Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling
A class of small molecules that stabilize a previously unrecognized inactive state of KSR is reported; the agonists synergize with MEK inhibitors to prevent growth of Ras mutant cell lines. Novel KSR antagonists KSR (kinase suppressor of Ras) is a scaffold protein and pseudokinase for the RAS-activa...
Saved in:
Published in | Nature (London) Vol. 537; no. 7618; pp. 112 - 116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A class of small molecules that stabilize a previously unrecognized inactive state of KSR is reported; the agonists synergize with MEK inhibitors to prevent growth of Ras mutant cell lines.
Novel KSR antagonists
KSR (kinase suppressor of Ras) is a scaffold protein and pseudokinase for the RAS-activated MAP kinase pathway that is allosterically regulated through dimerization with the RAF kinase. Here Arvin Dar and colleagues use a structure-based approach to develop a class of small molecules that stabilize a previously unrecognized inactive state of KSR. These KSR antagonists can synergize with MEK inhibitors to inhibit growth of RAS mutant cell lines, and offer a potential therapeutic approach for targeting oncogenic RAS signalling in cancer.
Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies
1
. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes
2
. Kinase suppressor of Ras (KSR) is a MAPK scaffold
3
,
4
,
5
that is subject to allosteric regulation through dimerization with RAF
6
,
7
. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. |
---|---|
AbstractList | Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. In conclusion, these results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogenactivated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Rasmutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies 1 . Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes 2 . Kinase suppressor of Ras (KSR) is a MAPK scaffold 3 – 5 that is subject to allosteric regulation through dimerization with RAF 6 , 7 . Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. A class of small molecules that stabilize a previously unrecognized inactive state of KSR is reported; the agonists synergize with MEK inhibitors to prevent growth of Ras mutant cell lines. Novel KSR antagonists KSR (kinase suppressor of Ras) is a scaffold protein and pseudokinase for the RAS-activated MAP kinase pathway that is allosterically regulated through dimerization with the RAF kinase. Here Arvin Dar and colleagues use a structure-based approach to develop a class of small molecules that stabilize a previously unrecognized inactive state of KSR. These KSR antagonists can synergize with MEK inhibitors to inhibit growth of RAS mutant cell lines, and offer a potential therapeutic approach for targeting oncogenic RAS signalling in cancer. Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies 1 . Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes 2 . Kinase suppressor of Ras (KSR) is a MAPK scaffold 3 , 4 , 5 that is subject to allosteric regulation through dimerization with RAF 6 , 7 . Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers.Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes. Kinase suppressor of Ras (KSR) is a MAPK scaffold that is subject to allosteric regulation through dimerization with RAF. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras-MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. |
Audience | Academic |
Author | Dar, Arvin C. Dhawan, Neil S. Scopton, Alex P. |
AuthorAffiliation | 2 Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA 1 Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA |
AuthorAffiliation_xml | – name: 2 Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA – name: 1 Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA |
Author_xml | – sequence: 1 givenname: Neil S. surname: Dhawan fullname: Dhawan, Neil S. organization: Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Alex P. surname: Scopton fullname: Scopton, Alex P. organization: Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai – sequence: 3 givenname: Arvin C. surname: Dar fullname: Dar, Arvin C. email: arvin.dar@mssm.edu organization: Department of Oncological Sciences, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27556948$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1368230$$D View this record in Osti.gov |
BookMark | eNp10s9v0zAUB3ALDbFucOKOou0Cggw7_pHkgjRN_JiYhNTuxsFy3JfUk2N3sTPB_nrcdox2KsohUfJ5Xzt-7wgdOO8AodcEnxFMq49OxXEAUtOifIYmhJUiZ6IqD9AE46LKcUXFIToK4QZjzEnJXqDDouRc1KyaoJ-zXlmb9d6CHi1kIarGWHOvovEu820WF5B9n00z45SO5m4tImTKRdV5Z-4hZN5p34EzOpuqkAXTuRRpXPcSPW-VDfDq4X6Mrr98vr74ll_9-Hp5cX6Va0HrmJOqYBqoFozT9NSUTUvZfK5JzataU8rEnGEFmjYEt03ViqYguBa65VWDhaLH6NMmdjk2Pcw1uDgoK5eD6dXwW3pl5O4XZxay83eSE0F4yVPAySbAh2hk0CaCXmjvHOgoCRVVQXFCbx9WGfztCCHK3gQN1ioHfgySVJSLsuacJXr6hN74cUiHslJkjTD9pzplQRrX-rQ5vQqV50wUhGFarFS-R6XThvQnaQ5ak17v-JM9Xi_NrdxGZ3tQuubQG7039d1OQTIRfsVOjSHIy9l0177ZbsdjH_7OXALvN0APPoQB2kdCsFxNtNya6KTJE536s57OtGdj_1PzYVMTUrLrYNhqwB7-B2AWBew |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_cellsig_2022_110505 crossref_primary_10_1016_j_clml_2018_11_012 crossref_primary_10_1002_ijch_202300029 crossref_primary_10_1016_j_critrevonc_2018_07_011 crossref_primary_10_3389_fcell_2022_942500 crossref_primary_10_1021_acs_jmedchem_1c01978 crossref_primary_10_1126_scisignal_aav3810 crossref_primary_10_1038_s41573_019_0018_3 crossref_primary_10_1016_j_sbi_2017_07_004 crossref_primary_10_1038_s41589_023_01454_8 crossref_primary_10_26508_lsa_202402873 crossref_primary_10_4155_fmc_2016_0207 crossref_primary_10_1016_j_trecan_2018_07_002 crossref_primary_10_3390_biom13101555 crossref_primary_10_12688_f1000research_11895_1 crossref_primary_10_1111_febs_15087 crossref_primary_10_3390_ijms24119505 crossref_primary_10_1186_s13000_021_01089_0 crossref_primary_10_1126_sciadv_add7969 crossref_primary_10_1091_mbc_E20_10_0625 crossref_primary_10_1101_cshperspect_a031492 crossref_primary_10_1080_14728222_2017_1311325 crossref_primary_10_17998_jlc_21_1_1 crossref_primary_10_1016_j_tibs_2019_09_007 crossref_primary_10_18632_oncotarget_22283 crossref_primary_10_1021_acs_biochem_0c00714 crossref_primary_10_1021_jacs_9b10458 crossref_primary_10_1158_2159_8290_CD_18_0348 crossref_primary_10_1016_j_drup_2024_101176 crossref_primary_10_1530_ERC_19_0098 crossref_primary_10_1002_1878_0261_13213 crossref_primary_10_1016_j_drup_2021_100788 crossref_primary_10_1016_j_cbpa_2017_06_015 crossref_primary_10_1126_sciadv_aax4249 crossref_primary_10_1371_journal_pone_0194998 crossref_primary_10_1042_BST20200485 crossref_primary_10_3389_fnmol_2022_873520 crossref_primary_10_1126_scisignal_abd9943 crossref_primary_10_1158_2159_8290_CD_19_0356 crossref_primary_10_1182_blood_2020005496 crossref_primary_10_1021_jacs_3c12240 crossref_primary_10_1038_s42003_021_02149_3 crossref_primary_10_1038_s41375_022_01586_1 crossref_primary_10_1016_j_tips_2019_09_005 crossref_primary_10_1080_15384047_2018_1450119 crossref_primary_10_1016_j_chembiol_2018_02_001 crossref_primary_10_1016_j_molcel_2020_06_018 crossref_primary_10_1016_j_sbi_2020_01_009 crossref_primary_10_1016_j_tibs_2022_04_011 crossref_primary_10_1158_1535_7163_MCT_18_0571 crossref_primary_10_1016_j_celrep_2017_09_056 crossref_primary_10_1042_BCJ20200496 crossref_primary_10_1002_mrd_22880 crossref_primary_10_18632_oncotarget_23313 crossref_primary_10_15252_msb_202210988 crossref_primary_10_1021_acs_biochem_7b01006 crossref_primary_10_1038_s41586_020_2760_4 crossref_primary_10_1073_pnas_2313137120 crossref_primary_10_1186_s12915_016_0322_x crossref_primary_10_1186_s40880_017_0181_z crossref_primary_10_1016_j_semcancer_2021_05_010 crossref_primary_10_1021_acs_jmedchem_4c02642 crossref_primary_10_1016_j_jbc_2022_102628 crossref_primary_10_1007_s00018_022_04296_0 crossref_primary_10_1126_scisignal_aau0597 crossref_primary_10_1111_febs_15096 crossref_primary_10_3389_fonc_2019_00965 |
Cites_doi | 10.1038/nrd4281 10.1073/pnas.0901590106 10.1016/0092-8674(95)90205-8 10.1016/j.ccr.2014.02.017 10.1038/nbt.2017 10.1128/MCB.06754-11 10.1371/journal.pone.0057137 10.1038/nchembio.1658 10.1073/pnas.94.24.12792 10.1158/2159-8290.CD-13-0070 10.1038/nchembio.1257 10.1038/nature09860 10.1016/j.ccell.2014.10.017 10.1016/j.ccr.2014.07.007 10.1016/j.celrep.2014.07.010 10.1128/MCB.22.9.3035-3045.2002 10.1016/j.ccr.2014.03.011 10.1016/0092-8674(95)90206-6 10.1038/nature12441 10.1101/gad.962902 10.1016/0092-8674(95)90204-X 10.1126/science.1178377 10.1016/j.cell.2013.07.046 10.1128/MCB.19.8.5523 10.1038/nature08314 10.1101/gad.1390406 10.1016/j.cub.2011.02.033 10.1038/nrm3979 10.4161/cbt.3.8.969 10.1093/genetics/143.1.315 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016 COPYRIGHT 2016 Nature Publishing Group Copyright Nature Publishing Group Sep 1, 2016 |
Copyright_xml | – notice: Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2016 – notice: COPYRIGHT 2016 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 1, 2016 |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OIOZB OTOTI 5PM |
DOI | 10.1038/nature19327 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary (ProQuest) ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 116 |
ExternalDocumentID | PMC5161575 1368230 4171134371 A462140323 27556948 10_1038_nature19327 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: DP2 CA186570 – fundername: NCI NIH HHS grantid: P30 CA196521 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 6XO AADEA AADWK AAEXX AAGJQ AAJMP AAPBV AAUGY AAYJO ABDEU ABEEJ ABGFU ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADFPY ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV AMRJV B-7 EMB F20 I-U N95 OIOZB OTOTI P-O U1R XFK ZA5 5PM TUS |
ID | FETCH-LOGICAL-c639t-1824ce3c645324cb7bf34ddc19589c3346d40aec3b10fb8f6b21096cf58b06a3 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 17:55:33 EDT 2025 Mon Jul 03 03:58:10 EDT 2023 Thu Jul 10 18:32:17 EDT 2025 Fri Jul 25 09:06:24 EDT 2025 Tue Jun 17 21:42:33 EDT 2025 Thu Jun 12 23:45:52 EDT 2025 Tue Jun 10 15:31:40 EDT 2025 Tue Jun 10 20:34:28 EDT 2025 Fri Jun 27 04:01:02 EDT 2025 Thu Apr 03 06:56:39 EDT 2025 Tue Jul 01 00:56:43 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Fri Feb 21 02:37:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7618 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c639t-1824ce3c645324cb7bf34ddc19589c3346d40aec3b10fb8f6b21096cf58b06a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 National Institutes of Health (NIH) Damon Runyon-Rachleff Foundation 1DP2CA186570-01 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5161575 |
PMID | 27556948 |
PQID | 1816795503 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5161575 osti_scitechconnect_1368230 proquest_miscellaneous_1835679554 proquest_journals_1816795503 gale_infotracmisc_A462140323 gale_infotracgeneralonefile_A462140323 gale_infotraccpiq_462140323 gale_infotracacademiconefile_A462140323 gale_incontextgauss_ISR_A462140323 pubmed_primary_27556948 crossref_primary_10_1038_nature19327 crossref_citationtrail_10_1038_nature19327 springer_journals_10_1038_nature19327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Sundaram, Han (CR4) 1995; 83 Lavoie (CR17) 2013; 9 Hatzivassiliou (CR22) 2013; 501 Stephen, Esposito, Bagni, McCormick (CR1) 2014; 25 Hu (CR16) 2013; 154 Morris (CR29) 2013; 3 McKay, Ritt, Morrison (CR25) 2011; 21 Mallon (CR28) 2004; 3 Le Borgne, Filbert, Shaw (CR9) 2013; 8 Rajakulendran, Sahmi, Lefrançois, Sicheri, Therrien (CR6) 2009; 461 Samatar, Poulikakos (CR14) 2014; 13 Douziech, Sahmi, Laberge, Therrien (CR18) 2006; 20 Anastassiadis, Deacon, Devarajan, Ma, Peterson (CR30) 2011; 29 Lito (CR23) 2014; 25 Kornfeld, Hom, Horvitz (CR3) 1995; 83 Karim (CR15) 1996; 143 Chapman, Solit, Rosen (CR21) 2014; 26 Brennan (CR7) 2011; 472 Nguyen (CR10) 2002; 22 Michaud (CR11) 1997; 94 Haling (CR20) 2014; 26 Lavoie, Therrien (CR2) 2015; 16 Fernandez, Henry, Lewis (CR8) 2012; 32 Sos (CR24) 2014; 8 McKay, Ritt, Morrison (CR19) 2009; 106 Zeqiraj, Filippi, Deak, Alessi, van Aalten (CR27) 2009; 326 Roy, Laberge, Douziech, Ferland-McCollough, Therrien (CR12) 2002; 16 Therrien (CR5) 1995; 83 Xie (CR26) 2014; 10 Stewart (CR13) 1999; 19 DF Brennan (BFnature19327_CR7) 2011; 472 G Hatzivassiliou (BFnature19327_CR22) 2013; 501 AA Samatar (BFnature19327_CR14) 2014; 13 M Therrien (BFnature19327_CR5) 1995; 83 F Roy (BFnature19327_CR12) 2002; 16 A Nguyen (BFnature19327_CR10) 2002; 22 T Rajakulendran (BFnature19327_CR6) 2009; 461 S Stewart (BFnature19327_CR13) 1999; 19 MM McKay (BFnature19327_CR19) 2009; 106 MM McKay (BFnature19327_CR25) 2011; 21 FD Karim (BFnature19327_CR15) 1996; 143 M Douziech (BFnature19327_CR18) 2006; 20 T Xie (BFnature19327_CR26) 2014; 10 ML Sos (BFnature19327_CR24) 2014; 8 NR Michaud (BFnature19327_CR11) 1997; 94 JR Haling (BFnature19327_CR20) 2014; 26 T Anastassiadis (BFnature19327_CR30) 2011; 29 EJ Morris (BFnature19327_CR29) 2013; 3 H Lavoie (BFnature19327_CR2) 2015; 16 J Hu (BFnature19327_CR16) 2013; 154 K Kornfeld (BFnature19327_CR3) 1995; 83 M Le Borgne (BFnature19327_CR9) 2013; 8 PB Chapman (BFnature19327_CR21) 2014; 26 E Zeqiraj (BFnature19327_CR27) 2009; 326 M Sundaram (BFnature19327_CR4) 1995; 83 H Lavoie (BFnature19327_CR17) 2013; 9 P Lito (BFnature19327_CR23) 2014; 25 R Mallon (BFnature19327_CR28) 2004; 3 AG Stephen (BFnature19327_CR1) 2014; 25 MR Fernandez (BFnature19327_CR8) 2012; 32 24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81 23934108 - Nature. 2013 Sep 12;501(7466):232-6 25435214 - Nat Rev Drug Discov. 2014 Dec;13(12):928-42 25517746 - Cancer Cell. 2014 Nov 10;26(5):603-4 9371754 - Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12792-6 15210862 - Mol Cancer Ther. 2004 Jun;3(6):755-62 25907612 - Nat Rev Mol Cell Biol. 2015 May;16(5):281-98 22801368 - Mol Cell Biol. 2012 Sep;32(18):3718-31 23993095 - Cell. 2013 Aug 29;154(5):1036-46 19892943 - Science. 2009 Dec 18;326(5960):1707-11 25326665 - Nat Chem Biol. 2014 Dec;10 (12 ):1006-12 8521513 - Cell. 1995 Dec 15;83(6):889-901 23685672 - Nat Chem Biol. 2013 Jul;9(7):428-36 11940661 - Mol Cell Biol. 2002 May;22(9):3035-45 23614898 - Cancer Discov. 2013 Jul;3(7):742-50 25155755 - Cancer Cell. 2014 Sep 8;26(3):402-13 11850406 - Genes Dev. 2002 Feb 15;16(4):427-38 8722784 - Genetics. 1996 May;143(1):315-29 8521512 - Cell. 1995 Dec 15;83(6):879-88 25127139 - Cell Rep. 2014 Aug 21;8(4):1037-48 16600912 - Genes Dev. 2006 Apr 1;20(7):807-19 8521514 - Cell. 1995 Dec 15;83(6):903-13 10409742 - Mol Cell Biol. 1999 Aug;19(8):5523-34 21458265 - Curr Biol. 2011 Apr 12;21(7):563-8 21441910 - Nature. 2011 Apr 21;472(7343):366-9 19727074 - Nature. 2009 Sep 24;461(7263):542-5 28069069 - Chin J Cancer. 2017 Jan 9;36(1):5 22037377 - Nat Biotechnol. 2011 Oct 30;29(11):1039-45 19541618 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11022-7 24746704 - Cancer Cell. 2014 May 12;25(5):697-710 23431403 - PLoS One. 2013;8(2):e57137 |
References_xml | – volume: 13 start-page: 928 year: 2014 end-page: 942 ident: CR14 article-title: Targeting RAS-ERK signalling in cancer: promises and challenges publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4281 – volume: 106 start-page: 11022 year: 2009 end-page: 11027 ident: CR19 article-title: Signaling dynamics of the KSR1 scaffold complex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0901590106 – volume: 83 start-page: 889 year: 1995 end-page: 901 ident: CR4 article-title: The ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction publication-title: Cell doi: 10.1016/0092-8674(95)90205-8 – volume: 25 start-page: 272 year: 2014 end-page: 281 ident: CR1 article-title: Dragging ras back in the ring publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.02.017 – volume: 29 start-page: 1039 year: 2011 end-page: 1045 ident: CR30 article-title: Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2017 – volume: 32 start-page: 3718 year: 2012 end-page: 3731 ident: CR8 article-title: Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06754-11 – volume: 143 start-page: 315 year: 1996 end-page: 329 ident: CR15 article-title: A screen for genes that function downstream of Ras1 during eye development. publication-title: Genetics – volume: 8 start-page: e57137 year: 2013 ident: CR9 article-title: Kinase suppressor of Ras 1 is not required for the generation of regulatory and memory T cells publication-title: PLoS One doi: 10.1371/journal.pone.0057137 – volume: 10 start-page: 1006 year: 2014 end-page: 1012 ident: CR26 article-title: Pharmacological targeting of the pseudokinase Her3 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1658 – volume: 94 start-page: 12792 year: 1997 end-page: 12796 ident: CR11 article-title: KSR stimulates Raf-1 activity in a kinase-independent manner publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.24.12792 – volume: 3 start-page: 742 year: 2013 end-page: 750 ident: CR29 article-title: Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. publication-title: Cancer Discovery doi: 10.1158/2159-8290.CD-13-0070 – volume: 9 start-page: 428 year: 2013 end-page: 436 ident: CR17 article-title: Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1257 – volume: 472 start-page: 366 year: 2011 end-page: 369 ident: CR7 article-title: A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK publication-title: Nature doi: 10.1038/nature09860 – volume: 26 start-page: 603 year: 2014 end-page: 604 ident: CR21 article-title: Combination of RAF and MEK inhibition for the treatment of BRAF-mutated melanoma: feedback is not encouraged publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.017 – volume: 26 start-page: 402 year: 2014 end-page: 413 ident: CR20 article-title: Structure of the BRAF-MEK complex reveals a kinase activity independent role for BRAF in MAPK signaling publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.07.007 – volume: 8 start-page: 1037 year: 2014 end-page: 1048 ident: CR24 article-title: Oncogene mimicry as a mechanism of primary resistance to BRAF inhibitors. publication-title: Cell Reports doi: 10.1016/j.celrep.2014.07.010 – volume: 22 start-page: 3035 year: 2002 end-page: 3045 ident: CR10 article-title: Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.9.3035-3045.2002 – volume: 25 start-page: 697 year: 2014 end-page: 710 ident: CR23 article-title: Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.011 – volume: 83 start-page: 903 year: 1995 end-page: 913 ident: CR3 article-title: The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in publication-title: Cell doi: 10.1016/0092-8674(95)90206-6 – volume: 501 start-page: 232 year: 2013 end-page: 236 ident: CR22 article-title: Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers publication-title: Nature doi: 10.1038/nature12441 – volume: 16 start-page: 427 year: 2002 end-page: 438 ident: CR12 article-title: KSR is a scaffold required for activation of the ERK/MAPK module publication-title: Genes Dev. doi: 10.1101/gad.962902 – volume: 83 start-page: 879 year: 1995 end-page: 888 ident: CR5 article-title: KSR, a novel protein kinase required for RAS signal transduction publication-title: Cell doi: 10.1016/0092-8674(95)90204-X – volume: 326 start-page: 1707 year: 2009 end-page: 1711 ident: CR27 article-title: Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation publication-title: Science doi: 10.1126/science.1178377 – volume: 154 start-page: 1036 year: 2013 end-page: 1046 ident: CR16 article-title: Allosteric activation of functionally asymmetric RAF kinase dimers publication-title: Cell doi: 10.1016/j.cell.2013.07.046 – volume: 19 start-page: 5523 year: 1999 end-page: 5534 ident: CR13 article-title: Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.8.5523 – volume: 461 start-page: 542 year: 2009 end-page: 545 ident: CR6 article-title: A dimerization-dependent mechanism drives RAF catalytic activation publication-title: Nature doi: 10.1038/nature08314 – volume: 20 start-page: 807 year: 2006 end-page: 819 ident: CR18 article-title: A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila publication-title: Genes Dev doi: 10.1101/gad.1390406 – volume: 21 start-page: 563 year: 2011 end-page: 568 ident: CR25 article-title: RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.02.033 – volume: 16 start-page: 281 year: 2015 end-page: 298 ident: CR2 article-title: Regulation of RAF protein kinases in ERK signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3979 – volume: 3 start-page: 755 year: 2004 end-page: 762 ident: CR28 article-title: Identification of 4-anilino-3-quinolinecarbonitrile inhibitors of mitogen-activated protein/extracellular signal-regulated kinase 1 kinase. publication-title: Mol. Cancer Ther. doi: 10.4161/cbt.3.8.969 – volume: 501 start-page: 232 year: 2013 ident: BFnature19327_CR22 publication-title: Nature doi: 10.1038/nature12441 – volume: 94 start-page: 12792 year: 1997 ident: BFnature19327_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.24.12792 – volume: 326 start-page: 1707 year: 2009 ident: BFnature19327_CR27 publication-title: Science doi: 10.1126/science.1178377 – volume: 3 start-page: 742 year: 2013 ident: BFnature19327_CR29 publication-title: Cancer Discovery doi: 10.1158/2159-8290.CD-13-0070 – volume: 13 start-page: 928 year: 2014 ident: BFnature19327_CR14 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4281 – volume: 10 start-page: 1006 year: 2014 ident: BFnature19327_CR26 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1658 – volume: 8 start-page: 1037 year: 2014 ident: BFnature19327_CR24 publication-title: Cell Reports doi: 10.1016/j.celrep.2014.07.010 – volume: 16 start-page: 427 year: 2002 ident: BFnature19327_CR12 publication-title: Genes Dev. doi: 10.1101/gad.962902 – volume: 154 start-page: 1036 year: 2013 ident: BFnature19327_CR16 publication-title: Cell doi: 10.1016/j.cell.2013.07.046 – volume: 83 start-page: 903 year: 1995 ident: BFnature19327_CR3 publication-title: Cell doi: 10.1016/0092-8674(95)90206-6 – volume: 21 start-page: 563 year: 2011 ident: BFnature19327_CR25 publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.02.033 – volume: 26 start-page: 603 year: 2014 ident: BFnature19327_CR21 publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.017 – volume: 9 start-page: 428 year: 2013 ident: BFnature19327_CR17 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1257 – volume: 20 start-page: 807 year: 2006 ident: BFnature19327_CR18 publication-title: Genes Dev doi: 10.1101/gad.1390406 – volume: 29 start-page: 1039 year: 2011 ident: BFnature19327_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2017 – volume: 461 start-page: 542 year: 2009 ident: BFnature19327_CR6 publication-title: Nature doi: 10.1038/nature08314 – volume: 143 start-page: 315 year: 1996 ident: BFnature19327_CR15 publication-title: Genetics doi: 10.1093/genetics/143.1.315 – volume: 22 start-page: 3035 year: 2002 ident: BFnature19327_CR10 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.9.3035-3045.2002 – volume: 16 start-page: 281 year: 2015 ident: BFnature19327_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3979 – volume: 83 start-page: 879 year: 1995 ident: BFnature19327_CR5 publication-title: Cell doi: 10.1016/0092-8674(95)90204-X – volume: 3 start-page: 755 year: 2004 ident: BFnature19327_CR28 publication-title: Mol. Cancer Ther. doi: 10.4161/cbt.3.8.969 – volume: 25 start-page: 272 year: 2014 ident: BFnature19327_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.02.017 – volume: 83 start-page: 889 year: 1995 ident: BFnature19327_CR4 publication-title: Cell doi: 10.1016/0092-8674(95)90205-8 – volume: 106 start-page: 11022 year: 2009 ident: BFnature19327_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0901590106 – volume: 26 start-page: 402 year: 2014 ident: BFnature19327_CR20 publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.07.007 – volume: 25 start-page: 697 year: 2014 ident: BFnature19327_CR23 publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.03.011 – volume: 32 start-page: 3718 year: 2012 ident: BFnature19327_CR8 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06754-11 – volume: 19 start-page: 5523 year: 1999 ident: BFnature19327_CR13 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.8.5523 – volume: 472 start-page: 366 year: 2011 ident: BFnature19327_CR7 publication-title: Nature doi: 10.1038/nature09860 – volume: 8 start-page: e57137 year: 2013 ident: BFnature19327_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0057137 – reference: 15210862 - Mol Cancer Ther. 2004 Jun;3(6):755-62 – reference: 19541618 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11022-7 – reference: 22037377 - Nat Biotechnol. 2011 Oct 30;29(11):1039-45 – reference: 23614898 - Cancer Discov. 2013 Jul;3(7):742-50 – reference: 28069069 - Chin J Cancer. 2017 Jan 9;36(1):5 – reference: 25907612 - Nat Rev Mol Cell Biol. 2015 May;16(5):281-98 – reference: 8722784 - Genetics. 1996 May;143(1):315-29 – reference: 8521512 - Cell. 1995 Dec 15;83(6):879-88 – reference: 25127139 - Cell Rep. 2014 Aug 21;8(4):1037-48 – reference: 8521513 - Cell. 1995 Dec 15;83(6):889-901 – reference: 25155755 - Cancer Cell. 2014 Sep 8;26(3):402-13 – reference: 23685672 - Nat Chem Biol. 2013 Jul;9(7):428-36 – reference: 25326665 - Nat Chem Biol. 2014 Dec;10 (12 ):1006-12 – reference: 8521514 - Cell. 1995 Dec 15;83(6):903-13 – reference: 19727074 - Nature. 2009 Sep 24;461(7263):542-5 – reference: 16600912 - Genes Dev. 2006 Apr 1;20(7):807-19 – reference: 11850406 - Genes Dev. 2002 Feb 15;16(4):427-38 – reference: 24651010 - Cancer Cell. 2014 Mar 17;25(3):272-81 – reference: 10409742 - Mol Cell Biol. 1999 Aug;19(8):5523-34 – reference: 19892943 - Science. 2009 Dec 18;326(5960):1707-11 – reference: 23993095 - Cell. 2013 Aug 29;154(5):1036-46 – reference: 23431403 - PLoS One. 2013;8(2):e57137 – reference: 25435214 - Nat Rev Drug Discov. 2014 Dec;13(12):928-42 – reference: 21441910 - Nature. 2011 Apr 21;472(7343):366-9 – reference: 25517746 - Cancer Cell. 2014 Nov 10;26(5):603-4 – reference: 23934108 - Nature. 2013 Sep 12;501(7466):232-6 – reference: 24746704 - Cancer Cell. 2014 May 12;25(5):697-710 – reference: 21458265 - Curr Biol. 2011 Apr 12;21(7):563-8 – reference: 9371754 - Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12792-6 – reference: 11940661 - Mol Cell Biol. 2002 May;22(9):3035-45 – reference: 22801368 - Mol Cell Biol. 2012 Sep;32(18):3718-31 |
SSID | ssj0005174 |
Score | 2.4789243 |
Snippet | A class of small molecules that stabilize a previously unrecognized inactive state of KSR is reported; the agonists synergize with MEK inhibitors to prevent... Deregulation of the Ras-mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted... Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted... |
SourceID | pubmedcentral osti proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112 |
SubjectTerms | 13 631/45/275 631/67/1059/602 631/80/86/2368 631/92 82 82/83 96 96/98 Alleles Allosteric Regulation - drug effects BASIC BIOLOGICAL SCIENCES Cancer Cancer treatment Care and treatment Cell Line Chemical biology Crystal structure Deregulation Enzyme Stability - drug effects Genes Growth factor signalling Humanities and Social Sciences Humans Kinases letter Ligands MAP Kinase Signaling System - drug effects Methods Mitogen-Activated Protein Kinase Kinases - antagonists & inhibitors Mitogen-Activated Protein Kinase Kinases - chemistry Mitogen-Activated Protein Kinase Kinases - metabolism Models, Molecular multidisciplinary Mutation Neoplasms - drug therapy Neoplasms - enzymology Neoplasms - genetics Neoplasms - metabolism Oncogenes - drug effects Oncogenes - genetics Phosphorylation Phosphorylation - drug effects Phosphotransferases Physiological aspects Protein Binding Protein Conformation - drug effects Protein Multimerization - drug effects Protein-Serine-Threonine Kinases - chemistry Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Pyridones - pharmacology Pyrimidinones - pharmacology Quinazolines - pharmacology raf Kinases - chemistry raf Kinases - metabolism Ras genes ras Proteins - antagonists & inhibitors ras Proteins - genetics ras Proteins - metabolism Science Signal transduction Targeted therapies |
Title | Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling |
URI | https://link.springer.com/article/10.1038/nature19327 https://www.ncbi.nlm.nih.gov/pubmed/27556948 https://www.proquest.com/docview/1816795503 https://www.proquest.com/docview/1835679554 https://www.osti.gov/servlets/purl/1368230 https://pubmed.ncbi.nlm.nih.gov/PMC5161575 |
Volume | 537 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZYJyReEBu3sFEZNK5StCS-JHlCY1oZICbUDqnSHizHSUalLulI-8Kv5xzH7Zqt4qUvPnWsnOPj78SfPxNykGXSGMZSKHKi0ud5xCAPBoFfREUSlFLo0Gp3_jiTp7_4t7EYuw9ujaNVLnOiTdR5bfAb-SGsRDJOAU-zT7NrH2-Nwt1Vd4XGFtkOYaVBSlcy-HJD8bilwuzO5wUsOWxlMxG9xJ0VyeXlXg0TbBPovMudvLWBatelwSPy0AFKetRGwA65V1S75L4ldppml-y4ydvQ905h-sNjcjG60tMpvWqvxi0oIETkyLYnMmldUkCF9PtoSCeVtvmQ2nNHFLygLyEJ_IXu6srUEHwTQ4e6oUgD0Vbe-wk5H5ycH5_67pYF3wA6mftQYHBTMCO5AHBlsjgrGc9zgyo0KbiRy5wHujAsC4MyS0qZQZWYSlOKJAukZk9Jr6qr4jmhqZYih_IoNWnIoeTWJQO8UhgRmxIWwcAjH5cvWhmnQI4XYUyV3QlniVrzikcOVsazVnhjs9lr9JhCKYsKuTKXetE06utoqI64jFCNMGIeeeeMyhoeaLQ7egDDRvWrjuVex9LMJtdqrfVtp_Wy9dumbvY7hjBlTfcpGF8KQA4q9RqkNJm5CpnEbU_48zLslEsojboJf4-8WjVjv0iSq4p6gTZMWCPukWdtlK5eXRQLIVOeeCTuxO_KAGXGuy3V5LeVGxdYFMTCI2-Wkb42rLseefH_4e-RB4A5ZUvT2ye9-Z9F8RJw3Tzrk614HMNvchz27UTuk-3PJ2c_h_8ADJJOyw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIgQviI2vsAEGbXxJ0dLYcZIHhCagtHTbQ1ekSTxYjpOUSl3SkVYI_if-R-6StGu2irc9--I4vvPd7-LzzwC7USSN4TzEJMdNbRG7HP2g49iJmwROKj3dLrk7j45l95v4euqdbsDfxVkYKqtc-MTSUce5oX_k-xiJpB8inuYfpuc23RpFu6uLKzQqs-gnv39hyla8731C_e65bufz8GPXrm8VsA1G45mNgFqYhBspPAQTJvKjlIs4NsS6EuKwhYyFoxPDo7aTRkEqI8yKQmlSL4gcqTl2ewNuCvw-yvWCzpeLipJLpM_1cUCHB_sVSyeBJb8RAOsw0MpxPa_DuFdLNS_t15ZhsHMP7tb4lR1UBrcJG0m2BbfKOlJTbMFm7SsK9qYmtH57H76fnOnJhJ1VN_EmDAEpleRWB0BZnjIEoax_MmDjTJful5XHnBgqXY_Q5_zB7vLM5GjrY8MGumBUdaJLNvEHMLyO6X8IrSzPksfAQi29GLOx0IRtgRm-TjnCo8R4vkkx5joWvFtMtDI14TnduzFR5cY7D9SKVizYXQpPK56P9WIvSWOKmDMyKs0Z6XlRqN7JQB0I6RL5ocsteF0LpTm-0Oj6pAMOm8i2GpLbDUkzHZ-rldZXjdZRpbd13ew0BNFDmOZbyL4UYioiBjZUQWVmqs0l7bLiwwuzU7X_KtTFarPgxbKZ-qWavCzJ5yTDvVJIWPCostLl1Lm-58lQBBb4DftdChCrebMlG_8o2c09ykF8z4K9haWvDOuqRp78f_jP4XZ3eHSoDnvH_W24g3BXVhWCO9Ca_ZwnTxFSzqJn5UJmoK7ZcfwD6jyHsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIhAviI2vsAEGbXxJUdPYcZIHhKaNaqUwoXaTJvFgOU5SKnVJR1oh-M_477hL0tJsFW979sVxfOe738XnnwF2o0gaw3mISY6b2iJ2OfpBx7ETNwmcVHq6U3J3fjmWR6fi05l3tgF_FmdhqKxy4RNLRx3nhv6RtzESST9EPM3baV0W8fWw-2F6YdMNUrTTurhOozKRfvLrJ6ZvxfveIep6z3W7H08Ojuz6hgHbYGSe2QiuhUm4kcJDYGEiP0q5iGNDDCwhfoKQsXB0YnjUcdIoSGWEGVIoTeoFkSM1x25vwE2f-wEtseBgpbrkEgF0fTTQ4UG7Yuwk4OQ3gmEdElo5ru11ePdq2ealvdsyJHbvwd0ay7L9yvg2YSPJtuBWWVNqii3YrP1Gwd7U5NZv78O34bmeTNh5dStvwhCcUnludRiU5SlDQMr6wwEbZ7p0xaw88sTQAPQI_c9v7C7PTI52PzZsoAtGFSi6ZBZ_ACfXMf0PoZXlWfIYWKilF2NmFpqwIzDb1ylHqJQYzzcpxl_HgneLiVamJj-nOzgmqtyE54Fa0YoFu0vhacX5sV7sJWlMEYtGRvY40vOiUL3hQO0L6RIRossteF0LpTm-0Oj61AMOm4i3GpLbDUkzHV-oldZXjdZRpbd13ew0BNFbmOZbyL4U4isiCTZUTWVmqsMl7bjiwwuzU7UvK9S_lWfBi2Uz9Uv1eVmSz0mGe6WQsOBRZaXLqXN9z5OhCCzwG_a7FCCG82ZLNv5eMp17lI_4ngV7C0tfGdZVjTz5__Cfw210Gepz77i_DXcQ-cqqWHAHWrMf8-QpostZ9KxcxwzUNfuNv9ZMi7I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+molecule+stabilization+of+the+KSR+inactive+state+antagonizes+oncogenic+Ras+signalling&rft.jtitle=Nature+%28London%29&rft.au=Dhawan%2C+Neil+S&rft.au=Scopton%2C+Alex+P&rft.au=Dar%2C+Arvin+C&rft.date=2016-09-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=537&rft.issue=7618&rft.spage=112&rft_id=info:doi/10.1038%2Fnature19327&rft.externalDocID=A462140323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |