Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement

Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference. To tackle these limitations, we propose a process for cr...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical imaging (Bellingham, Wash.) Vol. 11; no. 6; p. 064004
Main Authors Lee, Ho Hin, Saunders, Adam M., Kim, Michael E., Remedios, Samuel W., Remedios, Lucas W., Tang, Yucheng, Yang, Qi, Yu, Xin, Bao, Shunxing, Cho, Chloe, Mawn, Louise A., Rex, Tonia S., Schey, Kevin L., Dewey, Blake E., Spraggins, Jeffrey M., Prince, Jerry L., Huo, Yuankai, Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.11.2024
SPIE
Subjects
Online AccessGet full text
ISSN2329-4302
2329-4310
DOI10.1117/1.JMI.11.6.064004

Cover

Abstract Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference. To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments. When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process. By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.
AbstractList Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.PurposeEye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.ApproachTo tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.ResultsWhen refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.ConclusionsBy combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.
Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference. To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments. When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process. By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.
Audience Academic
Author Yu, Xin
Schey, Kevin L.
Saunders, Adam M.
Dewey, Blake E.
Rex, Tonia S.
Cho, Chloe
Landman, Bennett A.
Remedios, Samuel W.
Huo, Yuankai
Kim, Michael E.
Lee, Ho Hin
Yang, Qi
Remedios, Lucas W.
Bao, Shunxing
Mawn, Louise A.
Spraggins, Jeffrey M.
Prince, Jerry L.
Tang, Yucheng
Author_xml – sequence: 1
  givenname: Ho Hin
  orcidid: 0000-0002-7378-2379
  surname: Lee
  fullname: Lee, Ho Hin
  email: ho.hin.lee@vanderbilt.edu
  organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
– sequence: 2
  givenname: Adam M.
  orcidid: 0000-0003-2912-9759
  surname: Saunders
  fullname: Saunders, Adam M.
  email: adam.m.saunders@vanderbilt.edu
  organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
– sequence: 3
  givenname: Michael E.
  orcidid: 0009-0006-3562-2688
  surname: Kim
  fullname: Kim, Michael E.
  email: michael.kim@vanderbilt.edu
  organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
– sequence: 4
  givenname: Samuel W.
  surname: Remedios
  fullname: Remedios, Samuel W.
  email: samuel.remedios@jhu.edu
  organization: Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States
– sequence: 5
  givenname: Lucas W.
  surname: Remedios
  fullname: Remedios, Lucas W.
  email: lucas.w.remedios@vanderbilt.edu
  organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
– sequence: 6
  givenname: Yucheng
  orcidid: 0000-0002-6008-9700
  surname: Tang
  fullname: Tang, Yucheng
  email: yucheng.tang@vanderbilt.edu
  organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
– sequence: 7
  givenname: Qi
  orcidid: 0000-0003-0530-0515
  surname: Yang
  fullname: Yang, Qi
  email: qi.yang@vanderbilt.edu
  organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
– sequence: 8
  givenname: Xin
  orcidid: 0000-0002-3388-9606
  surname: Yu
  fullname: Yu, Xin
  email: xin.yu@vanderbilt.edu
  organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
– sequence: 9
  givenname: Shunxing
  orcidid: 0000-0001-6376-4292
  surname: Bao
  fullname: Bao, Shunxing
  email: shunxing.bao@vanderbilt.edu
  organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
– sequence: 10
  givenname: Chloe
  orcidid: 0000-0001-5114-001X
  surname: Cho
  fullname: Cho, Chloe
  email: chloe.cho@Vanderbilt.Edu
  organization: Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
– sequence: 11
  givenname: Louise A.
  surname: Mawn
  fullname: Mawn, Louise A.
  email: louise.a.mawn@vumc.org
  organization: Vanderbilt University Medical Center, Department of Ophthalmology and Visual Sciences, Nashville, Tennessee, United States
– sequence: 12
  givenname: Tonia S.
  surname: Rex
  fullname: Rex, Tonia S.
  email: tonia.rex@vumc.org
  organization: Vanderbilt University Medical Center, Department of Ophthalmology and Visual Sciences, Nashville, Tennessee, United States
– sequence: 13
  givenname: Kevin L.
  surname: Schey
  fullname: Schey, Kevin L.
  email: k.schey@Vanderbilt.Edu
  organization: Vanderbilt University, Department of Biochemistry, Nashville, Tennessee, United States
– sequence: 14
  givenname: Blake E.
  surname: Dewey
  fullname: Dewey, Blake E.
  email: blake.dewey@jhu.edu
  organization: Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
– sequence: 15
  givenname: Jeffrey M.
  orcidid: 0000-0001-9198-5498
  surname: Spraggins
  fullname: Spraggins, Jeffrey M.
  email: jeff.spraggins@Vanderbilt.Edu
  organization: Vanderbilt University, Department of Cell and Developmental Biology, Nashville, Tennessee, United States
– sequence: 16
  givenname: Jerry L.
  orcidid: 0000-0002-6553-0876
  surname: Prince
  fullname: Prince, Jerry L.
  email: prince@jhu.edu
  organization: Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
– sequence: 17
  givenname: Yuankai
  orcidid: 0000-0002-2096-8065
  surname: Huo
  fullname: Huo, Yuankai
  email: yuankai.huo@vanderbilt.edu
  organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
– sequence: 18
  givenname: Bennett A.
  orcidid: 0000-0001-5733-2127
  surname: Landman
  fullname: Landman, Bennett A.
  email: bennett.landman@vanderbilt.edu
  organization: Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39554509$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNUREvpD-CCInHhkuCPOImPpbBQtBVIgOBmeZ1xcevYwXZA5dfjVUoRaFUqHzyynpl5Z14_LPacd1AUjzGqMcbdc1y_PTvNYd3WqG0Qau4VB4QSXjUUo72bGJH94ijGC4QQxogR3Dwo9ilnrGGIHxSfP8wThCpA9HZOxrtynG0ylfIuBRlTObuNkRGGEq6glMnmOJY_TPpaDgBTOQW_kRtjTUxGlQG0cTCCS4-K-1raCEfX92HxafXq48mbav3u9enJ8bpSLe1TJbXuOWWMS8I6jTvVEUzVkIUq2QDLgxLS9FpR0rSIdRxkS7FWDUGsb1u-oYfFs6VuFvJthpjEaKICa6UDP0dBMeFt31NMM_p0Qc-lBWGc9nlCtcXFcZ-X1XHedZmqdlDn4CBImx3QJj__xdc7-HwGGI3amfDkWvG8GWEQUzCjDFfitycZwAuggo8xr_QGwUhsrRdYZOtzKFqxWP9HRZwMiAs_B5e3fmuC2ZWwxb57u6AvpLr8craWbnj_ciV-munfKncgpkHnXpf_7bUK-cPdXuoOyLbbL0Wx814
Cites_doi https://doi.org/10.1016/j.compbiomed.2022.105555
https://doi.org/10.1364/BOE.428430
https://doi.org/10.3389/fninf.2017.00001
https://doi.org/10.1097/00001665-199807000-00011
https://doi.org/10.1016/j.bspc.2021.102976
https://doi.org/10.1117/12.2580561
https://doi.org/10.1007/978-3-319-47118-1_8
https://doi.org/10.1038/s41592-023-02151-z
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1007/978-3-031-43993-3_17
https://doi.org/10.1016/j.neuroimage.2010.10.019
https://doi.org/10.1007/978-3-031-44689-4_12
https://doi.org/10.1167/iovs.04-0292
https://doi.org/10.1117/12.2653753
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1136/bjophthalmol-2019-315020
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1093/cercor/bhh165
https://doi.org/10.1038/s41598-017-00525-w
https://doi.org/10.1117/12.2608290
https://doi.org/10.3980/j.issn.2222-3959.2015.06.30
https://doi.org/10.1016/j.radonc.2021.05.013
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1117/1.JMI.1.2.024003
https://doi.org/10.1038/s41598-017-16173-z
https://doi.org/10.1016/j.media.2005.03.002
https://doi.org/10.1038/s41597-020-0379-9
https://doi.org/10.1097/SCS.0000000000007014
https://doi.org/10.1109/TMI.2016.2587628
https://doi.org/10.1177/1971400916648338
https://doi.org/10.1109/TMI.2020.3037187
https://doi.org/10.1016/j.cell.2020.04.007
https://doi.org/10.1016/j.media.2019.07.006
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1038/s41556-023-01194-w
https://doi.org/10.1016/j.neuroimage.2009.09.062
https://doi.org/10.1109/42.796284
https://doi.org/10.1155/2014/503645
https://doi.org/10.1016/j.neuroimage.2008.10.040
10.1016/j.radonc.2021.05.013
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2010.10.019
10.1109/ISBI53787.2023.10230678
10.1155/2014/503645
10.1038/s41592-023-02151-z
10.1136/bjophthalmol-2019-315020
10.1109/TMI.2020.3037187
10.1117/12.2653753
10.1109/TMI.2016.2587628
10.1016/j.neuroimage.2008.10.040
10.1097/SCS.0000000000007014
10.1109/CVPR.2018.00964
10.1016/j.neuroimage.2009.09.062
10.1038/s41556-023-01194-w
10.1117/1.JMI.1.2.024003
10.1016/j.neuroimage.2010.09.025
10.3389/fninf.2017.00001
10.1016/j.bspc.2021.102976
10.1007/978-3-031-44689-4_12
10.1177/1971400916648338
10.1007/978-3-319-47118-1_8
10.1109/BHI50953.2021.9508553
10.1016/j.neuroimage.2007.07.007
10.1371/journal.pone.0018746
10.1016/j.media.2019.07.006
10.1364/BOE.428430
10.1109/ICCV.2019.01070
10.3389/fninf.2014.00044
10.1038/s41598-017-00525-w
10.3980/j.issn.2222-3959.2015.06.30
10.1016/j.compbiomed.2022.105555
10.1109/42.796284
10.1117/12.2580561
10.1117/12.2608290
10.1093/cercor/bhh165
10.1109/TMI.2019.2897538
10.1038/s41597-020-0379-9
10.1167/iovs.04-0292
10.1016/j.media.2005.03.002
10.1016/j.cell.2020.04.007
10.1007/978-3-031-43993-3_17
10.1038/s41598-017-16173-z
10.1097/00001665-199807000-00011
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
2024 The Authors.
COPYRIGHT 2024 SPIE
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
– notice: 2024 The Authors.
– notice: COPYRIGHT 2024 SPIE
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1117/1.JMI.11.6.064004
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2329-4310
EndPage 064004
ExternalDocumentID A832979977
39554509
10_1117_1_JMI_11_6_064004
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DGE-1746891; 1452485
– fundername: National Institutes of Health
  grantid: U54 DK134302; U54 EY032442; 2R01EB006136; 1R01EB017230; R01DK135597; R01NS09529; T32GM007347; ULTR000445; T32 DK101003; 5UL1TR002243-03
GroupedDBID 0R~
4.4
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
EBS
FQ0
M4X
O9-
OK1
RPM
SPBNH
AAYXX
AKROS
CITATION
EJD
HYE
NPM
7X8
ID FETCH-LOGICAL-c638t-aff893559a257f17c7213cd105ca4e51112248fc32460579ea631fc42058669b3
ISSN 2329-4302
IngestDate Fri Jul 11 04:09:08 EDT 2025
Tue Jun 17 21:58:04 EDT 2025
Thu Jun 12 23:57:15 EDT 2025
Tue Jun 10 21:00:03 EDT 2025
Thu Jul 10 06:24:05 EDT 2025
Tue Jul 01 02:16:02 EDT 2025
Wed Jan 08 02:15:15 EST 2025
Thu Mar 06 22:58:56 EST 2025
Thu Mar 06 23:00:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
medical image registration
multi-contrast imaging
super-resolution
unbiased eye atlas
Language English
License 2024 The Authors.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c638t-aff893559a257f17c7213cd105ca4e51112248fc32460579ea631fc42058669b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5733-2127
0000-0003-2912-9759
0000-0002-6008-9700
0000-0002-7378-2379
0000-0001-9198-5498
0000-0003-0530-0515
0000-0001-6376-4292
0000-0002-2096-8065
0000-0001-5114-001X
0000-0002-3388-9606
0009-0006-3562-2688
0000-0002-6553-0876
OpenAccessLink http://www.dx.doi.org/10.1117/1.JMI.11.6.064004
PMID 39554509
PQID 3129688313
PQPubID 23479
PageCount 1
ParticipantIDs gale_infotracgeneralonefile_A832979977
gale_infotracacademiconefile_A832979977
spie_journals_10_1117_1_JMI_11_6_064004
gale_infotracmisc_A832979977
crossref_primary_10_1117_1_JMI_11_6_064004
proquest_miscellaneous_3129688313
pubmed_primary_39554509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of medical imaging (Bellingham, Wash.)
PublicationTitleAlternate J. Med. Imag
PublicationYear 2024
Publisher Society of Photo-Optical Instrumentation Engineers
SPIE
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
– name: SPIE
References Tan, B. 2021; 12
Lee, H. H. 2021; 11596
Dalca, A. V. 2019; 57
di Yang, S. 2021; 70
Shi, F. 2011; 6
Rueckert, D. 1999; 18
Avants, B. B. 2014; 8
Avants, B. B. 2010; 49
Kim, D. H.; Jun, J.-S.; Kim, R. 2017; 7
Rajashekar, D. 2020; 7
Atchison, D. A. 2004; 45
Ashburner, J. 2007; 38
Bekerman, I.; Gottlieb, P.; Vaiman, M. 2014; 2014
Wang, Q. 2020; 181
Lee, H. H. 2023; 12464
Zhao, C. 2021; 40
Kovačević, N. 2005; 15
Remedios, S. W. 2023; 14288
Avants, B. B. 2008; 12
Dickie, D. A. 2017; 11
Balakrishnan, G. 2019; 38
Avants, B. B. 2011; 54
Lee, H. H. 2022; 146
Lim, L. S. 2019; 104
Aseem, R. 2021; 32
Jain, S. 2023; 25
Dean, D. 1998; 9
Modat, M. 2014; 1
Vaiman, M.; Abuita, R.; Bekerman, I. 2015; 8
Dalca, A. V. 2016; 9993
Vercauteren, T. 2009; 45
Eekers, D. B. P. 2021; 160
Nowinski, W. L. 2016; 29
Gholipour, A. 2017; 7
Lee, H. H. 2022; 12032
Kuklisova-Murgasova, M. 2011; 54
McGinnis, J. 2023; 14277
Zhang, Y. 2016; 35
Lorenzen, P. 2006; 10
Maier-Hein, L. 2024; 21
r2
r3
r4
r5
r6
r7
r8
r9
r30
r10
r32
r31
r12
r34
r11
r33
r14
r36
r13
r35
r16
r38
r15
r37
r18
r17
r39
r19
r41
r40
r21
r43
r20
Kingma (r42) 2014
r23
r45
r22
r44
r25
r24
r27
r26
r29
r28
r1
References_xml – volume: 146
  start-page: 105555
  issn: 0010-4825
  year: 2022
  article-title: Multi-contrast computed tomography healthy kidney atlas
  publication-title: Comput. Biol. Med.
  doi: https://doi.org/10.1016/j.compbiomed.2022.105555
– volume: 12
  start-page: 5770
  issn: 2156-7085
  issue: 9
  year: 2021
  article-title: Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT)
  publication-title: Biomed. Opt. Express
  doi: https://doi.org/10.1364/BOE.428430
– volume: 11
  start-page: 1
  year: 2017
  article-title: Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging
  publication-title: Front. Neuroinf.
  doi: https://doi.org/10.3389/fninf.2017.00001
– volume: 9
  start-page: 348
  issue: 4
  year: 1998
  end-page: 358
  article-title: Average African American three-dimensional computed tomography skull images
  publication-title: J. Craniofac. Surg.
  doi: https://doi.org/10.1097/00001665-199807000-00011
– volume: 70
  start-page: 102976
  year: 2021
  article-title: Target organ non-rigid registration on abdominal CT images via deep-learning based detection
  publication-title: Biomed. Signal Process. Control
  doi: https://doi.org/10.1016/j.bspc.2021.102976
– volume: 11596
  start-page: 115961T
  issn: 0277-786X
  year: 2021
  article-title: Construction of a multi-phase contrast computed tomography kidney atlas
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.2580561
– volume: 9993
  start-page: 60
  year: 2016
  end-page: 67
  article-title: Patch-based discrete registration of clinical brain images
  publication-title: Patch Based Tech. Med. Imaging
  doi: https://doi.org/10.1007/978-3-319-47118-1_8
– volume: 21
  start-page: 195
  issn: 1548-7091
  issue: 2
  year: 2024
  end-page: 212
  article-title: Metrics reloaded: recommendations for image analysis validation
  publication-title: Nat. Methods
  doi: https://doi.org/10.1038/s41592-023-02151-z
– volume: 38
  start-page: 1788
  issn: 0278-0062
  issue: 8
  year: 2019
  end-page: 1800
  article-title: VoxelMorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: https://doi.org/10.1109/TMI.2019.2897538
– volume: 14277
  start-page: 173
  issn: 0302-9743
  year: 2023
  end-page: 183
  article-title: Single-subject multi-contrast MRI super-resolution via implicit neural representations
  publication-title: Lect. Notes Comput. Sci.
  doi: https://doi.org/10.1007/978-3-031-43993-3_17
– volume: 54
  start-page: 2750
  issn: 1053-8119
  issue: 4
  year: 2011
  end-page: 2763
  article-title: A dynamic 4D probabilistic atlas of the developing brain
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2010.10.019
– volume: 14288
  start-page: 118
  issn: 0302-9743
  year: 2023
  end-page: 128
  article-title: Self-supervised super-resolution for anisotropic MR images with and without slice gap
  publication-title: Lect. Notes Comput. Sci.
  doi: https://doi.org/10.1007/978-3-031-44689-4_12
– volume: 45
  start-page: 3380
  issue: 10
  year: 2004
  article-title: Eye shape in emmetropia and myopia
  publication-title: Investig. Opthalmol. Vis. Sci.
  doi: https://doi.org/10.1167/iovs.04-0292
– volume: 12464
  start-page: 1246422
  issn: 0277-786X
  year: 2023
  article-title: Unsupervised registration refinement for generating unbiased eye atlas
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.2653753
– volume: 38
  start-page: 95
  issn: 1053-8119
  issue: 1
  year: 2007
  end-page: 113
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2007.07.007
– volume: 104
  start-page: 1239
  issn: 0007-1161
  year: 2019
  end-page: 1245
  article-title: MRI of posterior eye shape and its associations with myopia and ethnicity
  publication-title: Br. J. Ophthalmol.
  doi: https://doi.org/10.1136/bjophthalmol-2019-315020
– volume: 54
  start-page: 2033
  issn: 1053-8119
  issue: 3
  year: 2011
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2010.09.025
– volume: 8
  start-page: 44
  year: 2014
  article-title: The Insight ToolKit image registration framework
  publication-title: Front. Neuroinf.
  doi: https://doi.org/10.3389/fninf.2014.00044
– volume: 15
  start-page: 639
  issue: 5
  year: 2005
  end-page: 645
  article-title: A three-dimensional MRI Atlas of the mouse brain with estimates of the average and variability
  publication-title: Cereb. Cortex
  doi: https://doi.org/10.1093/cercor/bhh165
– volume: 7
  start-page: 476
  issn: 2045-2322
  issue: 1
  year: 2017
  article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
  publication-title: Sci. Rep.
  doi: https://doi.org/10.1038/s41598-017-00525-w
– volume: 12032
  start-page: 120322S
  issn: 0277-786X
  year: 2022
  article-title: Supervised deep generation of high-resolution arterial phase computed tomography kidney substructure atlas
  publication-title: Proc. SPIE
  doi: https://doi.org/10.1117/12.2608290
– volume: 8
  start-page: 1240
  issue: 6
  year: 2015
  end-page: 1244
  article-title: Optic nerve sheath diameters in healthy adults measured by computer tomography
  publication-title: Int. J. Ophthalmol.
  doi: https://doi.org/10.3980/j.issn.2222-3959.2015.06.30
– volume: 160
  start-page: 259
  issn: 0167-8140
  year: 2021
  end-page: 265
  article-title: Update of the EPTN atlas for CT- and MR-based contouring in neuro-oncology
  publication-title: Radiother. Oncol.
  doi: https://doi.org/10.1016/j.radonc.2021.05.013
– volume: 6
  start-page: e18746
  issn: 1932-6203
  issue: 4
  year: 2011
  article-title: Infant brain atlases from neonates to 1- and 2-year-olds
  publication-title: PLoS One
  doi: https://doi.org/10.1371/journal.pone.0018746
– volume: 1
  start-page: 024003
  issn: 0920-5497
  issue: 2
  year: 2014
  article-title: Global image registration using a symmetric block-matching approach
  publication-title: J. Med. Imaging
  doi: https://doi.org/10.1117/1.JMI.1.2.024003
– volume: 7
  start-page: 15906
  issn: 2045-2322
  issue: 1
  year: 2017
  article-title: Ultrasonographic measurement of the optic nerve sheath diameter and its association with eyeball transverse diameter in 585 healthy volunteers
  publication-title: Sci. Rep.
  doi: https://doi.org/10.1038/s41598-017-16173-z
– volume: 10
  start-page: 440
  issue: 3
  year: 2006
  end-page: 451
  article-title: Multi-modal image set registration and atlas formation
  publication-title: Med. Image Anal.
  doi: https://doi.org/10.1016/j.media.2005.03.002
– volume: 7
  start-page: 56
  issue: 1
  year: 2020
  article-title: High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly
  publication-title: Sci. Data
  doi: https://doi.org/10.1038/s41597-020-0379-9
– volume: 32
  start-page: 1162
  issue: 3
  year: 2021
  end-page: 1165
  article-title: Positional variation of the infraorbital foramen in Caucasians and black Africans from Britain: surgical relevance and comparison to the existing literature
  publication-title: J. Craniofac. Surg.
  doi: https://doi.org/10.1097/SCS.0000000000007014
– volume: 35
  start-page: 2568
  issn: 0278-0062
  issue: 12
  year: 2016
  end-page: 2577
  article-title: Consistent spatial-temporal longitudinal atlas construction for developing infant brains
  publication-title: IEEE Trans. Med. Imaging
  doi: https://doi.org/10.1109/TMI.2016.2587628
– volume: 29
  start-page: 260
  issue: 4
  year: 2016
  article-title: Usefulness of brain atlases in neuroradiology: current status and future potential
  publication-title: Neuroradiol. J.
  doi: https://doi.org/10.1177/1971400916648338
– volume: 40
  start-page: 805
  issn: 0278-0062
  issue: 3
  year: 2021
  end-page: 817
  article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning
  publication-title: IEEE Trans. Med. Imaging
  doi: https://doi.org/10.1109/TMI.2020.3037187
– volume: 181
  start-page: 936
  issn: 0092-8674
  issue: 4
  year: 2020
  end-page: 953.e20
  article-title: The Allen mouse brain common coordinate framework: a 3D reference atlas
  publication-title: Cell
  doi: https://doi.org/10.1016/j.cell.2020.04.007
– volume: 57
  start-page: 226
  year: 2019
  end-page: 236
  article-title: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces
  publication-title: Med. Image Anal.
  doi: https://doi.org/10.1016/j.media.2019.07.006
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: https://doi.org/10.1016/j.media.2007.06.004
– volume: 25
  start-page: 1089
  issn: 1465-7392
  year: 2023
  end-page: 1100
  article-title: Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP)
  publication-title: Nat. Cell Biol.
  doi: https://doi.org/10.1038/s41556-023-01194-w
– volume: 49
  start-page: 2457
  issn: 1053-8119
  issue: 3
  year: 2010
  article-title: The optimal template effect in hippocampus studies of diseased populations
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2009.09.062
– volume: 18
  start-page: 712
  issn: 0278-0062
  issue: 8
  year: 1999
  end-page: 721
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: https://doi.org/10.1109/42.796284
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 5
  article-title: Variations in eyeball diameters of the healthy adults
  publication-title: J. Ophthalmol.
  doi: https://doi.org/10.1155/2014/503645
– volume: 45
  start-page: S61
  issn: 1053-8119
  issue: 1
  year: 2009
  end-page: S72
  article-title: Diffeomorphic demons: efficient non-parametric image registration
  publication-title: Neuroimage
  doi: https://doi.org/10.1016/j.neuroimage.2008.10.040
– ident: r14
  doi: 10.1016/j.radonc.2021.05.013
– ident: r27
  doi: 10.1016/j.media.2007.06.004
– ident: r20
  doi: 10.1016/j.neuroimage.2010.10.019
– ident: r37
  doi: 10.1109/ISBI53787.2023.10230678
– ident: r8
  doi: 10.1155/2014/503645
– ident: r41
  doi: 10.1038/s41592-023-02151-z
– ident: r2
  doi: 10.1136/bjophthalmol-2019-315020
– ident: r9
  doi: 10.1109/TMI.2020.3037187
– ident: r11
  doi: 10.1117/12.2653753
– ident: r19
  doi: 10.1109/TMI.2016.2587628
– ident: r31
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: r3
  doi: 10.1097/SCS.0000000000007014
– ident: r28
  doi: 10.1109/CVPR.2018.00964
– ident: r40
  doi: 10.1016/j.neuroimage.2009.09.062
– ident: r10
  doi: 10.1038/s41556-023-01194-w
– ident: r39
  doi: 10.1117/1.JMI.1.2.024003
– year: 2014
  ident: r42
  article-title: Adam: a method for stochastic optimization
– ident: r13
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: r43
  doi: 10.3389/fninf.2017.00001
– ident: r34
  doi: 10.1016/j.bspc.2021.102976
– ident: r35
  doi: 10.1007/978-3-031-44689-4_12
– ident: r44
  doi: 10.1177/1971400916648338
– ident: r29
  doi: 10.1007/978-3-319-47118-1_8
– ident: r45
  doi: 10.1109/BHI50953.2021.9508553
– ident: r26
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: r18
  doi: 10.1371/journal.pone.0018746
– ident: r32
  doi: 10.1016/j.media.2019.07.006
– ident: r1
  doi: 10.1364/BOE.428430
– ident: r33
  doi: 10.1109/ICCV.2019.01070
– ident: r38
  doi: 10.3389/fninf.2014.00044
– ident: r21
  doi: 10.1038/s41598-017-00525-w
– ident: r6
  doi: 10.3980/j.issn.2222-3959.2015.06.30
– ident: r24
  doi: 10.1016/j.compbiomed.2022.105555
– ident: r30
  doi: 10.1109/42.796284
– ident: r23
  doi: 10.1117/12.2580561
– ident: r25
  doi: 10.1117/12.2608290
– ident: r16
  doi: 10.1093/cercor/bhh165
– ident: r12
  doi: 10.1109/TMI.2019.2897538
– ident: r22
  doi: 10.1038/s41597-020-0379-9
– ident: r7
  doi: 10.1167/iovs.04-0292
– ident: r15
  doi: 10.1016/j.media.2005.03.002
– ident: r17
  doi: 10.1016/j.cell.2020.04.007
– ident: r36
  doi: 10.1007/978-3-031-43993-3_17
– ident: r5
  doi: 10.1038/s41598-017-16173-z
– ident: r4
  doi: 10.1097/00001665-199807000-00011
SSID ssj0001105214
Score 2.2748976
Snippet Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of...
SourceID proquest
gale
pubmed
crossref
spie
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 064004
SubjectTerms Bibliography
CT imaging
Medical imaging equipment
Title Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement
URI http://www.dx.doi.org/10.1117/1.JMI.11.6.064004
https://www.ncbi.nlm.nih.gov/pubmed/39554509
https://www.proquest.com/docview/3129688313
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyFeEN8UBgoSAokqXfNRO3ksbFU3rQjRTeubcfyBKtQ0WpMH9tdzjt0m6UZVeKnS-JpL_Ltefrbvzgi992Qo4gEMSxQR2A1ZIt04ioVL-lJhP4k4VzpRePIVjy_Ds9lg1mr9qEUtFXnS4zd35pX8D6pwDnDVWbL_gOzmonACjgFf-ASE4XMvjKdFJq9dGDBbLSY80C3Dz9kq7xZpMoe3lOjK37LLciDK0mazCSkzHZuVlAV2V6aQswLGuQmEuU1YF3ZNZ74wOxsBN9XZPXBoc631xky92tSCDfIZL7vj-cYGp6wo82lKpyTYopqOtRs720D-KkXiu9SaTTjglC0KaLuqT1b4oc3aq0I8Tk8qBwdkLnbDoN_0xl7N6vBfnHxZJqB3NjmFLz3c06uRZhPjrdrZQ_BXet2SkHvowCdEL-QfDI8n59NqHs7T6cthuQehvR27-A1qjm4padCX7Zd4jcW0V9lc1pjKxSP00CLmDI29PEYtmT5B9yc2iOIputo2G6dpNs7abBwwG8eajaPNxtFm4zTMxqnM5hm6HJ1cfBm7dn8Nl4PXzV2mVKTL68cM_LbyCCe-F3ABHcJZKIGJ61XXSHHg3FjnLEuGA0_x0O8PIozjJHiO2ukylS-RI4B2Y9IXfjKAt4LiCRBDIrEfEhgO4CDpoE_rbqOZKaNCzfCTUI9CH8MhxdT0cQd91B1LNejw3JzZTBFQpYuV0QrVDvrQkPxpSrXfJXjYEAQfyhvN79YYUt2kAw9TuSxWNAA-jKMo8IIOemHA3TxAEAMXB8IN96vRptYzrHY9WdKU1O1g-EbmM-O_ZpNzlopvxyN6M8-2f76HRCZUB4kdSka6Lsrua-whAmpe7Y3Sa_Sg8gWHqJ1fF_INUPk8eWv_jX8AUQfvNw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+multi-contrast+unbiased+eye+atlases+with+deep+probabilistic+refinement&rft.jtitle=Journal+of+medical+imaging+%28Bellingham%2C+Wash.%29&rft.au=Lee%2C+Ho+Hin&rft.au=Saunders%2C+Adam+M&rft.au=Kim%2C+Michael+E&rft.au=Remedios%2C+Samuel+W&rft.date=2024-11-01&rft.pub=SPIE&rft.issn=2329-4302&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1117%2F1.JMI.11.6.064004&rft.externalDocID=A832979977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-4302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-4302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-4302&client=summon