Association between the Postprandial Glucose Levels and Arterial Stiffness Measured According to the Cardio-ankle Vascular Index in Non-diabetic Subjects

Objective Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between th...

Full description

Saved in:
Bibliographic Details
Published inInternal Medicine Vol. 54; no. 16; pp. 1961 - 1969
Main Authors Tsuboi, Atsuko, Fujikawa, Rumi, Ito, Chikako, Kihara, Yasuki, Yamamoto, Hideya
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Internal Medicine 01.01.2015
Subjects
Online AccessGet full text
ISSN0918-2918
1349-7235
1349-7235
DOI10.2169/internalmedicine.54.3596

Cover

Abstract Objective Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between the postprandial glucose levels after a composite meal and the degree of arterial stiffness measured according to CAVI in non-diabetic subjects. Methods The subjects included 1,291 individuals (655 men and 636 women; mean age, 48.6 years; range, 23-85 years) who underwent medical examinations, including blood tests and CAVI assessments, between October 2005 and April 2012. The 1-hour postprandial glucose levels were determined after a 600-kcal traditional Japanese meal. Results The CAVI values were significantly higher in the subjects with higher 1-hour postprandial glucose levels (≥140 mg/dL in men; ≥158 mg/dL in women). A simple regression analysis indicated that the CAVI values were significantly correlated with the 1-hour postprandial glucose levels in men (r=0.286, p<0.0001) and women (r=0.228, p<0.0001). After adjusting for age, BMI, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 1-hour postprandial glucose, homeostatis model assessment of insulin resistance, estimated glemerular filtration rate, and high sensitive C-reactive protein, stepwise multiple regression analysis demonstrated that the 1-hour postprandial glucose level was an independent predictor associated with the CAVI in men (p=0.003) and older women 50 years of age or older (p=0.003). Conclusion This study demonstrated that the 1-hour postprandial glucose levels are associated with increased CAVI values in non-diabetic men and older women 50 years of age or older.
AbstractList Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between the postprandial glucose levels after a composite meal and the degree of arterial stiffness measured according to CAVI in non-diabetic subjects.OBJECTIVEAlthough a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between the postprandial glucose levels after a composite meal and the degree of arterial stiffness measured according to CAVI in non-diabetic subjects.The subjects included 1,291 individuals (655 men and 636 women; mean age, 48.6 years; range, 23-85 years) who underwent medical examinations, including blood tests and CAVI assessments, between October 2005 and April 2012. The 1-hour postprandial glucose levels were determined after a 600-kcal traditional Japanese meal.METHODSThe subjects included 1,291 individuals (655 men and 636 women; mean age, 48.6 years; range, 23-85 years) who underwent medical examinations, including blood tests and CAVI assessments, between October 2005 and April 2012. The 1-hour postprandial glucose levels were determined after a 600-kcal traditional Japanese meal.The CAVI values were significantly higher in the subjects with higher 1-hour postprandial glucose levels (≥140 mg/dL in men; ≥158 mg/dL in women). A simple regression analysis indicated that the CAVI values were significantly correlated with the 1-hour postprandial glucose levels in men (r=0.286, p<0.0001) and women (r=0.228, p<0.0001). After adjusting for age, BMI, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 1-hour postprandial glucose, homeostatis model assessment of insulin resistance, estimated glemerular filtration rate, and high sensitive C-reactive protein, stepwise multiple regression analysis demonstrated that the 1-hour postprandial glucose level was an independent predictor associated with the CAVI in men (p=0.003) and older women 50 years of age or older (p=0.003).RESULTSThe CAVI values were significantly higher in the subjects with higher 1-hour postprandial glucose levels (≥140 mg/dL in men; ≥158 mg/dL in women). A simple regression analysis indicated that the CAVI values were significantly correlated with the 1-hour postprandial glucose levels in men (r=0.286, p<0.0001) and women (r=0.228, p<0.0001). After adjusting for age, BMI, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 1-hour postprandial glucose, homeostatis model assessment of insulin resistance, estimated glemerular filtration rate, and high sensitive C-reactive protein, stepwise multiple regression analysis demonstrated that the 1-hour postprandial glucose level was an independent predictor associated with the CAVI in men (p=0.003) and older women 50 years of age or older (p=0.003).This study demonstrated that the 1-hour postprandial glucose levels are associated with increased CAVI values in non-diabetic men and older women 50 years of age or older.CONCLUSIONThis study demonstrated that the 1-hour postprandial glucose levels are associated with increased CAVI values in non-diabetic men and older women 50 years of age or older.
Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between the postprandial glucose levels after a composite meal and the degree of arterial stiffness measured according to CAVI in non-diabetic subjects. The subjects included 1,291 individuals (655 men and 636 women; mean age, 48.6 years; range, 23-85 years) who underwent medical examinations, including blood tests and CAVI assessments, between October 2005 and April 2012. The 1-hour postprandial glucose levels were determined after a 600-kcal traditional Japanese meal. The CAVI values were significantly higher in the subjects with higher 1-hour postprandial glucose levels (≥140 mg/dL in men; ≥158 mg/dL in women). A simple regression analysis indicated that the CAVI values were significantly correlated with the 1-hour postprandial glucose levels in men (r=0.286, p<0.0001) and women (r=0.228, p<0.0001). After adjusting for age, BMI, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 1-hour postprandial glucose, homeostatis model assessment of insulin resistance, estimated glemerular filtration rate, and high sensitive C-reactive protein, stepwise multiple regression analysis demonstrated that the 1-hour postprandial glucose level was an independent predictor associated with the CAVI in men (p=0.003) and older women 50 years of age or older (p=0.003). This study demonstrated that the 1-hour postprandial glucose levels are associated with increased CAVI values in non-diabetic men and older women 50 years of age or older.
Objective Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels and cardio-ankle vascular index (CAVI) in non-diabetic subjects is not clear. This study thus evaluated the association between the postprandial glucose levels after a composite meal and the degree of arterial stiffness measured according to CAVI in non-diabetic subjects. Methods The subjects included 1,291 individuals (655 men and 636 women; mean age, 48.6 years; range, 23-85 years) who underwent medical examinations, including blood tests and CAVI assessments, between October 2005 and April 2012. The 1-hour postprandial glucose levels were determined after a 600-kcal traditional Japanese meal. Results The CAVI values were significantly higher in the subjects with higher 1-hour postprandial glucose levels (≥140 mg/dL in men; ≥158 mg/dL in women). A simple regression analysis indicated that the CAVI values were significantly correlated with the 1-hour postprandial glucose levels in men (r=0.286, p<0.0001) and women (r=0.228, p<0.0001). After adjusting for age, BMI, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 1-hour postprandial glucose, homeostatis model assessment of insulin resistance, estimated glemerular filtration rate, and high sensitive C-reactive protein, stepwise multiple regression analysis demonstrated that the 1-hour postprandial glucose level was an independent predictor associated with the CAVI in men (p=0.003) and older women 50 years of age or older (p=0.003). Conclusion This study demonstrated that the 1-hour postprandial glucose levels are associated with increased CAVI values in non-diabetic men and older women 50 years of age or older.
Author Ito, Chikako
Fujikawa, Rumi
Yamamoto, Hideya
Tsuboi, Atsuko
Kihara, Yasuki
Author_xml – sequence: 1
  fullname: Tsuboi, Atsuko
  organization: Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biochemical and Health Sciences, Japan
– sequence: 1
  fullname: Fujikawa, Rumi
  organization: Grand Tower Medical Court, Japan
– sequence: 1
  fullname: Ito, Chikako
  organization: Grand Tower Medical Court, Japan
– sequence: 1
  fullname: Kihara, Yasuki
  organization: Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biochemical and Health Sciences, Japan
– sequence: 1
  fullname: Yamamoto, Hideya
  organization: Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biochemical and Health Sciences, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26278285$$D View this record in MEDLINE/PubMed
BookMark eNqNUU9vFCEUJ6bGbqtfwXD0MisMw8BcTDYbrU1W26TqlTDMm5aVhRUYWz-K31a2u-2h8dDLI7z3-wO_d4KOfPCAEKZkXtO2e299hui128BgjfUw582c8a59gWaUNV0lasaP0Ix0VFZ1KcfoJKU1IUyKrn6Fjuu2FrKWfIb-LlIKxupsg8c95FsAj_MN4MuQ8jZqP1jt8JmbTEiAV_AbXMKlixexPGE3u8p2HD2khL-ATlOEMjMmxMH6a5zDvdhSl2uotP_pAP_QyUxOR3zuB7jD1uOvwVfFp9hbg6-mfg0mp9fo5ahdgjeH8xR9__Tx2_Jztbo4O18uVpVpmcyV4UP5YD_AyHozCilkw03HGhCU6sFQURMqGeiuI2PbUdEMDaeU9FyAEVTW7BS92-tuY_g1QcpqY5MB57SHMCVFBeGECCJ4gb49QKe-RK-20W50_KMe4iyAD3uAiSGlCKMyNt9nm6O2TlGidvtTT_eneKN2-ysC8onAg8czqBd76jplfQ2PRB1Lqg7-S6Ttrh4UHpHmRkcFnv0DLTXGyA
CitedBy_id crossref_primary_10_3177_jnsv_71_63
crossref_primary_10_1016_j_medcli_2017_06_072
crossref_primary_10_3390_jcm13020481
crossref_primary_10_1177_1479164117736509
crossref_primary_10_18821_0023_2149_2018_96_2_137_146
crossref_primary_10_5551_jat_RV17043
crossref_primary_10_1016_j_medcle_2017_11_034
crossref_primary_10_1536_ihj_16_373
crossref_primary_10_1371_journal_pone_0175982
crossref_primary_10_1007_s00380_023_02316_y
crossref_primary_10_3390_nu15163571
crossref_primary_10_3390_nu14163316
crossref_primary_10_1089_dia_2017_0135
crossref_primary_10_1093_ajh_hpad082
crossref_primary_10_1113_EP087899
crossref_primary_10_3390_diagnostics11030474
crossref_primary_10_3390_nu13103498
crossref_primary_10_3390_nu13124493
crossref_primary_10_1016_j_hnm_2025_200309
crossref_primary_10_3390_nu15061440
crossref_primary_10_3390_jcm11195761
crossref_primary_10_5551_jat_32797
crossref_primary_10_38109_2225_1685_2016_3_6_12
crossref_primary_10_2337_cd18_0040
Cites_doi 10.1098/rspb.1922.0022
10.2337/diab.45.10.1386
10.1038/hr.2009.145
10.1159/000316724
10.1007/BF00280883
10.1253/circj.CJ-08-0152
10.1161/01.HYP.0000111829.46090.92
10.1016/j.diabres.2007.12.016
10.1093/cvr/21.9.678
10.2169/internalmedicine.50.5908
10.2337/dc05-1801
10.2169/internalmedicine.51.8475
10.5551/jat.3582
10.1111/j.2040-1124.2012.00207.x
10.1016/0021-9290(80)90191-8
10.1161/01.CIR.96.1.25
10.1253/circj.CJ-10-0552
10.1161/01.ATV.0000060460.52916.D6
10.1001/archinte.161.3.397
10.1007/s00592-009-0140-5
10.2337/diacare.22.6.920
10.5551/jat.7716
10.1371/journal.pone.0044470
10.4093/kdj.2010.34.5.287
10.1152/physiol.00040.2005
10.1111/j.1464-5491.2005.01718.x
10.2337/diabetes.51.5.1596
10.1097/HJH.0b013e32832e94e7
10.1291/hypres.30.335
10.1161/CIRCULATIONAHA.106.675355
10.5551/jat.12484
10.5551/jat.4465
10.1291/hypres.31.1347
10.1210/jc.2005-1005
10.1161/01.ATV.0000099786.99623.EF
10.1007/s001250050617
10.5551/jat.13.101
10.1159/000086570
10.1253/circj.CJ-09-0183
10.1253/circj.72.304
10.1016/j.cca.2006.03.014
10.5551/jat.15420
10.5551/jat.18267
10.1210/er.2005-0005
10.1253/circj.71.1710
10.2337/diacare.24.4.775
10.1136/hrt.26.2.261
10.1016/j.atherosclerosis.2008.04.019
10.5551/jat.1628
ContentType Journal Article
Copyright 2015 by The Japanese Society of Internal Medicine
Copyright_xml – notice: 2015 by The Japanese Society of Internal Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2169/internalmedicine.54.3596
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-7235
EndPage 1969
ExternalDocumentID 26278285
10_2169_internalmedicine_54_3596
article_internalmedicine_54_16_54_54_3596_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
29J
2WC
3O-
53G
5GY
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
EBS
EJD
EMOBN
F5P
HYE
JSF
JSH
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c638t-c5d918bdef3bcf787845c934e711adc1720183ea990f69174d45110b57ec71823
ISSN 0918-2918
1349-7235
IngestDate Fri Jul 11 02:42:51 EDT 2025
Mon Jul 21 05:40:24 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Tue Jul 01 01:39:59 EDT 2025
Wed Sep 03 06:15:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c638t-c5d918bdef3bcf787845c934e711adc1720183ea990f69174d45110b57ec71823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/internalmedicine/54/16/54_54.3596/_article/-char/en
PMID 26278285
PQID 1705007075
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1705007075
pubmed_primary_26278285
crossref_citationtrail_10_2169_internalmedicine_54_3596
crossref_primary_10_2169_internalmedicine_54_3596
jstage_primary_article_internalmedicine_54_16_54_54_3596_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Internal Medicine
PublicationTitleAlternate Intern. Med.
PublicationYear 2015
Publisher The Japanese Society of Internal Medicine
Publisher_xml – name: The Japanese Society of Internal Medicine
References 41. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 36: 439-451, 2005.
37. Kashihara H, Lee JS, Kawakubo K, Tamura M, Akabayashi A. Criteria of waist circumference according to computed tomography-measured visceral fat area and the clustering of cardiovascular risk factors. Circ J 73: 1881-1886, 2009.
22. Kashiwagi A, Kasuga M, Araki E, et al; Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Invest 3: 39-40, 2012.
13. DECODE study group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Atch Intern Med 161: 397-405, 2001.
14. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22: 920-924, 1999.
1. Oliver JJ, Webb DJ. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 23: 554-566, 2003.
16. Cavalot F, Petreri A, Traversa M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 91: 813-819, 2006.
21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419, 1985.
48. Sasaki H, Saiki A, Endo K, et al. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy. J Atheroscler Thromb 16: 568-575, 2009.
6. Ibata J, Sasaki H, Kakimoto T, et al. Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res Clin Pr 80: 265-270, 2008.
26. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 93: 298-306, 1922.
7. Izuhara M, Shioji K, Kadota S, et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J 72: 1762-1767, 2008.
36. Ohashi N, Yamamoto H, Horiguchi J, et al. Visceral fat accumulation as a predictor of coronary artery calcium as assessed by multislice computed tomography in Japanese patients. Atherosclerosis 202: 192-199, 2009.
18. Kasayama S, Saito H, Mukai M, Koga M. Insulin sensitivity independently influences brachial-ankle pulse-wave velocity in non-diabetic subjects. Diabet Med 22: 1701-1706, 2005.
39. Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51: 1596-1600, 2002.
10. Kadota K, Takamura N, Aoyagi K, et al. Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis. Circ J 72: 304-308, 2008.
40. Zarkesh M, Faam B, Daneshpour MS, Azizi F, Hedayati M. The relationship between metabolic syndrome, cardiometabolic risk factors and inflammatory markers in a Teheranian population: the Teheran Lipid and Glucose Study. Intern Med 51: 3329-3335, 2012.
38. Tsuriya D, Morita H, Horioka T, et al. Significant correlation between visceral adiposity and high-sensitivity C-reactive protein (hs-CRP) in Japanese subjects. Intern Med 50: 2767-2773, 2011.
34. Ge QM, Dong Y, Zhang HM, Su Q. Effects of intermittent high glucose on oxidative stress in endothelial cells. Acta Diabetol 47: 97-103, 2010.
47. Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Murohashi-Bokuda K, Itoh H. Effects of termisartan on arterial stiffness assessed by the cardio-ankle vascular index in hypertensive patients. Kidney Blood Press Res 33: 304-312, 2010.
5. Shirai K, Song M, Suzuki J, et al. Contradictory effects of β1- and α1-aderenergic receptor blockers on cardio-ankle vascular index (CAVI). J Atheroscler Thromb 18: 49-55, 2011.
20. Sciacqua A, Maio R, Miceil S, et al. Association between one-hour post-load plasma glucose levels and vascular stiffness in essential hypertension. PLoS One 7: e44470, 2012.
27. Shirai K, Utino J, Otsuka K, Tanaka M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 13: 101-107, 2006.
9. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is a new noninvasive parameter of arterial stiffness. Circ J 71: 1710-1714, 2007.
44. Park HE, Choi SY, Kim HS, Kim MK, Cho SH, Oh BH. Epicardial fat reflects arterial stiffness: Assessment using 256 slice multidetector coronary computed tomography and cardio-ankle vascular index. J Atheroscler Thromb 19: 570-576, 2012.
49. Satoh N, Shimatsu A, Kotani K, et al. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens Res 32: 1004-1008, 2009.
25. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovascular Res 21: 678-687, 1987.
42. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Atheroscler Thromb Vasc Biol 24: 29-33, 2004.
46. Soska V, Frantisova M, Dobsak P, et al. Cardio-ankle vascular index in subjects with dyslipidemia and other cardiovascular risk factors. J Atheroscler Thromb 20: 443-451, 2013.
30. Takahashi K, Miura S, Mori-Abe A, et al. Impact of menopause on the augmentation of arterial stiffness with aging. Gynecol Obstet Inverst 60: 162-166, 2005.
29. American Diabetes Association. Postprandial blood glucose (Consensus Statement). Diabetes Care 24: 775-778, 2001.
35. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116: 39-48, 2007.
17. Schram MT, Henry RM, van Dijk RA, et al. Increased central artery stiffness in impaired glucose metabolism and type2 diabetes: the Hoorn Study. Hypertension 43: 176-181, 2004.
3. Nye ER. The effect of blood pressure alteration on the pulse wave velocity. Br Heart J 26: 261-265, 1964.
2. Tanaka H, Muranaka M, Kawano Y, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens 27: 2022-2027, 2009.
8. Okura T, Watanabe S, Kurata M, et al. Relationship between cardio-ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension. Hypertens Res 30: 335-340, 2007.
19. Choi ES, Rhee EJ, Choi JH, et al. The association of brachial-ankle pulse wave velocity with 30-minute post-challenge plasma glucose levels in korean adults with no history of type 2 diabetes. Korean Diabetes J 34: 287-293, 2010.
33. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96: 25-28, 1997.
43. Hara K, Horikoshi M, Yamauchi T, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the predictor of insulin resistance and metabolic syndrome. Diabetes Care 29: 1357-1362, 2006.
15. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 39: 1577-1583, 1996.
45. Choi SY, Oh BH, Park JB, Choi DJ, Rhee MY, Park S. Age-associated increase in arterial stiffness measured according to the cardio-ankle vascular index without blood pressure changes in healthy adults. J Atheroscler Thromb 20: 911-923, 2013.
23. Ebinuma H, Miyazaki O, Yago H, Hara K, Yamauchi T, Kadowaki T. A novel ELISA system for selective measurement of human adiponectin multimers by using proteases. Clin Chim Acta 372: 47-53, 2006.
12. Kubozono T, Miyata M, Ueyama K, et al. Acute and chronic effects of smoking on arterial stiffness. Circ J 75: 698-702, 2011.
11. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is superior to brachial-ankle pulse wave velocity as an index of arterial stiffness. Hypertens Res 31: 1347-1355, 2008.
24. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13: 175-184, 1980.
32. Graier WF, Simecek S, Kukovetz WR, Kostner GM. High d-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes 45: 1386-1395, 1996.
4. Shirai K, Hiruta N, Song M, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb 18: 924-938, 2011.
31. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21: 69-78, 2006.
50. Miyashita Y, Endo K, Saiki A, et al. Effect of ezetimibe monotherapyon lipid metabolism and arterial stiffness assessed by cardio-ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb 17: 1070-1076, 2010.
28. Tamada T, Iwasaki H. Age at natural menopause in Japanese women. Nihon Sanka Fujinka Gakkai Zasshi (Acta Obstetricaet Gynaecologica Japonica) 47: 947-952, 1995 (in Japanese, Abstract in English).
44
45
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 42. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Atheroscler Thromb Vasc Biol 24: 29-33, 2004.
– reference: 43. Hara K, Horikoshi M, Yamauchi T, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the predictor of insulin resistance and metabolic syndrome. Diabetes Care 29: 1357-1362, 2006.
– reference: 12. Kubozono T, Miyata M, Ueyama K, et al. Acute and chronic effects of smoking on arterial stiffness. Circ J 75: 698-702, 2011.
– reference: 4. Shirai K, Hiruta N, Song M, et al. Cardio-ankle vascular index (CAVI) as a novel indicator of arterial stiffness: theory, evidence and perspectives. J Atheroscler Thromb 18: 924-938, 2011.
– reference: 39. Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes 51: 1596-1600, 2002.
– reference: 29. American Diabetes Association. Postprandial blood glucose (Consensus Statement). Diabetes Care 24: 775-778, 2001.
– reference: 15. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 39: 1577-1583, 1996.
– reference: 32. Graier WF, Simecek S, Kukovetz WR, Kostner GM. High d-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes 45: 1386-1395, 1996.
– reference: 46. Soska V, Frantisova M, Dobsak P, et al. Cardio-ankle vascular index in subjects with dyslipidemia and other cardiovascular risk factors. J Atheroscler Thromb 20: 443-451, 2013.
– reference: 14. Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22: 920-924, 1999.
– reference: 37. Kashihara H, Lee JS, Kawakubo K, Tamura M, Akabayashi A. Criteria of waist circumference according to computed tomography-measured visceral fat area and the clustering of cardiovascular risk factors. Circ J 73: 1881-1886, 2009.
– reference: 30. Takahashi K, Miura S, Mori-Abe A, et al. Impact of menopause on the augmentation of arterial stiffness with aging. Gynecol Obstet Inverst 60: 162-166, 2005.
– reference: 38. Tsuriya D, Morita H, Horioka T, et al. Significant correlation between visceral adiposity and high-sensitivity C-reactive protein (hs-CRP) in Japanese subjects. Intern Med 50: 2767-2773, 2011.
– reference: 36. Ohashi N, Yamamoto H, Horiguchi J, et al. Visceral fat accumulation as a predictor of coronary artery calcium as assessed by multislice computed tomography in Japanese patients. Atherosclerosis 202: 192-199, 2009.
– reference: 7. Izuhara M, Shioji K, Kadota S, et al. Relationship of cardio-ankle vascular index (CAVI) to carotid and coronary arteriosclerosis. Circ J 72: 1762-1767, 2008.
– reference: 19. Choi ES, Rhee EJ, Choi JH, et al. The association of brachial-ankle pulse wave velocity with 30-minute post-challenge plasma glucose levels in korean adults with no history of type 2 diabetes. Korean Diabetes J 34: 287-293, 2010.
– reference: 41. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 36: 439-451, 2005.
– reference: 48. Sasaki H, Saiki A, Endo K, et al. Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy. J Atheroscler Thromb 16: 568-575, 2009.
– reference: 9. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is a new noninvasive parameter of arterial stiffness. Circ J 71: 1710-1714, 2007.
– reference: 17. Schram MT, Henry RM, van Dijk RA, et al. Increased central artery stiffness in impaired glucose metabolism and type2 diabetes: the Hoorn Study. Hypertension 43: 176-181, 2004.
– reference: 47. Kinouchi K, Ichihara A, Sakoda M, Kurauchi-Mito A, Murohashi-Bokuda K, Itoh H. Effects of termisartan on arterial stiffness assessed by the cardio-ankle vascular index in hypertensive patients. Kidney Blood Press Res 33: 304-312, 2010.
– reference: 21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419, 1985.
– reference: 3. Nye ER. The effect of blood pressure alteration on the pulse wave velocity. Br Heart J 26: 261-265, 1964.
– reference: 16. Cavalot F, Petreri A, Traversa M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 91: 813-819, 2006.
– reference: 10. Kadota K, Takamura N, Aoyagi K, et al. Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis. Circ J 72: 304-308, 2008.
– reference: 1. Oliver JJ, Webb DJ. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 23: 554-566, 2003.
– reference: 2. Tanaka H, Muranaka M, Kawano Y, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens 27: 2022-2027, 2009.
– reference: 24. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13: 175-184, 1980.
– reference: 18. Kasayama S, Saito H, Mukai M, Koga M. Insulin sensitivity independently influences brachial-ankle pulse-wave velocity in non-diabetic subjects. Diabet Med 22: 1701-1706, 2005.
– reference: 40. Zarkesh M, Faam B, Daneshpour MS, Azizi F, Hedayati M. The relationship between metabolic syndrome, cardiometabolic risk factors and inflammatory markers in a Teheranian population: the Teheran Lipid and Glucose Study. Intern Med 51: 3329-3335, 2012.
– reference: 28. Tamada T, Iwasaki H. Age at natural menopause in Japanese women. Nihon Sanka Fujinka Gakkai Zasshi (Acta Obstetricaet Gynaecologica Japonica) 47: 947-952, 1995 (in Japanese, Abstract in English).
– reference: 50. Miyashita Y, Endo K, Saiki A, et al. Effect of ezetimibe monotherapyon lipid metabolism and arterial stiffness assessed by cardio-ankle vascular index in type 2 diabetic patients. J Atheroscler Thromb 17: 1070-1076, 2010.
– reference: 23. Ebinuma H, Miyazaki O, Yago H, Hara K, Yamauchi T, Kadowaki T. A novel ELISA system for selective measurement of human adiponectin multimers by using proteases. Clin Chim Acta 372: 47-53, 2006.
– reference: 11. Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is superior to brachial-ankle pulse wave velocity as an index of arterial stiffness. Hypertens Res 31: 1347-1355, 2008.
– reference: 27. Shirai K, Utino J, Otsuka K, Tanaka M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J Atheroscler Thromb 13: 101-107, 2006.
– reference: 22. Kashiwagi A, Kasuga M, Araki E, et al; Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Invest 3: 39-40, 2012.
– reference: 25. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovascular Res 21: 678-687, 1987.
– reference: 13. DECODE study group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Atch Intern Med 161: 397-405, 2001.
– reference: 20. Sciacqua A, Maio R, Miceil S, et al. Association between one-hour post-load plasma glucose levels and vascular stiffness in essential hypertension. PLoS One 7: e44470, 2012.
– reference: 5. Shirai K, Song M, Suzuki J, et al. Contradictory effects of β1- and α1-aderenergic receptor blockers on cardio-ankle vascular index (CAVI). J Atheroscler Thromb 18: 49-55, 2011.
– reference: 6. Ibata J, Sasaki H, Kakimoto T, et al. Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res Clin Pr 80: 265-270, 2008.
– reference: 35. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116: 39-48, 2007.
– reference: 33. Cosentino F, Hishikawa K, Katusic ZS, Lüscher TF. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96: 25-28, 1997.
– reference: 44. Park HE, Choi SY, Kim HS, Kim MK, Cho SH, Oh BH. Epicardial fat reflects arterial stiffness: Assessment using 256 slice multidetector coronary computed tomography and cardio-ankle vascular index. J Atheroscler Thromb 19: 570-576, 2012.
– reference: 45. Choi SY, Oh BH, Park JB, Choi DJ, Rhee MY, Park S. Age-associated increase in arterial stiffness measured according to the cardio-ankle vascular index without blood pressure changes in healthy adults. J Atheroscler Thromb 20: 911-923, 2013.
– reference: 8. Okura T, Watanabe S, Kurata M, et al. Relationship between cardio-ankle vascular index (CAVI) and carotid atherosclerosis in patients with essential hypertension. Hypertens Res 30: 335-340, 2007.
– reference: 34. Ge QM, Dong Y, Zhang HM, Su Q. Effects of intermittent high glucose on oxidative stress in endothelial cells. Acta Diabetol 47: 97-103, 2010.
– reference: 26. Bramwell JC, Hill AV. The velocity of the pulse wave in man. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 93: 298-306, 1922.
– reference: 31. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology 21: 69-78, 2006.
– reference: 49. Satoh N, Shimatsu A, Kotani K, et al. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens Res 32: 1004-1008, 2009.
– ident: 26
  doi: 10.1098/rspb.1922.0022
– ident: 32
  doi: 10.2337/diab.45.10.1386
– ident: 49
  doi: 10.1038/hr.2009.145
– ident: 47
  doi: 10.1159/000316724
– ident: 21
  doi: 10.1007/BF00280883
– ident: 7
  doi: 10.1253/circj.CJ-08-0152
– ident: 17
  doi: 10.1161/01.HYP.0000111829.46090.92
– ident: 6
  doi: 10.1016/j.diabres.2007.12.016
– ident: 25
  doi: 10.1093/cvr/21.9.678
– ident: 38
  doi: 10.2169/internalmedicine.50.5908
– ident: 43
  doi: 10.2337/dc05-1801
– ident: 40
  doi: 10.2169/internalmedicine.51.8475
– ident: 5
  doi: 10.5551/jat.3582
– ident: 22
  doi: 10.1111/j.2040-1124.2012.00207.x
– ident: 24
  doi: 10.1016/0021-9290(80)90191-8
– ident: 33
  doi: 10.1161/01.CIR.96.1.25
– ident: 12
  doi: 10.1253/circj.CJ-10-0552
– ident: 1
  doi: 10.1161/01.ATV.0000060460.52916.D6
– ident: 13
  doi: 10.1001/archinte.161.3.397
– ident: 34
  doi: 10.1007/s00592-009-0140-5
– ident: 14
  doi: 10.2337/diacare.22.6.920
– ident: 4
  doi: 10.5551/jat.7716
– ident: 20
  doi: 10.1371/journal.pone.0044470
– ident: 19
  doi: 10.4093/kdj.2010.34.5.287
– ident: 28
– ident: 31
  doi: 10.1152/physiol.00040.2005
– ident: 18
  doi: 10.1111/j.1464-5491.2005.01718.x
– ident: 39
  doi: 10.2337/diabetes.51.5.1596
– ident: 2
  doi: 10.1097/HJH.0b013e32832e94e7
– ident: 8
  doi: 10.1291/hypres.30.335
– ident: 35
  doi: 10.1161/CIRCULATIONAHA.106.675355
– ident: 44
  doi: 10.5551/jat.12484
– ident: 50
  doi: 10.5551/jat.4465
– ident: 11
  doi: 10.1291/hypres.31.1347
– ident: 16
  doi: 10.1210/jc.2005-1005
– ident: 42
  doi: 10.1161/01.ATV.0000099786.99623.EF
– ident: 15
  doi: 10.1007/s001250050617
– ident: 27
  doi: 10.5551/jat.13.101
– ident: 30
  doi: 10.1159/000086570
– ident: 37
  doi: 10.1253/circj.CJ-09-0183
– ident: 10
  doi: 10.1253/circj.72.304
– ident: 23
  doi: 10.1016/j.cca.2006.03.014
– ident: 46
  doi: 10.5551/jat.15420
– ident: 45
  doi: 10.5551/jat.18267
– ident: 41
  doi: 10.1210/er.2005-0005
– ident: 9
  doi: 10.1253/circj.71.1710
– ident: 29
  doi: 10.2337/diacare.24.4.775
– ident: 3
  doi: 10.1136/hrt.26.2.261
– ident: 36
  doi: 10.1016/j.atherosclerosis.2008.04.019
– ident: 48
  doi: 10.5551/jat.1628
SSID ssj0038792
Score 2.1658611
Snippet Objective Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial...
Although a relationship between post-challenge hyperglycemia and arterial stiffness has been reported, the relationship between the postprandial glucose levels...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1961
SubjectTerms Adult
Aged
Aged, 80 and over
Ankle - blood supply
Ankle Brachial Index
arterial stiffness
Asian Continental Ancestry Group - statistics & numerical data
Blood Glucose - metabolism
Blood Pressure
C-Reactive Protein - metabolism
cardio-ankle vascular index
Female
Glycated Hemoglobin A - metabolism
Humans
Hyperglycemia - blood
Hyperglycemia - diagnosis
Japan - epidemiology
Male
Middle Aged
postprandial glucose
Postprandial Period
Predictive Value of Tests
Vascular Stiffness - physiology
Title Association between the Postprandial Glucose Levels and Arterial Stiffness Measured According to the Cardio-ankle Vascular Index in Non-diabetic Subjects
URI https://www.jstage.jst.go.jp/article/internalmedicine/54/16/54_54.3596/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/26278285
https://www.proquest.com/docview/1705007075
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Internal Medicine, 2015, Vol.54(16), pp.1961-1969
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF61BVW8IG7CpUXiDTl0fSaPUQWklPaFFPXN8h4GNxBXiS0k_gn_lpm9uoRUKhVS5ES211nvfJ79ZjwzS8grBbRhXCUyUrGso5SJOqqAiEdJXXMwRzirR5jvfHScT0_SD6fZ6db2bhC11Hd8KH5uzCu5jlRhH8gVs2T_QbL-orADfoN8YQsShu2VZByMrQ-4QiKJK_CeLzFhBQTw3galf8TwIFOReYJxnHjsU9fUtVZ2R8ZXKPXyEUud6WJZ6b6OWI1wbXf1-rMLXD3AKovoLDluF5Fx4DYC1RD6dVYh5bU-R5MCHL7Gn6163upggkm36ueth1J_1syrH4bV9t8bj97OuHW_wtGLsw8bLDmtZxK4g3kTujFYtubG0IlwQA9w2U0fsGqTaf7uo_VgMkwgsepbGf2dAM6K2FRAcQreVKl2QA7VNagfFkz9WCpo07QSsxyrsja2Ly7qYZilwyQbr1Xy1tzAQqJcb1Jmacly3MIH25buTEyyA0xvkxtxUZiAg4NDxymSUaGX9_a3bGLSsF9vLuvVH0Tr5hnYGl_U5WaUplOzO-S2tYPoxPTrLtlSi3tk1w3_ffIrwDa12KYARxpim1psU4NtCnupwzb12KYO29Rjm3atvliIbeqwTTW2abOgIbapw_YDcvLu7Wx_GtllRCIBk0sXiUzCiHGp6oSLGiaoUZqJcZKqgrFKCmDwezCvqQp4WZ2PwUKXWLNvj2eFEsDc4uQh2Vm0C_WY0Gos9xQveFJImcIXGD-pykQu0ZJPORuQwo15KWyNfVzq5VsJtjZKayMgUFoDwnzLc1Nn5gptpkasvsW1YTcgLx0wSphf8KUhPIptvyqx3JauCZYNyCODGP93cR4XWAHzyf_ryFNy60I7PCM73bJXz4H2d_yFfiJ-AxYrFZo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+between+the+Postprandial+Glucose+Levels+and+Arterial+Stiffness+Measured+According+to+the+Cardio-ankle+Vascular+Index+in+Non-diabetic+Subjects&rft.jtitle=Internal+Medicine&rft.au=Tsuboi%2C+Atsuko&rft.au=Fujikawa%2C+Rumi&rft.au=Ito%2C+Chikako&rft.au=Kihara%2C+Yasuki&rft.date=2015-01-01&rft.pub=The+Japanese+Society+of+Internal+Medicine&rft.issn=0918-2918&rft.eissn=1349-7235&rft.volume=54&rft.issue=16&rft.spage=1961&rft.epage=1969&rft_id=info:doi/10.2169%2Finternalmedicine.54.3596&rft.externalDocID=article_internalmedicine_54_16_54_54_3596_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-2918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-2918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-2918&client=summon