Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response

Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mo...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 21; no. 11; pp. e50829 - n/a
Main Authors Eren, Elif, Planès, Rémi, Bagayoko, Salimata, Bordignon, Pierre‐Jean, Chaoui, Karima, Hessel, Audrey, Santoni, Karin, Pinilla, Miriam, Lagrange, Brice, Burlet‐Schiltz, Odile, Howard, Jonathan C, Henry, Thomas, Yamamoto, Masahiro, Meunier, Etienne
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.11.2020
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1469-221X
1469-3178
1469-3178
DOI10.15252/embr.202050829

Cover

Loading…
Abstract Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
AbstractList Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gramnegative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated noncanonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL ‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN ‐inducible protein Irgm2 and the ATG 8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein ( GBP )‐dependent and GBP ‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL ‐1 maturation. IFN ‐inducible GTP ases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo . Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Graphical Abstract Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control. Synopsis Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting. Irgm2 and Gate16 cooperatively inhibit Gram‐negative bacteria‐induced non canonical inflammasome activation. Irgm2/Gate16 deficiency drives exaggerated caspase‐11 response in a GBP‐dependent and ‐independent manner. Irgm2 deficiency enhances endotoxemia susceptibility of mice. Caspase‐11 targets cytosolic Gram‐negative bacteria, inducing pyroptosis and IL‐1 maturation. IFN‐inducible GTPases promote caspase‐11 targeting to bacterial membranes, whereas Irgm2 and the non‐canonical autophagy protein Gate‐16 restrain unnecessary caspase‐11 targeting.
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation of the non‐canonical inflammasome. Although non‐canonical inflammasome‐induced pyroptosis and IL‐1‐related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non‐canonical inflammasome in order to ensure efficient but non‐deleterious inflammatory responses. Here, we show that the IFN‐inducible protein Irgm2 and the ATG8 family member Gate‐16 cooperatively counteract Gram‐negative bacteria‐induced non‐canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate‐16 axis dampens caspase‐11 targeting to intracellular bacteria, which lowers caspase‐11‐mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)‐dependent and GBP‐independent routes for caspase‐11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine‐tune bacteria‐activated non‐canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.
Author Planès, Rémi
Lagrange, Brice
Meunier, Etienne
Eren, Elif
Santoni, Karin
Yamamoto, Masahiro
Burlet‐Schiltz, Odile
Henry, Thomas
Hessel, Audrey
Pinilla, Miriam
Chaoui, Karima
Bordignon, Pierre‐Jean
Howard, Jonathan C
Bagayoko, Salimata
AuthorAffiliation 5 Department of Immunoparasitology Research Institute for Microbial Diseases Osaka University Osaka Japan
4 Fundação Calouste Gulbenkian Instituto Gulbenkian de Ciência Oeiras Portugal
3 CIRI, Centre International de Recherche en Infectiologie Inserm, U1111 CNRS, UMR5308 École Normale Supérieure de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon France
7 Present address: Institute of Pharmacology and Structural Biology (IPBS) CNRS Toulouse France
1 Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France
2 Mass Spectrometry Core Facility Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France
6 Laboratory of Immunoparasitology WPI Immunology Frontier Research Center Osaka University Osaka Japan
AuthorAffiliation_xml – name: 2 Mass Spectrometry Core Facility Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France
– name: 1 Institute of Pharmacology and Structural Biology (IPBS) CNRS, UMR5089 University of Toulouse Toulouse France
– name: 4 Fundação Calouste Gulbenkian Instituto Gulbenkian de Ciência Oeiras Portugal
– name: 5 Department of Immunoparasitology Research Institute for Microbial Diseases Osaka University Osaka Japan
– name: 3 CIRI, Centre International de Recherche en Infectiologie Inserm, U1111 CNRS, UMR5308 École Normale Supérieure de Lyon Université Claude Bernard Lyon 1 Univ Lyon Lyon France
– name: 6 Laboratory of Immunoparasitology WPI Immunology Frontier Research Center Osaka University Osaka Japan
– name: 7 Present address: Institute of Pharmacology and Structural Biology (IPBS) CNRS Toulouse France
Author_xml – sequence: 1
  givenname: Elif
  orcidid: 0000-0002-0328-5609
  surname: Eren
  fullname: Eren, Elif
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 2
  givenname: Rémi
  surname: Planès
  fullname: Planès, Rémi
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 3
  givenname: Salimata
  orcidid: 0000-0002-0956-4641
  surname: Bagayoko
  fullname: Bagayoko, Salimata
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 4
  givenname: Pierre‐Jean
  surname: Bordignon
  fullname: Bordignon, Pierre‐Jean
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 5
  givenname: Karima
  surname: Chaoui
  fullname: Chaoui, Karima
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Mass Spectrometry Core Facility, Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 6
  givenname: Audrey
  surname: Hessel
  fullname: Hessel, Audrey
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 7
  givenname: Karin
  surname: Santoni
  fullname: Santoni, Karin
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 8
  givenname: Miriam
  surname: Pinilla
  fullname: Pinilla, Miriam
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 9
  givenname: Brice
  surname: Lagrange
  fullname: Lagrange, Brice
  organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon
– sequence: 10
  givenname: Odile
  surname: Burlet‐Schiltz
  fullname: Burlet‐Schiltz, Odile
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Mass Spectrometry Core Facility, Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse
– sequence: 11
  givenname: Jonathan C
  surname: Howard
  fullname: Howard, Jonathan C
  organization: Fundação Calouste Gulbenkian, Instituto Gulbenkian de Ciência
– sequence: 12
  givenname: Thomas
  orcidid: 0000-0002-0687-8565
  surname: Henry
  fullname: Henry, Thomas
  organization: CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon
– sequence: 13
  givenname: Masahiro
  surname: Yamamoto
  fullname: Yamamoto, Masahiro
  organization: Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University
– sequence: 14
  givenname: Etienne
  orcidid: 0000-0002-3651-4877
  surname: Meunier
  fullname: Meunier, Etienne
  email: etienne.meunier@ipbs.fr
  organization: Institute of Pharmacology and Structural Biology (IPBS), CNRS, UMR5089, University of Toulouse, Institute of Pharmacology and Structural Biology (IPBS), CNRS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33124769$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02997566$$DView record in HAL
BookMark eNqFkk1v1DAQhiNURD_gzA1F4kIP2_rbMQekUpVtpUVICCRuluNMtqkSO7WTRXvrT-A38kvwfrSUlSpOtmbe5x2PZw6zPecdZNlrjE4wJ5ycQleGE4II4qgg6ll2gJlQE4plsbe9E4J_7GeHMd4ghLiSxYtsn1JMmBTqIDNXYd6R3Lgqn5oBft_9wiK33vcQzNAsoF3mlel6cPk0mC6lHczXibw0doDQmBRrXDVaqHJrYm_i2gTnAWLvXYSX2fPatBFebc-j7Puni2_nl5PZl-nV-dlsYgVValKjWrIKWcs44rIuJIHKsLJSpQGDFJEWS1BI0RqTuiaYMio5gcIYRitbKXqUfdj49mPZQWXBDcG0ug9NZ8JSe9PofzOuudZzv9BSME6QSAbHG4PrHezybKZXMUSUklyIBU7ad9tiwd-OEAfdNdFC2xoHfoyaMC4YFpjTJH27I73xY3DpK1YqWTBRiCKp3jx-_UP9-0klAd8IbPAxBqi1bYY0Cb9qpmk1Rnq9EXq1EfphIxJ3usPdWz9NvN8QP5sWlv-T64vPH78-htEGjolzcwh_u32q3h8pidzN
CitedBy_id crossref_primary_10_1016_j_imj_2022_09_001
crossref_primary_10_26508_lsa_202000960
crossref_primary_10_1007_s42977_022_00119_2
crossref_primary_10_15252_embj_2021108080
crossref_primary_10_1016_j_jmb_2021_167245
crossref_primary_10_1016_j_smim_2023_101805
crossref_primary_10_15252_embj_2021110128
crossref_primary_10_1042_BCJ20220051
crossref_primary_10_2139_ssrn_4005583
crossref_primary_10_1016_j_cell_2024_09_048
crossref_primary_10_1128_mbio_00303_24
crossref_primary_10_1111_mmi_14841
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_17816_gc569246
crossref_primary_10_15252_embr_202050830
crossref_primary_10_15252_embr_202051787
crossref_primary_10_1089_ars_2022_0110
crossref_primary_10_3390_brainsci13030478
crossref_primary_10_1155_2021_9925059
crossref_primary_10_1080_27694127_2022_2119743
crossref_primary_10_1096_fj_202002622R
crossref_primary_10_1128_iai_00510_22
crossref_primary_10_4196_kjpp_24_240
crossref_primary_10_1111_cmi_13375
crossref_primary_10_1016_j_it_2021_04_001
crossref_primary_10_1016_j_clinsp_2023_100253
crossref_primary_10_1016_j_jmb_2021_167271
crossref_primary_10_1016_j_mib_2022_102189
crossref_primary_10_1126_sciadv_abj4641
crossref_primary_10_7554_eLife_100928
crossref_primary_10_1371_journal_ppat_1009927
crossref_primary_10_3390_toxins15080502
crossref_primary_10_1016_j_smim_2023_101844
crossref_primary_10_1016_j_molcel_2022_04_033
crossref_primary_10_1093_femspd_ftae019
crossref_primary_10_1128_IAI_00202_21
crossref_primary_10_1371_journal_ppat_1010305
crossref_primary_10_2139_ssrn_3948202
crossref_primary_10_1371_journal_pone_0292340
crossref_primary_10_1080_15548627_2022_2054040
crossref_primary_10_3389_fphar_2021_657486
crossref_primary_10_3390_cells11081307
crossref_primary_10_7554_eLife_100928_3
crossref_primary_10_1016_j_immuni_2021_01_018
Cites_doi 10.1038/ni.3118
10.1093/nar/gky1106
10.1038/s41467-018-04013-1
10.1084/jem.190.4.523
10.1083/jcb.201607039
10.1038/nature04516
10.1073/pnas.1321700111
10.1126/science.aar7607
10.1038/ni.3119
10.1186/s12915-016-0255-4
10.1038/nature15514
10.1074/jbc.M207873200
10.1371/journal.ppat.1007519
10.1002/eji.201545523
10.4161/viru.26083
10.1128/MMBR.00015-18
10.1016/j.immuni.2018.08.016
10.1128/mBio.01188-17
10.1080/21505594.2019.1602020
10.1016/j.jmb.2016.04.032
10.15252/embj.201694696
10.1371/journal.ppat.1003538
10.1126/scisignal.aax4917
10.15252/embr.202050830
10.1042/BSR20180250
10.1038/nature13157
10.1016/0092-8674(95)90490-5
10.15252/embr.201948235
10.1080/15548627.2019.1628544
10.1038/nature10558
10.1128/IAI.00856-15
10.1016/j.cell.2016.09.012
10.1038/nature11419
10.1038/nature18629
10.1080/15548627.2019.1569297
10.1016/S0092-8674(00)80943-5
10.1016/j.immuni.2012.06.009
10.4049/jimmunol.1700725
10.3390/cells8010077
10.1038/s41467-020-16889-z
10.1016/j.coi.2015.01.007
10.1038/ni.3767
10.1126/science.1240248
10.1038/nature15541
10.1084/jem.20180589
10.1016/j.cell.2016.04.015
10.1080/15548627.2016.1178447
10.1038/s41590-019-0368-3
10.1128/IAI.00778-16
10.1038/s41467-017-02682-y
10.5483/BMBRep.2016.49.8.081
10.1084/jem.20160027
10.15252/embj.2020104926
10.1172/JCI94495
10.1371/journal.ppat.1006630
10.1002/eji.201545772
10.1073/pnas.1515966112
10.1038/s41590-020-0697-2
10.1016/j.immuni.2019.11.005
10.1016/j.molcel.2018.11.018
10.1093/emboj/19.7.1494
10.15252/embj.2019101994
10.1073/pnas.1607769113
10.1038/s41590-018-0303-z
10.1126/science.1230751
10.1126/sciimmunol.aar6676
10.1371/journal.ppat.1003414
10.1016/j.chom.2012.09.007
10.1007/s00335-018-9755-6
10.15252/embj.201798089
10.1371/journal.pone.0008648
10.1126/science.1240988
10.15252/embj.2018100926
10.1016/j.celrep.2018.06.012
10.1172/jci.insight.91914
10.1073/pnas.1615771114
10.1038/ncomms13292
ContentType Journal Article
Copyright The Author(s) 2020
2020 The Authors
2020 The Authors.
2020 EMBO
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: 2020 The Authors
– notice: 2020 The Authors.
– notice: 2020 EMBO
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.15252/embr.202050829
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Elif Eren et al
EISSN 1469-3178
EndPage n/a
ExternalDocumentID PMC7645206
oai_HAL_hal_02997566v1
33124769
10_15252_embr_202050829
EMBR202050829
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
  funderid: 10.13039/501100001704
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: INFLAME 804249
  funderid: 10.13039/100010663
– fundername: Grant‐in-Aid for Scientific Research
  grantid: 18KK0226; 18H02642
– fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan
  grantid: 19H00970
– fundername: Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemic
  grantid: JP19fm0208018
– fundername: Grant‐in-Aid for Scientific Research on Innovative Areas
  grantid: 19H04809
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: AJE20151034460
  funderid: 10.13039/501100002915
– fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP)
  grantid: 19jm0210067h
  funderid: 10.13039/501100009036
– fundername: ATIP‐Avenir
– fundername: Research ProGram on Emerging and Re‐emerging Infectious Diseases
  grantid: JP19fk0108047
– fundername: Research ProGram on Emerging and Re‐emerging Infectious Diseases
  funderid: JP19fk0108047
– fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP)
  funderid: 19jm0210067h
– fundername: Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemic
  funderid: JP19fm0208018
– fundername: European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
– fundername: Grant‐in-Aid for Scientific Research on Innovative Areas
  funderid: 19H04809
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  funderid: INFLAME 804249
– fundername: Fondation pour la Recherche Médicale (FRM)
  funderid: AJE20151034460
– fundername: Ministry of Education, Culture, Sports, Science and Technology of Japan
  funderid: 19H00970
– fundername: Grant‐in-Aid for Scientific Research
  funderid: 18KK0226; 18H02642
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: INFLAME 804249
– fundername: MEXT | JST | Strategic International Collaborative Research Program (SICORP)
  grantid: 19jm0210067h
– fundername: Grant-in-Aid for Scientific Research on Innovative Areas
  grantid: 19H04809
– fundername: Grant-in-Aid for Scientific Research
  grantid: 18KK0226
– fundername: ATIP-Avenir
– fundername: Grant-in-Aid for Scientific Research
  grantid: 18H02642
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: AJE20151034460
– fundername: ;
– fundername: ;
  grantid: INFLAME 804249
– fundername: ;
  grantid: AJE20151034460
– fundername: ;
  grantid: 19jm0210067h
GroupedDBID ---
-DZ
0R~
1OC
24P
29G
2WC
33P
36B
39C
53G
5GY
5VS
70F
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BFHJK
BHPHI
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TR2
WBKPD
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
ZGI
ZZTAW
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93
IEDL.DBID C6C
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 18:20:38 EDT 2025
Thu Jun 19 06:40:29 EDT 2025
Thu Jul 10 18:30:12 EDT 2025
Fri Jul 25 10:57:37 EDT 2025
Mon Jul 21 05:49:35 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
Tue Jul 01 02:32:10 EDT 2025
Wed Jan 22 16:31:32 EST 2025
Fri Feb 21 02:37:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Caspase‐11
infections/Interferons
Irgm2
Gate‐16
non‐canonical inflammasome
non-canonical inflammasome
Caspase-11
Gate-16
Virology & Host Pathogen Interaction
Immunology
Microbiology
non-canonical inflammasome Subject Categories Autophagy & Cell Death
Language English
License 2020 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6399-f0f74d0cc45057f872eda4bd9baea0927c17e9093f12ff21343752e8aa43dcd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
See also: R Finethy et al and A Linder & V Hornung (November 2020)
These authors contributed equally to this work
ORCID 0000-0002-0687-8565
0000-0002-3651-4877
0000-0002-0956-4641
0000-0002-0328-5609
0000-0003-3695-3965
0000-0003-4317-7706
0000-0002-8612-3065
0000-0002-3489-4474
0000-0003-4073-8117
0000-0002-3606-2356
0000-0002-5688-9844
0000-0002-4131-5995
OpenAccessLink https://hal.science/hal-02997566
PMID 33124769
PQID 2457846868
PQPubID 26169
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645206
hal_primary_oai_HAL_hal_02997566v1
proquest_miscellaneous_2456416153
proquest_journals_2457846868
pubmed_primary_33124769
crossref_citationtrail_10_15252_embr_202050829
crossref_primary_10_15252_embr_202050829
wiley_primary_10_15252_embr_202050829_EMBR202050829
springer_journals_10_15252_embr_202050829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 05 November 2020
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 05 November 2020
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References Meunier, Wallet, Dreier, Costanzo, Anton, Rühl, Dussurgey, Dick, Kistner, Rigard (CR49) 2015; 16
Rathinam, Zhao, Shao (CR56) 2019; 20
Chen, Monteleone, Boucher, Sollberger, Ramnath, Condon, von Pein, Broz, Sweet, Schroder (CR8) 2018; 3
Santos, Boucher, Schneider, Demarco, Dilucca, Shkarina, Heilig, Chen, Lim, Broz (CR61) 2020; 11
Yang, Zhao, Shao (CR75) 2015; 32
Yamamoto, Okuyama, Ma, Kimura, Kamiyama, Saiga, Ohshima, Sasai, Kayama, Okamoto (CR74) 2012; 37
Choi, Kim, Choi, Nielsen, Yan, Lu, Ruan, Lee, Wu, Spellberg (CR10) 2019; 20
Yang, Cheng, Tang, Qiu, Wang, Kang, Wu, Wang, Liu, Chen (CR76) 2019; 51
Wu, Li (CR73) 2019; 10
Lee, Lee (CR35) 2016; 49
Perez‐Riverol, Csordas, Bai, Bernal‐Llinares, Hewapathirana, Kundu, Inuganti, Griss, Mayer, Eisenacher (CR66) 2019; 47
Man, Karki, Sasai, Place, Kesavardhana, Temirov, Frase, Zhu, Malireddi, Kuriakose (CR42) 2016; 167
Cheng, Xiong, Ye, Hong, Di, Tsang, Gao, An, Mittal, Vogel (CR9) 2017; 127
Haldar, Foltz, Finethy, Piro, Feeley, Pilla‐Moffett, Komatsu, Frickel, Coers (CR24) 2015; 112
Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (CR65) 2015; 526
Wallet, Benaoudia, Mosnier, Lagrange, Martin, Lindgren, Golovliov, Michal, Basso, Djebali (CR70) 2017; 13
Schmid‐Burgk, Gaidt, Schmidt, Ebert, Bartok, Hornung (CR64) 2015; 45
Wandel, Kim, Park, Boyle, Nayak, Lagrange, Herod, Henry, Zilbauer, Rohde (CR71) 2020; 21
Hagar, Powell, Aachoui, Ernst, Miao (CR22) 2013; 341
Mehto, Jena, Nath, Chauhan, Kolapalli, Das, Sahoo, Jain, Taylor, Chauhan (CR47) 2019; 73
Rühl, Shkarina, Demarco, Heilig, Santos, Broz (CR58) 2018; 362
Kayagaki, Stowe, Lee, O'Rourke, Anderson, Warming, Cuellar, Haley, Roose‐Girma, Phung (CR28) 2015; 526
Latz, Visintin, Lien, Fitzgerald, Monks, Kurt‐Jones, Golenbock, Espevik (CR34) 2002; 277
Zwack, Feeley, Burton, Hu, Yamamoto, Kanneganti, Bliska, Coers, Brodsky (CR78) 2017; 85
Kim, Shenoy, Kumar, Bradfield, MacMicking (CR30) 2012; 12
Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (CR39) 2016; 535
Maric‐Biresev, Hunn, Krut, Helms, Martens, Howard (CR43) 2016; 14
Man, Karki, Malireddi, Neale, Vogel, Yamamoto, Lamkanfi, Kanneganti (CR41) 2015; 16
Sborgi, Rühl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Müller, Broz, Hiller (CR63) 2016; 35
Cerqueira, Gomes, Silva, Rungue, Assis, Guimarães, Morais, Broz, Zamboni, Oliveira (CR7) 2018; 14
Lee, Stowe, Gupta, Kornfeld, Roose‐Girma, Anderson, Warming, Zhang, Lee, Kayagaki (CR36) 2018; 215
Sagiv (CR59) 2000; 19
Fisch, Bando, Clough, Hornung, Yamamoto, Shenoy, Frickel (CR19) 2019; 38
Meunier, Dick, Dreier, Schürmann, Broz, Warming, Roose‐Girma, Bumann, Kayagaki, Takeda (CR48) 2014; 509
Kim, Eun, Jo (CR31) 2019; 8
Green, Ireton, Gale (CR20) 2018; 29
Thurston, Matthews, Jennings, Alix, Shao, Shenoy, Birrell, Holden (CR68) 2016; 7
Pilla‐Moffett, Barber, Taylor, Coers (CR55) 2016; 428
Zhao, Könen‐Waisman, Taylor, Martens, Howard (CR77) 2010; 5
Pilla, Hagar, Haldar, Mason, Degrandi, Pfeffer, Ernst, Yamamoto, Miao, Coers (CR54) 2014; 111
Mehto, Chauhan, Jena, Chauhan, Nath, Sahu, Dhar, Das, Chauhan (CR46) 2019; 15
Kutsch, Sistemich, Lesser, Goldberg, Herrmann, Coers (CR32) 2020; 39
Feeley, Pilla‐Moffett, Zwack, Piro, Finethy, Kolb, Martinez, Brodsky, Coers (CR14) 2017; 114
Benaoudia, Martin, Puig Gamez, Gay, Lagrange, Cornut, Krasnykov, Claude, Bourgeois, Hughes (CR5) 2019; 20
Finethy, Luoma, Orench‐Rivera, Feeley, Haldar, Yamamoto, Kanneganti, Kuehn, Coers (CR16) 2017; 8
Li, Allen, Banerjee, Franklin, Herzog, Johnston, McDowell, Paskind, Rodman, Salfeld (CR37) 1995; 80
Sasai, Sakaguchi, Ma, Nakamura, Kawabata, Bando, Lee, Saitoh, Akira, Iwasaki (CR62) 2017; 18
CR53
Costa Franco, Marim, Guimarães, Assis, Cerqueira, Alves‐Silva, Harms, Splitter, Smith, Kanneganti (CR12) 2018; 200
Deng, Tang, Li, Wang, Zhang, Zhang, Zhao, Liu, Tang, Liu (CR13) 2018; 49
Kayagaki, Warming, Lamkanfi, Walle, Louie, Dong, Newton, Qu, Liu, Heldens (CR26) 2011; 479
Nguyen, Padman, Usher, Oorschot, Ramm, Lazarou (CR51) 2016; 215
Liu, Sarhan, Panda, Muendlein, Ilyukha, Coers, Yamamoto, Isberg, Poltorak (CR40) 2018; 24
Fink (CR18) 2014; 5
Vanaja, Russo, Behl, Banerjee, Yankova, Deshmukh, Rathinam (CR69) 2016; 165
Gu, Princely Abudu, Kumar, Bissa, Choi, Jia, Lazarou, Eskelinen, Johansen, Deretic (CR21) 2019; 38
Azzam, Madenspacher, Cain, Lai, Gowdy, Rai, Janardhan, Clayton, Cunningham, Jensen (CR3) 2017; 2
Masud, Prajsnar, Torraca, Lamers, Benning, Van Der Vaart, Meijer (CR45) 2019; 15
Liau, Laktyushin, Lucet, Murphy, Yao, Whitlock, Callaghan, Nicola, Kershaw, Babon (CR38) 2018; 9
Aachoui, Leaf, Hagar, Fontana, Campos, Zak, Tan, Cotter, Vance, Aderem (CR1) 2013; 339
Lagrange, Benaoudia, Wallet, Magnotti, Provost, Michal, Martin, Di Lorenzo, Py, Molinaro (CR33) 2018; 9
Haldar, Saka, Piro, Da Dunn, Henry, Taylor, Frickel, Valdivia, Coers (CR23) 2013; 9
Broz, Ruby, Belhocine, Bouley, Kayagaki, Dixit, Monack (CR6) 2012; 490
Kayagaki, Wong, Stowe, Ramani, Gonzalez, Akashi‐takamura, Miyake, Zhang, Lee, Forsberg (CR27) 2013; 130
Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (CR2) 2016; 113
Napier, Brubaker, Sweeney, Monette, Rothmeier, Gertsvolf, Puschnik, Carette, Khatri, Monack (CR50) 2016; 213
Martinon, Pétrilli, Mayor, Tardivel, Tschopp (CR44) 2006; 440
Thieblemont, Wright (CR67) 1999; 190
Finethy, Dockterman, Kutsch, Orench‐Rivera, Wallace, Piro, Luoma, Haldar, Hwang, Martinez (CR17) 2020; 21
Finethy, Jorgensen, Haldar, De Zoete, Strowig, Flavell, Yamamoto, Nagarajan, Miao, Coers (CR15) 2015; 83
Wang, Miura, Jung, Zhu, Li, Yuan (CR72) 1998; 92
Park, Choi, Biering, Dominici, Williams, Hwang (CR52) 2016; 12
Coers (CR11) 2013; 9
Kayagaki, Lee, Stowe, Kornfeld, O'Rourke, Mirrashidi, Haley, Watanabe, Roose‐Girma, Modrusan (CR29) 2019; 12
Basters, Knobeloch, Fritz (CR4) 2018; 38
Santos, Dick, Lagrange, Degrandi, Pfeffer, Yamamoto, Meunier, Pelczar, Henry, Broz (CR60) 2018; 37
Hayward, Mathur, Ngo, Man (CR25) 2018; 82
Rühl, Broz (CR57) 2015; 45
2011; 479
2018; 362
2017; 8
2017; 85
2017; 2
2019; 51
2016; 428
2019; 10
2018; 200
2019; 12
2019; 15
2002; 277
2015; 32
2020; 11
2018; 82
2017; 198
2012; 12
2017; 114
2018; 49
2016; 35
2013; 9
2015; 45
2018; 9
2018; 3
2014; 5
2000; 19
2019; 20
2018; 215
2015; 83
2012; 490
2016; 113
2006; 440
1998; 92
2019a; 15
2016; 49
2010; 5
2018; 38
2017; 127
2018; 37
2019; 8
2018; 29
2015; 16
1999; 190
2020; 39
2019; 38
2016; 167
2016; 165
2015; 526
2013; 341
2012; 37
2014; 111
2016; 14
2016; 12
2018; 24
2016; 7
1995; 80
2013; 339
2014; 509
2015; 112
2017; 13
2019; 47
2013; 130
2016; 535
2016; 215
2017; 18
2019b; 73
2020; 21
2016; 213
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
Pei C (e_1_2_8_54_1) 2017; 198
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
33135287 - EMBO Rep. 2020 Nov 5;21(11):e51787
References_xml – volume: 2
  start-page: e91914
  year: 2017
  ident: CR3
  article-title: Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces
  publication-title: JCI Insight
– volume: 15
  start-page: 796
  year: 2019
  end-page: 812
  ident: CR45
  article-title: Macrophages target Salmonella by Lc3‐associated phagocytosis in a systemic infection model
  publication-title: Autophagy
– volume: 21
  year: 2020
  ident: CR17
  article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock
  publication-title: EMBO Rep
– volume: 20
  start-page: e48235
  year: 2019
  ident: CR5
  article-title: A genome‐wide screen identifies IRF2 as a key regulator of caspase‐4 in human cells
  publication-title: EMBO Rep
– volume: 9
  start-page: 242
  year: 2018
  ident: CR33
  article-title: Human caspase‐4 detects tetra‐acylated LPS and cytosolic Francisella and functions differently from murine caspase‐11
  publication-title: Nat Commun
– volume: 45
  start-page: 2911
  year: 2015
  end-page: 2917
  ident: CR64
  article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells
  publication-title: Eur J Immunol
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  ident: CR39
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 16
  start-page: 467
  year: 2015
  end-page: 475
  ident: CR41
  article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection
  publication-title: Nat Immunol
– volume: 12
  start-page: 432
  year: 2012
  end-page: 444
  ident: CR30
  article-title: IFN‐inducible GTPases in host cell defense
  publication-title: Cell Host Microbe
– volume: 20
  start-page: 527
  year: 2019
  end-page: 533
  ident: CR56
  article-title: Innate immunity to intracellular LPS
  publication-title: Nat Immunol
– volume: 8
  start-page: 77
  year: 2019
  ident: CR31
  article-title: Roles of autophagy‐related genes in the pathogenesis of inflammatory bowel disease
  publication-title: Cells
– volume: 428
  start-page: 3495
  year: 2016
  end-page: 3513
  ident: CR55
  article-title: Interferon‐inducible GTPases in host resistance, inflammation and disease
  publication-title: J Mol Biol
– volume: 509
  start-page: 366
  year: 2014
  end-page: 370
  ident: CR48
  article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases
  publication-title: Nature
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: CR65
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  ident: CR2
  article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 33
  year: 2016
  ident: CR43
  article-title: Loss of the interferon‐γ‐inducible regulatory immunity‐related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1‐deficient mice to infection
  publication-title: BMC Biol
– volume: 215
  start-page: 2279
  year: 2018
  end-page: 2288
  ident: CR36
  article-title: Caspase‐11 auto‐proteolysis is crucial for noncanonical inflammasome activation
  publication-title: J Exp Med
– volume: 9
  start-page: e1003538
  year: 2013
  ident: CR11
  article-title: Self and non‐self discrimination of intracellular membranes by the innate immune system
  publication-title: PLoS Pathog
– volume: 85
  start-page: e00778‐16
  year: 2017
  ident: CR78
  article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components
  publication-title: Infect Immun
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  ident: CR28
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 14
  start-page: e1007519
  year: 2018
  ident: CR7
  article-title: Guanylate‐binding protein 5 licenses caspase‐11 for Gasdermin‐D mediated host resistance to Brucella abortus infection
  publication-title: PLoS Pathog
– volume: 20
  start-page: 276
  year: 2019
  end-page: 287
  ident: CR10
  article-title: SERPINB1‐mediated checkpoint of inflammatory caspase activation
  publication-title: Nat Immunol
– volume: 341
  start-page: 1250
  year: 2013
  end-page: 1253
  ident: CR22
  article-title: Cytoplasmic LPS activates caspase‐11: implications in TLR4‐independent endotoxic shock
  publication-title: Science
– volume: 5
  start-page: 143
  year: 2014
  end-page: 153
  ident: CR18
  article-title: Animal models of sepsis
  publication-title: Virulence
– volume: 12
  start-page: eaax4917
  year: 2019
  ident: CR29
  article-title: IRF2 transcriptionally induces GSDMD expression for pyroptosis
  publication-title: Sci Signal
– volume: 440
  start-page: 237
  year: 2006
  end-page: 241
  ident: CR44
  article-title: Gout‐associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
– volume: 37
  start-page: 302
  year: 2012
  end-page: 313
  ident: CR74
  article-title: A cluster of interferon‐γ‐inducible p65 gtpases plays a critical role in host defense against toxoplasma gondii
  publication-title: Immunity
– volume: 362
  start-page: 956
  year: 2018
  end-page: 960
  ident: CR58
  article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation
  publication-title: Science
– volume: 45
  start-page: 2927
  year: 2015
  end-page: 2936
  ident: CR57
  article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K+ efflux
  publication-title: Eur J Immunol
– volume: 15
  start-page: 1645
  year: 2019
  end-page: 1647
  ident: CR46
  article-title: IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62‐dependent selective autophagy
  publication-title: Autophagy
– volume: 200
  start-page: 607
  year: 2018
  end-page: 622
  ident: CR12
  article-title: Brucella abortus triggers a cGAS‐independent STING pathway to induce host protection that involves guanylate‐binding proteins and inflammasome activation
  publication-title: J Immunol
– volume: 167
  start-page: 382
  year: 2016
  end-page: 396
  ident: CR42
  article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase‐11‐NLRP3 inflammasomes
  publication-title: Cell
– volume: 29
  start-page: 593
  year: 2018
  end-page: 602
  ident: CR20
  article-title: Interferon‐stimulated genes: new platforms and computational approaches
  publication-title: Mamm Genome
– volume: 92
  start-page: 501
  year: 1998
  end-page: 509
  ident: CR72
  article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE
  publication-title: Cell
– volume: 165
  start-page: 1106
  year: 2016
  end-page: 1119
  ident: CR69
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase‐11 activation
  publication-title: Cell
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR68
  article-title: Growth inhibition of cytosolic Salmonella by caspase‐1 and caspase‐11 precedes host cell death
  publication-title: Nat Commun
– volume: 38
  start-page: BSR20180250
  year: 2018
  ident: CR4
  article-title: USP18 – a multifunctional component in the interferon response
  publication-title: Biosci Rep
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  ident: CR26
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 38
  start-page: e100926
  year: 2019
  ident: CR19
  article-title: Human GBP 1 is a microbe‐specific gatekeeper of macrophage apoptosis and pyroptosis
  publication-title: EMBO J
– volume: 13
  start-page: e1006630
  year: 2017
  ident: CR70
  article-title: IFN‐γ extends the immune functions of Guanylate Binding Proteins to inflammasome‐independent antibacterial activities during Francisella novicida infection
  publication-title: PLoS Pathog
– volume: 10
  start-page: 352
  year: 2019
  end-page: 362
  ident: CR73
  article-title: Bacterial interaction with host autophagy
  publication-title: Virulence
– volume: 215
  start-page: 857
  year: 2016
  end-page: 874
  ident: CR51
  article-title: Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome‐lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
  publication-title: J Cell Biol
– volume: 51
  start-page: 983
  year: 2019
  end-page: 996
  ident: CR76
  article-title: Bacterial endotoxin activates the coagulation cascade through gasdermin D‐dependent phosphatidylserine exposure
  publication-title: Immunity
– volume: 80
  start-page: 401
  year: 1995
  end-page: 411
  ident: CR37
  article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock
  publication-title: Cell
– ident: CR53
– volume: 3
  start-page: eaar6676
  year: 2018
  ident: CR8
  article-title: Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps
  publication-title: Sci Immunol
– volume: 130
  start-page: 1246
  year: 2013
  end-page: 1249
  ident: CR27
  article-title: Independent of TLR4
  publication-title: Science
– volume: 112
  start-page: E5628
  year: 2015
  end-page: E5637
  ident: CR24
  article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 155
  year: 2018
  end-page: 168
  ident: CR40
  article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses
  publication-title: Cell Rep
– volume: 114
  start-page: E1698
  year: 2017
  end-page: E1706
  ident: CR14
  article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 424
  year: 2016
  end-page: 430
  ident: CR35
  article-title: Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy
  publication-title: BMB Rep
– volume: 339
  start-page: 975
  year: 2013
  end-page: 978
  ident: CR1
  article-title: Caspase‐11 protects against bacteria that escape the vacuole
  publication-title: Science
– volume: 16
  start-page: 476
  year: 2015
  end-page: 484
  ident: CR49
  article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida
  publication-title: Nat Immunol
– volume: 82
  start-page: e00015‐18
  year: 2018
  ident: CR25
  article-title: Cytosolic recognition of microbes and pathogens: inflammasomes in action
  publication-title: Microbiol Mol Biol Rev
– volume: 213
  start-page: 2365
  year: 2016
  end-page: 2382
  ident: CR50
  article-title: Complement pathway amplifies caspase‐11‐dependent cell death and endotoxin‐induced sepsis severity
  publication-title: J Exp Med
– volume: 5
  start-page: e8648
  year: 2010
  ident: CR77
  article-title: Localisation and mislocalisation of the interferon‐inducible immunity‐related GTPase, Irgm1 (LRG‐47) in mouse cells
  publication-title: PLoS ONE
– volume: 127
  start-page: 4124
  year: 2017
  end-page: 4135
  ident: CR9
  article-title: Caspase‐11‐mediated endothelial pyroptosis underlies endotoxemia‐induced lung injury
  publication-title: J Clin Invest
– volume: 111
  start-page: 6046
  year: 2014
  end-page: 6051
  ident: CR54
  article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  ident: CR61
  article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria
  publication-title: Nat Commun
– volume: 83
  start-page: 4740
  year: 2015
  end-page: 4749
  ident: CR15
  article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages
  publication-title: Infect Immun
– volume: 38
  start-page: e101994
  year: 2019
  ident: CR21
  article-title: Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs
  publication-title: EMBO J
– volume: 9
  start-page: e1003414
  year: 2013
  ident: CR23
  article-title: IRG and GBP host resistance factors target aberrant, “non‐self” vacuoles characterized by the missing of “Self” IRGM proteins
  publication-title: PLoS Pathog
– volume: 490
  start-page: 288
  year: 2012
  end-page: 291
  ident: CR6
  article-title: Caspase‐11 increases susceptibility to infection in the absence of caspase‐1
  publication-title: Nature
– volume: 12
  start-page: 1153
  year: 2016
  end-page: 1167
  ident: CR52
  article-title: Targeting by AutophaGy proteins (TAG): targeting of IFNG‐inducible GTPases to membranes by the LC3 conjugation system of autophagy
  publication-title: Autophagy
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  ident: CR63
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
– volume: 37
  start-page: e98089
  year: 2018
  ident: CR60
  article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation
  publication-title: EMBO J
– volume: 21
  start-page: 880
  year: 2020
  end-page: 891
  ident: CR71
  article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms
  publication-title: Nat Immunol
– volume: 19
  start-page: 1494
  year: 2000
  end-page: 1504
  ident: CR59
  article-title: GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28
  publication-title: EMBO J
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR38
  article-title: The molecular basis of JAK/STAT inhibition by SOCS1
  publication-title: Nat Commun
– volume: 190
  start-page: 523
  year: 1999
  end-page: 534
  ident: CR67
  article-title: Transport of bacterial lipopolysaccharide to the Golgi apparatus
  publication-title: J Exp Med
– volume: 47
  start-page: D442
  year: 2019
  end-page: D450
  ident: CR66
  article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: 740
  year: 2018
  end-page: 753
  ident: CR13
  article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis
  publication-title: Immunity
– volume: 32
  start-page: 78
  year: 2015
  end-page: 83
  ident: CR75
  article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity
  publication-title: Curr Opin Immunol
– volume: 8
  start-page: e01188‐17
  year: 2017
  ident: CR16
  article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins
  publication-title: MBio
– volume: 39
  start-page: e104926
  year: 2020
  ident: CR32
  article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions
  publication-title: EMBO J
– volume: 73
  start-page: 429
  year: 2019
  end-page: 445
  ident: CR47
  article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy
  publication-title: Mol Cell
– volume: 277
  start-page: 47834
  year: 2002
  end-page: 47843
  ident: CR34
  article-title: Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll‐like receptor 4‐MD‐2‐CD14 complex in a process that is distinct from the initiation of signal transduction
  publication-title: J Biol Chem
– volume: 18
  start-page: 899
  year: 2017
  end-page: 910
  ident: CR62
  article-title: Essential role for GABARAP autophagy proteins in interferon‐inducible GTPase‐mediated host defense
  publication-title: Nat Immunol
– volume: 9
  start-page: e1003414
  year: 2013
  article-title: IRG and GBP host resistance factors target aberrant, “non‐self” vacuoles characterized by the missing of “Self” IRGM proteins
  publication-title: PLoS Pathog
– volume: 215
  start-page: 2279
  year: 2018
  end-page: 2288
  article-title: Caspase‐11 auto‐proteolysis is crucial for noncanonical inflammasome activation
  publication-title: J Exp Med
– volume: 21
  year: 2020
  article-title: Dynamin‐related Irgm proteins modulate LPS‐induced caspase‐11 activation and septic shock
  publication-title: EMBO Rep
– volume: 11
  start-page: 1
  year: 2020
  end-page: 15
  article-title: Human GBP1 binds LPS to initiate assembly of a caspase‐4 activating platform on cytosolic bacteria
  publication-title: Nat Commun
– volume: 14
  start-page: 33
  year: 2016
  article-title: Loss of the interferon‐γ‐inducible regulatory immunity‐related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1‐deficient mice to infection
  publication-title: BMC Biol
– volume: 19
  start-page: 1494
  year: 2000
  end-page: 1504
  article-title: GATE‐16, a membrane transport modulator, interacts with NSF and the Golgi v‐SNARE GOS‐28
  publication-title: EMBO J
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Growth inhibition of cytosolic Salmonella by caspase‐1 and caspase‐11 precedes host cell death
  publication-title: Nat Commun
– volume: 37
  start-page: e98089
  year: 2018
  article-title: LPS targets host guanylate‐binding proteins to the bacterial outer membrane for non‐canonical inflammasome activation
  publication-title: EMBO J
– volume: 20
  start-page: 276
  year: 2019
  end-page: 287
  article-title: SERPINB1‐mediated checkpoint of inflammatory caspase activation
  publication-title: Nat Immunol
– volume: 92
  start-page: 501
  year: 1998
  end-page: 509
  article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE
  publication-title: Cell
– volume: 83
  start-page: 4740
  year: 2015
  end-page: 4749
  article-title: Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia‐infected macrophages
  publication-title: Infect Immun
– volume: 38
  start-page: e101994
  year: 2019
  article-title: Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs
  publication-title: EMBO J
– volume: 130
  start-page: 1246
  year: 2013
  end-page: 1249
  article-title: Independent of TLR4
  publication-title: Science
– volume: 15
  start-page: 796
  year: 2019
  end-page: 812
  article-title: Macrophages target Salmonella by Lc3‐associated phagocytosis in a systemic infection model
  publication-title: Autophagy
– volume: 38
  start-page: BSR20180250
  year: 2018
  article-title: USP18 – a multifunctional component in the interferon response
  publication-title: Biosci Rep
– volume: 29
  start-page: 593
  year: 2018
  end-page: 602
  article-title: Interferon‐stimulated genes: new platforms and computational approaches
  publication-title: Mamm Genome
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 432
  year: 2012
  end-page: 444
  article-title: IFN‐inducible GTPases in host cell defense
  publication-title: Cell Host Microbe
– volume: 45
  start-page: 2927
  year: 2015
  end-page: 2936
  article-title: Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K+ efflux
  publication-title: Eur J Immunol
– volume: 9
  start-page: 242
  year: 2018
  article-title: Human caspase‐4 detects tetra‐acylated LPS and cytosolic Francisella and functions differently from murine caspase‐11
  publication-title: Nat Commun
– volume: 20
  start-page: e48235
  year: 2019
  article-title: A genome‐wide screen identifies IRF2 as a key regulator of caspase‐4 in human cells
  publication-title: EMBO Rep
– volume: 39
  start-page: e104926
  year: 2020
  article-title: Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions
  publication-title: EMBO J
– volume: 167
  start-page: 382
  year: 2016
  end-page: 396
  article-title: IRGB10 liberates bacterial ligands for sensing by the AIM2 and Caspase‐11‐NLRP3 inflammasomes
  publication-title: Cell
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 213
  start-page: 2365
  year: 2016
  end-page: 2382
  article-title: Complement pathway amplifies caspase‐11‐dependent cell death and endotoxin‐induced sepsis severity
  publication-title: J Exp Med
– volume: 80
  start-page: 401
  year: 1995
  end-page: 411
  article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock
  publication-title: Cell
– volume: 13
  start-page: e1006630
  year: 2017
  article-title: IFN‐γ extends the immune functions of Guanylate Binding Proteins to inflammasome‐independent antibacterial activities during Francisella novicida infection
  publication-title: PLoS Pathog
– volume: 215
  start-page: 857
  year: 2016
  end-page: 874
  article-title: Atg8 family LC3/GAB ARAP proteins are crucial for autophagosome‐lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation
  publication-title: J Cell Biol
– volume: 3
  start-page: eaar6676
  year: 2018
  article-title: Noncanonical inflammasome signaling elicits gasdermin D–dependent neutrophil extracellular traps
  publication-title: Sci Immunol
– volume: 9
  start-page: e1003538
  year: 2013
  article-title: Self and non‐self discrimination of intracellular membranes by the innate immune system
  publication-title: PLoS Pathog
– volume: 32
  start-page: 78
  year: 2015
  end-page: 83
  article-title: Non‐canonical activation of inflammatory caspases by cytosolic LPS in innate immunity
  publication-title: Curr Opin Immunol
– volume: 21
  start-page: 880
  year: 2020
  end-page: 891
  article-title: Guanylate‐binding proteins convert cytosolic bacteria into caspase‐4 signaling platforms
  publication-title: Nat Immunol
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 2
  start-page: e91914
  year: 2017
  article-title: Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces
  publication-title: JCI Insight
– volume: 277
  start-page: 47834
  year: 2002
  end-page: 47843
  article-title: Lipopolysaccharide rapidly traffics to and from the golgi apparatus with the toll‐like receptor 4‐MD‐2‐CD14 complex in a process that is distinct from the initiation of signal transduction
  publication-title: J Biol Chem
– volume: 82
  start-page: e00015‐18
  year: 2018
  article-title: Cytosolic recognition of microbes and pathogens: inflammasomes in action
  publication-title: Microbiol Mol Biol Rev
– volume: 49
  start-page: 424
  year: 2016
  end-page: 430
  article-title: Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy
  publication-title: BMB Rep
– volume: 111
  start-page: 6046
  year: 2014
  end-page: 6051
  article-title: Guanylate binding proteins promote caspase‐11‐dependent pyroptosis in response to cytoplasmic LPS
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: e01188‐17
  year: 2017
  article-title: Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins
  publication-title: MBio
– volume: 73
  start-page: 429
  year: 2019b
  end-page: 445
  article-title: The Crohn's disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy
  publication-title: Mol Cell
– volume: 18
  start-page: 899
  year: 2017
  end-page: 910
  article-title: Essential role for GABARAP autophagy proteins in interferon‐inducible GTPase‐mediated host defense
  publication-title: Nat Immunol
– volume: 14
  start-page: e1007519
  year: 2018
  article-title: Guanylate‐binding protein 5 licenses caspase‐11 for Gasdermin‐D mediated host resistance to Brucella abortus infection
  publication-title: PLoS Pathog
– volume: 428
  start-page: 3495
  year: 2016
  end-page: 3513
  article-title: Interferon‐inducible GTPases in host resistance, inflammation and disease
  publication-title: J Mol Biol
– volume: 5
  start-page: 143
  year: 2014
  end-page: 153
  article-title: Animal models of sepsis
  publication-title: Virulence
– volume: 51
  start-page: 983
  year: 2019
  end-page: 996
  article-title: Bacterial endotoxin activates the coagulation cascade through gasdermin D‐dependent phosphatidylserine exposure
  publication-title: Immunity
– volume: 200
  start-page: 607
  year: 2018
  end-page: 622
  article-title: Brucella abortus triggers a cGAS‐independent STING pathway to induce host protection that involves guanylate‐binding proteins and inflammasome activation
  publication-title: J Immunol
– volume: 112
  start-page: E5628
  year: 2015
  end-page: E5637
  article-title: Ubiquitin systems mark pathogen‐containing vacuoles as targets for host defense by guanylate binding proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 190
  start-page: 523
  year: 1999
  end-page: 534
  article-title: Transport of bacterial lipopolysaccharide to the Golgi apparatus
  publication-title: J Exp Med
– volume: 85
  start-page: e00778‐16
  year: 2017
  article-title: Guanylate binding proteins regulate inflammasome activation in response to hyperinjected Yersinia translocon components
  publication-title: Infect Immun
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  article-title: The molecular basis of JAK/STAT inhibition by SOCS1
  publication-title: Nat Commun
– volume: 10
  start-page: 352
  year: 2019
  end-page: 362
  article-title: Bacterial interaction with host autophagy
  publication-title: Virulence
– volume: 5
  start-page: e8648
  year: 2010
  article-title: Localisation and mislocalisation of the interferon‐inducible immunity‐related GTPase, Irgm1 (LRG‐47) in mouse cells
  publication-title: PLoS ONE
– volume: 47
  start-page: D442
  year: 2019
  end-page: D450
  article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 1645
  year: 2019a
  end-page: 1647
  article-title: IRGM restrains NLRP3 inflammasome activation by mediating its SQSTM1/p62‐dependent selective autophagy
  publication-title: Autophagy
– volume: 362
  start-page: 956
  year: 2018
  end-page: 960
  article-title: ESCRT‐dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation
  publication-title: Science
– volume: 490
  start-page: 288
  year: 2012
  end-page: 291
  article-title: Caspase‐11 increases susceptibility to infection in the absence of caspase‐1
  publication-title: Nature
– volume: 37
  start-page: 302
  year: 2012
  end-page: 313
  article-title: A cluster of interferon‐γ‐inducible p65 gtpases plays a critical role in host defense against toxoplasma gondii
  publication-title: Immunity
– volume: 16
  start-page: 476
  year: 2015
  end-page: 484
  article-title: Guanylate‐binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida
  publication-title: Nat Immunol
– volume: 12
  start-page: 1153
  year: 2016
  end-page: 1167
  article-title: Targeting by AutophaGy proteins (TAG): targeting of IFNG‐inducible GTPases to membranes by the LC3 conjugation system of autophagy
  publication-title: Autophagy
– volume: 114
  start-page: E1698
  year: 2017
  end-page: E1706
  article-title: Galectin‐3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems
  publication-title: Proc Natl Acad Sci USA
– volume: 45
  start-page: 2911
  year: 2015
  end-page: 2917
  article-title: Caspase‐4 mediates non‐canonical activation of the NLRP3 inflammasome in human myeloid cells
  publication-title: Eur J Immunol
– volume: 16
  start-page: 467
  year: 2015
  end-page: 475
  article-title: The transcription factor IRF1 and guanylate‐binding proteins target activation of the AIM2 inflammasome by Francisella infection
  publication-title: Nat Immunol
– volume: 509
  start-page: 366
  year: 2014
  end-page: 370
  article-title: Caspase‐11 activation requires lysis of pathogen‐containing vacuoles by IFN‐induced GTPases
  publication-title: Nature
– volume: 49
  start-page: 740
  year: 2018
  end-page: 753
  article-title: The endotoxin delivery protein HMGB1 mediates caspase‐11‐dependent lethality in sepsis
  publication-title: Immunity
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
– volume: 341
  start-page: 1250
  year: 2013
  end-page: 1253
  article-title: Cytoplasmic LPS activates caspase‐11: implications in TLR4‐independent endotoxic shock
  publication-title: Science
– volume: 24
  start-page: 155
  year: 2018
  end-page: 168
  article-title: Constitutive interferon maintains GBP expression required for release of bacterial components upstream of pyroptosis and anti‐DNA responses
  publication-title: Cell Rep
– volume: 12
  start-page: eaax4917
  year: 2019
  article-title: IRF2 transcriptionally induces GSDMD expression for pyroptosis
  publication-title: Sci Signal
– volume: 127
  start-page: 4124
  year: 2017
  end-page: 4135
  article-title: Caspase‐11‐mediated endothelial pyroptosis underlies endotoxemia‐induced lung injury
  publication-title: J Clin Invest
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 198
  year: 2017
  article-title: Irgm1 suppresses NLRP3 Inflammasome‐mediated IL‐1β production
  publication-title: J Immunol
– volume: 8
  start-page: 77
  year: 2019
  article-title: Roles of autophagy‐related genes in the pathogenesis of inflammatory bowel disease
  publication-title: Cells
– volume: 165
  start-page: 1106
  year: 2016
  end-page: 1119
  article-title: Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase‐11 activation
  publication-title: Cell
– volume: 440
  start-page: 237
  year: 2006
  end-page: 241
  article-title: Gout‐associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
– volume: 339
  start-page: 975
  year: 2013
  end-page: 978
  article-title: Caspase‐11 protects against bacteria that escape the vacuole
  publication-title: Science
– volume: 20
  start-page: 527
  year: 2019
  end-page: 533
  article-title: Innate immunity to intracellular LPS
  publication-title: Nat Immunol
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 38
  start-page: e100926
  year: 2019
  article-title: Human GBP 1 is a microbe‐specific gatekeeper of macrophage apoptosis and pyroptosis
  publication-title: EMBO J
– ident: e_1_2_8_42_1
  doi: 10.1038/ni.3118
– ident: e_1_2_8_67_1
  doi: 10.1093/nar/gky1106
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-018-04013-1
– ident: e_1_2_8_68_1
  doi: 10.1084/jem.190.4.523
– ident: e_1_2_8_52_1
  doi: 10.1083/jcb.201607039
– ident: e_1_2_8_45_1
  doi: 10.1038/nature04516
– ident: e_1_2_8_55_1
  doi: 10.1073/pnas.1321700111
– ident: e_1_2_8_59_1
  doi: 10.1126/science.aar7607
– ident: e_1_2_8_50_1
  doi: 10.1038/ni.3119
– ident: e_1_2_8_44_1
  doi: 10.1186/s12915-016-0255-4
– ident: e_1_2_8_66_1
  doi: 10.1038/nature15514
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.M207873200
– ident: e_1_2_8_8_1
  doi: 10.1371/journal.ppat.1007519
– ident: e_1_2_8_65_1
  doi: 10.1002/eji.201545523
– ident: e_1_2_8_19_1
  doi: 10.4161/viru.26083
– ident: e_1_2_8_26_1
  doi: 10.1128/MMBR.00015-18
– ident: e_1_2_8_14_1
  doi: 10.1016/j.immuni.2018.08.016
– ident: e_1_2_8_17_1
  doi: 10.1128/mBio.01188-17
– ident: e_1_2_8_74_1
  doi: 10.1080/21505594.2019.1602020
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jmb.2016.04.032
– ident: e_1_2_8_64_1
  doi: 10.15252/embj.201694696
– ident: e_1_2_8_12_1
  doi: 10.1371/journal.ppat.1003538
– ident: e_1_2_8_30_1
  doi: 10.1126/scisignal.aax4917
– ident: e_1_2_8_18_1
  doi: 10.15252/embr.202050830
– ident: e_1_2_8_5_1
  doi: 10.1042/BSR20180250
– ident: e_1_2_8_49_1
  doi: 10.1038/nature13157
– ident: e_1_2_8_38_1
  doi: 10.1016/0092-8674(95)90490-5
– ident: e_1_2_8_6_1
  doi: 10.15252/embr.201948235
– ident: e_1_2_8_47_1
  doi: 10.1080/15548627.2019.1628544
– ident: e_1_2_8_27_1
  doi: 10.1038/nature10558
– ident: e_1_2_8_16_1
  doi: 10.1128/IAI.00856-15
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cell.2016.09.012
– ident: e_1_2_8_7_1
  doi: 10.1038/nature11419
– ident: e_1_2_8_40_1
  doi: 10.1038/nature18629
– ident: e_1_2_8_46_1
  doi: 10.1080/15548627.2019.1569297
– ident: e_1_2_8_73_1
  doi: 10.1016/S0092-8674(00)80943-5
– ident: e_1_2_8_75_1
  doi: 10.1016/j.immuni.2012.06.009
– ident: e_1_2_8_13_1
  doi: 10.4049/jimmunol.1700725
– ident: e_1_2_8_32_1
  doi: 10.3390/cells8010077
– ident: e_1_2_8_62_1
  doi: 10.1038/s41467-020-16889-z
– ident: e_1_2_8_76_1
  doi: 10.1016/j.coi.2015.01.007
– ident: e_1_2_8_63_1
  doi: 10.1038/ni.3767
– ident: e_1_2_8_28_1
  doi: 10.1126/science.1240248
– ident: e_1_2_8_29_1
  doi: 10.1038/nature15541
– ident: e_1_2_8_37_1
  doi: 10.1084/jem.20180589
– ident: e_1_2_8_70_1
  doi: 10.1016/j.cell.2016.04.015
– ident: e_1_2_8_53_1
  doi: 10.1080/15548627.2016.1178447
– ident: e_1_2_8_57_1
  doi: 10.1038/s41590-019-0368-3
– ident: e_1_2_8_79_1
  doi: 10.1128/IAI.00778-16
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-017-02682-y
– ident: e_1_2_8_36_1
  doi: 10.5483/BMBRep.2016.49.8.081
– ident: e_1_2_8_51_1
  doi: 10.1084/jem.20160027
– ident: e_1_2_8_33_1
  doi: 10.15252/embj.2020104926
– ident: e_1_2_8_10_1
  doi: 10.1172/JCI94495
– ident: e_1_2_8_71_1
  doi: 10.1371/journal.ppat.1006630
– ident: e_1_2_8_58_1
  doi: 10.1002/eji.201545772
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.1515966112
– ident: e_1_2_8_72_1
  doi: 10.1038/s41590-020-0697-2
– ident: e_1_2_8_77_1
  doi: 10.1016/j.immuni.2019.11.005
– ident: e_1_2_8_48_1
  doi: 10.1016/j.molcel.2018.11.018
– ident: e_1_2_8_60_1
  doi: 10.1093/emboj/19.7.1494
– ident: e_1_2_8_22_1
  doi: 10.15252/embj.2019101994
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1607769113
– ident: e_1_2_8_11_1
  doi: 10.1038/s41590-018-0303-z
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1230751
– ident: e_1_2_8_9_1
  doi: 10.1126/sciimmunol.aar6676
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.ppat.1003414
– ident: e_1_2_8_31_1
  doi: 10.1016/j.chom.2012.09.007
– ident: e_1_2_8_21_1
  doi: 10.1007/s00335-018-9755-6
– ident: e_1_2_8_61_1
  doi: 10.15252/embj.201798089
– ident: e_1_2_8_78_1
  doi: 10.1371/journal.pone.0008648
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1240988
– ident: e_1_2_8_20_1
  doi: 10.15252/embj.2018100926
– ident: e_1_2_8_41_1
  doi: 10.1016/j.celrep.2018.06.012
– ident: e_1_2_8_4_1
  doi: 10.1172/jci.insight.91914
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.1615771114
– ident: e_1_2_8_69_1
  doi: 10.1038/ncomms13292
– volume: 198
  year: 2017
  ident: e_1_2_8_54_1
  article-title: Irgm1 suppresses NLRP3 Inflammasome‐mediated IL‐1β production
  publication-title: J Immunol
– reference: 33135287 - EMBO Rep. 2020 Nov 5;21(11):e51787
SSID ssj0005978
Score 2.5108669
Snippet Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation...
Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation...
Inflammatory caspase‐11 (rodent) and caspases‐4/5 (humans) detect the Gram‐negative bacterial component LPS within the host cell cytosol, promoting activation...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e50829
SubjectTerms Animal biology
Autophagy
Autophagy-Related Protein 8 Family
Bacteria
Caspase
Caspases - genetics
Caspases, Initiator
Caspase‐11
Cell activation
Cytokines
Cytosol
EMBO07
EMBO19
EMBO23
Endotoxemia
Gate‐16
Gram-Negative Bacteria
Immune response
Immune system
infections/Interferons
Inflammasomes
Inflammasomes - genetics
Inflammation
Interferon
Intracellular
Irgm2
Life Sciences
Lipopolysaccharides
Macrophages
non‐canonical inflammasome
Phagocytosis
Proteins
Pyroptosis
Sepsis
Title Irgm2 and Gate‐16 cooperatively dampen Gram‐negative bacteria‐induced caspase‐11 response
URI https://link.springer.com/article/10.15252/embr.202050829
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.202050829
https://www.ncbi.nlm.nih.gov/pubmed/33124769
https://www.proquest.com/docview/2457846868
https://www.proquest.com/docview/2456416153
https://hal.science/hal-02997566
https://pubmed.ncbi.nlm.nih.gov/PMC7645206
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoEagXBOUVKJVBHOAQSBw_4mNZtSyIBQlRaW-Rny1SN1ttH1Jv_AR-I7-EGSebsioV4pZ4HNvxjO3PHvszIS8l9Iy1rss8KmtzHiPPdVAhr70xgG6tr9PVCZPPcrzPP07FtCdJwrMwf_rvBRPsbZhZpO1khcBToGvkpigrieY7kqPLvRw6dbnQ6nXOWDntOXz-ksDK8LN2iJsfryLLqxskBy_pKoZNg9DeXXKnR490p1P3PXIjtJvkVnef5MUmuT3pPeX3ifmwOJgxalpPcYHs14-fpaRuPj8OHdX30QX1BiBzS98vzAzEbThIAmo7_mYDYTBfB8176gz0OycpkZIuul214QHZ39v9Nhrn_XUKuUMYksciKu4L5zhOSmKtWPCGW6-tCabQTLlSBV3oKpYsRmR6q5RgoTaGV955XT0k6-28DY8JNU6qKCpZOFsA3pIG5jnGlVp4K7iXMiNvlrXcuJ5rHK-8OGpwzoFqaVAtzaCWjLwaPjjuaDauj_oC1DbEQnrs8c6nBsMKGFsV4NPzMiNbS602faM8aRiH7onLWtYZeT6IoTmhj8S0YX6W4kieUHBGHnVGMGRVVQCGlIQSqBXzWCnLqqT9fpgouxX6jwuol9dLQ7os1rX_WSVL-1d9NLuTd1-Htyf_kcNTsoHP6WSl2CLrp4uz8Awg1qndTs1rG1csv_wGlxQghw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIigXBOXRQAGDOMAhJXEcOz6WVcsWdntArbS3yM8WqZutti1Sb_wEfiO_hLGTTVmVCnGM7diOx49vMuNvAN5y3BkrWeWpF1qnzHuWSidcWlmlEN1qW8XQCeN9PjxknyflpCNJCndh_rTfl7SkH9xUB9pOmpXhFugK3GaoJgffvQEfXPlyyLjl4qqXKaX5pOPw-UsFS8fPynFwfryOLK87SPZW0mUMGw-h3Qdwv0OPZLsV90O45Zp1uNPGk7xch7vjzlL-CNTe_GhKiWosCT_Ifv34mXNiZrNT11J9n1wSqxAyN-TTXE0xu3FHMYPolr9ZYRrq6yh5S4zCfecsVpKTeetV6x7D4e7OwWCYduEUUhNgSOozL5jNjGFBKfGVoM4qpq3UyqlMUmFy4WQmC59T7wPTWyFK6iqlWGGNlcUTWG1mjdsAogwXvix4ZnSGeIsr1HOUyWVpdcks5wlsLUa5Nh3XeAh5cVIHnSOIpQ5iqXuxJPCuf-G0pdm4uegbFFtfKtBjD7dHdUjL8GwViE-_5wlsLqRad4vyrKYMtyfGK14l8LrPxuUUbCSqcbOLWIaziIITeNpOgr6pokAwJDj2QCxNj6W-LOc0344jZbcI9uMMx-X9YiJddevG7yziTPvXeNQ7449f-6dn_9HCK1gbHoxH9Whv_8tzuBfS4y3LchNWz-cX7gXCrXP9Mi61337GInU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZoERUXVMproQWDOMBh6a7Xa6-PbWhIoakQolJuKz9bpGYTJSlSb_wEfiO_pGPvo1qVCnGM7ew6nvH4m8z4G4TeMrCMhSjS2HGlYuocjYXlNi6MlIBulSlC6YTxMRud0M-TfNLk5izbbPc2JFnfafAsTdVqd25cW6-H7Nqp8mSeJMn93dA1dBfclBClHbDBdYaHCIYYbIGICUknDbPPXx7QO5TWznxK5E28eTNtsoud9pFtOJqGm-hBgynxXq0ED9EdW22he3WVycsttDFu4uePkDxcnE4JlpXB_m-zP79-pwzr2WxuawLw80tsJADpCn9ayCl0V_Y0dGBVszpLaAMvHvTBYC3BGi3DQ1K8qHNt7WN0Mjz4PhjFTZGFWHtwErvEcWoSral3VVzBiTWSKiOUtDIRhOuUW5GIzKXEOc__lvGc2EJKmhltRPYErVezyj5DWGrGXZ6xRKsEUBiT4P1InYrcqJwaxiL0oV3lUjcM5L4QxnnpPREvltKLpezEEqF33RfmNfnG7UPfgNi6UZ40e7R3VPq2BE5cDqj1Zxqh7VaqZbNVlyWhYLQoK1gRodddN2wyHzmRlZ1dhDGMBmwcoae1EnSvyjKASJzBDHhPPXpz6fdUP84CkTf3UeUE1uV9q0jX07r1d2ZB0_61HuXBeP9b9-n5f7zhFdr4-nFYHh0ef3mB7vvmcPUy30brq8WF3QEMtlIvw067AhaIKrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irgm2+and+Gate-16+cooperatively+dampen+Gram-negative+bacteria-induced+caspase-11+response&rft.jtitle=EMBO+reports&rft.au=Eren%2C+Elif&rft.au=Plan%C3%A8s%2C+R%C3%A9mi&rft.au=Bagayoko%2C+Salimata&rft.au=Bordignon%2C+Pierre-Jean&rft.date=2020-11-05&rft.issn=1469-3178&rft.eissn=1469-3178&rft.volume=21&rft.issue=11&rft.spage=e50829&rft_id=info:doi/10.15252%2Fembr.202050829&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon