_primary_10_3109_10673221003747609
crossref_primary_10_1016_j_schres_2014_10_010
crossref_primary_10_1038_s41537_020_00109_0
crossref_primary_10_1016_j_biopsych_2015_07_022
crossref_primary_10_1016_j_biopsych_2014_05_010
crossref_primary_10_1016_j_biopsych_2010_08_020
crossref_primary_10_1016_j_jchemneu_2021_102040
crossref_primary_10_3389_fncir_2024_1286111
crossref_primary_10_1186_s11689_018_9237_x
crossref_primary_10_1016_j_biopsych_2013_06_010
crossref_primary_10_1002_ajmg_b_32638
crossref_primary_10_1176_appi_ajp_2010_09060784
crossref_primary_10_1016_j_jpsychires_2021_02_054
crossref_primary_10_1016_j_biopsych_2006_12_021
crossref_primary_10_1093_ijnp_pyu055
crossref_primary_10_1016_j_biopsych_2023_04_003
crossref_primary_10_1371_journal_pone_0068010
crossref_primary_10_1016_j_neuroscience_2017_06_014
crossref_primary_10_1016_j_schres_2015_01_025
crossref_primary_10_1016_j_biopsych_2016_04_006
crossref_primary_10_1073_pnas_1205909109
crossref_primary_10_1093_schbul_sbn070
crossref_primary_10_1016_j_schres_2014_10_020
crossref_primary_10_3389_fnana_2021_670766
crossref_primary_10_1007_s00213_010_2039_9
crossref_primary_10_1016_j_neuropharm_2009_07_027
crossref_primary_10_1016_j_psyneuen_2012_07_011
crossref_primary_10_1038_tp_2017_154
crossref_primary_10_1093_schbul_sbp133
crossref_primary_10_1016_j_mcn_2018_02_001
crossref_primary_10_1016_j_pnpbp_2019_109681
crossref_primary_10_1093_schbul_sbt178
crossref_primary_10_1038_npp_2010_35
crossref_primary_10_1016_j_biopsych_2015_09_009
crossref_primary_10_1016_j_neuroscience_2016_07_028
crossref_primary_10_1007_s12035_017_0715_z
crossref_primary_10_1016_j_pneurobio_2014_08_002
crossref_primary_10_1016_j_neuroimage_2022_119286
crossref_primary_10_1016_j_conb_2011_05_013
crossref_primary_10_1176_appi_ajp_2010_10030318
crossref_primary_10_3389_fcell_2022_769853
crossref_primary_10_1016_j_brainres_2011_03_004
crossref_primary_10_1016_j_neubiorev_2023_105064
crossref_primary_10_1093_cercor_bhy227
crossref_primary_10_1038_mp_2013_49
crossref_primary_10_1016_j_schres_2011_07_016
crossref_primary_10_1016_j_neuint_2016_05_006
crossref_primary_10_1371_journal_pone_0124114
crossref_primary_10_1016_j_biopsych_2015_07_005
crossref_primary_10_1038_nrg3934
crossref_primary_10_1155_2011_649325
crossref_primary_10_1038_mp_2009_144
crossref_primary_10_1016_j_biopsych_2025_01_010
crossref_primary_10_1017_S1462399411001955
crossref_primary_10_1038_npp_2013_146
crossref_primary_10_1038_tp_2013_64
crossref_primary_10_1159_000488030
crossref_primary_10_1016_j_biopsych_2016_09_018
crossref_primary_10_1016_j_nbd_2012_11_013
crossref_primary_10_1016_j_schres_2009_09_014
crossref_primary_10_1093_cercor_bhad346
crossref_primary_10_1111_j_1471_4159_2010_06617_x
crossref_primary_10_1631_jzus_B2300743
crossref_primary_10_1016_j_neuropharm_2014_08_003
crossref_primary_10_1017_S1461145712001332
crossref_primary_10_1016_j_euroneuro_2024_02_010
crossref_primary_10_1016_j_psyneuen_2020_104744
crossref_primary_10_1016_j_psychres_2019_112621
crossref_primary_10_1523_JNEUROSCI_1423_13_2014
crossref_primary_10_1038_mp_2015_141
crossref_primary_10_1016_j_physbeh_2020_113184
crossref_primary_10_1177_1073858411422114
crossref_primary_10_1096_fj_201901093RRR
crossref_primary_10_1523_JNEUROSCI_1970_16_2016
crossref_primary_10_1016_j_schres_2014_04_041
crossref_primary_10_1093_toxsci_kfaa040
crossref_primary_10_1016_j_nbd_2011_03_001
crossref_primary_10_1016_j_neuroimage_2020_117536
crossref_primary_10_1016_j_biopsycho_2015_10_013
crossref_primary_10_1007_s00406_010_0159_1
crossref_primary_10_1124_pharmrev_124_001117
crossref_primary_10_3934_Neuroscience_2015_4_294
crossref_primary_10_1093_cercor_bhq169
crossref_primary_10_1007_s00401_011_0881_4
crossref_primary_10_3389_fnbeh_2020_588400
crossref_primary_10_1155_2013_685917
crossref_primary_10_1017_S1461145710000106
crossref_primary_10_1176_appi_ajp_2015_15010019
crossref_primary_10_1038_npjschz_2014_4
crossref_primary_10_1016_j_biopsych_2014_01_001
crossref_primary_10_1016_j_pnpbp_2012_03_003
crossref_primary_10_3389_fncel_2022_992409
crossref_primary_10_1016_j_pneurobio_2010_06_010
crossref_primary_10_1016_j_jpsychires_2012_08_005
crossref_primary_10_1007_s00406_012_0367_y
crossref_primary_10_1016_j_neuropharm_2011_08_010
crossref_primary_10_1038_s41598_020_57467_z
crossref_primary_10_1186_s13041_020_00713_2
crossref_primary_10_1038_mp_2014_35
crossref_primary_10_1371_journal_pone_0200809
crossref_primary_10_3389_fnbeh_2016_00059
crossref_primary_10_1093_schbul_sbae083
crossref_primary_10_1111_j_1471_4159_2008_05524_x
crossref_primary_10_1016_j_schres_2016_06_003
crossref_primary_10_1016_j_pnpbp_2017_03_018
crossref_primary_10_1038_npp_2013_126
crossref_primary_10_1523_ENEURO_0300_18_2019
crossref_primary_10_1093_ijnp_pyv105
crossref_primary_10_1038_srep33857
crossref_primary_10_1186_s13041_021_00805_7
crossref_primary_10_1016_j_schres_2015_05_040
crossref_primary_10_1038_s41398_019_0492_8
crossref_primary_10_1007_s13127_021_00534_8
crossref_primary_10_1016_j_jpsychires_2014_02_014
crossref_primary_10_1016_j_biopsych_2022_12_004
crossref_primary_10_1093_schbul_sbn022
crossref_primary_10_17116_jnevro2019119081124
crossref_primary_10_1038_npp_2008_172
crossref_primary_10_1176_appi_ajp_20220676
crossref_primary_10_1016_j_tins_2011_10_004
crossref_primary_10_1016_j_pnpbp_2024_111078
crossref_primary_10_1016_j_ijdevneu_2010_08_003
crossref_primary_10_1016_j_nbd_2013_07_008
crossref_primary_10_1093_schbul_sbaa159
crossref_primary_10_1007_s12640_010_9157_3
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_1016_j_brainres_2018_12_025
crossref_primary_10_1016_j_pbb_2011_09_015
crossref_primary_10_1016_j_schres_2024_06_031
crossref_primary_10_1038_npp_2010_75
crossref_primary_10_1177_0004867417728805
crossref_primary_10_3390_brainsci11030405
crossref_primary_10_1134_S1819712421040048
crossref_primary_10_1016_j_biopsych_2023_03_010
crossref_primary_10_1093_schbul_sbx051
crossref_primary_10_1016_j_jpsychires_2021_11_028
crossref_primary_10_1038_npp_2015_117
crossref_primary_10_1016_j_ijdevneu_2010_05_004
crossref_primary_10_1038_mp_2013_167
crossref_primary_10_1038_s41386_023_01728_8
crossref_primary_10_1016_j_schres_2020_06_032
crossref_primary_10_1016_j_biopsych_2021_02_009
crossref_primary_10_1016_j_neuropharm_2016_08_038
crossref_primary_10_1176_appi_ajp_2011_11010052
crossref_primary_10_1038_s41398_020_00988_y
crossref_primary_10_1111_j_1399_5618_2011_00931_x
crossref_primary_10_1111_j_1471_4159_2011_07237_x
crossref_primary_10_1038_s41467_020_16218_4
crossref_primary_10_1038_sj_npp_1301563
crossref_primary_10_3109_01677060903305658
crossref_primary_10_1016_j_biopsych_2009_07_029
crossref_primary_10_1016_j_biopsych_2011_05_030
crossref_primary_10_1002_syn_21973
crossref_primary_10_1016_j_pnpbp_2015_09_006
crossref_primary_10_1016_j_biopsych_2013_05_031
crossref_primary_10_1371_journal_pone_0016886
crossref_primary_10_1016_j_biopsych_2024_12_022
crossref_primary_10_3389_fncel_2015_00472
crossref_primary_10_1016_j_neuropharm_2009_01_021
crossref_primary_10_1016_j_nbd_2014_10_005
crossref_primary_10_1038_mp_2016_147
crossref_primary_10_1016_j_neuron_2018_09_029
crossref_primary_10_3109_01677063_2011_597908
crossref_primary_10_1016_j_biopsych_2020_12_025
crossref_primary_10_1371_journal_pone_0052724
crossref_primary_10_1016_j_bcp_2017_05_009
crossref_primary_10_1038_mp_2015_222
crossref_primary_10_1016_j_neuron_2013_07_010
crossref_primary_10_1038_s41398_020_01108_6
crossref_primary_10_1016_j_psychres_2018_04_036
crossref_primary_10_1093_cercor_bhx169
crossref_primary_10_1017_S0033291724002344
crossref_primary_10_1038_mp_2013_152
crossref_primary_10_3389_fgene_2017_00028
crossref_primary_10_1038_mp_2014_192
crossref_primary_10_1016_j_neuron_2013_11_024
crossref_primary_10_1016_j_neuroscience_2010_06_011
crossref_primary_10_3389_fnana_2020_581685
crossref_primary_10_1016_j_neuroscience_2010_03_066
crossref_primary_10_1016_j_neubiorev_2009_10_010
crossref_primary_10_1093_schbul_sbv092
crossref_primary_10_2217_epi_10_22
crossref_primary_10_1016_j_biopsych_2014_06_026
crossref_primary_10_1523_JNEUROSCI_3542_14_2015
crossref_primary_10_1016_j_brs_2020_06_015
crossref_primary_10_3390_ijms24097680
crossref_primary_10_1016_j_scog_2017_02_001
crossref_primary_10_1016_j_neulet_2018_08_010
crossref_primary_10_1016_j_schres_2018_04_030
crossref_primary_10_1016_j_celrep_2021_109950
crossref_primary_10_1021_acschemneuro_2c00445
crossref_primary_10_1038_s41380_022_01654_z
crossref_primary_10_1016_j_schres_2019_10_025
crossref_primary_10_1186_1756_6606_7_41
crossref_primary_10_1523_JNEUROSCI_5268_09_2010
crossref_primary_10_1007_s00406_016_0728_z
crossref_primary_10_1016_j_schres_2014_12_026
crossref_primary_10_3389_fphar_2021_646088
crossref_primary_10_1016_j_nbd_2022_105772
crossref_primary_10_1371_journal_pone_0038211
crossref_primary_10_1016_j_nbd_2011_08_025
crossref_primary_10_1016_j_npep_2016_12_010
crossref_primary_10_1111_adb_12353
crossref_primary_10_1038_srep33095
crossref_primary_10_1007_s12640_010_9163_5
crossref_primary_10_1093_schbul_sbw035
crossref_primary_10_1016_j_neubiorev_2018_05_001
crossref_primary_10_1016_j_neuron_2013_03_028
crossref_primary_10_1016_j_pnpbp_2017_10_004
crossref_primary_10_1038_s41380_019_0537_7
crossref_primary_10_1016_j_brainres_2016_08_010
crossref_primary_10_1016_j_bbr_2015_09_007
crossref_primary_10_1126_sciadv_abn8367
crossref_primary_10_3390_ijms232415846
crossref_primary_10_1038_mp_2015_34
crossref_primary_10_1038_s41598_021_99793_w
crossref_primary_10_1016_j_bionps_2020_100015
crossref_primary_10_1093_schbul_sbr029
crossref_primary_10_1016_j_neuropharm_2010_12_029
crossref_primary_10_3389_fpsyt_2018_00281
crossref_primary_10_3389_fnins_2021_677153
crossref_primary_10_1007_s11055_020_00952_9
crossref_primary_10_1016_j_neuroscience_2016_02_014
crossref_primary_10_1038_npp_2011_221
crossref_primary_10_1038_npp_2011_102
crossref_primary_10_1038_nrn2462
crossref_primary_10_1073_pnas_1312791110
crossref_primary_10_1038_mp_2014_171
crossref_primary_10_1176_appi_ajp_2015_15020150
crossref_primary_10_1002_syn_20514
crossref_primary_10_1016_j_nbd_2018_06_020
crossref_primary_10_1371_journal_pone_0035511
crossref_primary_10_1002_wcs_1
crossref_primary_10_1038_s41467_019_11335_1
crossref_primary_10_1016_j_biopsych_2011_09_014
crossref_primary_10_1016_j_neuroscience_2013_02_045
crossref_primary_10_1016_j_bbi_2024_08_007
crossref_primary_10_1073_pnas_1308706110
crossref_primary_10_1016_j_pharmthera_2016_11_005
crossref_primary_10_1038_mp_2010_52
crossref_primary_10_3390_ijms18040734
crossref_primary_10_1038_s41537_019_0078_8
crossref_primary_10_3390_ijms18040733
crossref_primary_10_1038_s41386_024_01854_x
crossref_primary_10_1159_000488679
crossref_primary_10_1186_s13293_018_0214_6
crossref_primary_10_1038_s41431_019_0485_3
crossref_primary_10_1038_s42003_018_0277_2
crossref_primary_10_1152_jn_91161_2008
crossref_primary_10_1186_s40345_019_0161_0
crossref_primary_10_3389_fncir_2020_00013
crossref_primary_10_1038_npp_2013_300
crossref_primary_10_1038_s41398_021_01210_3
crossref_primary_10_1172_JCI37335
crossref_primary_10_31083_j_jin_2021_01_332
crossref_primary_10_1080_10253890_2021_1942828
crossref_primary_10_1038_s41380_021_01092_3
crossref_primary_10_1016_j_neubiorev_2023_105476
crossref_primary_10_1093_cercor_bhaa360
crossref_primary_10_1038_s41537_018_0044_x
crossref_primary_10_1016_j_biopsych_2010_07_017
crossref_primary_10_1152_jn_00661_2020
crossref_primary_10_1007_s12031_017_1003_0
crossref_primary_10_1016_j_schres_2017_01_003
crossref_primary_10_1016_j_nbd_2013_01_009
crossref_primary_10_1016_j_schres_2013_07_010
crossref_primary_10_1038_mp_2010_1
crossref_primary_10_1016_j_bcp_2024_116298
crossref_primary_10_3390_jpm14080822
crossref_primary_10_1093_schbul_sbw022
crossref_primary_10_1007_s00441_013_1648_0
crossref_primary_10_1016_j_biopsych_2014_10_025
crossref_primary_10_1016_j_jpsychires_2009_12_007
crossref_primary_10_1016_j_bbi_2007_09_012
crossref_primary_10_1016_j_neubiorev_2023_105488
crossref_primary_10_1186_s13041_014_0075_9
crossref_primary_10_1016_j_biopsych_2008_08_015
crossref_primary_10_1016_j_pneurobio_2009_07_002
crossref_primary_10_1080_03235408_2023_2289218
crossref_primary_10_1038_s41380_023_02121_z
crossref_primary_10_1093_cercor_bhz052
crossref_primary_10_1007_s11920_010_0124_8
crossref_primary_10_1016_j_psychres_2009_09_002
crossref_primary_10_1021_jm901688m
crossref_primary_10_1111_j_1749_6632_2012_06543_x
crossref_primary_10_1016_j_celrep_2020_107536
crossref_primary_10_1016_j_neuroimage_2012_03_008
crossref_primary_10_1016_j_nbd_2011_12_008
crossref_primary_10_1523_JNEUROSCI_4166_08_2008
crossref_primary_10_1007_s00221_009_2059_z
crossref_primary_10_3389_fnmol_2021_827370
crossref_primary_10_1002_dneu_20825
crossref_primary_10_1093_cercor_bhu278
crossref_primary_10_1007_s10989_016_9568_y
crossref_primary_10_1016_j_bbr_2013_10_051
crossref_primary_10_3109_00048670903393662
crossref_primary_10_1016_j_neuron_2017_07_034
crossref_primary_10_1002_syn_21924
crossref_primary_10_1007_BF03033811
crossref_primary_10_1016_j_neuroscience_2015_05_055
crossref_primary_10_1016_j_nbd_2011_06_001
crossref_primary_10_1016_j_pbiomolbio_2015_04_008
crossref_primary_10_1007_BF03033813
crossref_primary_10_1016_j_neuropharm_2015_04_012
crossref_primary_10_1176_appi_ajp_2008_08101484
crossref_primary_10_1523_JNEUROSCI_2820_08_2008
crossref_primary_10_3389_fncel_2015_00386
crossref_primary_10_1038_tp_2016_66
crossref_primary_10_1093_cercor_bhac207
crossref_primary_10_3389_fpsyt_2020_00677
crossref_primary_10_1038_nbt_3443
crossref_primary_10_1111_acn_12016
Cites_doi 10.1038/nn1230
10.1016/j.biopsych.2006.02.003
10.1124/jpet.102.036665
10.1038/sj.mp.4001308
10.1002/cne.902480102
10.1038/sj.npp.1300710
10.1523/JNEUROSCI.20-01-00485.2000
10.1038/86730
10.1001/archpsyc.57.11.1061
10.1007/BF00249897
10.1093/cercor/11.12.1170
10.1176/jnp.6.4.348
10.1001/archpsyc.57.3.237
10.1176/appi.ajp.158.2.256
10.1038/nrn1648
10.1093/bioinformatics/bth035
10.1523/JNEUROSCI.04-10-02497.1984
10.1073/pnas.032069099
10.1002/cne.903280209
10.1023/A:1024126110356
10.1038/sj.mp.4001835
10.1124/mol.104.007385
10.1001/archpsyc.1986.01800020020004
10.1523/JNEUROSCI.14-04-02383.1994
10.1073/pnas.95.26.15718
10.1093/biostatistics/4.2.249
10.1523/JNEUROSCI.18-05-01693.1998
10.1002/cne.903410109
10.1002/cne.903590111
10.1093/cercor/5.6.550
10.1152/jn.00240.2003
10.1615/CritRevNeurobiol.v14.i1.10
10.1016/S0920-9964(01)00377-2
10.1073/pnas.0406555102
10.1016/0006-3223(95)00066-6
10.1523/JNEUROSCI.23-15-06315.2003
10.1523/JNEUROSCI.16-08-02701.1996
10.1016/j.biopsych.2004.10.019
10.1016/S0896-6273(00)00085-4
10.1093/cercor/12.10.1063
10.1016/S0022-3956(96)00041-6
10.1006/meth.2001.1262
10.1016/j.ymeth.2005.09.005
10.1113/jphysiol.2004.078915
10.1523/JNEUROSCI.23-07-02618.2003
10.1002/cne.903030406
10.1016/0024-3205(87)90341-9
10.1002/cne.903040206
10.1016/j.nbd.2004.10.020
10.1016/0006-3223(94)00206-I
10.1523/JNEUROSCI.0860-06.2006
10.1093/nar/gni054
10.1016/S0306-4522(99)00189-X
10.1001/archpsyc.57.1.65
10.1523/JNEUROSCI.4035-04.2005
10.1038/nrn1625
10.1002/cne.902830205
10.1016/j.brainresrev.2006.04.001
10.1038/sj.mp.4001739
10.1073/pnas.081071198
10.1073/pnas.95.25.15066
10.1016/0006-8993(94)91060-X
10.1523/JNEUROSCI.23-33-10650.2003
10.1016/j.tins.2004.01.008
10.1038/nrn1519
10.1016/0306-4522(94)90399-9
10.1176/ajp.156.11.1709
10.1016/0306-4522(96)00328-4
10.1001/archpsyc.1995.03950160008002
ContentType Journal Article
Copyright Springer Nature Limited 2008
2008 INIST-CNRS
COPYRIGHT 2008 Nature Publishing Group
Copyright Nature Publishing Group Feb 2008
Nature Publishing Group 2008.
2008 Nature Publishing Group All rights reserved 2008
Copyright_xml – notice: Springer Nature Limited 2008
– notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 Nature Publishing Group
– notice: Copyright Nature Publishing Group Feb 2008
– notice: Nature Publishing Group 2008.
– notice: 2008 Nature Publishing Group All rights reserved 2008
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7TM
7X8
5PM
DOI 10.1038/sj.mp.4002011
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Proquest Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
ProQuest One Psychology
Neurosciences Abstracts

Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-5578
EndPage 161
ExternalDocumentID PMC2882638
1415284901
A190151378
17471287
20011192
10_1038_sj_mp_4002011
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
United States--US
Pittsburgh Pennsylvania
GeographicLocations_xml – name: United States
– name: United States--US
– name: Pittsburgh Pennsylvania
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH067234
– fundername: NIMH NIH HHS
  grantid: R01 MH043784
– fundername: NIMH NIH HHS
  grantid: K02 MH070786
– fundername: NIMH NIH HHS
  grantid: R37 MH043784
– fundername: NIMH NIH HHS
  grantid: MH067234
– fundername: NIMH NIH HHS
  grantid: MH45156
– fundername: NIMH NIH HHS
  grantid: MH43784
– fundername: NIMH NIH HHS
  grantid: P50 MH045156
– fundername: NICHD NIH HHS
  grantid: P30 HD015052
– fundername: NIMH NIH HHS
  grantid: MH070786
GroupedDBID ---
-Q-
0R~
123
29M
2WC
36B
39C
3V.
4.4
406
53G
70F
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AXYYD
AZQEC
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
IPY
ITC
IWAJR
JSO
JZLTJ
KQ8
M1P
M2M
M7P
NAO
NQJWS
O9-
OK1
OVD
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AADWK
AAPBV
AAWBL
AAYFA
AAYJO
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AFNRJ
AGEZK
AGGBP
AJCLW
AJDOV
AMRJV
IQODW
NYICJ
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
AEIIB
7TK
7XB
8FE
8FH
8FK
ABRTQ
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7TM
7X8
5PM
ID FETCH-LOGICAL-c639t-1ebfe63af9402546fb806c61489cc06541c3bccbe4ceb708c6fa2ee482ff2c323
IEDL.DBID 7X7
ISSN 1359-4184
IngestDate Thu Aug 21 13:55:56 EDT 2025
Mon Jul 21 09:41:07 EDT 2025
Fri Jul 11 03:39:37 EDT 2025
Fri Jul 11 02:57:52 EDT 2025
Sat Aug 23 14:36:30 EDT 2025
Sat Aug 23 14:25:48 EDT 2025
Tue Jun 17 22:22:18 EDT 2025
Tue Jun 10 21:13:08 EDT 2025
Fri May 30 10:49:41 EDT 2025
Sun Oct 22 16:05:38 EDT 2023
Tue Jul 01 00:21:37 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Fri Feb 21 02:39:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords microarray
receptor
quantitative PCR
GABA
neuropeptides
GAD
hybridization
Human
Molecular hybridization
Enzyme
Schizophrenia
Lyases
Glutamate decarboxylase
Neuropeptide
Psychosis
Dorsolateral prefrontal cortex
Polymerase chain reaction
Carbon-carbon lyases
Carboxy-lyases
Neurotransmitter
Genetics
Molecular biology
GABAA receptor
Gabaergic receptor A
in situ hybridization
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c639t-1ebfe63af9402546fb806c61489cc06541c3bccbe4ceb708c6fa2ee482ff2c323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2882638
PMID 17471287
PQID 221166216
PQPubID 44096
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2882638
proquest_miscellaneous_759316248
proquest_miscellaneous_70219487
proquest_miscellaneous_19711390
proquest_journals_2645766387
proquest_journals_221166216
gale_infotracmisc_A190151378
gale_infotracacademiconefile_A190151378
pubmed_primary_17471287
pascalfrancis_primary_20011192
crossref_primary_10_1038_sj_mp_4002011
crossref_citationtrail_10_1038_sj_mp_4002011
springer_journals_10_1038_sj_mp_4002011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: Basingstoke
– name: England
– name: New York
PublicationTitle Molecular psychiatry
PublicationTitleAbbrev Mol Psychiatry
PublicationTitleAlternate Mol Psychiatry
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Benes, Vincent, Marie, Khan (CR20) 1996; 75
Huntsman, Tran, Potkin, Bunney, Jones (CR22) 1998; 95
Impagnatiello, Guidotti, Pesold, Dwivedi, Caruncho, Pisu (CR69) 1998; 95
Ding, Cantor (CR47) 2004; 37
Fritschy, Mohler (CR65) 1995; 359
Weinberger, Berman, Zec (CR1) 1986; 43
Kawaguchi, Kubota (CR55) 1996; 16
Petryshen, Middleton, Tahl, Rockwell, Purcell, Aldinger (CR66) 2005; 10
Ohnuma, Augood, Arai, McKenna, Emson (CR8) 1999; 93
Bachus, Hyde, Herman, Egan, Kleinman (CR37) 1997; 31
González-Albo, Elston, DeFelipe (CR52) 2001; 11
Mimmack, Ryan, Baba, Navarro-Ruiz, Iritani, Faull (CR40) 2002; 99
Akbarian, Huntsman, Kim, Tafazzoli, Potkin, Bunney (CR70) 1995; 5
Markram, Toledo-Rodriguez, Wang, Gupta, Silberberg, Wu (CR72) 2004; 5
Lewis, Campbell, Morrison (CR17) 1986; 248
Somogyi, Klausberger (CR73) 2005; 562
Akbarian, Huang (CR38) 2006; 52
Mirnics, Middleton, Marquez, Lewis, Levitt (CR11) 2000; 28
Hashimoto, Volk, Eggan, Mirnics, Pierri, Sun (CR15) 2003; 23
Gabriel, Davidson, Haroutunian, Powchik, Bierer, Purohit (CR45) 1996; 39
Dorph-Petersen, Pierri, Perel, Sun, Sampson, Lewis (CR34) 2005; 30
DeLima, Morrison (CR54) 1989; 283
Schiffmann, Vanderhaeghen (CR59) 1991; 304
Guidotti, Auta, Davis, Gerevini, Dwivedi, Grayson (CR10) 2000; 57
Hashimoto, Bergen, Nguyen, Xu, Monteggia, Pierri (CR13) 2005; 25
Wei, Zhang, Peng, Houser, Mody (CR62) 2003; 23
Elvevåg, Goldberg (CR3) 2000; 14
Hanada, Mita, Nishino, Tanaka (CR19) 1987; 40
Irizarry, Hobbs, Collin, Beazer-Barclay, Antonellis, Scherf (CR26) 2003; 4
Lewis, Hashimoto, Volk (CR4) 2005; 6
Hakak, Walker, Li, Wong, Davis, Buxbaum (CR39) 2001; 98
Mirnics, Levitt, Lewis (CR43) 2006; 60
Baraban, Tallent (CR57) 2004; 27
Mirnics, Pevsner (CR28) 2004; 7
Volk, Austin, Pierri, Sampson, Lewis (CR12) 2001; 158
Condé, Lund, Jacobowitz, Baimbridge, Lewis (CR16) 1994; 341
Neter, Kutner, Nachtsheim, Wasserman (CR33) 1996
Akbarian, Kim, Potkin, Hagman, Tafazzoli, Bunney (CR7) 1995; 52
Jensen, Chiu, Sokolova, Lester, Mody (CR49) 2003; 90
Hayes, Cameron, Fernstrom, Lewis (CR27) 1991; 303
Hendry, Huntsman, Viñuela, Mohler, de Blas, Jones (CR64) 1994; 14
Ponomarev, Maiya, Harnett, Schafer, Ryabinin, Blednov (CR68) 2006; 26
Lepre, Rice, Tu, Stolovitzky (CR31) 2004; 20
Glantz, Lewis (CR24) 2000; 57
Volk, Pierri, Fritschy, Auh, Sampson, Lewis (CR21) 2002; 12
Stolovitzky, Kundaje, Held, Duggar, Haudenschild, Zhou (CR32) 2005; 102
Hendry, Jones, Emson (CR53) 1984; 4
Unger, Korade, Lazarov, Terrano, Sisodia, Mirnics (CR29) 2005; 37
Pierri, Chaudry, Woo, Lewis (CR48) 1999; 156
Dournaud, Cervera-Pierot, Hirsch, Javoy-Agid, Kordon, Agid (CR36) 1994; 61
Weickert, Hyde, Lipska, Herman, Weinberger, Kleinman (CR44) 2003; 8
Volk, Austin, Pierri, Sampson, Lewis (CR9) 2000; 57
Glorioso, Sabatini, Unger, Hashimoto, Monteggia, Lewis (CR30) 2006; 11
Mangan, Sun, Carpenter, Goodkin, Sieghart, Kapur (CR61) 2005; 67
Kim, Matzilevich, Walsh, Benes, Woo (CR71) 2005; 912
Farrant, Nusser (CR63) 2005; 6
Melchitzky, Lewis (CR56) 2005; 675
Rao, Williams, Goldman-Rakic (CR6) 2000; 20
Kawaguchi, Kondo (CR58) 2002; 31
Imbeaud, Graudens, Boulanger, Barlet, Zaborski, Eveno (CR25) 2005; 33
Hollingshead, Lewis, Mirnics (CR42) 2005; 18
Overstreet, Westbrook (CR50) 2003; 23
Nusser, Sieghart, Somogyi (CR60) 1998; 18
Kralic, Korpi, O'Buckley, Homanics, Morrow (CR67) 2002; 302
Vawter, Crook, Hyde, Kleinman, Weinberger, Becker (CR23) 2002; 58
Kubota, Hattori, Yui (CR51) 1994; 649
Sawaguchi, Matsumura, Kubota (CR5) 1989; 75
Goldman-Rakic (CR2) 1994; 6
Hughes, Mao, Jones, Burchard, Marton, Shannon (CR41) 2001; 19
Virgo, Humphries, Mortimer, Barnes, Hirsch, de Belleroche (CR46) 1995; 37
Livak, Schmittgen (CR35) 2001; 25
Torrey, Barci, Webster, Bartko, Meador-Woodruff, Knable (CR14) 2005; 57
Lund, Lewis (CR18) 1993; 328
P Dournaud (BF4002011_CR36) 1994; 61
S Akbarian (BF4002011_CR70) 1995; 5
PS Goldman-Rakic (BF4002011_CR2) 1994; 6
F Impagnatiello (BF4002011_CR69) 1998; 95
EF Torrey (BF4002011_CR14) 2005; 57
A Guidotti (BF4002011_CR10) 2000; 57
K-A Dorph-Petersen (BF4002011_CR34) 2005; 30
DA Lewis (BF4002011_CR4) 2005; 6
W Wei (BF4002011_CR62) 2003; 23
C Ding (BF4002011_CR47) 2004; 37
J Lepre (BF4002011_CR31) 2004; 20
B Elvevåg (BF4002011_CR3) 2000; 14
S Imbeaud (BF4002011_CR25) 2005; 33
JS Lund (BF4002011_CR18) 1993; 328
LS Overstreet (BF4002011_CR50) 2003; 23
SM Gabriel (BF4002011_CR45) 1996; 39
Y Kawaguchi (BF4002011_CR55) 1996; 16
SHC Hendry (BF4002011_CR64) 1994; 14
JE Kralic (BF4002011_CR67) 2002; 302
ML Mimmack (BF4002011_CR40) 2002; 99
T Sawaguchi (BF4002011_CR5) 1989; 75
K Jensen (BF4002011_CR49) 2003; 90
T Unger (BF4002011_CR29) 2005; 37
M Farrant (BF4002011_CR63) 2005; 6
FM Benes (BF4002011_CR20) 1996; 75
S Akbarian (BF4002011_CR7) 1995; 52
JN Pierri (BF4002011_CR48) 1999; 156
T Ohnuma (BF4002011_CR8) 1999; 93
MC González-Albo (BF4002011_CR52) 2001; 11
KJ Livak (BF4002011_CR35) 2001; 25
DW Volk (BF4002011_CR12) 2001; 158
LA Glantz (BF4002011_CR24) 2000; 57
SE Bachus (BF4002011_CR37) 1997; 31
TL Petryshen (BF4002011_CR66) 2005; 10
AM Kim (BF4002011_CR71) 2005; 912
J Neter (BF4002011_CR33) 1996
SG Rao (BF4002011_CR6) 2000; 20
K Mirnics (BF4002011_CR43) 2006; 60
SHC Hendry (BF4002011_CR53) 1984; 4
F Condé (BF4002011_CR16) 1994; 341
MM Huntsman (BF4002011_CR22) 1998; 95
SC Baraban (BF4002011_CR57) 2004; 27
DA Lewis (BF4002011_CR17) 1986; 248
H Markram (BF4002011_CR72) 2004; 5
TL Hayes (BF4002011_CR27) 1991; 303
TR Hughes (BF4002011_CR41) 2001; 19
T Hashimoto (BF4002011_CR13) 2005; 25
DW Volk (BF4002011_CR9) 2000; 57
MP Vawter (BF4002011_CR23) 2002; 58
K Mirnics (BF4002011_CR28) 2004; 7
AD DeLima (BF4002011_CR54) 1989; 283
DW Volk (BF4002011_CR21) 2002; 12
RA Irizarry (BF4002011_CR26) 2003; 4
Z Nusser (BF4002011_CR60) 1998; 18
K Mirnics (BF4002011_CR11) 2000; 28
Y Kubota (BF4002011_CR51) 1994; 649
PS Mangan (BF4002011_CR61) 2005; 67
J-M Fritschy (BF4002011_CR65) 1995; 359
DR Weinberger (BF4002011_CR1) 1986; 43
C Glorioso (BF4002011_CR30) 2006; 11
S Akbarian (BF4002011_CR38) 2006; 52
SN Schiffmann (BF4002011_CR59) 1991; 304
T Hashimoto (BF4002011_CR15) 2003; 23
S Hanada (BF4002011_CR19) 1987; 40
I Ponomarev (BF4002011_CR68) 2006; 26
Y Kawaguchi (BF4002011_CR58) 2002; 31
GA Stolovitzky (BF4002011_CR32) 2005; 102
D Hollingshead (BF4002011_CR42) 2005; 18
CS Weickert (BF4002011_CR44) 2003; 8
L Virgo (BF4002011_CR46) 1995; 37
DS Melchitzky (BF4002011_CR56) 2005; 675
P Somogyi (BF4002011_CR73) 2005; 562
Y Hakak (BF4002011_CR39) 2001; 98
References_xml – volume: 7
  start-page: 434
  year: 2004
  end-page: 439
  ident: CR28
  article-title: Progress in the use of microarray technology to study the neurobiology of disease
  publication-title: Nat Neurosci
  doi: 10.1038/nn1230
– volume: 60
  start-page: 163
  year: 2006
  end-page: 176
  ident: CR43
  article-title: Critical appraisal of DNA microarrays in psychiatric genomics
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.02.003
– volume: 302
  start-page: 1037
  year: 2002
  end-page: 1045
  ident: CR67
  article-title: Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.102.036665
– volume: 37
  start-page: 1
  year: 2004
  end-page: 10
  ident: CR47
  article-title: Quantitative analysis of nucleic acids – the last few years of progress
  publication-title: J Biochem Mol Biol
– volume: 8
  start-page: 592
  year: 2003
  end-page: 610
  ident: CR44
  article-title: Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001308
– volume: 248
  start-page: 1
  year: 1986
  end-page: 18
  ident: CR17
  article-title: An immunohistochemical characterization of somatostatin-28 and somatostatin-28 (1-12) in monkey prefrontal cortex
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902480102
– volume: 30
  start-page: 1649
  year: 2005
  end-page: 1661
  ident: CR34
  article-title: The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys
  publication-title: Neuropsychopharm
  doi: 10.1038/sj.npp.1300710
– volume: 20
  start-page: 485
  year: 2000
  end-page: 494
  ident: CR6
  article-title: Destruction and creation of spatial tuning by disinhibition: GABA blockade of prefrontal cortical neurons engaged by working memory
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-01-00485.2000
– volume: 19
  start-page: 342
  year: 2001
  end-page: 347
  ident: CR41
  article-title: Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer
  publication-title: Nat Biotechnol
  doi: 10.1038/86730
– volume: 57
  start-page: 1061
  year: 2000
  end-page: 1069
  ident: CR10
  article-title: Decrease in reelin and glutamic acid decarboxylase (GAD ) expression in schizophrenia and bipolar disorder
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.11.1061
– volume: 75
  start-page: 457
  year: 1989
  end-page: 469
  ident: CR5
  article-title: Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys
  publication-title: Exp Brain Res
  doi: 10.1007/BF00249897
– volume: 11
  start-page: 1170
  year: 2001
  end-page: 1181
  ident: CR52
  article-title: The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/11.12.1170
– volume: 52
  start-page: 258
  year: 1995
  end-page: 266
  ident: CR7
  article-title: Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics
  publication-title: Arch Gen Psychiatry
– volume: 912
  start-page: 1
  year: 2005
  ident: CR71
  article-title: Parvalbumin-containing neurons and disturbances of prefrontal cortical circuitry in schizophrenia
  publication-title: Soc Neurosci Abstr
– volume: 6
  start-page: 348
  year: 1994
  end-page: 357
  ident: CR2
  article-title: Working memory dysfunction in schizophrenia
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/jnp.6.4.348
– volume: 57
  start-page: 237
  year: 2000
  end-page: 245
  ident: CR9
  article-title: Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.3.237
– volume: 158
  start-page: 256
  year: 2001
  end-page: 265
  ident: CR12
  article-title: GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.2.256
– volume: 6
  start-page: 312
  year: 2005
  end-page: 324
  ident: CR4
  article-title: Cortical inhibitory neurons and schizophrenia
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1648
– volume: 20
  start-page: 1033
  year: 2004
  end-page: 1044
  ident: CR31
  article-title: Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth035
– year: 1996
  ident: CR33
  publication-title: Applied Linear Statistical Models
– volume: 4
  start-page: 2497
  year: 1984
  end-page: 2517
  ident: CR53
  article-title: Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.04-10-02497.1984
– volume: 99
  start-page: 4680
  year: 2002
  end-page: 4685
  ident: CR40
  article-title: Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.032069099
– volume: 328
  start-page: 282
  year: 1993
  end-page: 312
  ident: CR18
  article-title: Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903280209
– volume: 31
  start-page: 277
  year: 2002
  end-page: 287
  ident: CR58
  article-title: Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex
  publication-title: J Neurocytol
  doi: 10.1023/A:1024126110356
– volume: 11
  start-page: 633
  year: 2006
  end-page: 648
  ident: CR30
  article-title: Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001835
– volume: 67
  start-page: 775
  year: 2005
  end-page: 788
  ident: CR61
  article-title: Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.104.007385
– volume: 43
  start-page: 114
  year: 1986
  end-page: 124
  ident: CR1
  article-title: Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1986.01800020020004
– volume: 14
  start-page: 2383
  year: 1994
  end-page: 2401
  ident: CR64
  article-title: GABA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-04-02383.1994
– volume: 95
  start-page: 15718
  year: 1998
  end-page: 15723
  ident: CR69
  article-title: A decrease of reelin expression as a putative vulnerability factor in schizophrenia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.26.15718
– volume: 675
  start-page: 6
  year: 2005
  ident: CR56
  article-title: Synaptic targets of somatostatin-labeled axon terminals in monkey prefrontal cortex
  publication-title: Soc Neurosci Abstr
– volume: 4
  start-page: 249
  year: 2003
  end-page: 264
  ident: CR26
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 18
  start-page: 1693
  year: 1998
  end-page: 1703
  ident: CR60
  article-title: Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-05-01693.1998
– volume: 341
  start-page: 95
  year: 1994
  end-page: 116
  ident: CR16
  article-title: Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: distribution and morphology
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903410109
– volume: 359
  start-page: 154
  year: 1995
  end-page: 194
  ident: CR65
  article-title: GABA -receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903590111
– volume: 5
  start-page: 550
  year: 1995
  end-page: 560
  ident: CR70
  article-title: GABA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/5.6.550
– volume: 90
  start-page: 2690
  year: 2003
  end-page: 2701
  ident: CR49
  article-title: GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00240.2003
– volume: 14
  start-page: 1
  year: 2000
  end-page: 21
  ident: CR3
  article-title: Cognitive impairment in schizophrenia is the core of the disorder
  publication-title: Crit Rev Neurobiol
  doi: 10.1615/CritRevNeurobiol.v14.i1.10
– volume: 58
  start-page: 11
  year: 2002
  end-page: 20
  ident: CR23
  article-title: Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00377-2
– volume: 102
  start-page: 1402
  year: 2005
  end-page: 1407
  ident: CR32
  article-title: Statistical analysis of MPSS measurements: application to the study of LPS-activated macrophage gene expression
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406555102
– volume: 39
  start-page: 82
  year: 1996
  end-page: 91
  ident: CR45
  article-title: Neuropeptide deficits in schizophrenia vs. Alzheimer's disease cerebral cortex
  publication-title: Biol Psychiatry
  doi: 10.1016/0006-3223(95)00066-6
– volume: 23
  start-page: 6315
  year: 2003
  end-page: 6326
  ident: CR15
  article-title: Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-15-06315.2003
– volume: 16
  start-page: 2701
  year: 1996
  end-page: 2715
  ident: CR55
  article-title: Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-08-02701.1996
– volume: 57
  start-page: 252
  year: 2005
  end-page: 260
  ident: CR14
  article-title: Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2004.10.019
– volume: 28
  start-page: 53
  year: 2000
  end-page: 67
  ident: CR11
  article-title: Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00085-4
– volume: 12
  start-page: 1063
  year: 2002
  end-page: 1070
  ident: CR21
  article-title: Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/12.10.1063
– volume: 31
  start-page: 233
  year: 1997
  end-page: 256
  ident: CR37
  article-title: Abnormal cholesystokinin mRNA levels in entorhinal cortex of schizophrenics
  publication-title: J Psychiatry Res
  doi: 10.1016/S0022-3956(96)00041-6
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: CR35
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 37
  start-page: 261
  year: 2005
  end-page: 273
  ident: CR29
  article-title: True and false discovery in DNA microarray experiments: transcriptome changes in the hippocampus of presenilin 1 mutant mice
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.09.005
– volume: 562
  start-page: 9
  year: 2005
  end-page: 26
  ident: CR73
  article-title: Defined types of cortical interneurone structure space and spike timing in the hippocampus
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2004.078915
– volume: 23
  start-page: 2618
  year: 2003
  end-page: 2626
  ident: CR50
  article-title: Synapse density regulates independence at unitary inhibitory synapses
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-07-02618.2003
– volume: 303
  start-page: 584
  year: 1991
  end-page: 599
  ident: CR27
  article-title: A comparative analysis of the distribution of prosomatostatin-derived peptides in human and monkey neocortex
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903030406
– volume: 40
  start-page: 239
  year: 1987
  end-page: 266
  ident: CR19
  article-title: H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics
  publication-title: Life Sci
  doi: 10.1016/0024-3205(87)90341-9
– volume: 304
  start-page: 219
  year: 1991
  end-page: 233
  ident: CR59
  article-title: Distribution of cells containing mRNA encoding cholecystokinin in the rat central nervous system
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903040206
– volume: 18
  start-page: 649
  year: 2005
  end-page: 655
  ident: CR42
  article-title: Platform influence on DNA microarray data in postmortem brain research
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2004.10.020
– volume: 37
  start-page: 694
  year: 1995
  end-page: 701
  ident: CR46
  article-title: Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/0006-3223(94)00206-I
– volume: 26
  start-page: 5673
  year: 2006
  end-page: 5683
  ident: CR68
  article-title: Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0860-06.2006
– volume: 33
  start-page: 1
  year: 2005
  end-page: 12
  ident: CR25
  article-title: Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni054
– volume: 75
  start-page: 1021
  year: 1996
  end-page: 1031
  ident: CR20
  article-title: Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects
  publication-title: Neuroscience
– volume: 93
  start-page: 441
  year: 1999
  end-page: 448
  ident: CR8
  article-title: Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA receptor -1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(99)00189-X
– volume: 57
  start-page: 65
  year: 2000
  end-page: 73
  ident: CR24
  article-title: Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.1.65
– volume: 25
  start-page: 372
  year: 2005
  end-page: 383
  ident: CR13
  article-title: Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4035-04.2005
– volume: 156
  start-page: 1709
  year: 1999
  end-page: 1719
  ident: CR48
  article-title: Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects
  publication-title: Am J Psychiatry
– volume: 6
  start-page: 215
  year: 2005
  end-page: 229
  ident: CR63
  article-title: Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1625
– volume: 283
  start-page: 212
  year: 1989
  end-page: 227
  ident: CR54
  article-title: Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902830205
– volume: 52
  start-page: 293
  year: 2006
  end-page: 304
  ident: CR38
  article-title: Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders
  publication-title: Brain Res Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.04.001
– volume: 10
  start-page: 1074
  year: 2005
  end-page: 1088
  ident: CR66
  article-title: Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001739
– volume: 98
  start-page: 4746
  year: 2001
  end-page: 4751
  ident: CR39
  article-title: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.081071198
– volume: 95
  start-page: 15066
  year: 1998
  end-page: 15071
  ident: CR22
  article-title: Altered ratios of alternatively spliced long and short gamma 2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.15066
– volume: 649
  start-page: 159
  year: 1994
  end-page: 173
  ident: CR51
  article-title: Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)91060-X
– volume: 23
  start-page: 10650
  year: 2003
  end-page: 10661
  ident: CR62
  article-title: Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-33-10650.2003
– volume: 27
  start-page: 135
  year: 2004
  end-page: 142
  ident: CR57
  article-title: Interneuron diversity series: interneuronal neuropeptides – endogenous regulators of neuronal excitability
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2004.01.008
– volume: 5
  start-page: 793
  year: 2004
  end-page: 807
  ident: CR72
  article-title: Interneurons of the neocortical inhibitory system
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1519
– volume: 61
  start-page: 755
  year: 1994
  end-page: 764
  ident: CR36
  article-title: Somatostatin messenger RNA-containing neurons in Alzheimer's disease: an hybridization study in hippocampus, parahippocampal cortex and frontal cortex
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90399-9
– volume: 52
  start-page: 293
  year: 2006
  ident: BF4002011_CR38
  publication-title: Brain Res Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.04.001
– volume: 31
  start-page: 277
  year: 2002
  ident: BF4002011_CR58
  publication-title: J Neurocytol
  doi: 10.1023/A:1024126110356
– volume-title: Applied Linear Statistical Models
  year: 1996
  ident: BF4002011_CR33
– volume: 912
  start-page: 1
  year: 2005
  ident: BF4002011_CR71
  publication-title: Soc Neurosci Abstr
– volume: 6
  start-page: 215
  year: 2005
  ident: BF4002011_CR63
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1625
– volume: 302
  start-page: 1037
  year: 2002
  ident: BF4002011_CR67
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.102.036665
– volume: 5
  start-page: 550
  year: 1995
  ident: BF4002011_CR70
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/5.6.550
– volume: 16
  start-page: 2701
  year: 1996
  ident: BF4002011_CR55
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-08-02701.1996
– volume: 40
  start-page: 239
  year: 1987
  ident: BF4002011_CR19
  publication-title: Life Sci
  doi: 10.1016/0024-3205(87)90341-9
– volume: 95
  start-page: 15066
  year: 1998
  ident: BF4002011_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.25.15066
– volume: 283
  start-page: 212
  year: 1989
  ident: BF4002011_CR54
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902830205
– volume: 61
  start-page: 755
  year: 1994
  ident: BF4002011_CR36
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90399-9
– volume: 37
  start-page: 261
  year: 2005
  ident: BF4002011_CR29
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.09.005
– volume: 156
  start-page: 1709
  year: 1999
  ident: BF4002011_CR48
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.156.11.1709
– volume: 58
  start-page: 11
  year: 2002
  ident: BF4002011_CR23
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00377-2
– volume: 28
  start-page: 53
  year: 2000
  ident: BF4002011_CR11
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00085-4
– volume: 60
  start-page: 163
  year: 2006
  ident: BF4002011_CR43
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.02.003
– volume: 31
  start-page: 233
  year: 1997
  ident: BF4002011_CR37
  publication-title: J Psychiatry Res
  doi: 10.1016/S0022-3956(96)00041-6
– volume: 19
  start-page: 342
  year: 2001
  ident: BF4002011_CR41
  publication-title: Nat Biotechnol
  doi: 10.1038/86730
– volume: 341
  start-page: 95
  year: 1994
  ident: BF4002011_CR16
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903410109
– volume: 39
  start-page: 82
  year: 1996
  ident: BF4002011_CR45
  publication-title: Biol Psychiatry
  doi: 10.1016/0006-3223(95)00066-6
– volume: 57
  start-page: 1061
  year: 2000
  ident: BF4002011_CR10
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.11.1061
– volume: 37
  start-page: 1
  year: 2004
  ident: BF4002011_CR47
  publication-title: J Biochem Mol Biol
– volume: 57
  start-page: 237
  year: 2000
  ident: BF4002011_CR9
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.3.237
– volume: 6
  start-page: 348
  year: 1994
  ident: BF4002011_CR2
  publication-title: J Neuropsychiatry Clin Neurosci
  doi: 10.1176/jnp.6.4.348
– volume: 99
  start-page: 4680
  year: 2002
  ident: BF4002011_CR40
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.032069099
– volume: 4
  start-page: 249
  year: 2003
  ident: BF4002011_CR26
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 25
  start-page: 402
  year: 2001
  ident: BF4002011_CR35
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 90
  start-page: 2690
  year: 2003
  ident: BF4002011_CR49
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00240.2003
– volume: 98
  start-page: 4746
  year: 2001
  ident: BF4002011_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.081071198
– volume: 4
  start-page: 2497
  year: 1984
  ident: BF4002011_CR53
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.04-10-02497.1984
– volume: 20
  start-page: 485
  year: 2000
  ident: BF4002011_CR6
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-01-00485.2000
– volume: 303
  start-page: 584
  year: 1991
  ident: BF4002011_CR27
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903030406
– volume: 8
  start-page: 592
  year: 2003
  ident: BF4002011_CR44
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001308
– volume: 23
  start-page: 2618
  year: 2003
  ident: BF4002011_CR50
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-07-02618.2003
– volume: 14
  start-page: 2383
  year: 1994
  ident: BF4002011_CR64
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-04-02383.1994
– volume: 93
  start-page: 441
  year: 1999
  ident: BF4002011_CR8
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(99)00189-X
– volume: 158
  start-page: 256
  year: 2001
  ident: BF4002011_CR12
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.2.256
– volume: 25
  start-page: 372
  year: 2005
  ident: BF4002011_CR13
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4035-04.2005
– volume: 30
  start-page: 1649
  year: 2005
  ident: BF4002011_CR34
  publication-title: Neuropsychopharm
  doi: 10.1038/sj.npp.1300710
– volume: 6
  start-page: 312
  year: 2005
  ident: BF4002011_CR4
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1648
– volume: 23
  start-page: 6315
  year: 2003
  ident: BF4002011_CR15
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-15-06315.2003
– volume: 20
  start-page: 1033
  year: 2004
  ident: BF4002011_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth035
– volume: 248
  start-page: 1
  year: 1986
  ident: BF4002011_CR17
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902480102
– volume: 95
  start-page: 15718
  year: 1998
  ident: BF4002011_CR69
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.26.15718
– volume: 57
  start-page: 65
  year: 2000
  ident: BF4002011_CR24
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.1.65
– volume: 18
  start-page: 649
  year: 2005
  ident: BF4002011_CR42
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2004.10.020
– volume: 75
  start-page: 457
  year: 1989
  ident: BF4002011_CR5
  publication-title: Exp Brain Res
  doi: 10.1007/BF00249897
– volume: 328
  start-page: 282
  year: 1993
  ident: BF4002011_CR18
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903280209
– volume: 649
  start-page: 159
  year: 1994
  ident: BF4002011_CR51
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)91060-X
– volume: 7
  start-page: 434
  year: 2004
  ident: BF4002011_CR28
  publication-title: Nat Neurosci
  doi: 10.1038/nn1230
– volume: 43
  start-page: 114
  year: 1986
  ident: BF4002011_CR1
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1986.01800020020004
– volume: 10
  start-page: 1074
  year: 2005
  ident: BF4002011_CR66
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001739
– volume: 359
  start-page: 154
  year: 1995
  ident: BF4002011_CR65
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903590111
– volume: 14
  start-page: 1
  year: 2000
  ident: BF4002011_CR3
  publication-title: Crit Rev Neurobiol
  doi: 10.1615/CritRevNeurobiol.v14.i1.10
– volume: 27
  start-page: 135
  year: 2004
  ident: BF4002011_CR57
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2004.01.008
– volume: 304
  start-page: 219
  year: 1991
  ident: BF4002011_CR59
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903040206
– volume: 23
  start-page: 10650
  year: 2003
  ident: BF4002011_CR62
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-33-10650.2003
– volume: 11
  start-page: 1170
  year: 2001
  ident: BF4002011_CR52
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/11.12.1170
– volume: 75
  start-page: 1021
  year: 1996
  ident: BF4002011_CR20
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(96)00328-4
– volume: 12
  start-page: 1063
  year: 2002
  ident: BF4002011_CR21
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/12.10.1063
– volume: 37
  start-page: 694
  year: 1995
  ident: BF4002011_CR46
  publication-title: Biol Psychiatry
  doi: 10.1016/0006-3223(94)00206-I
– volume: 102
  start-page: 1402
  year: 2005
  ident: BF4002011_CR32
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0406555102
– volume: 675
  start-page: 6
  year: 2005
  ident: BF4002011_CR56
  publication-title: Soc Neurosci Abstr
– volume: 562
  start-page: 9
  year: 2005
  ident: BF4002011_CR73
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2004.078915
– volume: 67
  start-page: 775
  year: 2005
  ident: BF4002011_CR61
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.104.007385
– volume: 26
  start-page: 5673
  year: 2006
  ident: BF4002011_CR68
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0860-06.2006
– volume: 5
  start-page: 793
  year: 2004
  ident: BF4002011_CR72
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1519
– volume: 57
  start-page: 252
  year: 2005
  ident: BF4002011_CR14
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2004.10.019
– volume: 33
  start-page: 1
  year: 2005
  ident: BF4002011_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gni054
– volume: 52
  start-page: 258
  year: 1995
  ident: BF4002011_CR7
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1995.03950160008002
– volume: 11
  start-page: 633
  year: 2006
  ident: BF4002011_CR30
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001835
– volume: 18
  start-page: 1693
  year: 1998
  ident: BF4002011_CR60
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-05-01693.1998
SSID ssj0014765
Score 2.4469988
Snippet In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Acids
Adult
Adult and adolescent clinical studies
Aged
Animals
Antipsychotic Agents - pharmacology
Antipsychotics
Behavioral Sciences
Benzodiazepines - pharmacology
Biological and medical sciences
Biological Psychology
Case-Control Studies
Chloroquinolinols - pharmacology
Cholecystokinin
DNA microarrays
Female
GABA
GABA Plasma Membrane Transport Proteins - genetics
GABA Plasma Membrane Transport Proteins - metabolism
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
Genetic aspects
Glutamate decarboxylase
Glutamate Decarboxylase - genetics
Glutamate Decarboxylase - metabolism
Glutamic acid
Health aspects
Humans
Hybridization
Hypotheses
Macaca fascicularis
Male
Medical sciences
Medicine
Medicine & Public Health
Memory
Mental disorders
Middle Aged
Monkeys & apes
Neurons
Neuropeptide Y
Neuropeptides
Neuropeptides - genetics
Neuropeptides - metabolism
Neurosciences
Neurotransmission
Neurotransmitters
Olanzapine
Oligonucleotide Array Sequence Analysis - methods
original-article
Pharmacotherapy
Physiological aspects
Prefrontal cortex
Prefrontal Cortex - metabolism
Properties
Protein Subunits - genetics
Protein Subunits - metabolism
Proteins
Psychiatry
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
Receptors, GABA-A - genetics
Receptors, GABA-A - metabolism
Schizophrenia
Schizophrenia - pathology
Short term memory
Somatostatin
Transcriptomes
γ-Aminobutyric acid A receptors
Title Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia
URI https://link.springer.com/article/10.1038/sj.mp.4002011
https://www.ncbi.nlm.nih.gov/pubmed/17471287
https://www.proquest.com/docview/221166216
https://www.proquest.com/docview/2645766387
https://www.proquest.com/docview/19711390
https://www.proquest.com/docview/70219487
https://www.proquest.com/docview/759316248
https://pubmed.ncbi.nlm.nih.gov/PMC2882638
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgExISQvwmbBQ_IHghW2ynsfOEMrQxITEhxKS-RYlja5vaJCytNP577hw3I9DyUlXyxXHuzvZn-_wdIW8NFzaNVRHaWKZhzI0ISws_qZlyqcvSRI5i4-tZcnoef5lNZ37DrfNhlesx0Q3UVaNxj_wQJm6AxuAt8mP7M8SsUXi66lNo3CW7SF2GXi1nw4KLxdKlkmRiiqedKvYcm5FQh93VwaI9iBEtMTaak_zI_KAtOtCS7dNbbMKf_4ZR_nWW6qaok0fkoceWNOud4TG5Y-on5F6fbfLXU1Jnc0ehjI5GL2v6OTvKQneXxVR0iXOWG0GahcFSAIa0ajCbdoFPzWkL7Ua2A_irMUL3hjaWdqsSN3I6ivu5tPszgu8ZOT85_vHpNPTpFkINMGUZMgNWSkQBtsMr8oktVZRoJApNtcY7qEyLUuvSxNqUMlI6sQU3JlbcWq4FF8_JTt3U5iWhwgBsqYwWLLGw_lPKRlVR2qQyYAVmq4B8WCs8156LHFNizHN3Ji5U3l3lizb39gnIu0G87Uk4tgm-R-vl2DmhPl34OwbQKqS5yjMHf5iQKiD7I0noVHpUPBnZf3gthqCBq_GA7K0dIve9vss5rKaThLMEat9QOnhwQN4MxfhijHOrTbPqcpZKBpg82i4hAZRB54I66DaJaQp65zF8xIveQW-VhlsQHB-WI9cdBJBsfFxSX1440nEOSzFoO2h47eS3X7bRFq_-r4M9cr8PvcHIoH2ys7xemdeA75blxHXiCdk9Oj779v03qjdT0A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQSQtyEltYPHC-kje1sjgeEwlG29HhqpX1zE8cWrXaTQHYF_VP8RmacowR2eevLaiVPHMcznsMef0PIC82Fif0odY0fxq7PtXAzAz-xHvFQZZn2LMTG0XEwPvW_TEaTNfKruwuDaZWdTrSKOi8V7pHvguEG1xikJXxXfXOxahSernYlNBqxONCXPyBkq9_ufwT-vuR879PJh7HbVhVwFVjjucs0DCYQKQwRb4IHJou8QCEeZqwUXrVkSmRKZdpXOgu9SAUm5Vr7ETeGK4FAB6Dyb4Dh9TDYCyd9gMf80JauZGKEp6uR32J6eiLarS92ZtWOj94ZYwMb2FqCO1VaA1dMU05jmb_7b9rmX2e31iTu3SN3W1-WJo3w3SdrunhAbjbVLS8fkiKZWshmFGx6XtDPyfvEtXdndE7naCOtxipnGlvBEaV5idW7U3xqSisYN6IrwF-FGcE_aWlovchw46imuH9M6z8zBh-R02thxGOyXpSFfkqo0OAm5VoJFhiIN6PIeHmamSDXwAVmcoe86SZcqhb7HEtwTKU9gxeRrC_krJItfxzyqievGtCPVYSvkXsSlQH0p9L2TgOMCmG1ZGLdLSbCyCGbA0pYxGrQvDXgf_9aTHlj4IU7ZKMTCNlqmVpyiN6DgLMAel_S2q8Yh2z3zfhizKsrdLmoJYtDBjGAt5oiBCcQFjP0QVdRjGKYd-7DRzxpBPRq0nDLg-PD4UB0ewIENx-2FOdfLcg5h9APxg4z3An51Zct5cWz_8_BNrk1Pjk6lIf7xwcb5HaT9oNZSZtkff59oZ-DbznPtuyCpuTsujXIbyHTkFM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBICPEmtLQ-8LiQbmxn8zgglNIuLYVVhajUm5s4tmi1mwSyK-hf49cxk1cJ7HLrZbWSJ47jGc_DHn9DyHPNhQndILaN64e2y7WwEwM_oR5xXyWJdiqIjU8T7-DE_XA6Ol0jv9q7MJhW2erESlGnucI98iEYbnCNQVr8oWnSIo73xm-LbzZWkMKT1racRi0iR_ryB4Rv5ZvDPeD1C87H-1_eHdhNhQFbgWWe20zDwDwRw3DxVrhnksDxFGJjhkrhtUumRKJUol2lE98JlGdirrUbcGO4Egh6AOp_3ceoaEDWd_cnx5-7MwzXrwpZMjHCs9bAbRA-HREMy4udWbHjoq_GWM8iNnbhdhGXwCNTF9dY5v3-m8T510luZSDHd8mdxrOlUS2K98iazu6TG3Wty8sHJIumFYAzijk9z-j7aDeyq5s0OqVztJiV_spnGlvBLaVpjrW8Y3xqSgsYN2ItwF-F-cE_aW5ouUhwG6mkuJtMyz_zBx-Sk2thxSMyyPJMPyFUaHCaUq0E8wxEn0FgnDROjJdq4AIzqUVetxMuVYOEjgU5prI6kReBLC_krJANfyzysiMvagiQVYSvkHsSVQP0p-LmhgOMCkG2ZFQ5X0z4gUU2e5SwpFWveavH_-61mADHwCe3yEYrELLROaXkEMt7Hmce9L6ktVs_FtnumvHFmGWX6XxRShb6DCICZzWFDy4hLG3og66iGIUw79yFj3hcC-jVpOEGCMeH_Z7odgQIdd5vyc6_VpDnHAJBGDvMcCvkV1-2lBdP_z8H2-QmaA_58XBytEFu1TlAmKK0SQbz7wv9DBzNebLVrGhKzq5bifwGeAGV7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alterations+in+GABA-related+transcriptome+in+the+dorsolateral+prefrontal+cortex+of+subjects+with+schizophrenia&rft.jtitle=Molecular+psychiatry&rft.au=Hashimoto%2C+T&rft.au=Arion%2C+D&rft.au=Unger%2C+T&rft.au=Maldonado-Aviles%2C+J+G&rft.date=2008-02-01&rft.issn=1359-4184&rft.volume=13&rft.issue=2&rft.spage=147&rft.epage=161&rft_id=info:doi/10.1038%2Fsj.mp.4002011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4184&client=summon