Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mo...
Saved in:
Published in | EMBO reports Vol. 21; no. 11; pp. e50829 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.11.2020
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1469-221X 1469-3178 1469-3178 |
DOI | 10.15252/embr.202050829 |
Cover
Loading…
Abstract | Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and
in vivo
. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in
Irgm2
or
Gate16
induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Synopsis
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation.
Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner.
Irgm2 deficiency enhances endotoxemia susceptibility of mice.
Graphical Abstract
Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. |
---|---|
AbstractList | Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gramnegative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated noncanonical inflammasome responses and shed light on the understanding of the immune pathways they control. Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL ‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN ‐inducible protein Irgm2 and the ATG 8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein ( GBP )‐dependent and GBP ‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL ‐1 maturation. IFN ‐inducible GTP ases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control. |
Author | Planès, Rémi Lagrange, Brice Meunier, Etienne Eren, Elif Santoni, Karin Yamamoto, Masahiro Burlet‐Schiltz, Odile Henry, Thomas Hessel, Audrey Pinilla, Miriam Chaoui, Karima Bordignon, Pierre‐Jean Howard, Jonathan C Bagayoko, Salimata |
AuthorAffiliation | 5 Department of Immunoparasitology Research Institute for Microbial Diseases Osaka University Osaka Japan 4 Fundação Calouste Gulbenkian Instituto Gulbenkian de Ciência Oeiras Portugal 3 CIRI, Centre International de Recherche en Infectiologie Inserm, U1111 CNRS, UMR5308 École Normale Supérieure de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon France 7 Present address: Institute of Pharmacology and Structural Biology (IPBS) CNRS Toulouse France 1 Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France 2 Mass Spectrometry Core Facility Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France 6 Laboratory of Immunoparasitology WPI Immunology Frontier Research Center Osaka University Osaka Japan |
AuthorAffiliation_xml | – name: 2 Mass Spectrometry Core Facility Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France – name: 1 Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France – name: 4 Fundação Calouste Gulbenkian Instituto Gulbenkian de Ciência Oeiras Portugal – name: 5 Department of Immunoparasitology Research Institute for Microbial Diseases Osaka University Osaka Japan – name: 3 CIRI, Centre International de Recherche en Infectiologie Inserm, U1111 CNRS, UMR5308 École Normale Supérieure de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon France – name: 6 Laboratory of Immunoparasitology WPI Immunology Frontier Research Center Osaka University Osaka Japan – name: 7 Present address: Institute of Pharmacology and Structural Biology (IPBS) CNRS Toulouse France |
Author_xml | – sequence: 1 givenname: Elif orcidid: 0000-0002-0328-5609 surname: Eren fullname: Eren, Elif organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 2 givenname: Rémi surname: Planès fullname: Planès, Rémi organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 3 givenname: Salimata orcidid: 0000-0002-0956-4641 surname: Bagayoko fullname: Bagayoko, Salimata organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 4 givenname: Pierre‐Jean surname: Bordignon fullname: Bordignon, Pierre‐Jean organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 5 givenname: Karima surname: Chaoui fullname: Chaoui, Karima organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Mass Spectrometry Core Facility, Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 6 givenname: Audrey surname: Hessel fullname: Hessel, Audrey organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 7 givenname: Karin surname: Santoni fullname: Santoni, Karin organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 8 givenname: Miriam surname: Pinilla fullname: Pinilla, Miriam organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 9 givenname: Brice surname: Lagrange fullname: Lagrange, Brice organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon – sequence: 10 givenname: Odile surname: Burlet‐Schiltz fullname: Burlet‐Schiltz, Odile organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Mass Spectrometry Core Facility, Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse – sequence: 11 givenname: Jonathan C surname: Howard fullname: Howard, Jonathan C organization: Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciência – sequence: 12 givenname: Thomas orcidid: 0000-0002-0687-8565 surname: Henry fullname: Henry, Thomas organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon – sequence: 13 givenname: Masahiro surname: Yamamoto fullname: Yamamoto, Masahiro organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University – sequence: 14 givenname: Etienne orcidid: 0000-0002-3651-4877 surname: Meunier fullname: Meunier, Etienne email: etienne.meunier@ipbs.fr organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Institute of Pharmacology and Structural Biology (IPBS), CNRS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33124769$$D View this record in MEDLINE/PubMed https://hal.science/hal-02997566$$DView record in HAL |
BookMark | eNqFkk1v1DAQhiNURD_gzA1F4kIP2_rbMQekUpVtpUVICCRuluNMtqkSO7WTRXvrT-A38kvwfrSUlSpOtmbe5x2PZw6zPecdZNlrjE4wJ5ycQleGE4II4qgg6ll2gJlQE4plsbe9E4J_7GeHMd4ghLiSxYtsn1JMmBTqIDNXYd6R3Lgqn5oBft_9wiK33vcQzNAsoF3mlel6cPk0mC6lHczXibw0doDQmBRrXDVaqHJrYm_i2gTnAWLvXYSX2fPatBFebc-j7Puni2_nl5PZl-nV-dlsYgVValKjWrIKWcs44rIuJIHKsLJSpQGDFJEWS1BI0RqTuiaYMio5gcIYRitbKXqUfdj49mPZQWXBDcG0ug9NZ8JSe9PofzOuudZzv9BSME6QSAbHG4PrHezybKZXMUSUklyIBU7ad9tiwd-OEAfdNdFC2xoHfoyaMC4YFpjTJH27I73xY3DpK1YqWTBRiCKp3jx-_UP9-0klAd8IbPAxBqi1bYY0Cb9qpmk1Rnq9EXq1EfphIxJ3usPdWz9NvN8QP5sWlv-T64vPH78-htEGjolzcwh_u32q3h8pidzN |
CitedBy_id | crossref_primary_10_1016_j_imj_2022_09_001 crossref_primary_10_26508_lsa_202000960 crossref_primary_10_1007_s42977_022_00119_2 crossref_primary_10_15252_embj_2021108080 crossref_primary_10_1016_j_jmb_2021_167245 crossref_primary_10_1016_j_smim_2023_101805 crossref_primary_10_15252_embj_2021110128 crossref_primary_10_1042_BCJ20220051 crossref_primary_10_2139_ssrn_4005583 crossref_primary_10_1016_j_cell_2024_09_048 crossref_primary_10_1128_mbio_00303_24 crossref_primary_10_1111_mmi_14841 crossref_primary_10_1083_jcb_202203083 crossref_primary_10_17816_gc569246 crossref_primary_10_15252_embr_202050830 crossref_primary_10_15252_embr_202051787 crossref_primary_10_1089_ars_2022_0110 crossref_primary_10_3390_brainsci13030478 crossref_primary_10_1155_2021_9925059 crossref_primary_10_1080_27694127_2022_2119743 crossref_primary_10_1096_fj_202002622R crossref_primary_10_1128_iai_00510_22 crossref_primary_10_4196_kjpp_24_240 crossref_primary_10_1111_cmi_13375 crossref_primary_10_1016_j_it_2021_04_001 crossref_primary_10_1016_j_clinsp_2023_100253 crossref_primary_10_1016_j_jmb_2021_167271 crossref_primary_10_1016_j_mib_2022_102189 crossref_primary_10_1126_sciadv_abj4641 crossref_primary_10_7554_eLife_100928 crossref_primary_10_1371_journal_ppat_1009927 crossref_primary_10_3390_toxins15080502 crossref_primary_10_1016_j_smim_2023_101844 crossref_primary_10_1016_j_molcel_2022_04_033 crossref_primary_10_1093_femspd_ftae019 crossref_primary_10_1128_IAI_00202_21 crossref_primary_10_1371_journal_ppat_1010305 crossref_primary_10_2139_ssrn_3948202 crossref_primary_10_1371_journal_pone_0292340 crossref_primary_10_1080_15548627_2022_2054040 crossref_primary_10_3389_fphar_2021_657486 crossref_primary_10_3390_cells11081307 crossref_primary_10_7554_eLife_100928_3 crossref_primary_10_1016_j_immuni_2021_01_018 |
Cites_doi | 10.1038/ni.3118 10.1093/nar/gky1106 10.1038/s41467-018-04013-1 10.1084/jem.190.4.523 10.1083/jcb.201607039 10.1038/nature04516 10.1073/pnas.1321700111 10.1126/science.aar7607 10.1038/ni.3119 10.1186/s12915-016-0255-4 10.1038/nature15514 10.1074/jbc.M207873200 10.1371/journal.ppat.1007519 10.1002/eji.201545523 10.4161/viru.26083 10.1128/MMBR.00015-18 10.1016/j.immuni.2018.08.016 10.1128/mBio.01188-17 10.1080/21505594.2019.1602020 10.1016/j.jmb.2016.04.032 10.15252/embj.201694696 10.1371/journal.ppat.1003538 10.1126/scisignal.aax4917 10.15252/embr.202050830 10.1042/BSR20180250 10.1038/nature13157 10.1016/0092-8674(95)90490-5 10.15252/embr.201948235 10.1080/15548627.2019.1628544 10.1038/nature10558 10.1128/IAI.00856-15 10.1016/j.cell.2016.09.012 10.1038/nature11419 10.1038/nature18629 10.1080/15548627.2019.1569297 10.1016/S0092-8674(00)80943-5 10.1016/j.immuni.2012.06.009 10.4049/jimmunol.1700725 10.3390/cells8010077 10.1038/s41467-020-16889-z 10.1016/j.coi.2015.01.007 10.1038/ni.3767 10.1126/science.1240248 10.1038/nature15541 10.1084/jem.20180589 10.1016/j.cell.2016.04.015 10.1080/15548627.2016.1178447 10.1038/s41590-019-0368-3 10.1128/IAI.00778-16 10.1038/s41467-017-02682-y 10.5483/BMBRep.2016.49.8.081 10.1084/jem.20160027 10.15252/embj.2020104926 10.1172/JCI94495 10.1371/journal.ppat.1006630 10.1002/eji.201545772 10.1073/pnas.1515966112 10.1038/s41590-020-0697-2 10.1016/j.immuni.2019.11.005 10.1016/j.molcel.2018.11.018 10.1093/emboj/19.7.1494 10.15252/embj.2019101994 10.1073/pnas.1607769113 10.1038/s41590-018-0303-z 10.1126/science.1230751 10.1126/sciimmunol.aar6676 10.1371/journal.ppat.1003414 10.1016/j.chom.2012.09.007 10.1007/s00335-018-9755-6 10.15252/embj.201798089 10.1371/journal.pone.0008648 10.1126/science.1240988 10.15252/embj.2018100926 10.1016/j.celrep.2018.06.012 10.1172/jci.insight.91914 10.1073/pnas.1615771114 10.1038/ncomms13292 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 2020 The Authors 2020 The Authors. 2020 EMBO Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020 – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 EMBO – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.15252/embr.202050829 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Elif Eren et al |
EISSN | 1469-3178 |
EndPage | n/a |
ExternalDocumentID | PMC7645206 oai_HAL_hal_02997566v1 33124769 10_15252_embr_202050829 EMBR202050829 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Society of Clinical Microbiology and Infectious Diseases (ESCMID) funderid: 10.13039/501100001704 – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: INFLAME 804249 funderid: 10.13039/100010663 – fundername: Grant‐in-Aid for Scientific Research grantid: 18KK0226; 18H02642 – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan grantid: 19H00970 – fundername: Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemic grantid: JP19fm0208018 – fundername: Grant‐in-Aid for Scientific Research on Innovative Areas grantid: 19H04809 – fundername: Fondation pour la Recherche Médicale (FRM) grantid: AJE20151034460 funderid: 10.13039/501100002915 – fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP) grantid: 19jm0210067h funderid: 10.13039/501100009036 – fundername: ATIP‐Avenir – fundername: Research ProGram on Emerging and Re‐emerging Infectious Diseases grantid: JP19fk0108047 – fundername: Research ProGram on Emerging and Re‐emerging Infectious Diseases funderid: JP19fk0108047 – fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP) funderid: 19jm0210067h – fundername: Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemic funderid: JP19fm0208018 – fundername: European Society of Clinical Microbiology and Infectious Diseases (ESCMID) – fundername: Grant‐in-Aid for Scientific Research on Innovative Areas funderid: 19H04809 – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) funderid: INFLAME 804249 – fundername: Fondation pour la Recherche Médicale (FRM) funderid: AJE20151034460 – fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan funderid: 19H00970 – fundername: Grant‐in-Aid for Scientific Research funderid: 18KK0226; 18H02642 – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: INFLAME 804249 – fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP) grantid: 19jm0210067h – fundername: Grant-in-Aid for Scientific Research on Innovative Areas grantid: 19H04809 – fundername: Grant-in-Aid for Scientific Research grantid: 18KK0226 – fundername: ATIP-Avenir – fundername: Grant-in-Aid for Scientific Research grantid: 18H02642 – fundername: Fondation pour la Recherche Médicale (FRM) grantid: AJE20151034460 – fundername: ; – fundername: ; grantid: INFLAME 804249 – fundername: ; grantid: AJE20151034460 – fundername: ; grantid: 19jm0210067h |
GroupedDBID | --- -DZ 0R~ 1OC 24P 29G 2WC 33P 36B 39C 53G 5GY 5VS 70F 8R4 8R5 AAESR AAEVG AAHBH AAHHS AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BFHJK BHPHI BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM E3Z EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HK~ HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TR2 WBKPD WIH WIK WIN WOHZO WXSBR WYJ ZGI ZZTAW ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93 |
IEDL.DBID | C6C |
ISSN | 1469-221X 1469-3178 |
IngestDate | Thu Aug 21 18:20:38 EDT 2025 Thu Jun 19 06:40:29 EDT 2025 Thu Jul 10 18:30:12 EDT 2025 Fri Jul 25 10:57:37 EDT 2025 Mon Jul 21 05:49:35 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 Tue Jul 01 02:32:10 EDT 2025 Wed Jan 22 16:31:32 EST 2025 Fri Feb 21 02:37:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Caspase‐11 infections/Interferons Irgm2 Gate‐16 non‐canonical inflammasome non-canonical inflammasome Caspase-11 Gate-16 Virology & Host Pathogen Interaction Immunology Microbiology non-canonical inflammasome Subject Categories Autophagy & Cell Death |
Language | English |
License | 2020 The Authors. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 See also: R Finethy et al and A Linder & V Hornung (November 2020) These authors contributed equally to this work |
ORCID | 0000-0002-0687-8565 0000-0002-3651-4877 0000-0002-0956-4641 0000-0002-0328-5609 0000-0003-3695-3965 0000-0003-4317-7706 0000-0002-8612-3065 0000-0002-3489-4474 0000-0003-4073-8117 0000-0002-3606-2356 0000-0002-5688-9844 0000-0002-4131-5995 |
OpenAccessLink | https://hal.science/hal-02997566 |
PMID | 33124769 |
PQID | 2457846868 |
PQPubID | 26169 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206 hal_primary_oai_HAL_hal_02997566v1 proquest_miscellaneous_2456416153 proquest_journals_2457846868 pubmed_primary_33124769 crossref_citationtrail_10_15252_embr_202050829 crossref_primary_10_15252_embr_202050829 wiley_primary_10_15252_embr_202050829_EMBR202050829 springer_journals_10_15252_embr_202050829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 05 November 2020 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 05 November 2020 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
References | Meunier, Wallet, Dreier, Costanzo, Anton, Rühl, Dussurgey, Dick, Kistner, Rigard (CR49) 2015; 16 Rathinam, Zhao, Shao (CR56) 2019; 20 Chen, Monteleone, Boucher, Sollberger, Ramnath, Condon, von Pein, Broz, Sweet, Schroder (CR8) 2018; 3 Santos, Boucher, Schneider, Demarco, Dilucca, Shkarina, Heilig, Chen, Lim, Broz (CR61) 2020; 11 Yang, Zhao, Shao (CR75) 2015; 32 Yamamoto, Okuyama, Ma, Kimura, Kamiyama, Saiga, Ohshima, Sasai, Kayama, Okamoto (CR74) 2012; 37 Choi, Kim, Choi, Nielsen, Yan, Lu, Ruan, Lee, Wu, Spellberg (CR10) 2019; 20 Yang, Cheng, Tang, Qiu, Wang, Kang, Wu, Wang, Liu, Chen (CR76) 2019; 51 Wu, Li (CR73) 2019; 10 Lee, Lee (CR35) 2016; 49 Perez‐Riverol, Csordas, Bai, Bernal‐Llinares, Hewapathirana, Kundu, Inuganti, Griss, Mayer, Eisenacher (CR66) 2019; 47 Man, Karki, Sasai, Place, Kesavardhana, Temirov, Frase, Zhu, Malireddi, Kuriakose (CR42) 2016; 167 Cheng, Xiong, Ye, Hong, Di, Tsang, Gao, An, Mittal, Vogel (CR9) 2017; 127 Haldar, Foltz, Finethy, Piro, Feeley, Pilla‐Moffett, Komatsu, Frickel, Coers (CR24) 2015; 112 Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (CR65) 2015; 526 Wallet, Benaoudia, Mosnier, Lagrange, Martin, Lindgren, Golovliov, Michal, Basso, Djebali (CR70) 2017; 13 Schmid‐Burgk, Gaidt, Schmidt, Ebert, Bartok, Hornung (CR64) 2015; 45 Wandel, Kim, Park, Boyle, Nayak, Lagrange, Herod, Henry, Zilbauer, Rohde (CR71) 2020; 21 Hagar, Powell, Aachoui, Ernst, Miao (CR22) 2013; 341 Mehto, Jena, Nath, Chauhan, Kolapalli, Das, Sahoo, Jain, Taylor, Chauhan (CR47) 2019; 73 Rühl, Shkarina, Demarco, Heilig, Santos, Broz (CR58) 2018; 362 Kayagaki, Stowe, Lee, O'Rourke, Anderson, Warming, Cuellar, Haley, Roose‐Girma, Phung (CR28) 2015; 526 Latz, Visintin, Lien, Fitzgerald, Monks, Kurt‐Jones, Golenbock, Espevik (CR34) 2002; 277 Zwack, Feeley, Burton, Hu, Yamamoto, Kanneganti, Bliska, Coers, Brodsky (CR78) 2017; 85 Kim, Shenoy, Kumar, Bradfield, MacMicking (CR30) 2012; 12 Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (CR39) 2016; 535 Maric‐Biresev, Hunn, Krut, Helms, Martens, Howard (CR43) 2016; 14 Man, Karki, Malireddi, Neale, Vogel, Yamamoto, Lamkanfi, Kanneganti (CR41) 2015; 16 Sborgi, Rühl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Müller, Broz, Hiller (CR63) 2016; 35 Cerqueira, Gomes, Silva, Rungue, Assis, Guimarães, Morais, Broz, Zamboni, Oliveira (CR7) 2018; 14 Lee, Stowe, Gupta, Kornfeld, Roose‐Girma, Anderson, Warming, Zhang, Lee, Kayagaki (CR36) 2018; 215 Sagiv (CR59) 2000; 19 Fisch, Bando, Clough, Hornung, Yamamoto, Shenoy, Frickel (CR19) 2019; 38 Meunier, Dick, Dreier, Schürmann, Broz, Warming, Roose‐Girma, Bumann, Kayagaki, Takeda (CR48) 2014; 509 Kim, Eun, Jo (CR31) 2019; 8 Green, Ireton, Gale (CR20) 2018; 29 Thurston, Matthews, Jennings, Alix, Shao, Shenoy, Birrell, Holden (CR68) 2016; 7 Pilla‐Moffett, Barber, Taylor, Coers (CR55) 2016; 428 Zhao, Könen‐Waisman, Taylor, Martens, Howard (CR77) 2010; 5 Pilla, Hagar, Haldar, Mason, Degrandi, Pfeffer, Ernst, Yamamoto, Miao, Coers (CR54) 2014; 111 Mehto, Chauhan, Jena, Chauhan, Nath, Sahu, Dhar, Das, Chauhan (CR46) 2019; 15 Kutsch, Sistemich, Lesser, Goldberg, Herrmann, Coers (CR32) 2020; 39 Feeley, Pilla‐Moffett, Zwack, Piro, Finethy, Kolb, Martinez, Brodsky, Coers (CR14) 2017; 114 Benaoudia, Martin, Puig Gamez, Gay, Lagrange, Cornut, Krasnykov, Claude, Bourgeois, Hughes (CR5) 2019; 20 Finethy, Luoma, Orench‐Rivera, Feeley, Haldar, Yamamoto, Kanneganti, Kuehn, Coers (CR16) 2017; 8 Li, Allen, Banerjee, Franklin, Herzog, Johnston, McDowell, Paskind, Rodman, Salfeld (CR37) 1995; 80 Sasai, Sakaguchi, Ma, Nakamura, Kawabata, Bando, Lee, Saitoh, Akira, Iwasaki (CR62) 2017; 18 CR53 Costa Franco, Marim, Guimarães, Assis, Cerqueira, Alves‐Silva, Harms, Splitter, Smith, Kanneganti (CR12) 2018; 200 Deng, Tang, Li, Wang, Zhang, Zhang, Zhao, Liu, Tang, Liu (CR13) 2018; 49 Kayagaki, Warming, Lamkanfi, Walle, Louie, Dong, Newton, Qu, Liu, Heldens (CR26) 2011; 479 Nguyen, Padman, Usher, Oorschot, Ramm, Lazarou (CR51) 2016; 215 Liu, Sarhan, Panda, Muendlein, Ilyukha, Coers, Yamamoto, Isberg, Poltorak (CR40) 2018; 24 Fink (CR18) 2014; 5 Vanaja, Russo, Behl, Banerjee, Yankova, Deshmukh, Rathinam (CR69) 2016; 165 Gu, Princely Abudu, Kumar, Bissa, Choi, Jia, Lazarou, Eskelinen, Johansen, Deretic (CR21) 2019; 38 Azzam, Madenspacher, Cain, Lai, Gowdy, Rai, Janardhan, Clayton, Cunningham, Jensen (CR3) 2017; 2 Masud, Prajsnar, Torraca, Lamers, Benning, Van Der Vaart, Meijer (CR45) 2019; 15 Liau, Laktyushin, Lucet, Murphy, Yao, Whitlock, Callaghan, Nicola, Kershaw, Babon (CR38) 2018; 9 Aachoui, Leaf, Hagar, Fontana, Campos, Zak, Tan, Cotter, Vance, Aderem (CR1) 2013; 339 Lagrange, Benaoudia, Wallet, Magnotti, Provost, Michal, Martin, Di Lorenzo, Py, Molinaro (CR33) 2018; 9 Haldar, Saka, Piro, Da Dunn, Henry, Taylor, Frickel, Valdivia, Coers (CR23) 2013; 9 Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (CR6) 2012; 490 Kayagaki, Wong, Stowe, Ramani, Gonzalez, Akashi‐takamura, Miyake, Zhang, Lee, Forsberg (CR27) 2013; 130 Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (CR2) 2016; 113 Napier, Brubaker, Sweeney, Monette, Rothmeier, Gertsvolf, Puschnik, Carette, Khatri, Monack (CR50) 2016; 213 Martinon, Pétrilli, Mayor, Tardivel, Tschopp (CR44) 2006; 440 Thieblemont, Wright (CR67) 1999; 190 Finethy, Dockterman, Kutsch, Orench‐Rivera, Wallace, Piro, Luoma, Haldar, Hwang, Martinez (CR17) 2020; 21 Finethy, Jorgensen, Haldar, De Zoete, Strowig, Flavell, Yamamoto, Nagarajan, Miao, Coers (CR15) 2015; 83 Wang, Miura, Jung, Zhu, Li, Yuan (CR72) 1998; 92 Park, Choi, Biering, Dominici, Williams, Hwang (CR52) 2016; 12 Coers (CR11) 2013; 9 Kayagaki, Lee, Stowe, Kornfeld, O'Rourke, Mirrashidi, Haley, Watanabe, Roose‐Girma, Modrusan (CR29) 2019; 12 Basters, Knobeloch, Fritz (CR4) 2018; 38 Santos, Dick, Lagrange, Degrandi, Pfeffer, Yamamoto, Meunier, Pelczar, Henry, Broz (CR60) 2018; 37 Hayward, Mathur, Ngo, Man (CR25) 2018; 82 Rühl, Broz (CR57) 2015; 45 2011; 479 2018; 362 2017; 8 2017; 85 2017; 2 2019; 51 2016; 428 2019; 10 2018; 200 2019; 12 2019; 15 2002; 277 2015; 32 2020; 11 2018; 82 2017; 198 2012; 12 2017; 114 2018; 49 2016; 35 2013; 9 2015; 45 2018; 9 2018; 3 2014; 5 2000; 19 2019; 20 2018; 215 2015; 83 2012; 490 2016; 113 2006; 440 1998; 92 2019a; 15 2016; 49 2010; 5 2018; 38 2017; 127 2018; 37 2019; 8 2018; 29 2015; 16 1999; 190 2020; 39 2019; 38 2016; 167 2016; 165 2015; 526 2013; 341 2012; 37 2014; 111 2016; 14 2016; 12 2018; 24 2016; 7 1995; 80 2013; 339 2014; 509 2015; 112 2017; 13 2019; 47 2013; 130 2016; 535 2016; 215 2017; 18 2019b; 73 2020; 21 2016; 213 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 Pei C (e_1_2_8_54_1) 2017; 198 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 33135287 - EMBO Rep. 2020 Nov 5;21(11):e51787 |
References_xml | – volume: 2 start-page: e91914 year: 2017 ident: CR3 article-title: Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces publication-title: JCI Insight – volume: 15 start-page: 796 year: 2019 end-page: 812 ident: CR45 article-title: Macrophages target Salmonella by Lc3‐associated phagocytosis in a systemic infection model publication-title: Autophagy – volume: 21 year: 2020 ident: CR17 article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock publication-title: EMBO Rep – volume: 20 start-page: e48235 year: 2019 ident: CR5 article-title: A genome‐wide screen identifies IRF2 as a key regulator of caspase‐4 in human cells publication-title: EMBO Rep – volume: 9 start-page: 242 year: 2018 ident: CR33 article-title: Human caspase‐4 detects tetra‐acylated LPS and cytosolic Francisella and functions differently from murine caspase‐11 publication-title: Nat Commun – volume: 45 start-page: 2911 year: 2015 end-page: 2917 ident: CR64 article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells publication-title: Eur J Immunol – volume: 535 start-page: 153 year: 2016 end-page: 158 ident: CR39 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 16 start-page: 467 year: 2015 end-page: 475 ident: CR41 article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection publication-title: Nat Immunol – volume: 12 start-page: 432 year: 2012 end-page: 444 ident: CR30 article-title: IFN‐inducible GTPases in host cell defense publication-title: Cell Host Microbe – volume: 20 start-page: 527 year: 2019 end-page: 533 ident: CR56 article-title: Innate immunity to intracellular LPS publication-title: Nat Immunol – volume: 8 start-page: 77 year: 2019 ident: CR31 article-title: Roles of autophagy‐related genes in the pathogenesis of inflammatory bowel disease publication-title: Cells – volume: 428 start-page: 3495 year: 2016 end-page: 3513 ident: CR55 article-title: Interferon‐inducible GTPases in host resistance, inflammation and disease publication-title: J Mol Biol – volume: 509 start-page: 366 year: 2014 end-page: 370 ident: CR48 article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases publication-title: Nature – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: CR65 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 113 start-page: 7858 year: 2016 end-page: 7863 ident: CR2 article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 33 year: 2016 ident: CR43 article-title: Loss of the interferon‐γ‐inducible regulatory immunity‐related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1‐deficient mice to infection publication-title: BMC Biol – volume: 215 start-page: 2279 year: 2018 end-page: 2288 ident: CR36 article-title: Caspase‐11 auto‐proteolysis is crucial for noncanonical inflammasome activation publication-title: J Exp Med – volume: 9 start-page: e1003538 year: 2013 ident: CR11 article-title: Self and non‐self discrimination of intracellular membranes by the innate immune system publication-title: PLoS Pathog – volume: 85 start-page: e00778‐16 year: 2017 ident: CR78 article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components publication-title: Infect Immun – volume: 526 start-page: 666 year: 2015 end-page: 671 ident: CR28 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 14 start-page: e1007519 year: 2018 ident: CR7 article-title: Guanylate‐binding protein 5 licenses caspase‐11 for Gasdermin‐D mediated host resistance to Brucella abortus infection publication-title: PLoS Pathog – volume: 20 start-page: 276 year: 2019 end-page: 287 ident: CR10 article-title: SERPINB1‐mediated checkpoint of inflammatory caspase activation publication-title: Nat Immunol – volume: 341 start-page: 1250 year: 2013 end-page: 1253 ident: CR22 article-title: Cytoplasmic LPS activates caspase‐11: implications in TLR4‐independent endotoxic shock publication-title: Science – volume: 5 start-page: 143 year: 2014 end-page: 153 ident: CR18 article-title: Animal models of sepsis publication-title: Virulence – volume: 12 start-page: eaax4917 year: 2019 ident: CR29 article-title: IRF2 transcriptionally induces GSDMD expression for pyroptosis publication-title: Sci Signal – volume: 440 start-page: 237 year: 2006 end-page: 241 ident: CR44 article-title: Gout‐associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature – volume: 37 start-page: 302 year: 2012 end-page: 313 ident: CR74 article-title: A cluster of interferon‐γ‐inducible p65 gtpases plays a critical role in host defense against toxoplasma gondii publication-title: Immunity – volume: 362 start-page: 956 year: 2018 end-page: 960 ident: CR58 article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation publication-title: Science – volume: 45 start-page: 2927 year: 2015 end-page: 2936 ident: CR57 article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K+ efflux publication-title: Eur J Immunol – volume: 15 start-page: 1645 year: 2019 end-page: 1647 ident: CR46 article-title: IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62‐dependent selective autophagy publication-title: Autophagy – volume: 200 start-page: 607 year: 2018 end-page: 622 ident: CR12 article-title: Brucella abortus triggers a cGAS‐independent STING pathway to induce host protection that involves guanylate‐binding proteins and inflammasome activation publication-title: J Immunol – volume: 167 start-page: 382 year: 2016 end-page: 396 ident: CR42 article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase‐11‐NLRP3 inflammasomes publication-title: Cell – volume: 29 start-page: 593 year: 2018 end-page: 602 ident: CR20 article-title: Interferon‐stimulated genes: new platforms and computational approaches publication-title: Mamm Genome – volume: 92 start-page: 501 year: 1998 end-page: 509 ident: CR72 article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE publication-title: Cell – volume: 165 start-page: 1106 year: 2016 end-page: 1119 ident: CR69 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase‐11 activation publication-title: Cell – volume: 7 start-page: 1 year: 2016 end-page: 15 ident: CR68 article-title: Growth inhibition of cytosolic Salmonella by caspase‐1 and caspase‐11 precedes host cell death publication-title: Nat Commun – volume: 38 start-page: BSR20180250 year: 2018 ident: CR4 article-title: USP18 – a multifunctional component in the interferon response publication-title: Biosci Rep – volume: 479 start-page: 117 year: 2011 end-page: 121 ident: CR26 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 38 start-page: e100926 year: 2019 ident: CR19 article-title: Human GBP 1 is a microbe‐specific gatekeeper of macrophage apoptosis and pyroptosis publication-title: EMBO J – volume: 13 start-page: e1006630 year: 2017 ident: CR70 article-title: IFN‐γ extends the immune functions of Guanylate Binding Proteins to inflammasome‐independent antibacterial activities during Francisella novicida infection publication-title: PLoS Pathog – volume: 10 start-page: 352 year: 2019 end-page: 362 ident: CR73 article-title: Bacterial interaction with host autophagy publication-title: Virulence – volume: 215 start-page: 857 year: 2016 end-page: 874 ident: CR51 article-title: Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome‐lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation publication-title: J Cell Biol – volume: 51 start-page: 983 year: 2019 end-page: 996 ident: CR76 article-title: Bacterial endotoxin activates the coagulation cascade through gasdermin D‐dependent phosphatidylserine exposure publication-title: Immunity – volume: 80 start-page: 401 year: 1995 end-page: 411 ident: CR37 article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock publication-title: Cell – ident: CR53 – volume: 3 start-page: eaar6676 year: 2018 ident: CR8 article-title: Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps publication-title: Sci Immunol – volume: 130 start-page: 1246 year: 2013 end-page: 1249 ident: CR27 article-title: Independent of TLR4 publication-title: Science – volume: 112 start-page: E5628 year: 2015 end-page: E5637 ident: CR24 article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 155 year: 2018 end-page: 168 ident: CR40 article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses publication-title: Cell Rep – volume: 114 start-page: E1698 year: 2017 end-page: E1706 ident: CR14 article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems publication-title: Proc Natl Acad Sci USA – volume: 49 start-page: 424 year: 2016 end-page: 430 ident: CR35 article-title: Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy publication-title: BMB Rep – volume: 339 start-page: 975 year: 2013 end-page: 978 ident: CR1 article-title: Caspase‐11 protects against bacteria that escape the vacuole publication-title: Science – volume: 16 start-page: 476 year: 2015 end-page: 484 ident: CR49 article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida publication-title: Nat Immunol – volume: 82 start-page: e00015‐18 year: 2018 ident: CR25 article-title: Cytosolic recognition of microbes and pathogens: inflammasomes in action publication-title: Microbiol Mol Biol Rev – volume: 213 start-page: 2365 year: 2016 end-page: 2382 ident: CR50 article-title: Complement pathway amplifies caspase‐11‐dependent cell death and endotoxin‐induced sepsis severity publication-title: J Exp Med – volume: 5 start-page: e8648 year: 2010 ident: CR77 article-title: Localisation and mislocalisation of the interferon‐inducible immunity‐related GTPase, Irgm1 (LRG‐47) in mouse cells publication-title: PLoS ONE – volume: 127 start-page: 4124 year: 2017 end-page: 4135 ident: CR9 article-title: Caspase‐11‐mediated endothelial pyroptosis underlies endotoxemia‐induced lung injury publication-title: J Clin Invest – volume: 111 start-page: 6046 year: 2014 end-page: 6051 ident: CR54 article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 1 year: 2020 end-page: 15 ident: CR61 article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria publication-title: Nat Commun – volume: 83 start-page: 4740 year: 2015 end-page: 4749 ident: CR15 article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages publication-title: Infect Immun – volume: 38 start-page: e101994 year: 2019 ident: CR21 article-title: Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs publication-title: EMBO J – volume: 9 start-page: e1003414 year: 2013 ident: CR23 article-title: IRG and GBP host resistance factors target aberrant, “non‐self” vacuoles characterized by the missing of “Self” IRGM proteins publication-title: PLoS Pathog – volume: 490 start-page: 288 year: 2012 end-page: 291 ident: CR6 article-title: Caspase‐11 increases susceptibility to infection in the absence of caspase‐1 publication-title: Nature – volume: 12 start-page: 1153 year: 2016 end-page: 1167 ident: CR52 article-title: Targeting by AutophaGy proteins (TAG): targeting of IFNG‐inducible GTPases to membranes by the LC3 conjugation system of autophagy publication-title: Autophagy – volume: 35 start-page: 1766 year: 2016 end-page: 1778 ident: CR63 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J – volume: 37 start-page: e98089 year: 2018 ident: CR60 article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation publication-title: EMBO J – volume: 21 start-page: 880 year: 2020 end-page: 891 ident: CR71 article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms publication-title: Nat Immunol – volume: 19 start-page: 1494 year: 2000 end-page: 1504 ident: CR59 article-title: GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28 publication-title: EMBO J – volume: 9 start-page: 1 year: 2018 end-page: 14 ident: CR38 article-title: The molecular basis of JAK/STAT inhibition by SOCS1 publication-title: Nat Commun – volume: 190 start-page: 523 year: 1999 end-page: 534 ident: CR67 article-title: Transport of bacterial lipopolysaccharide to the Golgi apparatus publication-title: J Exp Med – volume: 47 start-page: D442 year: 2019 end-page: D450 ident: CR66 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res – volume: 49 start-page: 740 year: 2018 end-page: 753 ident: CR13 article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis publication-title: Immunity – volume: 32 start-page: 78 year: 2015 end-page: 83 ident: CR75 article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity publication-title: Curr Opin Immunol – volume: 8 start-page: e01188‐17 year: 2017 ident: CR16 article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins publication-title: MBio – volume: 39 start-page: e104926 year: 2020 ident: CR32 article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions publication-title: EMBO J – volume: 73 start-page: 429 year: 2019 end-page: 445 ident: CR47 article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy publication-title: Mol Cell – volume: 277 start-page: 47834 year: 2002 end-page: 47843 ident: CR34 article-title: Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll‐like receptor 4‐MD‐2‐CD14 complex in a process that is distinct from the initiation of signal transduction publication-title: J Biol Chem – volume: 18 start-page: 899 year: 2017 end-page: 910 ident: CR62 article-title: Essential role for GABARAP autophagy proteins in interferon‐inducible GTPase‐mediated host defense publication-title: Nat Immunol – volume: 9 start-page: e1003414 year: 2013 article-title: IRG and GBP host resistance factors target aberrant, “non‐self” vacuoles characterized by the missing of “Self” IRGM proteins publication-title: PLoS Pathog – volume: 215 start-page: 2279 year: 2018 end-page: 2288 article-title: Caspase‐11 auto‐proteolysis is crucial for noncanonical inflammasome activation publication-title: J Exp Med – volume: 21 year: 2020 article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock publication-title: EMBO Rep – volume: 11 start-page: 1 year: 2020 end-page: 15 article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria publication-title: Nat Commun – volume: 14 start-page: 33 year: 2016 article-title: Loss of the interferon‐γ‐inducible regulatory immunity‐related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1‐deficient mice to infection publication-title: BMC Biol – volume: 19 start-page: 1494 year: 2000 end-page: 1504 article-title: GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28 publication-title: EMBO J – volume: 7 start-page: 1 year: 2016 end-page: 15 article-title: Growth inhibition of cytosolic Salmonella by caspase‐1 and caspase‐11 precedes host cell death publication-title: Nat Commun – volume: 37 start-page: e98089 year: 2018 article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation publication-title: EMBO J – volume: 20 start-page: 276 year: 2019 end-page: 287 article-title: SERPINB1‐mediated checkpoint of inflammatory caspase activation publication-title: Nat Immunol – volume: 92 start-page: 501 year: 1998 end-page: 509 article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE publication-title: Cell – volume: 83 start-page: 4740 year: 2015 end-page: 4749 article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages publication-title: Infect Immun – volume: 38 start-page: e101994 year: 2019 article-title: Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs publication-title: EMBO J – volume: 130 start-page: 1246 year: 2013 end-page: 1249 article-title: Independent of TLR4 publication-title: Science – volume: 15 start-page: 796 year: 2019 end-page: 812 article-title: Macrophages target Salmonella by Lc3‐associated phagocytosis in a systemic infection model publication-title: Autophagy – volume: 38 start-page: BSR20180250 year: 2018 article-title: USP18 – a multifunctional component in the interferon response publication-title: Biosci Rep – volume: 29 start-page: 593 year: 2018 end-page: 602 article-title: Interferon‐stimulated genes: new platforms and computational approaches publication-title: Mamm Genome – volume: 113 start-page: 7858 year: 2016 end-page: 7863 article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 432 year: 2012 end-page: 444 article-title: IFN‐inducible GTPases in host cell defense publication-title: Cell Host Microbe – volume: 45 start-page: 2927 year: 2015 end-page: 2936 article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K+ efflux publication-title: Eur J Immunol – volume: 9 start-page: 242 year: 2018 article-title: Human caspase‐4 detects tetra‐acylated LPS and cytosolic Francisella and functions differently from murine caspase‐11 publication-title: Nat Commun – volume: 20 start-page: e48235 year: 2019 article-title: A genome‐wide screen identifies IRF2 as a key regulator of caspase‐4 in human cells publication-title: EMBO Rep – volume: 39 start-page: e104926 year: 2020 article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions publication-title: EMBO J – volume: 167 start-page: 382 year: 2016 end-page: 396 article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase‐11‐NLRP3 inflammasomes publication-title: Cell – volume: 526 start-page: 666 year: 2015 end-page: 671 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 213 start-page: 2365 year: 2016 end-page: 2382 article-title: Complement pathway amplifies caspase‐11‐dependent cell death and endotoxin‐induced sepsis severity publication-title: J Exp Med – volume: 80 start-page: 401 year: 1995 end-page: 411 article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock publication-title: Cell – volume: 13 start-page: e1006630 year: 2017 article-title: IFN‐γ extends the immune functions of Guanylate Binding Proteins to inflammasome‐independent antibacterial activities during Francisella novicida infection publication-title: PLoS Pathog – volume: 215 start-page: 857 year: 2016 end-page: 874 article-title: Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome‐lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation publication-title: J Cell Biol – volume: 3 start-page: eaar6676 year: 2018 article-title: Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps publication-title: Sci Immunol – volume: 9 start-page: e1003538 year: 2013 article-title: Self and non‐self discrimination of intracellular membranes by the innate immune system publication-title: PLoS Pathog – volume: 32 start-page: 78 year: 2015 end-page: 83 article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity publication-title: Curr Opin Immunol – volume: 21 start-page: 880 year: 2020 end-page: 891 article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms publication-title: Nat Immunol – volume: 535 start-page: 153 year: 2016 end-page: 158 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 2 start-page: e91914 year: 2017 article-title: Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces publication-title: JCI Insight – volume: 277 start-page: 47834 year: 2002 end-page: 47843 article-title: Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll‐like receptor 4‐MD‐2‐CD14 complex in a process that is distinct from the initiation of signal transduction publication-title: J Biol Chem – volume: 82 start-page: e00015‐18 year: 2018 article-title: Cytosolic recognition of microbes and pathogens: inflammasomes in action publication-title: Microbiol Mol Biol Rev – volume: 49 start-page: 424 year: 2016 end-page: 430 article-title: Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy publication-title: BMB Rep – volume: 111 start-page: 6046 year: 2014 end-page: 6051 article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: e01188‐17 year: 2017 article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins publication-title: MBio – volume: 73 start-page: 429 year: 2019b end-page: 445 article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy publication-title: Mol Cell – volume: 18 start-page: 899 year: 2017 end-page: 910 article-title: Essential role for GABARAP autophagy proteins in interferon‐inducible GTPase‐mediated host defense publication-title: Nat Immunol – volume: 14 start-page: e1007519 year: 2018 article-title: Guanylate‐binding protein 5 licenses caspase‐11 for Gasdermin‐D mediated host resistance to Brucella abortus infection publication-title: PLoS Pathog – volume: 428 start-page: 3495 year: 2016 end-page: 3513 article-title: Interferon‐inducible GTPases in host resistance, inflammation and disease publication-title: J Mol Biol – volume: 5 start-page: 143 year: 2014 end-page: 153 article-title: Animal models of sepsis publication-title: Virulence – volume: 51 start-page: 983 year: 2019 end-page: 996 article-title: Bacterial endotoxin activates the coagulation cascade through gasdermin D‐dependent phosphatidylserine exposure publication-title: Immunity – volume: 200 start-page: 607 year: 2018 end-page: 622 article-title: Brucella abortus triggers a cGAS‐independent STING pathway to induce host protection that involves guanylate‐binding proteins and inflammasome activation publication-title: J Immunol – volume: 112 start-page: E5628 year: 2015 end-page: E5637 article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins publication-title: Proc Natl Acad Sci USA – volume: 190 start-page: 523 year: 1999 end-page: 534 article-title: Transport of bacterial lipopolysaccharide to the Golgi apparatus publication-title: J Exp Med – volume: 85 start-page: e00778‐16 year: 2017 article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components publication-title: Infect Immun – volume: 9 start-page: 1 year: 2018 end-page: 14 article-title: The molecular basis of JAK/STAT inhibition by SOCS1 publication-title: Nat Commun – volume: 10 start-page: 352 year: 2019 end-page: 362 article-title: Bacterial interaction with host autophagy publication-title: Virulence – volume: 5 start-page: e8648 year: 2010 article-title: Localisation and mislocalisation of the interferon‐inducible immunity‐related GTPase, Irgm1 (LRG‐47) in mouse cells publication-title: PLoS ONE – volume: 47 start-page: D442 year: 2019 end-page: D450 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res – volume: 15 start-page: 1645 year: 2019a end-page: 1647 article-title: IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62‐dependent selective autophagy publication-title: Autophagy – volume: 362 start-page: 956 year: 2018 end-page: 960 article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation publication-title: Science – volume: 490 start-page: 288 year: 2012 end-page: 291 article-title: Caspase‐11 increases susceptibility to infection in the absence of caspase‐1 publication-title: Nature – volume: 37 start-page: 302 year: 2012 end-page: 313 article-title: A cluster of interferon‐γ‐inducible p65 gtpases plays a critical role in host defense against toxoplasma gondii publication-title: Immunity – volume: 16 start-page: 476 year: 2015 end-page: 484 article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida publication-title: Nat Immunol – volume: 12 start-page: 1153 year: 2016 end-page: 1167 article-title: Targeting by AutophaGy proteins (TAG): targeting of IFNG‐inducible GTPases to membranes by the LC3 conjugation system of autophagy publication-title: Autophagy – volume: 114 start-page: E1698 year: 2017 end-page: E1706 article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems publication-title: Proc Natl Acad Sci USA – volume: 45 start-page: 2911 year: 2015 end-page: 2917 article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells publication-title: Eur J Immunol – volume: 16 start-page: 467 year: 2015 end-page: 475 article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection publication-title: Nat Immunol – volume: 509 start-page: 366 year: 2014 end-page: 370 article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases publication-title: Nature – volume: 49 start-page: 740 year: 2018 end-page: 753 article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis publication-title: Immunity – volume: 35 start-page: 1766 year: 2016 end-page: 1778 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J – volume: 341 start-page: 1250 year: 2013 end-page: 1253 article-title: Cytoplasmic LPS activates caspase‐11: implications in TLR4‐independent endotoxic shock publication-title: Science – volume: 24 start-page: 155 year: 2018 end-page: 168 article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses publication-title: Cell Rep – volume: 12 start-page: eaax4917 year: 2019 article-title: IRF2 transcriptionally induces GSDMD expression for pyroptosis publication-title: Sci Signal – volume: 127 start-page: 4124 year: 2017 end-page: 4135 article-title: Caspase‐11‐mediated endothelial pyroptosis underlies endotoxemia‐induced lung injury publication-title: J Clin Invest – volume: 479 start-page: 117 year: 2011 end-page: 121 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 198 year: 2017 article-title: Irgm1 suppresses NLRP3 Inflammasome‐mediated IL‐1β production publication-title: J Immunol – volume: 8 start-page: 77 year: 2019 article-title: Roles of autophagy‐related genes in the pathogenesis of inflammatory bowel disease publication-title: Cells – volume: 165 start-page: 1106 year: 2016 end-page: 1119 article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase‐11 activation publication-title: Cell – volume: 440 start-page: 237 year: 2006 end-page: 241 article-title: Gout‐associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature – volume: 339 start-page: 975 year: 2013 end-page: 978 article-title: Caspase‐11 protects against bacteria that escape the vacuole publication-title: Science – volume: 20 start-page: 527 year: 2019 end-page: 533 article-title: Innate immunity to intracellular LPS publication-title: Nat Immunol – volume: 526 start-page: 660 year: 2015 end-page: 665 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 38 start-page: e100926 year: 2019 article-title: Human GBP 1 is a microbe‐specific gatekeeper of macrophage apoptosis and pyroptosis publication-title: EMBO J – ident: e_1_2_8_42_1 doi: 10.1038/ni.3118 – ident: e_1_2_8_67_1 doi: 10.1093/nar/gky1106 – ident: e_1_2_8_39_1 doi: 10.1038/s41467-018-04013-1 – ident: e_1_2_8_68_1 doi: 10.1084/jem.190.4.523 – ident: e_1_2_8_52_1 doi: 10.1083/jcb.201607039 – ident: e_1_2_8_45_1 doi: 10.1038/nature04516 – ident: e_1_2_8_55_1 doi: 10.1073/pnas.1321700111 – ident: e_1_2_8_59_1 doi: 10.1126/science.aar7607 – ident: e_1_2_8_50_1 doi: 10.1038/ni.3119 – ident: e_1_2_8_44_1 doi: 10.1186/s12915-016-0255-4 – ident: e_1_2_8_66_1 doi: 10.1038/nature15514 – ident: e_1_2_8_35_1 doi: 10.1074/jbc.M207873200 – ident: e_1_2_8_8_1 doi: 10.1371/journal.ppat.1007519 – ident: e_1_2_8_65_1 doi: 10.1002/eji.201545523 – ident: e_1_2_8_19_1 doi: 10.4161/viru.26083 – ident: e_1_2_8_26_1 doi: 10.1128/MMBR.00015-18 – ident: e_1_2_8_14_1 doi: 10.1016/j.immuni.2018.08.016 – ident: e_1_2_8_17_1 doi: 10.1128/mBio.01188-17 – ident: e_1_2_8_74_1 doi: 10.1080/21505594.2019.1602020 – ident: e_1_2_8_56_1 doi: 10.1016/j.jmb.2016.04.032 – ident: e_1_2_8_64_1 doi: 10.15252/embj.201694696 – ident: e_1_2_8_12_1 doi: 10.1371/journal.ppat.1003538 – ident: e_1_2_8_30_1 doi: 10.1126/scisignal.aax4917 – ident: e_1_2_8_18_1 doi: 10.15252/embr.202050830 – ident: e_1_2_8_5_1 doi: 10.1042/BSR20180250 – ident: e_1_2_8_49_1 doi: 10.1038/nature13157 – ident: e_1_2_8_38_1 doi: 10.1016/0092-8674(95)90490-5 – ident: e_1_2_8_6_1 doi: 10.15252/embr.201948235 – ident: e_1_2_8_47_1 doi: 10.1080/15548627.2019.1628544 – ident: e_1_2_8_27_1 doi: 10.1038/nature10558 – ident: e_1_2_8_16_1 doi: 10.1128/IAI.00856-15 – ident: e_1_2_8_43_1 doi: 10.1016/j.cell.2016.09.012 – ident: e_1_2_8_7_1 doi: 10.1038/nature11419 – ident: e_1_2_8_40_1 doi: 10.1038/nature18629 – ident: e_1_2_8_46_1 doi: 10.1080/15548627.2019.1569297 – ident: e_1_2_8_73_1 doi: 10.1016/S0092-8674(00)80943-5 – ident: e_1_2_8_75_1 doi: 10.1016/j.immuni.2012.06.009 – ident: e_1_2_8_13_1 doi: 10.4049/jimmunol.1700725 – ident: e_1_2_8_32_1 doi: 10.3390/cells8010077 – ident: e_1_2_8_62_1 doi: 10.1038/s41467-020-16889-z – ident: e_1_2_8_76_1 doi: 10.1016/j.coi.2015.01.007 – ident: e_1_2_8_63_1 doi: 10.1038/ni.3767 – ident: e_1_2_8_28_1 doi: 10.1126/science.1240248 – ident: e_1_2_8_29_1 doi: 10.1038/nature15541 – ident: e_1_2_8_37_1 doi: 10.1084/jem.20180589 – ident: e_1_2_8_70_1 doi: 10.1016/j.cell.2016.04.015 – ident: e_1_2_8_53_1 doi: 10.1080/15548627.2016.1178447 – ident: e_1_2_8_57_1 doi: 10.1038/s41590-019-0368-3 – ident: e_1_2_8_79_1 doi: 10.1128/IAI.00778-16 – ident: e_1_2_8_34_1 doi: 10.1038/s41467-017-02682-y – ident: e_1_2_8_36_1 doi: 10.5483/BMBRep.2016.49.8.081 – ident: e_1_2_8_51_1 doi: 10.1084/jem.20160027 – ident: e_1_2_8_33_1 doi: 10.15252/embj.2020104926 – ident: e_1_2_8_10_1 doi: 10.1172/JCI94495 – ident: e_1_2_8_71_1 doi: 10.1371/journal.ppat.1006630 – ident: e_1_2_8_58_1 doi: 10.1002/eji.201545772 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1515966112 – ident: e_1_2_8_72_1 doi: 10.1038/s41590-020-0697-2 – ident: e_1_2_8_77_1 doi: 10.1016/j.immuni.2019.11.005 – ident: e_1_2_8_48_1 doi: 10.1016/j.molcel.2018.11.018 – ident: e_1_2_8_60_1 doi: 10.1093/emboj/19.7.1494 – ident: e_1_2_8_22_1 doi: 10.15252/embj.2019101994 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1607769113 – ident: e_1_2_8_11_1 doi: 10.1038/s41590-018-0303-z – ident: e_1_2_8_2_1 doi: 10.1126/science.1230751 – ident: e_1_2_8_9_1 doi: 10.1126/sciimmunol.aar6676 – ident: e_1_2_8_24_1 doi: 10.1371/journal.ppat.1003414 – ident: e_1_2_8_31_1 doi: 10.1016/j.chom.2012.09.007 – ident: e_1_2_8_21_1 doi: 10.1007/s00335-018-9755-6 – ident: e_1_2_8_61_1 doi: 10.15252/embj.201798089 – ident: e_1_2_8_78_1 doi: 10.1371/journal.pone.0008648 – ident: e_1_2_8_23_1 doi: 10.1126/science.1240988 – ident: e_1_2_8_20_1 doi: 10.15252/embj.2018100926 – ident: e_1_2_8_41_1 doi: 10.1016/j.celrep.2018.06.012 – ident: e_1_2_8_4_1 doi: 10.1172/jci.insight.91914 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.1615771114 – ident: e_1_2_8_69_1 doi: 10.1038/ncomms13292 – volume: 198 year: 2017 ident: e_1_2_8_54_1 article-title: Irgm1 suppresses NLRP3 Inflammasome‐mediated IL‐1β production publication-title: J Immunol – reference: 33135287 - EMBO Rep. 2020 Nov 5;21(11):e51787 |
SSID | ssj0005978 |
Score | 2.5108669 |
Snippet | Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation... Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation... Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e50829 |
SubjectTerms | Animal biology Autophagy Autophagy-Related Protein 8 Family Bacteria Caspase Caspases - genetics Caspases, Initiator Caspase‐11 Cell activation Cytokines Cytosol EMBO07 EMBO19 EMBO23 Endotoxemia Gate‐16 Gram-Negative Bacteria Immune response Immune system infections/Interferons Inflammasomes Inflammasomes - genetics Inflammation Interferon Intracellular Irgm2 Life Sciences Lipopolysaccharides Macrophages non‐canonical inflammasome Phagocytosis Proteins Pyroptosis Sepsis |
Title | Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response |
URI | https://link.springer.com/article/10.15252/embr.202050829 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050829 https://www.ncbi.nlm.nih.gov/pubmed/33124769 https://www.proquest.com/docview/2457846868 https://www.proquest.com/docview/2456416153 https://hal.science/hal-02997566 https://pubmed.ncbi.nlm.nih.gov/PMC7645206 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoEagXBOUVKJVBHOAQSBw_4mNZtSyIBQlRaW-Rny1SN1ttH1Jv_AR-I7-EGSebsioV4pZ4HNvxjO3PHvszIS8l9Iy1rss8KmtzHiPPdVAhr70xgG6tr9PVCZPPcrzPP07FtCdJwrMwf_rvBRPsbZhZpO1khcBToGvkpigrieY7kqPLvRw6dbnQ6nXOWDntOXz-ksDK8LN2iJsfryLLqxskBy_pKoZNg9DeXXKnR490p1P3PXIjtJvkVnef5MUmuT3pPeX3ifmwOJgxalpPcYHs14-fpaRuPj8OHdX30QX1BiBzS98vzAzEbThIAmo7_mYDYTBfB8176gz0OycpkZIuul214QHZ39v9Nhrn_XUKuUMYksciKu4L5zhOSmKtWPCGW6-tCabQTLlSBV3oKpYsRmR6q5RgoTaGV955XT0k6-28DY8JNU6qKCpZOFsA3pIG5jnGlVp4K7iXMiNvlrXcuJ5rHK-8OGpwzoFqaVAtzaCWjLwaPjjuaDauj_oC1DbEQnrs8c6nBsMKGFsV4NPzMiNbS602faM8aRiH7onLWtYZeT6IoTmhj8S0YX6W4kieUHBGHnVGMGRVVQCGlIQSqBXzWCnLqqT9fpgouxX6jwuol9dLQ7os1rX_WSVL-1d9NLuTd1-Htyf_kcNTsoHP6WSl2CLrp4uz8Awg1qndTs1rG1csv_wGlxQghw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIigXBOXRQAGDOMAhJXEcOz6WVcsWdntArbS3yM8WqZutti1Sb_wEfiO_hLGTTVmVCnGM7diOx49vMuNvAN5y3BkrWeWpF1qnzHuWSidcWlmlEN1qW8XQCeN9PjxknyflpCNJCndh_rTfl7SkH9xUB9pOmpXhFugK3GaoJgffvQEfXPlyyLjl4qqXKaX5pOPw-UsFS8fPynFwfryOLK87SPZW0mUMGw-h3Qdwv0OPZLsV90O45Zp1uNPGk7xch7vjzlL-CNTe_GhKiWosCT_Ifv34mXNiZrNT11J9n1wSqxAyN-TTXE0xu3FHMYPolr9ZYRrq6yh5S4zCfecsVpKTeetV6x7D4e7OwWCYduEUUhNgSOozL5jNjGFBKfGVoM4qpq3UyqlMUmFy4WQmC59T7wPTWyFK6iqlWGGNlcUTWG1mjdsAogwXvix4ZnSGeIsr1HOUyWVpdcks5wlsLUa5Nh3XeAh5cVIHnSOIpQ5iqXuxJPCuf-G0pdm4uegbFFtfKtBjD7dHdUjL8GwViE-_5wlsLqRad4vyrKYMtyfGK14l8LrPxuUUbCSqcbOLWIaziIITeNpOgr6pokAwJDj2QCxNj6W-LOc0344jZbcI9uMMx-X9YiJddevG7yziTPvXeNQ7449f-6dn_9HCK1gbHoxH9Whv_8tzuBfS4y3LchNWz-cX7gXCrXP9Mi61337GInU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZoERUXVMproQWDOMBh6a7Xa6-PbWhIoakQolJuKz9bpGYTJSlSb_wEfiO_pGPvo1qVCnGM7ew6nvH4m8z4G4TeMrCMhSjS2HGlYuocjYXlNi6MlIBulSlC6YTxMRud0M-TfNLk5izbbPc2JFnfafAsTdVqd25cW6-H7Nqp8mSeJMn93dA1dBfclBClHbDBdYaHCIYYbIGICUknDbPPXx7QO5TWznxK5E28eTNtsoud9pFtOJqGm-hBgynxXq0ED9EdW22he3WVycsttDFu4uePkDxcnE4JlpXB_m-zP79-pwzr2WxuawLw80tsJADpCn9ayCl0V_Y0dGBVszpLaAMvHvTBYC3BGi3DQ1K8qHNt7WN0Mjz4PhjFTZGFWHtwErvEcWoSral3VVzBiTWSKiOUtDIRhOuUW5GIzKXEOc__lvGc2EJKmhltRPYErVezyj5DWGrGXZ6xRKsEUBiT4P1InYrcqJwaxiL0oV3lUjcM5L4QxnnpPREvltKLpezEEqF33RfmNfnG7UPfgNi6UZ40e7R3VPq2BE5cDqj1Zxqh7VaqZbNVlyWhYLQoK1gRodddN2wyHzmRlZ1dhDGMBmwcoae1EnSvyjKASJzBDHhPPXpz6fdUP84CkTf3UeUE1uV9q0jX07r1d2ZB0_61HuXBeP9b9-n5f7zhFdr4-nFYHh0ef3mB7vvmcPUy30brq8WF3QEMtlIvw067AhaIKrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irgm2+and+Gate-16+cooperatively+dampen+Gram-negative+bacteria-induced+caspase-11+response&rft.jtitle=EMBO+reports&rft.au=Eren%2C+Elif&rft.au=Plan%C3%A8s%2C+R%C3%A9mi&rft.au=Bagayoko%2C+Salimata&rft.au=Bordignon%2C+Pierre-Jean&rft.date=2020-11-05&rft.issn=1469-3178&rft.eissn=1469-3178&rft.volume=21&rft.issue=11&rft.spage=e50829&rft_id=info:doi/10.15252%2Fembr.202050829&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |