Organization of the Influenza Virus Replication Machinery
Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the e...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 338; no. 6114; pp. 1631 - 1634 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
21.12.2012
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. |
---|---|
AbstractList | Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. Influenza RevealedInfluenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng ). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. [PUBLICATION ABSTRACT] Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. [PUBLICATION ABSTRACT] Influenza Revealed Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by cryo-electron microscopy. The cryo-EM structure reveals the architecture and organization of the native RNP, thereby defining the attributes of its largely helical structure and how polymerase interacts with NP and the viral genome. Observations of branched-RNP structures in negative stain EM and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng ). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631 , published online 22 November) and Arranz et al. (p. 1634 , published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. Electron microscopic analysis of a reconstituted RNA-protein complex outlines pathways of transcription. Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. |
Author | Kirchdoerfer, Robert N. Wilson, Ian A. Moeller, Arne Carragher, Bridget Potter, Clinton S. |
AuthorAffiliation | 2 Department of Molecular Biology La Jolla, California 92037, United States 3 The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States 1 National Resource for Automated Molecular Microscopy, Department of Cell Biology, La Jolla, California 92037, United States |
AuthorAffiliation_xml | – name: 3 The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States – name: 1 National Resource for Automated Molecular Microscopy, Department of Cell Biology, La Jolla, California 92037, United States – name: 2 Department of Molecular Biology La Jolla, California 92037, United States |
Author_xml | – sequence: 1 givenname: Arne surname: Moeller fullname: Moeller, Arne – sequence: 2 givenname: Robert N. surname: Kirchdoerfer fullname: Kirchdoerfer, Robert N. – sequence: 3 givenname: Clinton S. surname: Potter fullname: Potter, Clinton S. – sequence: 4 givenname: Bridget surname: Carragher fullname: Carragher, Bridget – sequence: 5 givenname: Ian A. surname: Wilson fullname: Wilson, Ian A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26762274$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23180774$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rFDEcxYNU7LZ69qQMSMHLtPnm91wKUqoWKgVRryGTSbpZZjNrMiO0f71Zd6y1B2sugXw_7yW8vAO0F4foEHoJ-BiAiJNsg4vWHQMhkkj8BC0AN7xuCKZ7aIExFbXCku-jg5xXGJdZQ5-hfUKhHEu2QM1VujYx3JoxDLEafDUuXXURfT-5eGuqbyFNufrsNn2wO-STscsQXbp5jp5602f3Yt4P0df351_OPtaXVx8uzt5d1lZQNdYtbjCGlnW4s16VaxXpWiY8kLZlGKwCaFvhfccEONpKYI0CB6IxwlssGT1EpzvfzdSuXWddHJPp9SaFtUk3ejBB_z2JYamvhx-acqm4wsXg7WyQhu-Ty6Neh2xd35vohilrUnKhinIlHkVBMEIJZoQ_jnIOgijG_wMlspiCVE1B3zxAV8OUYsm3UIzg7a-RQr2-H8ldFr-_tQBHM2CyNb1PJtqQ_3BCilKYLXey42wack7O3yGA9bZgei6YngtWFPyBwobxVzNK9qH_h-7VTrfK45DuvbgsCYT-BOah3Qo |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1021_acsomega_2c08156 crossref_primary_10_1101_cshperspect_a038497 crossref_primary_10_1099_vir_0_062836_0 crossref_primary_10_3390_v5102424 crossref_primary_10_1016_j_virusres_2016_02_007 crossref_primary_10_1038_s41598_017_13784_4 crossref_primary_10_1016_j_jsb_2016_12_007 crossref_primary_10_1371_journal_pone_0239899 crossref_primary_10_1007_s12551_017_0333_z crossref_primary_10_1099_jgv_0_001730 crossref_primary_10_1016_j_semcdb_2017_05_008 crossref_primary_10_1038_s41467_018_02886_w crossref_primary_10_1128_jvi_00494_22 crossref_primary_10_7554_eLife_26910 crossref_primary_10_1002_wrna_1164 crossref_primary_10_1016_j_febslet_2013_02_048 crossref_primary_10_1128_mbio_01405_22 crossref_primary_10_1128_JVI_02274_20 crossref_primary_10_1371_journal_ppat_1003413 crossref_primary_10_4049_jimmunol_2200799 crossref_primary_10_1016_j_virol_2018_09_005 crossref_primary_10_1093_nar_gkae1211 crossref_primary_10_1080_22221751_2019_1635873 crossref_primary_10_1038_nature14009 crossref_primary_10_1038_s41579_020_00501_8 crossref_primary_10_3390_v14122773 crossref_primary_10_3390_v15071596 crossref_primary_10_1007_s00018_014_1695_z crossref_primary_10_1038_nrmicro3367 crossref_primary_10_1093_bfgp_elx028 crossref_primary_10_3389_fimmu_2018_01581 crossref_primary_10_1016_j_jmb_2019_03_018 crossref_primary_10_3390_ijms23052452 crossref_primary_10_3390_molecules26040880 crossref_primary_10_1128_JVI_01398_16 crossref_primary_10_3390_v15030653 crossref_primary_10_1016_j_bbapap_2014_05_010 crossref_primary_10_1128_JVI_02038_20 crossref_primary_10_1146_annurev_virology_110615_042345 crossref_primary_10_1007_s00216_020_03081_x crossref_primary_10_1038_srep38892 crossref_primary_10_1073_pnas_1314419110 crossref_primary_10_1038_ncomms6645 crossref_primary_10_3389_fcell_2018_00176 crossref_primary_10_1093_nar_gkae1225 crossref_primary_10_2217_fmb_13_128 crossref_primary_10_1016_j_jia_2023_11_008 crossref_primary_10_1021_acs_biochem_6b00514 crossref_primary_10_1038_s41587_022_01381_4 crossref_primary_10_1371_journal_pone_0149986 crossref_primary_10_1371_journal_ppat_1010328 crossref_primary_10_1016_j_ejmech_2015_09_037 crossref_primary_10_1371_journal_ppat_1010446 crossref_primary_10_1016_j_virol_2017_02_008 crossref_primary_10_1016_j_virusres_2025_199563 crossref_primary_10_1128_mBio_01569_16 crossref_primary_10_1002_biot_201400429 crossref_primary_10_1038_s41598_019_40443_7 crossref_primary_10_1016_j_bbrc_2013_11_100 crossref_primary_10_3390_v15020344 crossref_primary_10_3389_fmicb_2020_517461 crossref_primary_10_1128_JVI_00832_13 crossref_primary_10_1128_JVI_03306_14 crossref_primary_10_1002_cbic_201700271 crossref_primary_10_1016_j_str_2024_07_008 crossref_primary_10_1093_nar_gkz313 crossref_primary_10_1128_JVI_03354_13 crossref_primary_10_1128_JVI_02332_14 crossref_primary_10_1016_j_coviro_2013_03_008 crossref_primary_10_1007_s13238_020_00734_6 crossref_primary_10_1016_j_molcel_2015_11_016 crossref_primary_10_1038_s41467_024_48470_3 crossref_primary_10_1093_nar_gkab203 crossref_primary_10_1016_j_virusres_2017_01_013 crossref_primary_10_1126_science_1231588 crossref_primary_10_1128_JVI_01002_17 crossref_primary_10_3390_v16030421 crossref_primary_10_1038_srep15055 crossref_primary_10_1128_JVI_00053_19 crossref_primary_10_1371_journal_ppat_1004826 crossref_primary_10_1371_journal_ppat_1003624 crossref_primary_10_1128_JVI_00217_19 crossref_primary_10_1371_journal_pone_0082020 crossref_primary_10_2217_fvl_14_66 crossref_primary_10_1371_journal_ppat_1006851 crossref_primary_10_1128_JVI_00494_16 crossref_primary_10_7554_eLife_43075 crossref_primary_10_1016_j_abb_2015_04_011 crossref_primary_10_1021_jacs_5b07765 crossref_primary_10_1016_j_celrep_2024_113833 crossref_primary_10_1128_jvi_01076_23 crossref_primary_10_1371_journal_pone_0191226 crossref_primary_10_1073_pnas_1315068110 crossref_primary_10_1128_JVI_00687_18 crossref_primary_10_1016_j_virol_2015_03_018 crossref_primary_10_1038_ncomms2589 crossref_primary_10_1016_j_virusres_2015_03_017 crossref_primary_10_3390_v12080835 crossref_primary_10_1016_j_tim_2018_12_013 crossref_primary_10_3390_v12030337 crossref_primary_10_1016_j_immuni_2014_12_016 crossref_primary_10_1016_j_molcel_2014_12_031 crossref_primary_10_1128_JVI_01861_18 crossref_primary_10_3390_microorganisms8050778 crossref_primary_10_3390_v8080218 crossref_primary_10_1371_journal_pone_0148281 crossref_primary_10_1371_journal_ppat_1006288 crossref_primary_10_1042_BCJ20160651 crossref_primary_10_1038_s41598_017_11018_1 crossref_primary_10_1016_j_str_2020_03_002 crossref_primary_10_1080_07391102_2014_979230 crossref_primary_10_1073_pnas_1822089116 crossref_primary_10_1038_s41594_023_01043_2 crossref_primary_10_1002_med_21401 crossref_primary_10_1016_j_jsb_2016_09_013 crossref_primary_10_1371_journal_pone_0185998 crossref_primary_10_1371_journal_ppat_1012279 crossref_primary_10_1016_j_vaccine_2015_08_094 crossref_primary_10_1021_acsinfecdis_7b00120 crossref_primary_10_1016_j_tim_2014_04_001 crossref_primary_10_3390_v14040825 crossref_primary_10_1099_jgv_0_000579 crossref_primary_10_1089_adt_2015_668 crossref_primary_10_1016_j_antiviral_2013_01_008 crossref_primary_10_1128_JVI_00878_21 crossref_primary_10_1126_science_1260451 crossref_primary_10_1016_j_molcel_2018_05_011 crossref_primary_10_1016_j_virol_2016_05_018 crossref_primary_10_1016_j_ijbiomac_2024_136996 crossref_primary_10_3389_fmicb_2024_1394510 crossref_primary_10_3390_cells4030277 crossref_primary_10_1016_j_tim_2013_07_006 crossref_primary_10_3390_biom11010124 crossref_primary_10_1128_JVI_01042_18 crossref_primary_10_1128_JVI_01984_18 crossref_primary_10_3389_fmicb_2019_00344 crossref_primary_10_1021_acssynbio_3c00020 crossref_primary_10_1038_nature15525 crossref_primary_10_3390_ph16030365 crossref_primary_10_1111_cmi_12692 crossref_primary_10_1128_JVI_02096_13 crossref_primary_10_1101_cshperspect_a038398 crossref_primary_10_1093_nar_gkac688 crossref_primary_10_1128_mBio_01248_16 crossref_primary_10_1371_journal_ppat_1008841 crossref_primary_10_3390_v10100522 crossref_primary_10_1128_JVI_02048_18 crossref_primary_10_1007_s00018_021_03957_w crossref_primary_10_1093_nar_gkw884 crossref_primary_10_3389_fmicb_2022_895779 crossref_primary_10_1084_jem_20170550 crossref_primary_10_1128_mbio_03315_21 crossref_primary_10_1016_j_jmb_2019_04_038 crossref_primary_10_1038_nrmicro_2016_87 crossref_primary_10_1517_17460441_2015_1019859 crossref_primary_10_1016_j_antiviral_2013_07_018 crossref_primary_10_1038_s41564_020_0675_3 crossref_primary_10_1371_journal_ppat_1003275 crossref_primary_10_3390_v8060165 crossref_primary_10_1007_s00018_014_1615_2 crossref_primary_10_1126_sciadv_adj9974 crossref_primary_10_1007_s13238_015_0163_3 crossref_primary_10_1128_JVI_02102_20 crossref_primary_10_1016_j_coviro_2014_01_003 crossref_primary_10_1016_j_virol_2014_06_033 crossref_primary_10_1021_acsami_0c00815 crossref_primary_10_1002_med_22073 crossref_primary_10_1186_s12864_022_08730_2 crossref_primary_10_1016_j_str_2024_04_016 crossref_primary_10_1038_s41564_024_01908_2 crossref_primary_10_1002_jmv_28849 crossref_primary_10_1128_JVI_01337_14 crossref_primary_10_1093_nar_gkt268 crossref_primary_10_1038_s42003_021_02388_4 crossref_primary_10_1038_s41564_019_0513_7 crossref_primary_10_1093_nar_gkx584 crossref_primary_10_1038_s41586_019_1530_7 crossref_primary_10_1007_s11262_022_01904_w crossref_primary_10_1021_la502591a crossref_primary_10_1016_j_str_2014_12_013 crossref_primary_10_1016_j_tim_2022_09_015 crossref_primary_10_1016_j_tips_2013_11_006 crossref_primary_10_1101_cshperspect_a038307 crossref_primary_10_1038_nature14656 crossref_primary_10_1371_journal_ppat_1006650 crossref_primary_10_1038_s41598_018_37306_y crossref_primary_10_1016_S2095_3119_21_63840_6 crossref_primary_10_1128_JVI_03483_13 |
Cites_doi | 10.1016/S0092-8674(02)01110-8 10.1093/nar/gkm336 10.1016/j.jsb.2009.01.004 10.1016/j.sbi.2007.07.006 10.1038/ncomms1647 10.1038/nature07120 10.1006/jsbi.1996.0030 10.1093/nar/gkr985 10.1016/j.chom.2008.06.007 10.1038/nature07720 10.1038/nsmb.1421 10.1128/JVI.00977-08 10.1128/jvi.34.3.764-771.1980 10.1128/JVI.01115-10 10.1186/1743-422X-4-134 10.1016/j.jmb.2005.02.031 10.1016/j.jsb.2003.11.007 10.1016/j.sbi.2009.12.007 10.1371/journal.ppat.1000462 10.1126/science.1062882 10.1016/S1047-8477(03)00069-8 10.1002/jcc.20084 10.1016/j.jsb.2009.01.002 10.1093/bioinformatics/bti1140 10.1099/0022-1317-76-4-1009 10.1038/nature08157 10.1186/1743-422X-8-29 10.1371/journal.ppat.1000136 10.1038/nprot.2008.62 10.1128/jvi.10.4.795-800.1972 10.1073/pnas.1007152107 10.1006/jsbi.1996.0004 10.1016/j.jsb.2004.06.006 10.1002/j.1460-2075.1994.tb06614.x 10.1099/vir.0.017608-0 10.1073/pnas.100133697 10.1016/j.virol.2006.12.027 10.1128/jvi.65.6.2861-2867.1991 10.1016/j.jmb.2007.10.022 10.1096/fj.08-112110 10.1128/JVI.02642-08 10.1088/1478-3975/7/4/045004 10.1371/journal.ppat.1000491 10.1016/j.ymeth.2011.09.013 10.1073/pnas.0507415102 10.1073/pnas.1113107108 10.1007/978-1-59745-196-3_6 10.1128/JVI.74.1.156-163.2000 10.1016/j.jsb.2005.03.010 10.1111/j.1365-2818.1986.tb02693.x 10.1038/nature05379 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Association for the Advancement of Science 2014 INIST-CNRS Copyright © 2012, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2012 American Association for the Advancement of Science – notice: 2014 INIST-CNRS – notice: Copyright © 2012, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7T2 7S9 L.6 5PM |
DOI | 10.1126/science.1227270 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Health and Safety Science Abstracts (Full archive) AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic Health & Safety Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts Materials Research Database AGRICOLA CrossRef MEDLINE - Academic Solid State and Superconductivity Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1634 |
ExternalDocumentID | PMC3578580 2847697561 23180774 26762274 10_1126_science_1227270 23333712 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41 RR017573 – fundername: NIAID NIH HHS grantid: AI058113 – fundername: NIGMS NIH HHS grantid: P50 GM073197 – fundername: NCRR NIH HHS grantid: 2P41RR017573-11 – fundername: NIGMS NIH HHS grantid: P50GM073197 – fundername: NIAID NIH HHS grantid: P01 AI058113 – fundername: NIGMS NIH HHS grantid: P41 GM103310 – fundername: NIGMS NIH HHS grantid: 9 P41 GM103310-11 – fundername: NIGMS NIH HHS grantid: R01 GM095573 – fundername: NIGMS NIH HHS grantid: GM095573 – fundername: National Institute of General Medical Sciences : NIGMS grantid: P41 GM103310 || GM – fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID grantid: P01 AI058113 || AI – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM095573 || GM |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ACUHS ADDRP ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C2- C45 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX ABCQX CITATION K-O .GJ .GO 0-V 186 3EH 41~ 42X 66. 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS ABDPE ABJCF ABUWG ADBBV ADMHC ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C51 CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQEDU PQGLB PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB ZCG ZGI ZVL ZVM ZXP ZY4 ~G0 ~H1 CGR CUY CVF ECM EIF GX1 NPM UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7T2 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c638t-b09001b4d0dcf818082db46f12bb401c811bb6ffd461e3b714981e169a6fc0743 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 13:52:05 EDT 2025 Fri Jul 11 01:06:08 EDT 2025 Mon Jul 21 10:52:56 EDT 2025 Fri Jul 11 06:11:44 EDT 2025 Fri Jul 11 10:32:58 EDT 2025 Fri Jul 25 11:12:29 EDT 2025 Thu Apr 03 07:07:19 EDT 2025 Mon Jul 21 09:17:27 EDT 2025 Tue Jul 01 00:47:04 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Thu Jul 03 21:21:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6114 |
Keywords | Virus Anatomic pathology Ribonucleoprotein Orthomyxoviridae Virus replication cycle Exploration Replication Electron microscopy Influenzavirus |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c638t-b09001b4d0dcf818082db46f12bb401c811bb6ffd461e3b714981e169a6fc0743 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3578580 |
PMID | 23180774 |
PQID | 1242080772 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578580 proquest_miscellaneous_2000383586 proquest_miscellaneous_1642320425 proquest_miscellaneous_1551628455 proquest_miscellaneous_1273201789 proquest_journals_1242080772 pubmed_primary_23180774 pascalfrancis_primary_26762274 crossref_primary_10_1126_science_1227270 crossref_citationtrail_10_1126_science_1227270 jstor_primary_23333712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-21 |
PublicationDateYYYYMMDD | 2012-12-21 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2012 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_40_2 e_1_3_2_42_2 e_1_3_2_44_2 e_1_3_2_46_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 19194458 - Nature. 2009 Apr 16;458(7240):909-13 18454157 - Nat Struct Mol Biol. 2008 May;15(5):500-6 12464184 - Cell. 2002 Nov 27;111(5):733-45 21251302 - Virol J. 2011;8:29 21930946 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16515-20 22273677 - Nat Commun. 2012;3:639 17976646 - J Mol Biol. 2007 Dec 7;374(4):910-6 19263523 - J Struct Biol. 2009 Apr;166(1):95-102 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 19557158 - PLoS Pathog. 2009 Jun;5(6):e1000491 17151603 - Nature. 2006 Dec 21;444(7122):1078-82 19478885 - PLoS Pathog. 2009 May;5(5):e1000462 4117350 - J Virol. 1972 Oct;10(4):795-800 20702645 - J Virol. 2010 Oct;84(20):10477-87 21149969 - Phys Biol. 2010;7(4):045004 8039508 - EMBO J. 1994 Jul 1;13(13):3158-65 19019950 - J Virol. 2009 Feb;83(3):1320-31 16339318 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5 19225007 - J Virol. 2009 May;83(9):4153-62 17851070 - Curr Opin Struct Biol. 2007 Oct;17(5):556-61 17517766 - Nucleic Acids Res. 2007;35(11):3774-83 17270230 - Virology. 2007 Jun 5;362(2):271-82 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 3514918 - J Microsc. 1986 Jan;141(Pt 1):RP1-2 15808859 - J Mol Biol. 2005 Apr 22;348(1):139-49 18615018 - Nature. 2008 Aug 28;454(7208):1123-6 9049350 - J Gen Virol. 1995 Apr;76 ( Pt 4):1009-14 15477099 - J Struct Biol. 2004 Nov;148(2):194-204 15065677 - J Struct Biol. 2004 Jan-Feb;145(1-2):91-9 22075989 - Nucleic Acids Res. 2012 Mar;40(5):2197-209 18536645 - Nat Protoc. 2008;3(6):977-90 19525932 - Nature. 2009 Jun 18;459(7249):931-9 19955561 - J Gen Virol. 2010 Feb;91(Pt 2):313-28 15890530 - J Struct Biol. 2005 Jul;151(1):41-60 16204112 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii243-4 8742743 - J Struct Biol. 1996 Jan-Feb;116(1):190-9 18988020 - Methods Mol Biol. 2009;498:91-103 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 20978208 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20069-74 10590102 - J Virol. 2000 Jan;74(1):156-63 11546875 - Science. 2001 Sep 7;293(5536):1840-2 18769709 - PLoS Pathog. 2008;4(8):e1000136 21964395 - Methods. 2011 Dec;55(4):350-62 6247510 - J Virol. 1980 Jun;34(3):764-71 2033659 - J Virol. 1991 Jun;65(6):2861-7 23180772 - Science. 2012 Dec 21;338(6114):1545-6 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24 18053252 - Virol J. 2007;4:134 20061134 - Curr Opin Struct Biol. 2010 Feb;20(1):104-13 18614582 - FASEB J. 2008 Oct;22(10):3638-47 19374019 - J Struct Biol. 2009 May;166(2):205-13 |
References_xml | – ident: e_1_3_2_36_2 doi: 10.1016/S0092-8674(02)01110-8 – ident: e_1_3_2_42_2 doi: 10.1093/nar/gkm336 – ident: e_1_3_2_49_2 doi: 10.1016/j.jsb.2009.01.004 – ident: e_1_3_2_54_2 doi: 10.1016/j.sbi.2007.07.006 – ident: e_1_3_2_28_2 doi: 10.1038/ncomms1647 – ident: e_1_3_2_31_2 doi: 10.1038/nature07120 – ident: e_1_3_2_57_2 doi: 10.1006/jsbi.1996.0030 – ident: e_1_3_2_27_2 doi: 10.1093/nar/gkr985 – ident: e_1_3_2_34_2 doi: 10.1016/j.chom.2008.06.007 – ident: e_1_3_2_8_2 doi: 10.1038/nature07720 – ident: e_1_3_2_7_2 doi: 10.1038/nsmb.1421 – ident: e_1_3_2_35_2 doi: 10.1128/JVI.00977-08 – ident: e_1_3_2_40_2 doi: 10.1128/jvi.34.3.764-771.1980 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.01115-10 – ident: e_1_3_2_58_2 doi: 10.1186/1743-422X-4-134 – ident: e_1_3_2_17_2 doi: 10.1016/j.jmb.2005.02.031 – ident: e_1_3_2_48_2 doi: 10.1016/j.jsb.2003.11.007 – ident: e_1_3_2_9_2 doi: 10.1016/j.sbi.2009.12.007 – ident: e_1_3_2_39_2 doi: 10.1371/journal.ppat.1000462 – ident: e_1_3_2_4_2 doi: 10.1126/science.1062882 – ident: e_1_3_2_47_2 doi: 10.1016/S1047-8477(03)00069-8 – ident: e_1_3_2_18_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_46_2 doi: 10.1016/j.jsb.2009.01.002 – ident: e_1_3_2_56_2 doi: 10.1093/bioinformatics/bti1140 – ident: e_1_3_2_44_2 doi: 10.1099/0022-1317-76-4-1009 – ident: e_1_3_2_3_2 doi: 10.1038/nature08157 – ident: e_1_3_2_59_2 doi: 10.1186/1743-422X-8-29 – ident: e_1_3_2_32_2 doi: 10.1371/journal.ppat.1000136 – ident: e_1_3_2_2_2 – ident: e_1_3_2_51_2 doi: 10.1038/nprot.2008.62 – ident: e_1_3_2_6_2 doi: 10.1128/jvi.10.4.795-800.1972 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1007152107 – ident: e_1_3_2_50_2 doi: 10.1006/jsbi.1996.0004 – ident: e_1_3_2_16_2 doi: 10.1016/j.jsb.2004.06.006 – ident: e_1_3_2_41_2 doi: 10.1002/j.1460-2075.1994.tb06614.x – ident: e_1_3_2_26_2 doi: 10.1099/vir.0.017608-0 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.100133697 – ident: e_1_3_2_33_2 doi: 10.1016/j.virol.2006.12.027 – ident: e_1_3_2_37_2 doi: 10.1128/jvi.65.6.2861-2867.1991 – ident: e_1_3_2_19_2 doi: 10.1016/j.jmb.2007.10.022 – ident: e_1_3_2_10_2 doi: 10.1096/fj.08-112110 – ident: e_1_3_2_12_2 doi: 10.1128/JVI.02642-08 – ident: e_1_3_2_55_2 doi: 10.1088/1478-3975/7/4/045004 – ident: e_1_3_2_11_2 doi: 10.1371/journal.ppat.1000491 – ident: e_1_3_2_53_2 doi: 10.1016/j.ymeth.2011.09.013 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.0507415102 – ident: e_1_3_2_13_2 doi: 10.1073/pnas.1113107108 – ident: e_1_3_2_43_2 doi: 10.1007/978-1-59745-196-3_6 – ident: e_1_3_2_24_2 doi: 10.1128/JVI.74.1.156-163.2000 – ident: e_1_3_2_45_2 doi: 10.1016/j.jsb.2005.03.010 – ident: e_1_3_2_52_2 doi: 10.1111/j.1365-2818.1986.tb02693.x – ident: e_1_3_2_20_2 doi: 10.1038/nature05379 – reference: 18769709 - PLoS Pathog. 2008;4(8):e1000136 – reference: 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24 – reference: 19374019 - J Struct Biol. 2009 May;166(2):205-13 – reference: 3514918 - J Microsc. 1986 Jan;141(Pt 1):RP1-2 – reference: 17851070 - Curr Opin Struct Biol. 2007 Oct;17(5):556-61 – reference: 12464184 - Cell. 2002 Nov 27;111(5):733-45 – reference: 22075989 - Nucleic Acids Res. 2012 Mar;40(5):2197-209 – reference: 18454157 - Nat Struct Mol Biol. 2008 May;15(5):500-6 – reference: 18988020 - Methods Mol Biol. 2009;498:91-103 – reference: 20702645 - J Virol. 2010 Oct;84(20):10477-87 – reference: 19194458 - Nature. 2009 Apr 16;458(7240):909-13 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 8742743 - J Struct Biol. 1996 Jan-Feb;116(1):190-9 – reference: 19225007 - J Virol. 2009 May;83(9):4153-62 – reference: 4117350 - J Virol. 1972 Oct;10(4):795-800 – reference: 15808859 - J Mol Biol. 2005 Apr 22;348(1):139-49 – reference: 21149969 - Phys Biol. 2010;7(4):045004 – reference: 17151603 - Nature. 2006 Dec 21;444(7122):1078-82 – reference: 10590102 - J Virol. 2000 Jan;74(1):156-63 – reference: 22273677 - Nat Commun. 2012;3:639 – reference: 19955561 - J Gen Virol. 2010 Feb;91(Pt 2):313-28 – reference: 20061134 - Curr Opin Struct Biol. 2010 Feb;20(1):104-13 – reference: 17270230 - Virology. 2007 Jun 5;362(2):271-82 – reference: 21930946 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16515-20 – reference: 2033659 - J Virol. 1991 Jun;65(6):2861-7 – reference: 16204112 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii243-4 – reference: 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22 – reference: 20978208 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20069-74 – reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9 – reference: 15065677 - J Struct Biol. 2004 Jan-Feb;145(1-2):91-9 – reference: 6247510 - J Virol. 1980 Jun;34(3):764-71 – reference: 21964395 - Methods. 2011 Dec;55(4):350-62 – reference: 18614582 - FASEB J. 2008 Oct;22(10):3638-47 – reference: 16339318 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5 – reference: 18615018 - Nature. 2008 Aug 28;454(7208):1123-6 – reference: 8039508 - EMBO J. 1994 Jul 1;13(13):3158-65 – reference: 19557158 - PLoS Pathog. 2009 Jun;5(6):e1000491 – reference: 23180772 - Science. 2012 Dec 21;338(6114):1545-6 – reference: 18053252 - Virol J. 2007;4:134 – reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13 – reference: 15890530 - J Struct Biol. 2005 Jul;151(1):41-60 – reference: 15477099 - J Struct Biol. 2004 Nov;148(2):194-204 – reference: 9049350 - J Gen Virol. 1995 Apr;76 ( Pt 4):1009-14 – reference: 19263523 - J Struct Biol. 2009 Apr;166(1):95-102 – reference: 19478885 - PLoS Pathog. 2009 May;5(5):e1000462 – reference: 19019950 - J Virol. 2009 Feb;83(3):1320-31 – reference: 17976646 - J Mol Biol. 2007 Dec 7;374(4):910-6 – reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 – reference: 11546875 - Science. 2001 Sep 7;293(5536):1840-2 – reference: 18536645 - Nat Protoc. 2008;3(6):977-90 – reference: 17517766 - Nucleic Acids Res. 2007;35(11):3774-83 – reference: 21251302 - Virol J. 2011;8:29 |
SSID | ssj0009593 |
Score | 2.509871 |
Snippet | Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral... Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex,... Influenza RevealedInfluenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza... Influenza Revealed Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1631 |
SubjectTerms | Active sites Assembly Biological and medical sciences cryo-electron microscopy Cryoelectron Microscopy Crystallography, X-Ray Electron microscopy genome Genome, Viral Genomes Genomics Image Processing, Computer-Assisted Influenza Influenza A virus Influenza A Virus, H1N1 Subtype - chemistry Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - physiology Influenza A Virus, H1N1 Subtype - ultrastructure Influenza virus Medical sciences Microscopy Microscopy, Electron Models, Molecular morbidity Mortality Nucleic Acid Conformation Nucleoproteins Online Orthomyxoviridae Pharmacology. Drug treatments Protein Conformation Protein Subunits - chemistry Protein Subunits - metabolism Replication Ribonucleic acids ribonucleoproteins Ribonucleoproteins - chemistry Ribonucleoproteins - genetics Ribonucleoproteins - metabolism Ribonucleoproteins - ultrastructure RNA RNA polymerase RNA Replicase - chemistry RNA Replicase - metabolism RNA Replicase - ultrastructure RNA, Viral - chemistry RNA, Viral - metabolism RNA, Viral - ultrastructure RNA-Binding Proteins - chemistry RNA-Binding Proteins - metabolism RNA-Binding Proteins - ultrastructure RNA-protein interactions transcription (genetics) Transcription, Genetic Viral Core Proteins - chemistry Viral Core Proteins - metabolism Viral Core Proteins - ultrastructure Viral genomes Viral morphology Viral Proteins - chemistry Viral Proteins - metabolism Viral Proteins - ultrastructure Virions Virology Virus Replication Viruses |
Title | Organization of the Influenza Virus Replication Machinery |
URI | https://www.jstor.org/stable/23333712 https://www.ncbi.nlm.nih.gov/pubmed/23180774 https://www.proquest.com/docview/1242080772 https://www.proquest.com/docview/1273201789 https://www.proquest.com/docview/1551628455 https://www.proquest.com/docview/1642320425 https://www.proquest.com/docview/2000383586 https://pubmed.ncbi.nlm.nih.gov/PMC3578580 |
Volume | 338 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagExIviA0GHWMKEg9DKFXspI772I5VA8bgoUV9i2LH2SqhBqXpw_bruUsc10XtNOhD1CYXN8l9ts-5u-8IeS8CxSUYxr5E4tZIKOUjJYovwixnaaZjqmu2zyt-MY2-zPozx2OK2SWV7Km7rXkl_6NV2Ad6xSzZf9CsbRR2wHfQL2xBw7B9kI7dRMrW2f-5qTpyl378OS9XmAViPdRYZegGk_02XLlt7wZT07pvHKXZOMRhEy3QBg-Y05w3Cd8K3eYVDsu1t_7rHANRC13m2onlXruAfhSVKQ6C3mRk-bD26Vlalum1QdWoTi2r3NcUtK6Y0uQ-t0OvYT52h94wFA7GOKWRM5aCpUideRl-RtvHfKdKpe5RxsAkC9bTW-vSv_qejKeXl8nkfDZ5TPYYLCtYh-wNR59G4500zYYMykmzav9gw45pQlkxrjZdQtfKm5oo2xYtf8feOsbM5Dl5ZlYh3rCB1D55pBcH5ElTl_T2gOwb5S69U0NL_uEFGbho84rcA1B4Fm1ejTbPQZtn0faSTMfnk7ML3xTe8BUMx5UvgwFYLzLKgkzlSAYgWCYjnlMmJazHlaBUSp7nWcSpDmUMq2xBNeWDlOcKbdJD0lkUC_2aeIoPFIbYpAFNYbqIZSxUGKZZBI3wSERd0msfY6IMKz0WR_mV1KtTxhPz3BPz3Lvk1J7wuyFk2S16WOvFyrEQPjFlXXKyoai1AAfbgMVwVcet5hLT35fQKoaiBICbLnlnD8NojC62dKGLFcrEIaA_FoN7ZNA3DVZhv3-PDMcACpxQd8uw2q0f9gXvklcNqJw7pXilcCPxBtysALLKbx5ZzG9qdvma_koERw-4tjfk6bqrH5NOVa70W7DRK3liOtYfEz7pDw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organization+of+the+Influenza+Virus+Replication+Machinery&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Moeller%2C+Arne&rft.au=Kirchdoerfer%2C+Robert+N&rft.au=Potter%2C+Clinton+S&rft.au=Carragher%2C+Bridget&rft.date=2012-12-21&rft.issn=0036-8075&rft.volume=338&rft.issue=6114&rft.spage=1631&rft.epage=1634&rft_id=info:doi/10.1126%2Fscience.1227270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |