Independent component analysis: recent advances

Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 371; no. 1984; p. 20110534
Main Author Hyvärinen, Aapo
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 13.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods. The basic theory of independent component analysis was mainly developed in the 1990s and summarized, for example, in our monograph in 2001. Here, we provide an overview of some recent developments in the theory since the year 2000. The main topics are: analysis of causal relations, testing independent components, analysing multiple datasets (three-way data), modelling dependencies between the components and improved methods for estimating the basic model.
AbstractList Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods. The basic theory of independent component analysis was mainly developed in the 1990s and summarized, for example, in our monograph in 2001. Here, we provide an overview of some recent developments in the theory since the year 2000. The main topics are: analysis of causal relations, testing independent components, analysing multiple datasets (three-way data), modelling dependencies between the components and improved methods for estimating the basic model.Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods. The basic theory of independent component analysis was mainly developed in the 1990s and summarized, for example, in our monograph in 2001. Here, we provide an overview of some recent developments in the theory since the year 2000. The main topics are: analysis of causal relations, testing independent components, analysing multiple datasets (three-way data), modelling dependencies between the components and improved methods for estimating the basic model.
Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods. The basic theory of independent component analysis was mainly developed in the 1990s and summarized, for example, in our monograph in 2001. Here, we provide an overview of some recent developments in the theory since the year 2000. The main topics are: analysis of causal relations, testing independent components, analysing multiple datasets (three-way data), modelling dependencies between the components and improved methods for estimating the basic model.
Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally independent and non-Gaussian (non-normal). Its fundamental difference to classical multi-variate statistical methods is in the assumption of non-Gaussianity, which enables the identification of original, underlying components, in contrast to classical methods. The basic theory of independent component analysis was mainly developed in the 1990s and summarized, for example, in our monograph in 2001. Here, we provide an overview of some recent developments in the theory since the year 2000. The main topics are: analysis of causal relations, testing independent components, analysing multiple datasets (three-way data), modelling dependencies between the components and improved methods for estimating the basic model.
Author Hyvärinen, Aapo
AuthorAffiliation Department of Computer Science, Department of Mathematics and Statistics, and HIIT , University of Helsinki , Helsinki, Finland
AuthorAffiliation_xml – name: Department of Computer Science, Department of Mathematics and Statistics, and HIIT , University of Helsinki , Helsinki, Finland
Author_xml – sequence: 1
  givenname: Aapo
  surname: Hyvärinen
  fullname: Hyvärinen, Aapo
  email: aapo.hyvarinen@helsinki.fi
  organization: Department of Computer Science, Department of Mathematics and Statistics, and HIIT, University of Helsinki, Helsinki, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23277597$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtv1DAQtlARfcCVI-qRS7a2x3YcDkhVoaWiEhIUxG3kdRxwm42DnazY_nqcpqwoqEiWPfJ8j9F8-2SnC50j5DmjC0YrfRTTYBacMragEsQjssdEyQpeKb6Ta1CikBS-7pL9lK5ohinJn5BdDrwsZVXukaPzrna9y1c3HNqw6rN8rkxn2k3y6dVhdPb2o16bzrr0lDxuTJvcs7v3gHw-fXt58q64-HB2fnJ8UVgFeiiWEgw1SytYowzVOh9JWVXzpqaVqClnVtXVErTjINXS1BKkMU1TWt0ooSQckNezbj8uV66eZoimxT76lYkbDMbj_U7nv-O3sEaQoAXoLPDyTiCGH6NLA658sq5tTefCmJDxEhiTAliGvvjTa2vye0sZsJgBNoaUomu2EEZxigGnGHCKAacYMkH8RbB-MIMP06y-fZh2PdNi2OTlBuvdsMGrMMYcR8KPny6P11AyzyotkGpgVEjGFd74fpbKTfQpjQ5vIffl_3WD_7k9OGMxs3wa3M_tIky8RlVCKfFLNtYg9Xt-VuEb-AWXV8-v
CitedBy_id crossref_primary_10_1007_s13209_021_00247_3
crossref_primary_10_1016_j_ces_2016_02_038
crossref_primary_10_1002_hbm_26644
crossref_primary_10_1088_2633_1357_abc0b8
crossref_primary_10_37391_ijeer_100336
crossref_primary_10_1016_j_specom_2017_06_007
crossref_primary_10_1016_j_isci_2020_101656
crossref_primary_10_1080_19585969_2023_2168135
crossref_primary_10_1016_j_jsv_2016_01_046
crossref_primary_10_1007_s10548_016_0512_4
crossref_primary_10_1128_msystems_00942_23
crossref_primary_10_1214_23_AOS2256
crossref_primary_10_1103_PhysRevLett_116_104101
crossref_primary_10_1109_ACCESS_2021_3102643
crossref_primary_10_3389_fams_2019_00040
crossref_primary_10_1016_j_ymssp_2024_111376
crossref_primary_10_1016_j_chemolab_2015_01_003
crossref_primary_10_1007_s00168_015_0678_9
crossref_primary_10_3390_s20061545
crossref_primary_10_1007_s40010_017_0433_y
crossref_primary_10_1016_j_patcog_2023_109773
crossref_primary_10_1016_j_patcog_2023_109376
crossref_primary_10_1016_j_saa_2023_122584
crossref_primary_10_1016_j_jedc_2022_104434
crossref_primary_10_1016_j_aca_2019_03_009
crossref_primary_10_1007_s12559_022_10066_8
crossref_primary_10_1007_s10055_021_00538_x
crossref_primary_10_3233_JAD_161291
crossref_primary_10_1016_j_trac_2013_03_013
crossref_primary_10_1021_acsomega_0c04982
crossref_primary_10_1007_s40799_020_00395_4
crossref_primary_10_1029_2024EA003552
crossref_primary_10_1371_journal_pcbi_1005189
crossref_primary_10_3847_1538_3881_aa738b
crossref_primary_10_1016_j_procs_2018_08_009
crossref_primary_10_7554_eLife_97709
crossref_primary_10_1186_s43251_024_00148_y
crossref_primary_10_3847_1538_4357_aa692d
crossref_primary_10_1002_2017WR021293
crossref_primary_10_1038_s41598_025_86986_w
crossref_primary_10_1186_s12859_022_04733_8
crossref_primary_10_1038_s41551_022_00962_7
crossref_primary_10_1137_21M1398860
crossref_primary_10_1080_14789450_2022_2070476
crossref_primary_10_1371_journal_pone_0297996
crossref_primary_10_1016_j_measurement_2023_112504
crossref_primary_10_1142_S2424922X20410041
crossref_primary_10_1002_tee_23915
crossref_primary_10_1016_j_apergo_2024_104418
crossref_primary_10_1515_ijnaoe_2015_0010
crossref_primary_10_1080_01691864_2016_1172732
crossref_primary_10_1162_imag_a_00182
crossref_primary_10_3389_fmolb_2022_907150
crossref_primary_10_1137_20M1347486
crossref_primary_10_1214_24_AOS2373
crossref_primary_10_1016_j_jebo_2024_106786
crossref_primary_10_1177_0954406215610788
crossref_primary_10_3233_JAE_162201
crossref_primary_10_1016_j_jneumeth_2024_110097
crossref_primary_10_1007_s10548_019_00750_8
crossref_primary_10_1190_INT_2018_0109_1
crossref_primary_10_1002_2016JB013765
crossref_primary_10_1016_j_scitotenv_2022_157848
crossref_primary_10_1017_jfm_2014_355
crossref_primary_10_1109_LSP_2025_3540370
crossref_primary_10_1016_j_jneumeth_2016_06_006
crossref_primary_10_1117_1_JRS_13_016516
crossref_primary_10_1016_j_procs_2018_07_270
crossref_primary_10_1146_annurev_fluid_030121_015835
crossref_primary_10_1021_acs_iecr_2c00335
crossref_primary_10_1111_jmi_12167
crossref_primary_10_5005_jp_journals_10028_1674
crossref_primary_10_1007_s12021_019_09416_z
crossref_primary_10_1080_19479832_2021_1915395
crossref_primary_10_1175_JCLI_D_15_0417_1
crossref_primary_10_3389_frsip_2022_984901
crossref_primary_10_1016_j_neuroimage_2014_05_068
crossref_primary_10_19113_sdufenbed_699241
crossref_primary_10_26636_jtit_2017_120717
crossref_primary_10_5121_mlaij_2023_10101
crossref_primary_10_1109_JSTARS_2023_3336916
crossref_primary_10_1016_j_ymssp_2024_111265
crossref_primary_10_1016_j_neuroimage_2015_01_013
crossref_primary_10_1109_ACCESS_2021_3115760
crossref_primary_10_1002_mas_21602
crossref_primary_10_1021_acs_jpca_7b06447
crossref_primary_10_1016_j_jimonfin_2016_03_003
crossref_primary_10_1016_j_neucom_2020_12_026
crossref_primary_10_1016_j_sigpro_2014_05_022
crossref_primary_10_1029_2019JB018139
crossref_primary_10_1002_mrm_29912
crossref_primary_10_1002_wics_1440
crossref_primary_10_1364_BOE_422170
crossref_primary_10_1109_ACCESS_2021_3107294
crossref_primary_10_13168_AGG_2024_0007
crossref_primary_10_1109_ACCESS_2019_2949814
crossref_primary_10_3389_fnins_2017_00685
crossref_primary_10_1016_j_egyai_2024_100424
crossref_primary_10_1007_s10548_016_0497_z
crossref_primary_10_1007_s13311_023_01433_w
crossref_primary_10_1016_j_media_2015_08_002
crossref_primary_10_1049_el_2020_0618
crossref_primary_10_1093_jrsssb_qkad037
crossref_primary_10_1016_j_oregeorev_2020_103530
crossref_primary_10_1016_j_neubiorev_2018_06_013
crossref_primary_10_1155_2014_579652
crossref_primary_10_3389_fnhum_2024_1338966
crossref_primary_10_2333_bhmk_41_65
crossref_primary_10_1002_jnr_24669
crossref_primary_10_1109_TGRS_2024_3471982
crossref_primary_10_3390_s17102224
crossref_primary_10_7554_eLife_97107
crossref_primary_10_1007_s00422_014_0608_4
crossref_primary_10_3414_ME13_02_0037
crossref_primary_10_1016_j_neucom_2017_07_072
crossref_primary_10_1021_acsomega_7b01057
crossref_primary_10_1038_s41562_024_01952_2
crossref_primary_10_1080_10106049_2018_1434684
crossref_primary_10_1038_s41598_021_03613_0
crossref_primary_10_1111_joa_12900
crossref_primary_10_1016_j_jvcir_2016_02_006
crossref_primary_10_7554_eLife_97709_3
crossref_primary_10_1093_jrsssb_qkad062
crossref_primary_10_1007_s00371_023_03127_y
crossref_primary_10_3389_fnins_2018_00429
crossref_primary_10_1002_2015WR017302
crossref_primary_10_1007_s11694_013_9143_6
crossref_primary_10_1002_ldr_3871
crossref_primary_10_1016_j_jeconom_2022_02_010
crossref_primary_10_1115_1_4027545
crossref_primary_10_1177_0305735619839141
crossref_primary_10_1109_JSEN_2019_2909555
crossref_primary_10_1007_s00216_017_0275_0
crossref_primary_10_1016_j_jprocont_2017_12_001
crossref_primary_10_1016_j_eswa_2016_07_008
crossref_primary_10_1109_OJSP_2020_3038369
crossref_primary_10_3233_JAD_210148
crossref_primary_10_47836_pjst_31_5_08
crossref_primary_10_1007_s12517_015_2269_6
crossref_primary_10_1214_14_EJS932
crossref_primary_10_1088_1742_6596_1117_1_012009
crossref_primary_10_3390_rs10081186
crossref_primary_10_1016_j_ymssp_2019_106485
crossref_primary_10_3389_fped_2017_00159
crossref_primary_10_1016_j_knosys_2021_108040
crossref_primary_10_1016_j_jeconom_2024_105803
crossref_primary_10_7554_eLife_97107_3
crossref_primary_10_1109_TIM_2013_2293236
crossref_primary_10_1016_j_strueco_2023_04_015
crossref_primary_10_1016_j_jedc_2022_104530
crossref_primary_10_1109_TII_2021_3121509
crossref_primary_10_1109_ACCESS_2023_3253891
crossref_primary_10_1007_s12517_022_09889_4
crossref_primary_10_1093_bioadv_vbae081
crossref_primary_10_1007_s10895_018_2271_y
crossref_primary_10_1016_j_frl_2022_103399
crossref_primary_10_1016_j_measurement_2024_114241
crossref_primary_10_1080_13662716_2018_1459295
crossref_primary_10_33111_nfmte_2023_067
crossref_primary_10_1007_s12065_021_00607_9
crossref_primary_10_1016_j_aca_2019_02_023
crossref_primary_10_1038_s41582_022_00753_3
crossref_primary_10_1016_j_jhydrol_2022_128914
crossref_primary_10_1039_C7AN00274B
Cites_doi 10.1109/TNN.2003.810616
10.1142/SO129065700000028
10.1162/089976606775093936
10.1109/31.76486
10.1016/j.neuroimage.2004.03.027
10.1007/978-1-84882-491-1
10.1016/0165-1684(94)90029-9
10.1002/0471221317
10.1162/neco.1995.7.6.1129
10.1117/12.507475
10.1109/TBME.2002.805480
10.1016/j.neuroimage.2008.07.032
10.1016/S0893-6080(00)00026-5
10.1016/j.neuroimage.2004.10.042
10.1016/j.neucom.2011.11.005
10.1023/A:1018647011077
10.1016/j.neuroimage.2004.10.043
10.1016/j.tics.2007.09.004
10.1162/NECO_a_00010
10.1109/78.554307
10.1214/009053606000000939
10.1162/089976606774841620
10.1109/78.942614
10.1038/44565
10.1016/j.neuroimage.2008.10.057
10.1109/JSTSP.2008.2005346
10.1016/0165-1684(91)90079-X
10.1162/089976602760128018
10.1162/089976601300014385
10.1198/000313001300339932
10.1162/089976601750264992
10.1109/LSP.2004.830118
10.1214/aoms/1177706099
10.1145/2001269.2001295
10.1162/0899766053011474
10.1038/nature07481
10.1016/j.neuroimage.2009.08.028
10.1162/089976600300015312
10.1007/978-3-642-28551-6_20
10.1109/TIT.2005.864440
10.1016/j.sigpro.2005.02.003
10.1126/science.1127647
10.1162/089976601300014394
10.1109/72.761722
10.1016/j.neuroimage.2011.05.086
10.1016/S0042-6989(02)00017-2
10.1088/0954-898X/5/4/008
10.1002/env.3170050203
10.1103/PhysRevE.70.066123
10.1109/72.925558
10.1016/S0169-7439(96)00044-5
10.1016/j.neuroimage.2011.06.068
10.1109/TBME.2010.2046325
10.1016/j.sigpro.2003.10.010
10.1109/78.599941
10.1002/9780470747278
10.1007/978-3-642-22092-0_46
10.1109/97.566704
10.1007/978-3-642-00599-2_33
ContentType Journal Article
Copyright 2012
Copyright_xml – notice: 2012
DBID BSCLL
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1098/rsta.2011.0534
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Independent Component Analysis
EISSN 1471-2962
ExternalDocumentID PMC3538438
23277597
10_1098_rsta_2011_0534
ark_67375_V84_8358K2G9_D
Genre Journal Article
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
ABBHK
ABFAN
ABPLY
ABTLG
ABXSQ
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADACV
ADBBV
ADODI
ADULT
AELPN
AEUPB
AEXZC
AFFNX
AFVYC
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AQVQM
BGBPD
BSCLL
BTFSW
DCCCD
DIK
DOOOF
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
H13
HH5
HQ6
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
ABPTK
ABXXB
ADZLD
AFXKK
DNJUQ
DWIUU
EFSUC
AAWIL
AAYXX
ACHIC
ACRPL
ADNMO
ADQXQ
AGLNM
AGPVY
AGQPQ
AIHAF
ALRMG
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c638t-b53a0abc41f6a0880885019d2fd094d021c6d9b38e2356bad535aaff7c8f64653
ISSN 1364-503X
IngestDate Thu Aug 21 18:06:33 EDT 2025
Thu Jul 10 21:33:13 EDT 2025
Thu Apr 03 07:09:56 EDT 2025
Tue Jul 01 01:48:18 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Wed Jan 17 02:37:37 EST 2024
Tue May 24 16:18:01 EDT 2022
Tue Sep 24 00:40:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1984
Language English
License open-access: © 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.
2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c638t-b53a0abc41f6a0880885019d2fd094d021c6d9b38e2356bad535aaff7c8f64653
Notes istex:479199FCB8A72590D83ECB0AD2685C5F22D81959
href:rsta20110534.pdf
ark:/67375/V84-8358K2G9-D
ArticleID:rsta20110534
One contribution of 17 to a Discussion Meeting Issue 'Signal processing and inference for the physical sciences'.
Discussion Meeting Issue 'Signal processing and inference for the physical sciences' organized and edited by Nick S. Jones and Thomas J. Maccarone
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 17 to a Discussion Meeting Issue ‘Signal processing and inference for the physical sciences’.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3538438
PMID 23277597
PQID 1273115431
PQPubID 23479
ParticipantIDs crossref_primary_10_1098_rsta_2011_0534
istex_primary_ark_67375_V84_8358K2G9_D
pubmed_primary_23277597
crossref_citationtrail_10_1098_rsta_2011_0534
royalsociety_journals_RSTAv371i1984_0831045126_zip_rsta_371_issue_1984_rsta_2011_0534_rsta_2011_0534
royalsociety_journals_10_1098_rsta_2011_0534
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538438
proquest_miscellaneous_1273115431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-13
20130213
2013-Feb-13
PublicationDateYYYYMMDD 2013-02-13
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAbbrev Proc. R. Soc. A
PublicationTitleAlternate Proc. R. Soc. A
PublicationYear 2013
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References Hastie T (e_1_3_1_81_2) 2003
Shimizu S (e_1_3_1_17_2) 2006; 7
Amari S-I (e_1_3_1_13_2) 1996
e_1_3_1_66_2
e_1_3_1_89_2
e_1_3_1_22_2
Harshman RA (e_1_3_1_33_2) 1970; 16
e_1_3_1_45_2
e_1_3_1_68_2
e_1_3_1_87_2
e_1_3_1_8_2
e_1_3_1_85_2
e_1_3_1_41_2
e_1_3_1_64_2
e_1_3_1_4_2
Zhang K (e_1_3_1_24_2) 2009
Ranzato M (e_1_3_1_46_2) 2010
e_1_3_1_6_2
Hoyer PO (e_1_3_1_92_2) 2004; 5
Hyvärinen A (e_1_3_1_42_2) 2006
Hyvärinen A (e_1_3_1_50_2) 2005; 6
e_1_3_1_26_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_49_2
Comon P (e_1_3_1_5_2) 2010
Lacerda G (e_1_3_1_18_2) 2008
Hyvärinen A (e_1_3_1_14_2) 2010
Gutmann MU (e_1_3_1_51_2) 2012; 13
e_1_3_1_70_2
e_1_3_1_93_2
Hyvärinen A (e_1_3_1_54_2) 1998
Plumbley MD (e_1_3_1_94_2) 2010
e_1_3_1_55_2
e_1_3_1_78_2
e_1_3_1_34_2
e_1_3_1_57_2
e_1_3_1_76_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_72_2
Zoran D (e_1_3_1_62_2) 2010; 22
e_1_3_1_15_2
e_1_3_1_36_2
e_1_3_1_38_2
Pham D-T (e_1_3_1_69_2) 2002
Learned-Miller EG (e_1_3_1_82_2) 2003; 4
e_1_3_1_80_2
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_65_2
Bach FR (e_1_3_1_61_2) 2003; 4
Lahat D (e_1_3_1_59_2) 2012
e_1_3_1_67_2
e_1_3_1_88_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_86_2
e_1_3_1_9_2
Yeredor A (e_1_3_1_37_2) 2010
e_1_3_1_63_2
e_1_3_1_29_2
Donoho DL (e_1_3_1_91_2) 2004
e_1_3_1_3_2
Bach FR (e_1_3_1_83_2) 2002; 3
e_1_3_1_25_2
e_1_3_1_48_2
Shimizu S (e_1_3_1_19_2) 2011; 12
e_1_3_1_27_2
Hoyer PO (e_1_3_1_23_2) 2009
Kawanabe M (e_1_3_1_53_2) 2005; 6
Sasaki H (e_1_3_1_60_2) 2012
Kisilev P (e_1_3_1_73_2) 2003; 4
e_1_3_1_71_2
e_1_3_1_90_2
Varoquaux G (e_1_3_1_31_2) 2011
Hyvärinen A (e_1_3_1_32_2) 2012
Hyvärinen A (e_1_3_1_20_2) 2010; 11
e_1_3_1_79_2
e_1_3_1_35_2
e_1_3_1_56_2
e_1_3_1_77_2
e_1_3_1_12_2
e_1_3_1_75_2
e_1_3_1_10_2
e_1_3_1_52_2
Gretton A (e_1_3_1_84_2) 2008
Gruber P (e_1_3_1_43_2) 2009
e_1_3_1_16_2
e_1_3_1_58_2
Gribonval R (e_1_3_1_74_2) 2010
e_1_3_1_39_2
19020501 - Nature. 2009 Jan 1;457(7225):83-6
20569179 - Neural Comput. 2010 Sep 1;22(9):2308-33
21761686 - Inf Process Med Imaging. 2011;22:562-73
10935923 - Neural Comput. 2000 Jul;12(7):1705-20
10798706 - Int J Neural Syst. 2000 Feb;10(1):1-8
18249888 - IEEE Trans Neural Netw. 2001;12(3):559-66
18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34
18707006 - Neuroimage. 2008 Nov 15;43(3):497-508
15697450 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066123
11255573 - Neural Comput. 2001 Apr;13(4):863-82
16873662 - Science. 2006 Jul 28;313(5786):504-7
15734364 - Neuroimage. 2005 Mar;25(1):294-311
11440596 - Neural Comput. 2001 Jul;13(7):1527-58
10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
19699307 - Neuroimage. 2010 Jan 1;49(1):257-71
7584893 - Neural Comput. 1995 Nov;7(6):1129-59
21704714 - Neuroimage. 2011 Sep 1;58(1):122-36
20483681 - IEEE Trans Biomed Eng. 2010 Aug;57(8):1954-63
19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
15720773 - Neural Comput. 2005 Feb;17(2):397-423
11255574 - Neural Comput. 2001 Apr;13(4):883-98
15219593 - Neuroimage. 2004 Jul;22(3):1214-22
12549733 - IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1514-25
15734355 - Neuroimage. 2005 Mar;25(1):193-205
18238037 - IEEE Trans Neural Netw. 2003;14(3):534-43
12074953 - Vision Res. 2002 Jun;42(12):1593-605
10548103 - Nature. 1999 Oct 21;401(6755):788-91
12180402 - Neural Comput. 2002 Aug;14(8):1771-800
16378519 - Neural Comput. 2006 Feb;18(2):381-414
17921042 - Trends Cogn Sci. 2007 Oct;11(10):428-34
21745580 - Neuroimage. 2011 Oct 1;58(3):838-48
References_xml – start-page: 1
  volume-title: In Proc. Asian Conf. Machine Learning, Tokyo, Japan
  year: 2010
  ident: e_1_3_1_14_2
– start-page: 135
  volume-title: In Proc. Int. Conf. on Artificial Neural Networks (ICANN’98), Skövde, Sweden
  year: 1998
  ident: e_1_3_1_54_2
– ident: e_1_3_1_93_2
  doi: 10.1109/TNN.2003.810616
– ident: e_1_3_1_77_2
  doi: 10.1142/SO129065700000028
– volume-title: In Advances in neural information processing 16 (Proc. NIPS*2003)
  year: 2004
  ident: e_1_3_1_91_2
– volume: 4
  start-page: 1205
  year: 2003
  ident: e_1_3_1_61_2
  article-title: Beyond independent components: trees and clusters
  publication-title: J. Mach. Learn. Res.
– volume-title: Handbook of blind source separation
  year: 2010
  ident: e_1_3_1_74_2
– ident: e_1_3_1_47_2
  doi: 10.1162/089976606775093936
– ident: e_1_3_1_66_2
  doi: 10.1109/31.76486
– ident: e_1_3_1_25_2
  doi: 10.1016/j.neuroimage.2004.03.027
– volume-title: In Proc. Asian Conf. on Machine Learning, Singapore.
  year: 2012
  ident: e_1_3_1_60_2
– ident: e_1_3_1_39_2
  doi: 10.1007/978-1-84882-491-1
– ident: e_1_3_1_6_2
  doi: 10.1016/0165-1684(94)90029-9
– ident: e_1_3_1_4_2
  doi: 10.1002/0471221317
– volume: 12
  start-page: 1225
  year: 2011
  ident: e_1_3_1_19_2
  article-title: DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_29_2
– ident: e_1_3_1_9_2
  doi: 10.1162/neco.1995.7.6.1129
– ident: e_1_3_1_72_2
  doi: 10.1117/12.507475
– ident: e_1_3_1_15_2
– ident: e_1_3_1_26_2
  doi: 10.1109/TBME.2002.805480
– ident: e_1_3_1_55_2
  doi: 10.1016/j.neuroimage.2008.07.032
– ident: e_1_3_1_3_2
  doi: 10.1016/S0893-6080(00)00026-5
– ident: e_1_3_1_28_2
  doi: 10.1016/j.neuroimage.2004.10.042
– volume: 5
  start-page: 1457
  year: 2004
  ident: e_1_3_1_92_2
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J. Mach. Learn. Res.
– volume: 22
  volume-title: Advances in neural information processing systems
  year: 2010
  ident: e_1_3_1_62_2
– volume-title: In Proc. 24th Conf. Uncertainty in Artificial Intelligence (UAI2008), Helsinki, Finland.
  year: 2008
  ident: e_1_3_1_18_2
– ident: e_1_3_1_22_2
  doi: 10.1016/j.neucom.2011.11.005
– volume-title: In Proc. 13th Int. Conf. on Artificial Intelligence and Statistics (AISTATS2010), Sardinia, Italy, 13–15 May 2010.
  year: 2010
  ident: e_1_3_1_46_2
– ident: e_1_3_1_56_2
– ident: e_1_3_1_78_2
  doi: 10.1023/A:1018647011077
– ident: e_1_3_1_34_2
  doi: 10.1016/j.neuroimage.2004.10.043
– volume: 4
  start-page: 1271
  year: 2003
  ident: e_1_3_1_82_2
  article-title: ICA using spacings estimates of entropy
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_63_2
  doi: 10.1016/j.tics.2007.09.004
– volume-title: Handbook of blind source separation
  year: 2010
  ident: e_1_3_1_37_2
– ident: e_1_3_1_48_2
  doi: 10.1162/NECO_a_00010
– ident: e_1_3_1_35_2
  doi: 10.1109/78.554307
– ident: e_1_3_1_79_2
  doi: 10.1214/009053606000000939
– ident: e_1_3_1_58_2
  doi: 10.1162/089976606774841620
– ident: e_1_3_1_36_2
  doi: 10.1109/78.942614
– ident: e_1_3_1_88_2
  doi: 10.1038/44565
– ident: e_1_3_1_30_2
  doi: 10.1016/j.neuroimage.2008.10.057
– ident: e_1_3_1_38_2
  doi: 10.1109/JSTSP.2008.2005346
– volume: 11
  start-page: 1709
  year: 2010
  ident: e_1_3_1_20_2
  article-title: Estimation of a structural vector autoregression model using non-Gaussianity
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_2_2
  doi: 10.1016/0165-1684(91)90079-X
– volume: 16
  start-page: 1
  year: 1970
  ident: e_1_3_1_33_2
  article-title: Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis
  publication-title: UCLA Working Papers Phonetics
– volume: 7
  start-page: 2003
  year: 2006
  ident: e_1_3_1_17_2
  article-title: A linear non-Gaussian acyclic model for causal discovery
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_49_2
  doi: 10.1162/089976602760128018
– ident: e_1_3_1_71_2
  doi: 10.1162/089976601300014385
– ident: e_1_3_1_16_2
  doi: 10.1198/000313001300339932
– ident: e_1_3_1_41_2
  doi: 10.1162/089976601750264992
– volume: 6
  start-page: 695
  year: 2005
  ident: e_1_3_1_50_2
  article-title: Estimation of non-normalized statistical models using score matching
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_7_2
  doi: 10.1109/LSP.2004.830118
– volume-title: Advances in neural information processing systems
  year: 1996
  ident: e_1_3_1_13_2
– ident: e_1_3_1_70_2
  doi: 10.1214/aoms/1177706099
– volume: 13
  start-page: 307
  year: 2012
  ident: e_1_3_1_51_2
  article-title: Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_65_2
  doi: 10.1145/2001269.2001295
– ident: e_1_3_1_44_2
  doi: 10.1162/0899766053011474
– ident: e_1_3_1_45_2
  doi: 10.1038/nature07481
– volume-title: Advances in neural information processing systems
  year: 2008
  ident: e_1_3_1_84_2
– ident: e_1_3_1_75_2
  doi: 10.1016/j.neuroimage.2009.08.028
– volume-title: In Proc. Eur. Symp. Artificial Neural Networks, Bruges, Belgium.
  year: 2006
  ident: e_1_3_1_42_2
– start-page: 151
  volume-title: In Proc. Int. Conf. on Digital Signal Processing (DSP2002)
  year: 2002
  ident: e_1_3_1_69_2
– volume: 3
  start-page: 1
  year: 2002
  ident: e_1_3_1_83_2
  article-title: Kernel independent component analysis
  publication-title: J. Mach. Learn. Res.
– volume-title: Handbook of blind source separation
  year: 2010
  ident: e_1_3_1_94_2
– volume-title: Handbook of blind source separation.
  year: 2010
  ident: e_1_3_1_5_2
– ident: e_1_3_1_40_2
  doi: 10.1162/089976600300015312
– start-page: 155
  volume-title: Latent variable analysis and signal separation
  year: 2012
  ident: e_1_3_1_59_2
  doi: 10.1007/978-3-642-28551-6_20
– ident: e_1_3_1_76_2
  doi: 10.1109/TIT.2005.864440
– ident: e_1_3_1_68_2
  doi: 10.1016/j.sigpro.2005.02.003
– ident: e_1_3_1_64_2
  doi: 10.1126/science.1127647
– ident: e_1_3_1_67_2
  doi: 10.1162/089976601300014394
– volume-title: Advances in neural information processing systems
  year: 2009
  ident: e_1_3_1_23_2
– volume-title: In Human Brain Mapping Meeting, Beijing, China, 10–14 June 2012.
  year: 2012
  ident: e_1_3_1_32_2
– ident: e_1_3_1_12_2
  doi: 10.1109/72.761722
– ident: e_1_3_1_27_2
  doi: 10.1016/j.neuroimage.2011.05.086
– ident: e_1_3_1_89_2
  doi: 10.1016/S0042-6989(02)00017-2
– start-page: 647
  volume-title: In Proc. 25th Conf. on Uncertainty in Artificial Intelligence (UAI2009), Montréal, Canada
  year: 2009
  ident: e_1_3_1_24_2
– ident: e_1_3_1_10_2
  doi: 10.1088/0954-898X/5/4/008
– ident: e_1_3_1_86_2
  doi: 10.1002/env.3170050203
– ident: e_1_3_1_85_2
  doi: 10.1103/PhysRevE.70.066123
– volume: 4
  start-page: 1339
  year: 2003
  ident: e_1_3_1_73_2
  article-title: A multiscale framework for blind separation of linearly mixed signals
  publication-title: J. Mach. Learn. Res.
– ident: e_1_3_1_80_2
  doi: 10.1109/72.925558
– ident: e_1_3_1_87_2
  doi: 10.1016/S0169-7439(96)00044-5
– ident: e_1_3_1_21_2
  doi: 10.1016/j.neuroimage.2011.06.068
– ident: e_1_3_1_57_2
  doi: 10.1109/TBME.2010.2046325
– volume-title: In Advances in neural information processing 15 (Proc. NIPS*2002).
  year: 2003
  ident: e_1_3_1_81_2
– ident: e_1_3_1_52_2
  doi: 10.1016/j.sigpro.2003.10.010
– ident: e_1_3_1_8_2
  doi: 10.1109/78.599941
– ident: e_1_3_1_90_2
  doi: 10.1002/9780470747278
– start-page: 562
  volume-title: Information processing in medical imaging
  year: 2011
  ident: e_1_3_1_31_2
  doi: 10.1007/978-3-642-22092-0_46
– ident: e_1_3_1_11_2
  doi: 10.1109/97.566704
– start-page: 259
  volume-title: Proc. Int. Conf. on Independent Component Analysis and Blind Signal Separation (ICA2009), Paraty, Brazil
  year: 2009
  ident: e_1_3_1_43_2
  doi: 10.1007/978-3-642-00599-2_33
– volume: 6
  start-page: 453
  year: 2005
  ident: e_1_3_1_53_2
  article-title: Estimating functions for blind separation when sources have variance dependencies
  publication-title: J. Mach. Learn. Res.
– reference: 10935923 - Neural Comput. 2000 Jul;12(7):1705-20
– reference: 17921042 - Trends Cogn Sci. 2007 Oct;11(10):428-34
– reference: 10798706 - Int J Neural Syst. 2000 Feb;10(1):1-8
– reference: 19059344 - Neuroimage. 2009 Mar;45(1 Suppl):S163-72
– reference: 18238037 - IEEE Trans Neural Netw. 2003;14(3):534-43
– reference: 20569179 - Neural Comput. 2010 Sep 1;22(9):2308-33
– reference: 12180402 - Neural Comput. 2002 Aug;14(8):1771-800
– reference: 18707006 - Neuroimage. 2008 Nov 15;43(3):497-508
– reference: 15219593 - Neuroimage. 2004 Jul;22(3):1214-22
– reference: 16378519 - Neural Comput. 2006 Feb;18(2):381-414
– reference: 11440596 - Neural Comput. 2001 Jul;13(7):1527-58
– reference: 12549733 - IEEE Trans Biomed Eng. 2002 Dec;49(12 Pt 2):1514-25
– reference: 12074953 - Vision Res. 2002 Jun;42(12):1593-605
– reference: 11255574 - Neural Comput. 2001 Apr;13(4):883-98
– reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59
– reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7
– reference: 15734355 - Neuroimage. 2005 Mar;25(1):193-205
– reference: 15720773 - Neural Comput. 2005 Feb;17(2):397-423
– reference: 15697450 - Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066123
– reference: 19699307 - Neuroimage. 2010 Jan 1;49(1):257-71
– reference: 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
– reference: 18252563 - IEEE Trans Neural Netw. 1999;10(3):626-34
– reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91
– reference: 19020501 - Nature. 2009 Jan 1;457(7225):83-6
– reference: 11255573 - Neural Comput. 2001 Apr;13(4):863-82
– reference: 15734364 - Neuroimage. 2005 Mar;25(1):294-311
– reference: 21704714 - Neuroimage. 2011 Sep 1;58(1):122-36
– reference: 20483681 - IEEE Trans Biomed Eng. 2010 Aug;57(8):1954-63
– reference: 21761686 - Inf Process Med Imaging. 2011;22:562-73
– reference: 21745580 - Neuroimage. 2011 Oct 1;58(3):838-48
– reference: 18249888 - IEEE Trans Neural Netw. 2001;12(3):559-66
SSID ssj0011652
Score 2.5146003
SecondaryResourceType review_article
Snippet Independent component analysis is a probabilistic method for learning a linear transform of a random vector. The goal is to find components that are maximally...
SourceID pubmedcentral
proquest
pubmed
crossref
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20110534
SubjectTerms Blind Source Separation
Causal Analysis
Independent Component Analysis
Non-Gaussianity
Review
Title Independent component analysis: recent advances
URI https://api.istex.fr/ark:/67375/V84-8358K2G9-D/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2011.0534
https://www.ncbi.nlm.nih.gov/pubmed/23277597
https://www.proquest.com/docview/1273115431
https://pubmed.ncbi.nlm.nih.gov/PMC3538438
Volume 371
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgExJ8QGy8wktBQjw0siWxnQffJl6FaYhHN-2bZechKqCtmmyC_fXc2Y6bllYCpKpyEstp-jtf7uy73xHyKEpVmcY0D6RKZMBkXAR5qFiQs6pMqzCUVYb5zocfksERe3_CT5ayS1q1W5yvzCv5H1ThHOCKWbL_gKwbFE5AG_CFb0AYvv8K43euhm2rY8MnYxMxbnhG0NkHfaZPmZ3-pm-KfuyKGGiY2nnd8KaLGzBLC11cJ24m6Nofu6hgwMHe0Wvzh473VZcOsEslpo2L8tWc8HDHvm6dGT_4daY36hmmIBouAzmd9BcisChEHJg8Uqs7acICHuryvk65UlNgpZOiPGN9bYnGBzeLmX-o8jDH9ARM77FEq0sd4RGnPzSwYBSmKTdhvkvk2d2li2QTGtqCPvg032aKEl2Syf1yx-qZ7S3eGDmj7VALBswmzsWfq7yTFUG2M0StMaD1jJjhNXLVeh_-vhGlLXKhGm-TKz1OSjiaA9psk0s6QhhbW_Yt0PhPLVX5s-tkryeBvpNAv5PAF76RP7-Tvxvk6M3r4ctBYEtwBAUo5jZQnMpQqoJFdSLhhQQfDk5BGddlmLMSDMQiKXNFsyqmPFGy5JRLWddpkdUJUvfdJBtjuPVtjKGL6wzZ_gsZMqpqFVGlIikrcFhZXHKPBN3_KgrLT49lUr4LEyeRCYREICQCIfHIE9d_aphZ1vZ8rGFy3eTsG8YzplwcZ0yAD5IdxG9z8cojDzscBWhZ3DqT42py2ogIrHwkrqKRR24ZXN1onWB4JF1A3HVABvfFK-PRV83kTsHcYDTzyPO-bAirYpq1z1Ou7v75y3D_DGbcCOeZ0DUEGRj0iTgfTc0YcFHoqSh0l8Vxlw7vrH3Su-TyXAHcIxvt7LS6D7Z5qx7o-fUbgPbgpg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis%3A+recent+advances&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Hyv%C3%A4rinen%2C+Aapo&rft.date=2013-02-13&rft.issn=1364-503X&rft.volume=371&rft.issue=1984&rft.spage=20110534&rft_id=info:doi/10.1098%2Frsta.2011.0534&rft_id=info%3Apmid%2F23277597&rft.externalDocID=23277597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon