Organization of the Influenza Virus Replication Machinery

Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the e...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 338; no. 6114; pp. 1631 - 1634
Main Authors Moeller, Arne, Kirchdoerfer, Robert N., Potter, Clinton S., Carragher, Bridget, Wilson, Ian A.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 21.12.2012
The American Association for the Advancement of Science
Subjects
RNA
Online AccessGet full text

Cover

Loading…
Abstract Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
AbstractList Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
Influenza RevealedInfluenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription.
Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng ). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. [PUBLICATION ABSTRACT] Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template. [PUBLICATION ABSTRACT]
Influenza Revealed Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631, published online 22 November) and Arranz et al. (p. 1634, published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription.
Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by cryo-electron microscopy. The cryo-EM structure reveals the architecture and organization of the native RNP, thereby defining the attributes of its largely helical structure and how polymerase interacts with NP and the viral genome. Observations of branched-RNP structures in negative stain EM and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex, which carries out viral replication and transcription, is central to the virus life-cycle and to viral host adaptation (see the Perspective by Tao and Zheng ). Structural characterization of the viral RNP has been challenging, but Moeller et al. (p. 1631 , published online 22 November) and Arranz et al. (p. 1634 , published online 22 November) now report the structure and assembly of this complex, using cryo-electron microscopy and negative-stain electron microscopy. The structures reveal how the viral polymerase, RNA genome, and nucleoprotein interact in the RNP providing insight into mechanisms for influenza genome replication and transcription. Electron microscopic analysis of a reconstituted RNA-protein complex outlines pathways of transcription. Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral genome, viral polymerase, and many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components with four of the eight influenza virus gene segments enabled structural determination of native influenza virus RNPs by means of cryogenic electron microscopy (cryo-EM). The cryo-EM structure reveals the architecture and organization of the native RNP, defining the attributes of its largely helical structure and how polymerase interacts with nucleoprotein and the viral genome. Observations of branched-RNP structures in negative-stain electron microscopy and their putative identification as replication intermediates suggest a mechanism for viral replication by a second polymerase on the RNP template.
Author Kirchdoerfer, Robert N.
Wilson, Ian A.
Moeller, Arne
Carragher, Bridget
Potter, Clinton S.
AuthorAffiliation 2 Department of Molecular Biology La Jolla, California 92037, United States
3 The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
1 National Resource for Automated Molecular Microscopy, Department of Cell Biology, La Jolla, California 92037, United States
AuthorAffiliation_xml – name: 3 The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
– name: 1 National Resource for Automated Molecular Microscopy, Department of Cell Biology, La Jolla, California 92037, United States
– name: 2 Department of Molecular Biology La Jolla, California 92037, United States
Author_xml – sequence: 1
  givenname: Arne
  surname: Moeller
  fullname: Moeller, Arne
– sequence: 2
  givenname: Robert N.
  surname: Kirchdoerfer
  fullname: Kirchdoerfer, Robert N.
– sequence: 3
  givenname: Clinton S.
  surname: Potter
  fullname: Potter, Clinton S.
– sequence: 4
  givenname: Bridget
  surname: Carragher
  fullname: Carragher, Bridget
– sequence: 5
  givenname: Ian A.
  surname: Wilson
  fullname: Wilson, Ian A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26762274$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23180774$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFDEcxYNU7LZ69qQMSMHLtPnm91wKUqoWKgVRryGTSbpZZjNrMiO0f71Zd6y1B2sugXw_7yW8vAO0F4foEHoJ-BiAiJNsg4vWHQMhkkj8BC0AN7xuCKZ7aIExFbXCku-jg5xXGJdZQ5-hfUKhHEu2QM1VujYx3JoxDLEafDUuXXURfT-5eGuqbyFNufrsNn2wO-STscsQXbp5jp5602f3Yt4P0df351_OPtaXVx8uzt5d1lZQNdYtbjCGlnW4s16VaxXpWiY8kLZlGKwCaFvhfccEONpKYI0CB6IxwlssGT1EpzvfzdSuXWddHJPp9SaFtUk3ejBB_z2JYamvhx-acqm4wsXg7WyQhu-Ty6Neh2xd35vohilrUnKhinIlHkVBMEIJZoQ_jnIOgijG_wMlspiCVE1B3zxAV8OUYsm3UIzg7a-RQr2-H8ldFr-_tQBHM2CyNb1PJtqQ_3BCilKYLXey42wack7O3yGA9bZgei6YngtWFPyBwobxVzNK9qH_h-7VTrfK45DuvbgsCYT-BOah3Qo
CODEN SCIEAS
CitedBy_id crossref_primary_10_1021_acsomega_2c08156
crossref_primary_10_1101_cshperspect_a038497
crossref_primary_10_1099_vir_0_062836_0
crossref_primary_10_3390_v5102424
crossref_primary_10_1016_j_virusres_2016_02_007
crossref_primary_10_1038_s41598_017_13784_4
crossref_primary_10_1016_j_jsb_2016_12_007
crossref_primary_10_1371_journal_pone_0239899
crossref_primary_10_1007_s12551_017_0333_z
crossref_primary_10_1099_jgv_0_001730
crossref_primary_10_1016_j_semcdb_2017_05_008
crossref_primary_10_1038_s41467_018_02886_w
crossref_primary_10_1128_jvi_00494_22
crossref_primary_10_7554_eLife_26910
crossref_primary_10_1002_wrna_1164
crossref_primary_10_1016_j_febslet_2013_02_048
crossref_primary_10_1128_mbio_01405_22
crossref_primary_10_1128_JVI_02274_20
crossref_primary_10_1371_journal_ppat_1003413
crossref_primary_10_4049_jimmunol_2200799
crossref_primary_10_1016_j_virol_2018_09_005
crossref_primary_10_1093_nar_gkae1211
crossref_primary_10_1080_22221751_2019_1635873
crossref_primary_10_1038_nature14009
crossref_primary_10_1038_s41579_020_00501_8
crossref_primary_10_3390_v14122773
crossref_primary_10_3390_v15071596
crossref_primary_10_1007_s00018_014_1695_z
crossref_primary_10_1038_nrmicro3367
crossref_primary_10_1093_bfgp_elx028
crossref_primary_10_3389_fimmu_2018_01581
crossref_primary_10_1016_j_jmb_2019_03_018
crossref_primary_10_3390_ijms23052452
crossref_primary_10_3390_molecules26040880
crossref_primary_10_1128_JVI_01398_16
crossref_primary_10_3390_v15030653
crossref_primary_10_1016_j_bbapap_2014_05_010
crossref_primary_10_1128_JVI_02038_20
crossref_primary_10_1146_annurev_virology_110615_042345
crossref_primary_10_1007_s00216_020_03081_x
crossref_primary_10_1038_srep38892
crossref_primary_10_1073_pnas_1314419110
crossref_primary_10_1038_ncomms6645
crossref_primary_10_3389_fcell_2018_00176
crossref_primary_10_1093_nar_gkae1225
crossref_primary_10_2217_fmb_13_128
crossref_primary_10_1016_j_jia_2023_11_008
crossref_primary_10_1021_acs_biochem_6b00514
crossref_primary_10_1038_s41587_022_01381_4
crossref_primary_10_1371_journal_pone_0149986
crossref_primary_10_1371_journal_ppat_1010328
crossref_primary_10_1016_j_ejmech_2015_09_037
crossref_primary_10_1371_journal_ppat_1010446
crossref_primary_10_1016_j_virol_2017_02_008
crossref_primary_10_1016_j_virusres_2025_199563
crossref_primary_10_1128_mBio_01569_16
crossref_primary_10_1002_biot_201400429
crossref_primary_10_1038_s41598_019_40443_7
crossref_primary_10_1016_j_bbrc_2013_11_100
crossref_primary_10_3390_v15020344
crossref_primary_10_3389_fmicb_2020_517461
crossref_primary_10_1128_JVI_00832_13
crossref_primary_10_1128_JVI_03306_14
crossref_primary_10_1002_cbic_201700271
crossref_primary_10_1016_j_str_2024_07_008
crossref_primary_10_1093_nar_gkz313
crossref_primary_10_1128_JVI_03354_13
crossref_primary_10_1128_JVI_02332_14
crossref_primary_10_1016_j_coviro_2013_03_008
crossref_primary_10_1007_s13238_020_00734_6
crossref_primary_10_1016_j_molcel_2015_11_016
crossref_primary_10_1038_s41467_024_48470_3
crossref_primary_10_1093_nar_gkab203
crossref_primary_10_1016_j_virusres_2017_01_013
crossref_primary_10_1126_science_1231588
crossref_primary_10_1128_JVI_01002_17
crossref_primary_10_3390_v16030421
crossref_primary_10_1038_srep15055
crossref_primary_10_1128_JVI_00053_19
crossref_primary_10_1371_journal_ppat_1004826
crossref_primary_10_1371_journal_ppat_1003624
crossref_primary_10_1128_JVI_00217_19
crossref_primary_10_1371_journal_pone_0082020
crossref_primary_10_2217_fvl_14_66
crossref_primary_10_1371_journal_ppat_1006851
crossref_primary_10_1128_JVI_00494_16
crossref_primary_10_7554_eLife_43075
crossref_primary_10_1016_j_abb_2015_04_011
crossref_primary_10_1021_jacs_5b07765
crossref_primary_10_1016_j_celrep_2024_113833
crossref_primary_10_1128_jvi_01076_23
crossref_primary_10_1371_journal_pone_0191226
crossref_primary_10_1073_pnas_1315068110
crossref_primary_10_1128_JVI_00687_18
crossref_primary_10_1016_j_virol_2015_03_018
crossref_primary_10_1038_ncomms2589
crossref_primary_10_1016_j_virusres_2015_03_017
crossref_primary_10_3390_v12080835
crossref_primary_10_1016_j_tim_2018_12_013
crossref_primary_10_3390_v12030337
crossref_primary_10_1016_j_immuni_2014_12_016
crossref_primary_10_1016_j_molcel_2014_12_031
crossref_primary_10_1128_JVI_01861_18
crossref_primary_10_3390_microorganisms8050778
crossref_primary_10_3390_v8080218
crossref_primary_10_1371_journal_pone_0148281
crossref_primary_10_1371_journal_ppat_1006288
crossref_primary_10_1042_BCJ20160651
crossref_primary_10_1038_s41598_017_11018_1
crossref_primary_10_1016_j_str_2020_03_002
crossref_primary_10_1080_07391102_2014_979230
crossref_primary_10_1073_pnas_1822089116
crossref_primary_10_1038_s41594_023_01043_2
crossref_primary_10_1002_med_21401
crossref_primary_10_1016_j_jsb_2016_09_013
crossref_primary_10_1371_journal_pone_0185998
crossref_primary_10_1371_journal_ppat_1012279
crossref_primary_10_1016_j_vaccine_2015_08_094
crossref_primary_10_1021_acsinfecdis_7b00120
crossref_primary_10_1016_j_tim_2014_04_001
crossref_primary_10_3390_v14040825
crossref_primary_10_1099_jgv_0_000579
crossref_primary_10_1089_adt_2015_668
crossref_primary_10_1016_j_antiviral_2013_01_008
crossref_primary_10_1128_JVI_00878_21
crossref_primary_10_1126_science_1260451
crossref_primary_10_1016_j_molcel_2018_05_011
crossref_primary_10_1016_j_virol_2016_05_018
crossref_primary_10_1016_j_ijbiomac_2024_136996
crossref_primary_10_3389_fmicb_2024_1394510
crossref_primary_10_3390_cells4030277
crossref_primary_10_1016_j_tim_2013_07_006
crossref_primary_10_3390_biom11010124
crossref_primary_10_1128_JVI_01042_18
crossref_primary_10_1128_JVI_01984_18
crossref_primary_10_3389_fmicb_2019_00344
crossref_primary_10_1021_acssynbio_3c00020
crossref_primary_10_1038_nature15525
crossref_primary_10_3390_ph16030365
crossref_primary_10_1111_cmi_12692
crossref_primary_10_1128_JVI_02096_13
crossref_primary_10_1101_cshperspect_a038398
crossref_primary_10_1093_nar_gkac688
crossref_primary_10_1128_mBio_01248_16
crossref_primary_10_1371_journal_ppat_1008841
crossref_primary_10_3390_v10100522
crossref_primary_10_1128_JVI_02048_18
crossref_primary_10_1007_s00018_021_03957_w
crossref_primary_10_1093_nar_gkw884
crossref_primary_10_3389_fmicb_2022_895779
crossref_primary_10_1084_jem_20170550
crossref_primary_10_1128_mbio_03315_21
crossref_primary_10_1016_j_jmb_2019_04_038
crossref_primary_10_1038_nrmicro_2016_87
crossref_primary_10_1517_17460441_2015_1019859
crossref_primary_10_1016_j_antiviral_2013_07_018
crossref_primary_10_1038_s41564_020_0675_3
crossref_primary_10_1371_journal_ppat_1003275
crossref_primary_10_3390_v8060165
crossref_primary_10_1007_s00018_014_1615_2
crossref_primary_10_1126_sciadv_adj9974
crossref_primary_10_1007_s13238_015_0163_3
crossref_primary_10_1128_JVI_02102_20
crossref_primary_10_1016_j_coviro_2014_01_003
crossref_primary_10_1016_j_virol_2014_06_033
crossref_primary_10_1021_acsami_0c00815
crossref_primary_10_1002_med_22073
crossref_primary_10_1186_s12864_022_08730_2
crossref_primary_10_1016_j_str_2024_04_016
crossref_primary_10_1038_s41564_024_01908_2
crossref_primary_10_1002_jmv_28849
crossref_primary_10_1128_JVI_01337_14
crossref_primary_10_1093_nar_gkt268
crossref_primary_10_1038_s42003_021_02388_4
crossref_primary_10_1038_s41564_019_0513_7
crossref_primary_10_1093_nar_gkx584
crossref_primary_10_1038_s41586_019_1530_7
crossref_primary_10_1007_s11262_022_01904_w
crossref_primary_10_1021_la502591a
crossref_primary_10_1016_j_str_2014_12_013
crossref_primary_10_1016_j_tim_2022_09_015
crossref_primary_10_1016_j_tips_2013_11_006
crossref_primary_10_1101_cshperspect_a038307
crossref_primary_10_1038_nature14656
crossref_primary_10_1371_journal_ppat_1006650
crossref_primary_10_1038_s41598_018_37306_y
crossref_primary_10_1016_S2095_3119_21_63840_6
crossref_primary_10_1128_JVI_03483_13
Cites_doi 10.1016/S0092-8674(02)01110-8
10.1093/nar/gkm336
10.1016/j.jsb.2009.01.004
10.1016/j.sbi.2007.07.006
10.1038/ncomms1647
10.1038/nature07120
10.1006/jsbi.1996.0030
10.1093/nar/gkr985
10.1016/j.chom.2008.06.007
10.1038/nature07720
10.1038/nsmb.1421
10.1128/JVI.00977-08
10.1128/jvi.34.3.764-771.1980
10.1128/JVI.01115-10
10.1186/1743-422X-4-134
10.1016/j.jmb.2005.02.031
10.1016/j.jsb.2003.11.007
10.1016/j.sbi.2009.12.007
10.1371/journal.ppat.1000462
10.1126/science.1062882
10.1016/S1047-8477(03)00069-8
10.1002/jcc.20084
10.1016/j.jsb.2009.01.002
10.1093/bioinformatics/bti1140
10.1099/0022-1317-76-4-1009
10.1038/nature08157
10.1186/1743-422X-8-29
10.1371/journal.ppat.1000136
10.1038/nprot.2008.62
10.1128/jvi.10.4.795-800.1972
10.1073/pnas.1007152107
10.1006/jsbi.1996.0004
10.1016/j.jsb.2004.06.006
10.1002/j.1460-2075.1994.tb06614.x
10.1099/vir.0.017608-0
10.1073/pnas.100133697
10.1016/j.virol.2006.12.027
10.1128/jvi.65.6.2861-2867.1991
10.1016/j.jmb.2007.10.022
10.1096/fj.08-112110
10.1128/JVI.02642-08
10.1088/1478-3975/7/4/045004
10.1371/journal.ppat.1000491
10.1016/j.ymeth.2011.09.013
10.1073/pnas.0507415102
10.1073/pnas.1113107108
10.1007/978-1-59745-196-3_6
10.1128/JVI.74.1.156-163.2000
10.1016/j.jsb.2005.03.010
10.1111/j.1365-2818.1986.tb02693.x
10.1038/nature05379
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2012, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2012 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7T2
7S9
L.6
5PM
DOI 10.1126/science.1227270
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Health and Safety Science Abstracts (Full archive)
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
Health & Safety Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
Materials Research Database
AGRICOLA

CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1634
ExternalDocumentID PMC3578580
2847697561
23180774
26762274
10_1126_science_1227270
23333712
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41 RR017573
– fundername: NIAID NIH HHS
  grantid: AI058113
– fundername: NIGMS NIH HHS
  grantid: P50 GM073197
– fundername: NCRR NIH HHS
  grantid: 2P41RR017573-11
– fundername: NIGMS NIH HHS
  grantid: P50GM073197
– fundername: NIAID NIH HHS
  grantid: P01 AI058113
– fundername: NIGMS NIH HHS
  grantid: P41 GM103310
– fundername: NIGMS NIH HHS
  grantid: 9 P41 GM103310-11
– fundername: NIGMS NIH HHS
  grantid: R01 GM095573
– fundername: NIGMS NIH HHS
  grantid: GM095573
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: P41 GM103310 || GM
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: P01 AI058113 || AI
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM095573 || GM
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADDRP
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
.GJ
.GO
0-V
186
3EH
41~
42X
66.
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
ABDPE
ABJCF
ABUWG
ADBBV
ADMHC
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~G0
~H1
CGR
CUY
CVF
ECM
EIF
GX1
NPM
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7T2
7S9
L.6
5PM
ID FETCH-LOGICAL-c638t-b09001b4d0dcf818082db46f12bb401c811bb6ffd461e3b714981e169a6fc0743
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:52:05 EDT 2025
Fri Jul 11 01:06:08 EDT 2025
Mon Jul 21 10:52:56 EDT 2025
Fri Jul 11 06:11:44 EDT 2025
Fri Jul 11 10:32:58 EDT 2025
Fri Jul 25 11:12:29 EDT 2025
Thu Apr 03 07:07:19 EDT 2025
Mon Jul 21 09:17:27 EDT 2025
Tue Jul 01 00:47:04 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Thu Jul 03 21:21:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6114
Keywords Virus
Anatomic pathology
Ribonucleoprotein
Orthomyxoviridae
Virus replication cycle
Exploration
Replication
Electron microscopy
Influenzavirus
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c638t-b09001b4d0dcf818082db46f12bb401c811bb6ffd461e3b714981e169a6fc0743
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3578580
PMID 23180774
PQID 1242080772
PQPubID 1256
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3578580
proquest_miscellaneous_2000383586
proquest_miscellaneous_1642320425
proquest_miscellaneous_1551628455
proquest_miscellaneous_1273201789
proquest_journals_1242080772
pubmed_primary_23180774
pascalfrancis_primary_26762274
crossref_primary_10_1126_science_1227270
crossref_citationtrail_10_1126_science_1227270
jstor_primary_23333712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-21
PublicationDateYYYYMMDD 2012-12-21
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-21
  day: 21
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2012
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_40_2
e_1_3_2_42_2
e_1_3_2_44_2
e_1_3_2_46_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
19194458 - Nature. 2009 Apr 16;458(7240):909-13
18454157 - Nat Struct Mol Biol. 2008 May;15(5):500-6
12464184 - Cell. 2002 Nov 27;111(5):733-45
21251302 - Virol J. 2011;8:29
21930946 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16515-20
22273677 - Nat Commun. 2012;3:639
17976646 - J Mol Biol. 2007 Dec 7;374(4):910-6
19263523 - J Struct Biol. 2009 Apr;166(1):95-102
10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
19557158 - PLoS Pathog. 2009 Jun;5(6):e1000491
17151603 - Nature. 2006 Dec 21;444(7122):1078-82
19478885 - PLoS Pathog. 2009 May;5(5):e1000462
4117350 - J Virol. 1972 Oct;10(4):795-800
20702645 - J Virol. 2010 Oct;84(20):10477-87
21149969 - Phys Biol. 2010;7(4):045004
8039508 - EMBO J. 1994 Jul 1;13(13):3158-65
19019950 - J Virol. 2009 Feb;83(3):1320-31
16339318 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5
19225007 - J Virol. 2009 May;83(9):4153-62
17851070 - Curr Opin Struct Biol. 2007 Oct;17(5):556-61
17517766 - Nucleic Acids Res. 2007;35(11):3774-83
17270230 - Virology. 2007 Jun 5;362(2):271-82
18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22
12781660 - J Struct Biol. 2003 Jun;142(3):334-47
3514918 - J Microsc. 1986 Jan;141(Pt 1):RP1-2
15808859 - J Mol Biol. 2005 Apr 22;348(1):139-49
18615018 - Nature. 2008 Aug 28;454(7208):1123-6
9049350 - J Gen Virol. 1995 Apr;76 ( Pt 4):1009-14
15477099 - J Struct Biol. 2004 Nov;148(2):194-204
15065677 - J Struct Biol. 2004 Jan-Feb;145(1-2):91-9
22075989 - Nucleic Acids Res. 2012 Mar;40(5):2197-209
18536645 - Nat Protoc. 2008;3(6):977-90
19525932 - Nature. 2009 Jun 18;459(7249):931-9
19955561 - J Gen Virol. 2010 Feb;91(Pt 2):313-28
15890530 - J Struct Biol. 2005 Jul;151(1):41-60
16204112 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii243-4
8742743 - J Struct Biol. 1996 Jan-Feb;116(1):190-9
18988020 - Methods Mol Biol. 2009;498:91-103
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
20978208 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20069-74
10590102 - J Virol. 2000 Jan;74(1):156-63
11546875 - Science. 2001 Sep 7;293(5536):1840-2
18769709 - PLoS Pathog. 2008;4(8):e1000136
21964395 - Methods. 2011 Dec;55(4):350-62
6247510 - J Virol. 1980 Jun;34(3):764-71
2033659 - J Virol. 1991 Jun;65(6):2861-7
23180772 - Science. 2012 Dec 21;338(6114):1545-6
8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24
18053252 - Virol J. 2007;4:134
20061134 - Curr Opin Struct Biol. 2010 Feb;20(1):104-13
18614582 - FASEB J. 2008 Oct;22(10):3638-47
19374019 - J Struct Biol. 2009 May;166(2):205-13
References_xml – ident: e_1_3_2_36_2
  doi: 10.1016/S0092-8674(02)01110-8
– ident: e_1_3_2_42_2
  doi: 10.1093/nar/gkm336
– ident: e_1_3_2_49_2
  doi: 10.1016/j.jsb.2009.01.004
– ident: e_1_3_2_54_2
  doi: 10.1016/j.sbi.2007.07.006
– ident: e_1_3_2_28_2
  doi: 10.1038/ncomms1647
– ident: e_1_3_2_31_2
  doi: 10.1038/nature07120
– ident: e_1_3_2_57_2
  doi: 10.1006/jsbi.1996.0030
– ident: e_1_3_2_27_2
  doi: 10.1093/nar/gkr985
– ident: e_1_3_2_34_2
  doi: 10.1016/j.chom.2008.06.007
– ident: e_1_3_2_8_2
  doi: 10.1038/nature07720
– ident: e_1_3_2_7_2
  doi: 10.1038/nsmb.1421
– ident: e_1_3_2_35_2
  doi: 10.1128/JVI.00977-08
– ident: e_1_3_2_40_2
  doi: 10.1128/jvi.34.3.764-771.1980
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.01115-10
– ident: e_1_3_2_58_2
  doi: 10.1186/1743-422X-4-134
– ident: e_1_3_2_17_2
  doi: 10.1016/j.jmb.2005.02.031
– ident: e_1_3_2_48_2
  doi: 10.1016/j.jsb.2003.11.007
– ident: e_1_3_2_9_2
  doi: 10.1016/j.sbi.2009.12.007
– ident: e_1_3_2_39_2
  doi: 10.1371/journal.ppat.1000462
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1062882
– ident: e_1_3_2_47_2
  doi: 10.1016/S1047-8477(03)00069-8
– ident: e_1_3_2_18_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_46_2
  doi: 10.1016/j.jsb.2009.01.002
– ident: e_1_3_2_56_2
  doi: 10.1093/bioinformatics/bti1140
– ident: e_1_3_2_44_2
  doi: 10.1099/0022-1317-76-4-1009
– ident: e_1_3_2_3_2
  doi: 10.1038/nature08157
– ident: e_1_3_2_59_2
  doi: 10.1186/1743-422X-8-29
– ident: e_1_3_2_32_2
  doi: 10.1371/journal.ppat.1000136
– ident: e_1_3_2_2_2
– ident: e_1_3_2_51_2
  doi: 10.1038/nprot.2008.62
– ident: e_1_3_2_6_2
  doi: 10.1128/jvi.10.4.795-800.1972
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1007152107
– ident: e_1_3_2_50_2
  doi: 10.1006/jsbi.1996.0004
– ident: e_1_3_2_16_2
  doi: 10.1016/j.jsb.2004.06.006
– ident: e_1_3_2_41_2
  doi: 10.1002/j.1460-2075.1994.tb06614.x
– ident: e_1_3_2_26_2
  doi: 10.1099/vir.0.017608-0
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.100133697
– ident: e_1_3_2_33_2
  doi: 10.1016/j.virol.2006.12.027
– ident: e_1_3_2_37_2
  doi: 10.1128/jvi.65.6.2861-2867.1991
– ident: e_1_3_2_19_2
  doi: 10.1016/j.jmb.2007.10.022
– ident: e_1_3_2_10_2
  doi: 10.1096/fj.08-112110
– ident: e_1_3_2_12_2
  doi: 10.1128/JVI.02642-08
– ident: e_1_3_2_55_2
  doi: 10.1088/1478-3975/7/4/045004
– ident: e_1_3_2_11_2
  doi: 10.1371/journal.ppat.1000491
– ident: e_1_3_2_53_2
  doi: 10.1016/j.ymeth.2011.09.013
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.0507415102
– ident: e_1_3_2_13_2
  doi: 10.1073/pnas.1113107108
– ident: e_1_3_2_43_2
  doi: 10.1007/978-1-59745-196-3_6
– ident: e_1_3_2_24_2
  doi: 10.1128/JVI.74.1.156-163.2000
– ident: e_1_3_2_45_2
  doi: 10.1016/j.jsb.2005.03.010
– ident: e_1_3_2_52_2
  doi: 10.1111/j.1365-2818.1986.tb02693.x
– ident: e_1_3_2_20_2
  doi: 10.1038/nature05379
– reference: 18769709 - PLoS Pathog. 2008;4(8):e1000136
– reference: 8742718 - J Struct Biol. 1996 Jan-Feb;116(1):17-24
– reference: 19374019 - J Struct Biol. 2009 May;166(2):205-13
– reference: 3514918 - J Microsc. 1986 Jan;141(Pt 1):RP1-2
– reference: 17851070 - Curr Opin Struct Biol. 2007 Oct;17(5):556-61
– reference: 12464184 - Cell. 2002 Nov 27;111(5):733-45
– reference: 22075989 - Nucleic Acids Res. 2012 Mar;40(5):2197-209
– reference: 18454157 - Nat Struct Mol Biol. 2008 May;15(5):500-6
– reference: 18988020 - Methods Mol Biol. 2009;498:91-103
– reference: 20702645 - J Virol. 2010 Oct;84(20):10477-87
– reference: 19194458 - Nature. 2009 Apr 16;458(7240):909-13
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 8742743 - J Struct Biol. 1996 Jan-Feb;116(1):190-9
– reference: 19225007 - J Virol. 2009 May;83(9):4153-62
– reference: 4117350 - J Virol. 1972 Oct;10(4):795-800
– reference: 15808859 - J Mol Biol. 2005 Apr 22;348(1):139-49
– reference: 21149969 - Phys Biol. 2010;7(4):045004
– reference: 17151603 - Nature. 2006 Dec 21;444(7122):1078-82
– reference: 10590102 - J Virol. 2000 Jan;74(1):156-63
– reference: 22273677 - Nat Commun. 2012;3:639
– reference: 19955561 - J Gen Virol. 2010 Feb;91(Pt 2):313-28
– reference: 20061134 - Curr Opin Struct Biol. 2010 Feb;20(1):104-13
– reference: 17270230 - Virology. 2007 Jun 5;362(2):271-82
– reference: 21930946 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16515-20
– reference: 2033659 - J Virol. 1991 Jun;65(6):2861-7
– reference: 16204112 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii243-4
– reference: 18692771 - Cell Host Microbe. 2008 Aug 14;4(2):111-22
– reference: 20978208 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20069-74
– reference: 19525932 - Nature. 2009 Jun 18;459(7249):931-9
– reference: 15065677 - J Struct Biol. 2004 Jan-Feb;145(1-2):91-9
– reference: 6247510 - J Virol. 1980 Jun;34(3):764-71
– reference: 21964395 - Methods. 2011 Dec;55(4):350-62
– reference: 18614582 - FASEB J. 2008 Oct;22(10):3638-47
– reference: 16339318 - Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18590-5
– reference: 18615018 - Nature. 2008 Aug 28;454(7208):1123-6
– reference: 8039508 - EMBO J. 1994 Jul 1;13(13):3158-65
– reference: 19557158 - PLoS Pathog. 2009 Jun;5(6):e1000491
– reference: 23180772 - Science. 2012 Dec 21;338(6114):1545-6
– reference: 18053252 - Virol J. 2007;4:134
– reference: 10801978 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13
– reference: 15890530 - J Struct Biol. 2005 Jul;151(1):41-60
– reference: 15477099 - J Struct Biol. 2004 Nov;148(2):194-204
– reference: 9049350 - J Gen Virol. 1995 Apr;76 ( Pt 4):1009-14
– reference: 19263523 - J Struct Biol. 2009 Apr;166(1):95-102
– reference: 19478885 - PLoS Pathog. 2009 May;5(5):e1000462
– reference: 19019950 - J Virol. 2009 Feb;83(3):1320-31
– reference: 17976646 - J Mol Biol. 2007 Dec 7;374(4):910-6
– reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47
– reference: 11546875 - Science. 2001 Sep 7;293(5536):1840-2
– reference: 18536645 - Nat Protoc. 2008;3(6):977-90
– reference: 17517766 - Nucleic Acids Res. 2007;35(11):3774-83
– reference: 21251302 - Virol J. 2011;8:29
SSID ssj0009593
Score 2.509871
Snippet Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in adaptation to new host species. RNPs are composed of the viral...
Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza ribonucleoprotein (RNP) complex,...
Influenza RevealedInfluenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza...
Influenza Revealed Influenza virus, a single-stranded RNA virus, is responsible for substantial morbidity and mortality worldwide. The influenza...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1631
SubjectTerms Active sites
Assembly
Biological and medical sciences
cryo-electron microscopy
Cryoelectron Microscopy
Crystallography, X-Ray
Electron microscopy
genome
Genome, Viral
Genomes
Genomics
Image Processing, Computer-Assisted
Influenza
Influenza A virus
Influenza A Virus, H1N1 Subtype - chemistry
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - physiology
Influenza A Virus, H1N1 Subtype - ultrastructure
Influenza virus
Medical sciences
Microscopy
Microscopy, Electron
Models, Molecular
morbidity
Mortality
Nucleic Acid Conformation
Nucleoproteins
Online
Orthomyxoviridae
Pharmacology. Drug treatments
Protein Conformation
Protein Subunits - chemistry
Protein Subunits - metabolism
Replication
Ribonucleic acids
ribonucleoproteins
Ribonucleoproteins - chemistry
Ribonucleoproteins - genetics
Ribonucleoproteins - metabolism
Ribonucleoproteins - ultrastructure
RNA
RNA polymerase
RNA Replicase - chemistry
RNA Replicase - metabolism
RNA Replicase - ultrastructure
RNA, Viral - chemistry
RNA, Viral - metabolism
RNA, Viral - ultrastructure
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
RNA-Binding Proteins - ultrastructure
RNA-protein interactions
transcription (genetics)
Transcription, Genetic
Viral Core Proteins - chemistry
Viral Core Proteins - metabolism
Viral Core Proteins - ultrastructure
Viral genomes
Viral morphology
Viral Proteins - chemistry
Viral Proteins - metabolism
Viral Proteins - ultrastructure
Virions
Virology
Virus Replication
Viruses
Title Organization of the Influenza Virus Replication Machinery
URI https://www.jstor.org/stable/23333712
https://www.ncbi.nlm.nih.gov/pubmed/23180774
https://www.proquest.com/docview/1242080772
https://www.proquest.com/docview/1273201789
https://www.proquest.com/docview/1551628455
https://www.proquest.com/docview/1642320425
https://www.proquest.com/docview/2000383586
https://pubmed.ncbi.nlm.nih.gov/PMC3578580
Volume 338
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELagExIviA0GHWMKEg9DKFXspI772I5VA8bgoUV9i2LH2SqhBqXpw_bruUsc10XtNOhD1CYXN8l9ts-5u-8IeS8CxSUYxr5E4tZIKOUjJYovwixnaaZjqmu2zyt-MY2-zPozx2OK2SWV7Km7rXkl_6NV2Ad6xSzZf9CsbRR2wHfQL2xBw7B9kI7dRMrW2f-5qTpyl378OS9XmAViPdRYZegGk_02XLlt7wZT07pvHKXZOMRhEy3QBg-Y05w3Cd8K3eYVDsu1t_7rHANRC13m2onlXruAfhSVKQ6C3mRk-bD26Vlalum1QdWoTi2r3NcUtK6Y0uQ-t0OvYT52h94wFA7GOKWRM5aCpUideRl-RtvHfKdKpe5RxsAkC9bTW-vSv_qejKeXl8nkfDZ5TPYYLCtYh-wNR59G4500zYYMykmzav9gw45pQlkxrjZdQtfKm5oo2xYtf8feOsbM5Dl5ZlYh3rCB1D55pBcH5ElTl_T2gOwb5S69U0NL_uEFGbho84rcA1B4Fm1ejTbPQZtn0faSTMfnk7ML3xTe8BUMx5UvgwFYLzLKgkzlSAYgWCYjnlMmJazHlaBUSp7nWcSpDmUMq2xBNeWDlOcKbdJD0lkUC_2aeIoPFIbYpAFNYbqIZSxUGKZZBI3wSERd0msfY6IMKz0WR_mV1KtTxhPz3BPz3Lvk1J7wuyFk2S16WOvFyrEQPjFlXXKyoai1AAfbgMVwVcet5hLT35fQKoaiBICbLnlnD8NojC62dKGLFcrEIaA_FoN7ZNA3DVZhv3-PDMcACpxQd8uw2q0f9gXvklcNqJw7pXilcCPxBtysALLKbx5ZzG9qdvma_koERw-4tjfk6bqrH5NOVa70W7DRK3liOtYfEz7pDw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organization+of+the+Influenza+Virus+Replication+Machinery&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Moeller%2C+Arne&rft.au=Kirchdoerfer%2C+Robert+N&rft.au=Potter%2C+Clinton+S&rft.au=Carragher%2C+Bridget&rft.date=2012-12-21&rft.issn=0036-8075&rft.volume=338&rft.issue=6114&rft.spage=1631&rft.epage=1634&rft_id=info:doi/10.1126%2Fscience.1227270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon