Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement
Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference. To tackle these limitations, we propose a process for cr...
Saved in:
Published in | Journal of medical imaging (Bellingham, Wash.) Vol. 11; no. 6; p. 064004 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society of Photo-Optical Instrumentation Engineers
01.11.2024
SPIE |
Subjects | |
Online Access | Get full text |
ISSN | 2329-4302 2329-4310 |
DOI | 10.1117/1.JMI.11.6.064004 |
Cover
Abstract | Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.
To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.
When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.
By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population. |
---|---|
AbstractList | Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.PurposeEye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference.To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.ApproachTo tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments.When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.ResultsWhen refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process.By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population.ConclusionsBy combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population. Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of generalizing population-wise features of eye organs to an unbiased spatial reference. To tackle these limitations, we propose a process for creating high-resolution unbiased eye atlases. First, to restore spatial details from scans with a low through-plane resolution compared with a high in-plane resolution, we apply a deep learning-based super-resolution algorithm. Then, we generate an initial unbiased reference with an iterative metric-based registration using a small portion of subject scans. We register the remaining scans to this template and refine the template using an unsupervised deep probabilistic approach that generates a more expansive deformation field to enhance the organ boundary alignment. We demonstrate this framework using magnetic resonance images across four different tissue contrasts, generating four atlases in separate spatial alignments. When refining the template with sufficient subjects, we find a significant improvement using the Wilcoxon signed-rank test in the average Dice score across four labeled regions compared with a standard registration framework consisting of rigid, affine, and deformable transformations. These results highlight the effective alignment of eye organs and boundaries using our proposed process. By combining super-resolution preprocessing and deep probabilistic models, we address the challenge of generating an eye atlas to serve as a standardized reference across a largely variable population. |
Audience | Academic |
Author | Yu, Xin Schey, Kevin L. Saunders, Adam M. Dewey, Blake E. Rex, Tonia S. Cho, Chloe Landman, Bennett A. Remedios, Samuel W. Huo, Yuankai Kim, Michael E. Lee, Ho Hin Yang, Qi Remedios, Lucas W. Bao, Shunxing Mawn, Louise A. Spraggins, Jeffrey M. Prince, Jerry L. Tang, Yucheng |
Author_xml | – sequence: 1 givenname: Ho Hin orcidid: 0000-0002-7378-2379 surname: Lee fullname: Lee, Ho Hin email: ho.hin.lee@vanderbilt.edu organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States – sequence: 2 givenname: Adam M. orcidid: 0000-0003-2912-9759 surname: Saunders fullname: Saunders, Adam M. email: adam.m.saunders@vanderbilt.edu organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States – sequence: 3 givenname: Michael E. orcidid: 0009-0006-3562-2688 surname: Kim fullname: Kim, Michael E. email: michael.kim@vanderbilt.edu organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States – sequence: 4 givenname: Samuel W. surname: Remedios fullname: Remedios, Samuel W. email: samuel.remedios@jhu.edu organization: Johns Hopkins University, Department of Computer Science, Baltimore, Maryland, United States – sequence: 5 givenname: Lucas W. surname: Remedios fullname: Remedios, Lucas W. email: lucas.w.remedios@vanderbilt.edu organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States – sequence: 6 givenname: Yucheng orcidid: 0000-0002-6008-9700 surname: Tang fullname: Tang, Yucheng email: yucheng.tang@vanderbilt.edu organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States – sequence: 7 givenname: Qi orcidid: 0000-0003-0530-0515 surname: Yang fullname: Yang, Qi email: qi.yang@vanderbilt.edu organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States – sequence: 8 givenname: Xin orcidid: 0000-0002-3388-9606 surname: Yu fullname: Yu, Xin email: xin.yu@vanderbilt.edu organization: Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States – sequence: 9 givenname: Shunxing orcidid: 0000-0001-6376-4292 surname: Bao fullname: Bao, Shunxing email: shunxing.bao@vanderbilt.edu organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States – sequence: 10 givenname: Chloe orcidid: 0000-0001-5114-001X surname: Cho fullname: Cho, Chloe email: chloe.cho@Vanderbilt.Edu organization: Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States – sequence: 11 givenname: Louise A. surname: Mawn fullname: Mawn, Louise A. email: louise.a.mawn@vumc.org organization: Vanderbilt University Medical Center, Department of Ophthalmology and Visual Sciences, Nashville, Tennessee, United States – sequence: 12 givenname: Tonia S. surname: Rex fullname: Rex, Tonia S. email: tonia.rex@vumc.org organization: Vanderbilt University Medical Center, Department of Ophthalmology and Visual Sciences, Nashville, Tennessee, United States – sequence: 13 givenname: Kevin L. surname: Schey fullname: Schey, Kevin L. email: k.schey@Vanderbilt.Edu organization: Vanderbilt University, Department of Biochemistry, Nashville, Tennessee, United States – sequence: 14 givenname: Blake E. surname: Dewey fullname: Dewey, Blake E. email: blake.dewey@jhu.edu organization: Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States – sequence: 15 givenname: Jeffrey M. orcidid: 0000-0001-9198-5498 surname: Spraggins fullname: Spraggins, Jeffrey M. email: jeff.spraggins@Vanderbilt.Edu organization: Vanderbilt University, Department of Cell and Developmental Biology, Nashville, Tennessee, United States – sequence: 16 givenname: Jerry L. orcidid: 0000-0002-6553-0876 surname: Prince fullname: Prince, Jerry L. email: prince@jhu.edu organization: Johns Hopkins University, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States – sequence: 17 givenname: Yuankai orcidid: 0000-0002-2096-8065 surname: Huo fullname: Huo, Yuankai email: yuankai.huo@vanderbilt.edu organization: Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States – sequence: 18 givenname: Bennett A. orcidid: 0000-0001-5733-2127 surname: Landman fullname: Landman, Bennett A. email: bennett.landman@vanderbilt.edu organization: Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39554509$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhiNUREvpD-CCInHhkuCPOImPpbBQtBVIgOBmeZ1xcevYwXZA5dfjVUoRaFUqHzyynpl5Z14_LPacd1AUjzGqMcbdc1y_PTvNYd3WqG0Qau4VB4QSXjUUo72bGJH94ijGC4QQxogR3Dwo9ilnrGGIHxSfP8wThCpA9HZOxrtynG0ylfIuBRlTObuNkRGGEq6glMnmOJY_TPpaDgBTOQW_kRtjTUxGlQG0cTCCS4-K-1raCEfX92HxafXq48mbav3u9enJ8bpSLe1TJbXuOWWMS8I6jTvVEUzVkIUq2QDLgxLS9FpR0rSIdRxkS7FWDUGsb1u-oYfFs6VuFvJthpjEaKICa6UDP0dBMeFt31NMM_p0Qc-lBWGc9nlCtcXFcZ-X1XHedZmqdlDn4CBImx3QJj__xdc7-HwGGI3amfDkWvG8GWEQUzCjDFfitycZwAuggo8xr_QGwUhsrRdYZOtzKFqxWP9HRZwMiAs_B5e3fmuC2ZWwxb57u6AvpLr8craWbnj_ciV-munfKncgpkHnXpf_7bUK-cPdXuoOyLbbL0Wx814 |
Cites_doi | https://doi.org/10.1016/j.compbiomed.2022.105555 https://doi.org/10.1364/BOE.428430 https://doi.org/10.3389/fninf.2017.00001 https://doi.org/10.1097/00001665-199807000-00011 https://doi.org/10.1016/j.bspc.2021.102976 https://doi.org/10.1117/12.2580561 https://doi.org/10.1007/978-3-319-47118-1_8 https://doi.org/10.1038/s41592-023-02151-z https://doi.org/10.1109/TMI.2019.2897538 https://doi.org/10.1007/978-3-031-43993-3_17 https://doi.org/10.1016/j.neuroimage.2010.10.019 https://doi.org/10.1007/978-3-031-44689-4_12 https://doi.org/10.1167/iovs.04-0292 https://doi.org/10.1117/12.2653753 https://doi.org/10.1016/j.neuroimage.2007.07.007 https://doi.org/10.1136/bjophthalmol-2019-315020 https://doi.org/10.1016/j.neuroimage.2010.09.025 https://doi.org/10.3389/fninf.2014.00044 https://doi.org/10.1093/cercor/bhh165 https://doi.org/10.1038/s41598-017-00525-w https://doi.org/10.1117/12.2608290 https://doi.org/10.3980/j.issn.2222-3959.2015.06.30 https://doi.org/10.1016/j.radonc.2021.05.013 https://doi.org/10.1371/journal.pone.0018746 https://doi.org/10.1117/1.JMI.1.2.024003 https://doi.org/10.1038/s41598-017-16173-z https://doi.org/10.1016/j.media.2005.03.002 https://doi.org/10.1038/s41597-020-0379-9 https://doi.org/10.1097/SCS.0000000000007014 https://doi.org/10.1109/TMI.2016.2587628 https://doi.org/10.1177/1971400916648338 https://doi.org/10.1109/TMI.2020.3037187 https://doi.org/10.1016/j.cell.2020.04.007 https://doi.org/10.1016/j.media.2019.07.006 https://doi.org/10.1016/j.media.2007.06.004 https://doi.org/10.1038/s41556-023-01194-w https://doi.org/10.1016/j.neuroimage.2009.09.062 https://doi.org/10.1109/42.796284 https://doi.org/10.1155/2014/503645 https://doi.org/10.1016/j.neuroimage.2008.10.040 10.1016/j.radonc.2021.05.013 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2010.10.019 10.1109/ISBI53787.2023.10230678 10.1155/2014/503645 10.1038/s41592-023-02151-z 10.1136/bjophthalmol-2019-315020 10.1109/TMI.2020.3037187 10.1117/12.2653753 10.1109/TMI.2016.2587628 10.1016/j.neuroimage.2008.10.040 10.1097/SCS.0000000000007014 10.1109/CVPR.2018.00964 10.1016/j.neuroimage.2009.09.062 10.1038/s41556-023-01194-w 10.1117/1.JMI.1.2.024003 10.1016/j.neuroimage.2010.09.025 10.3389/fninf.2017.00001 10.1016/j.bspc.2021.102976 10.1007/978-3-031-44689-4_12 10.1177/1971400916648338 10.1007/978-3-319-47118-1_8 10.1109/BHI50953.2021.9508553 10.1016/j.neuroimage.2007.07.007 10.1371/journal.pone.0018746 10.1016/j.media.2019.07.006 10.1364/BOE.428430 10.1109/ICCV.2019.01070 10.3389/fninf.2014.00044 10.1038/s41598-017-00525-w 10.3980/j.issn.2222-3959.2015.06.30 10.1016/j.compbiomed.2022.105555 10.1109/42.796284 10.1117/12.2580561 10.1117/12.2608290 10.1093/cercor/bhh165 10.1109/TMI.2019.2897538 10.1038/s41597-020-0379-9 10.1167/iovs.04-0292 10.1016/j.media.2005.03.002 10.1016/j.cell.2020.04.007 10.1007/978-3-031-43993-3_17 10.1038/s41598-017-16173-z 10.1097/00001665-199807000-00011 |
ContentType | Journal Article |
Copyright | The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. 2024 The Authors. COPYRIGHT 2024 SPIE |
Copyright_xml | – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. – notice: 2024 The Authors. – notice: COPYRIGHT 2024 SPIE |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1117/1.JMI.11.6.064004 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2329-4310 |
EndPage | 064004 |
ExternalDocumentID | A832979977 39554509 10_1117_1_JMI_11_6_064004 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: DGE-1746891; 1452485 – fundername: National Institutes of Health grantid: U54 DK134302; U54 EY032442; 2R01EB006136; 1R01EB017230; R01DK135597; R01NS09529; T32GM007347; ULTR000445; T32 DK101003; 5UL1TR002243-03 |
GroupedDBID | 0R~ 4.4 ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS EBS FQ0 M4X O9- OK1 RPM SPBNH AAYXX AKROS CITATION EJD HYE NPM 7X8 |
ID | FETCH-LOGICAL-c638t-aff893559a257f17c7213cd105ca4e51112248fc32460579ea631fc42058669b3 |
ISSN | 2329-4302 |
IngestDate | Fri Jul 11 04:09:08 EDT 2025 Tue Jun 17 21:58:04 EDT 2025 Thu Jun 12 23:57:15 EDT 2025 Tue Jun 10 21:00:03 EDT 2025 Thu Jul 10 06:24:05 EDT 2025 Tue Jul 01 02:16:02 EDT 2025 Wed Jan 08 02:15:15 EST 2025 Thu Mar 06 22:58:56 EST 2025 Thu Mar 06 23:00:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning medical image registration multi-contrast imaging super-resolution unbiased eye atlas |
Language | English |
License | 2024 The Authors. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c638t-aff893559a257f17c7213cd105ca4e51112248fc32460579ea631fc42058669b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5733-2127 0000-0003-2912-9759 0000-0002-6008-9700 0000-0002-7378-2379 0000-0001-9198-5498 0000-0003-0530-0515 0000-0001-6376-4292 0000-0002-2096-8065 0000-0001-5114-001X 0000-0002-3388-9606 0009-0006-3562-2688 0000-0002-6553-0876 |
OpenAccessLink | http://www.dx.doi.org/10.1117/1.JMI.11.6.064004 |
PMID | 39554509 |
PQID | 3129688313 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | gale_infotracgeneralonefile_A832979977 gale_infotracacademiconefile_A832979977 spie_journals_10_1117_1_JMI_11_6_064004 gale_infotracmisc_A832979977 crossref_primary_10_1117_1_JMI_11_6_064004 proquest_miscellaneous_3129688313 pubmed_primary_39554509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of medical imaging (Bellingham, Wash.) |
PublicationTitleAlternate | J. Med. Imag |
PublicationYear | 2024 |
Publisher | Society of Photo-Optical Instrumentation Engineers SPIE |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers – name: SPIE |
References | Tan, B. 2021; 12 Lee, H. H. 2021; 11596 Dalca, A. V. 2019; 57 di Yang, S. 2021; 70 Shi, F. 2011; 6 Rueckert, D. 1999; 18 Avants, B. B. 2014; 8 Avants, B. B. 2010; 49 Kim, D. H.; Jun, J.-S.; Kim, R. 2017; 7 Rajashekar, D. 2020; 7 Atchison, D. A. 2004; 45 Ashburner, J. 2007; 38 Bekerman, I.; Gottlieb, P.; Vaiman, M. 2014; 2014 Wang, Q. 2020; 181 Lee, H. H. 2023; 12464 Zhao, C. 2021; 40 Kovačević, N. 2005; 15 Remedios, S. W. 2023; 14288 Avants, B. B. 2008; 12 Dickie, D. A. 2017; 11 Balakrishnan, G. 2019; 38 Avants, B. B. 2011; 54 Lee, H. H. 2022; 146 Lim, L. S. 2019; 104 Aseem, R. 2021; 32 Jain, S. 2023; 25 Dean, D. 1998; 9 Modat, M. 2014; 1 Vaiman, M.; Abuita, R.; Bekerman, I. 2015; 8 Dalca, A. V. 2016; 9993 Vercauteren, T. 2009; 45 Eekers, D. B. P. 2021; 160 Nowinski, W. L. 2016; 29 Gholipour, A. 2017; 7 Lee, H. H. 2022; 12032 Kuklisova-Murgasova, M. 2011; 54 McGinnis, J. 2023; 14277 Zhang, Y. 2016; 35 Lorenzen, P. 2006; 10 Maier-Hein, L. 2024; 21 r2 r3 r4 r5 r6 r7 r8 r9 r30 r10 r32 r31 r12 r34 r11 r33 r14 r36 r13 r35 r16 r38 r15 r37 r18 r17 r39 r19 r41 r40 r21 r43 r20 Kingma (r42) 2014 r23 r45 r22 r44 r25 r24 r27 r26 r29 r28 r1 |
References_xml | – volume: 146 start-page: 105555 issn: 0010-4825 year: 2022 article-title: Multi-contrast computed tomography healthy kidney atlas publication-title: Comput. Biol. Med. doi: https://doi.org/10.1016/j.compbiomed.2022.105555 – volume: 12 start-page: 5770 issn: 2156-7085 issue: 9 year: 2021 article-title: Ultrawide field, distortion-corrected ocular shape estimation with MHz optical coherence tomography (OCT) publication-title: Biomed. Opt. Express doi: https://doi.org/10.1364/BOE.428430 – volume: 11 start-page: 1 year: 2017 article-title: Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging publication-title: Front. Neuroinf. doi: https://doi.org/10.3389/fninf.2017.00001 – volume: 9 start-page: 348 issue: 4 year: 1998 end-page: 358 article-title: Average African American three-dimensional computed tomography skull images publication-title: J. Craniofac. Surg. doi: https://doi.org/10.1097/00001665-199807000-00011 – volume: 70 start-page: 102976 year: 2021 article-title: Target organ non-rigid registration on abdominal CT images via deep-learning based detection publication-title: Biomed. Signal Process. Control doi: https://doi.org/10.1016/j.bspc.2021.102976 – volume: 11596 start-page: 115961T issn: 0277-786X year: 2021 article-title: Construction of a multi-phase contrast computed tomography kidney atlas publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.2580561 – volume: 9993 start-page: 60 year: 2016 end-page: 67 article-title: Patch-based discrete registration of clinical brain images publication-title: Patch Based Tech. Med. Imaging doi: https://doi.org/10.1007/978-3-319-47118-1_8 – volume: 21 start-page: 195 issn: 1548-7091 issue: 2 year: 2024 end-page: 212 article-title: Metrics reloaded: recommendations for image analysis validation publication-title: Nat. Methods doi: https://doi.org/10.1038/s41592-023-02151-z – volume: 38 start-page: 1788 issn: 0278-0062 issue: 8 year: 2019 end-page: 1800 article-title: VoxelMorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imaging doi: https://doi.org/10.1109/TMI.2019.2897538 – volume: 14277 start-page: 173 issn: 0302-9743 year: 2023 end-page: 183 article-title: Single-subject multi-contrast MRI super-resolution via implicit neural representations publication-title: Lect. Notes Comput. Sci. doi: https://doi.org/10.1007/978-3-031-43993-3_17 – volume: 54 start-page: 2750 issn: 1053-8119 issue: 4 year: 2011 end-page: 2763 article-title: A dynamic 4D probabilistic atlas of the developing brain publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2010.10.019 – volume: 14288 start-page: 118 issn: 0302-9743 year: 2023 end-page: 128 article-title: Self-supervised super-resolution for anisotropic MR images with and without slice gap publication-title: Lect. Notes Comput. Sci. doi: https://doi.org/10.1007/978-3-031-44689-4_12 – volume: 45 start-page: 3380 issue: 10 year: 2004 article-title: Eye shape in emmetropia and myopia publication-title: Investig. Opthalmol. Vis. Sci. doi: https://doi.org/10.1167/iovs.04-0292 – volume: 12464 start-page: 1246422 issn: 0277-786X year: 2023 article-title: Unsupervised registration refinement for generating unbiased eye atlas publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.2653753 – volume: 38 start-page: 95 issn: 1053-8119 issue: 1 year: 2007 end-page: 113 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2007.07.007 – volume: 104 start-page: 1239 issn: 0007-1161 year: 2019 end-page: 1245 article-title: MRI of posterior eye shape and its associations with myopia and ethnicity publication-title: Br. J. Ophthalmol. doi: https://doi.org/10.1136/bjophthalmol-2019-315020 – volume: 54 start-page: 2033 issn: 1053-8119 issue: 3 year: 2011 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2010.09.025 – volume: 8 start-page: 44 year: 2014 article-title: The Insight ToolKit image registration framework publication-title: Front. Neuroinf. doi: https://doi.org/10.3389/fninf.2014.00044 – volume: 15 start-page: 639 issue: 5 year: 2005 end-page: 645 article-title: A three-dimensional MRI Atlas of the mouse brain with estimates of the average and variability publication-title: Cereb. Cortex doi: https://doi.org/10.1093/cercor/bhh165 – volume: 7 start-page: 476 issn: 2045-2322 issue: 1 year: 2017 article-title: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth publication-title: Sci. Rep. doi: https://doi.org/10.1038/s41598-017-00525-w – volume: 12032 start-page: 120322S issn: 0277-786X year: 2022 article-title: Supervised deep generation of high-resolution arterial phase computed tomography kidney substructure atlas publication-title: Proc. SPIE doi: https://doi.org/10.1117/12.2608290 – volume: 8 start-page: 1240 issue: 6 year: 2015 end-page: 1244 article-title: Optic nerve sheath diameters in healthy adults measured by computer tomography publication-title: Int. J. Ophthalmol. doi: https://doi.org/10.3980/j.issn.2222-3959.2015.06.30 – volume: 160 start-page: 259 issn: 0167-8140 year: 2021 end-page: 265 article-title: Update of the EPTN atlas for CT- and MR-based contouring in neuro-oncology publication-title: Radiother. Oncol. doi: https://doi.org/10.1016/j.radonc.2021.05.013 – volume: 6 start-page: e18746 issn: 1932-6203 issue: 4 year: 2011 article-title: Infant brain atlases from neonates to 1- and 2-year-olds publication-title: PLoS One doi: https://doi.org/10.1371/journal.pone.0018746 – volume: 1 start-page: 024003 issn: 0920-5497 issue: 2 year: 2014 article-title: Global image registration using a symmetric block-matching approach publication-title: J. Med. Imaging doi: https://doi.org/10.1117/1.JMI.1.2.024003 – volume: 7 start-page: 15906 issn: 2045-2322 issue: 1 year: 2017 article-title: Ultrasonographic measurement of the optic nerve sheath diameter and its association with eyeball transverse diameter in 585 healthy volunteers publication-title: Sci. Rep. doi: https://doi.org/10.1038/s41598-017-16173-z – volume: 10 start-page: 440 issue: 3 year: 2006 end-page: 451 article-title: Multi-modal image set registration and atlas formation publication-title: Med. Image Anal. doi: https://doi.org/10.1016/j.media.2005.03.002 – volume: 7 start-page: 56 issue: 1 year: 2020 article-title: High-resolution T2-FLAIR and non-contrast CT brain atlas of the elderly publication-title: Sci. Data doi: https://doi.org/10.1038/s41597-020-0379-9 – volume: 32 start-page: 1162 issue: 3 year: 2021 end-page: 1165 article-title: Positional variation of the infraorbital foramen in Caucasians and black Africans from Britain: surgical relevance and comparison to the existing literature publication-title: J. Craniofac. Surg. doi: https://doi.org/10.1097/SCS.0000000000007014 – volume: 35 start-page: 2568 issn: 0278-0062 issue: 12 year: 2016 end-page: 2577 article-title: Consistent spatial-temporal longitudinal atlas construction for developing infant brains publication-title: IEEE Trans. Med. Imaging doi: https://doi.org/10.1109/TMI.2016.2587628 – volume: 29 start-page: 260 issue: 4 year: 2016 article-title: Usefulness of brain atlases in neuroradiology: current status and future potential publication-title: Neuroradiol. J. doi: https://doi.org/10.1177/1971400916648338 – volume: 40 start-page: 805 issn: 0278-0062 issue: 3 year: 2021 end-page: 817 article-title: SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning publication-title: IEEE Trans. Med. Imaging doi: https://doi.org/10.1109/TMI.2020.3037187 – volume: 181 start-page: 936 issn: 0092-8674 issue: 4 year: 2020 end-page: 953.e20 article-title: The Allen mouse brain common coordinate framework: a 3D reference atlas publication-title: Cell doi: https://doi.org/10.1016/j.cell.2020.04.007 – volume: 57 start-page: 226 year: 2019 end-page: 236 article-title: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces publication-title: Med. Image Anal. doi: https://doi.org/10.1016/j.media.2019.07.006 – volume: 12 start-page: 26 issue: 1 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: https://doi.org/10.1016/j.media.2007.06.004 – volume: 25 start-page: 1089 issn: 1465-7392 year: 2023 end-page: 1100 article-title: Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP) publication-title: Nat. Cell Biol. doi: https://doi.org/10.1038/s41556-023-01194-w – volume: 49 start-page: 2457 issn: 1053-8119 issue: 3 year: 2010 article-title: The optimal template effect in hippocampus studies of diseased populations publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2009.09.062 – volume: 18 start-page: 712 issn: 0278-0062 issue: 8 year: 1999 end-page: 721 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: https://doi.org/10.1109/42.796284 – volume: 2014 start-page: 1 year: 2014 end-page: 5 article-title: Variations in eyeball diameters of the healthy adults publication-title: J. Ophthalmol. doi: https://doi.org/10.1155/2014/503645 – volume: 45 start-page: S61 issn: 1053-8119 issue: 1 year: 2009 end-page: S72 article-title: Diffeomorphic demons: efficient non-parametric image registration publication-title: Neuroimage doi: https://doi.org/10.1016/j.neuroimage.2008.10.040 – ident: r14 doi: 10.1016/j.radonc.2021.05.013 – ident: r27 doi: 10.1016/j.media.2007.06.004 – ident: r20 doi: 10.1016/j.neuroimage.2010.10.019 – ident: r37 doi: 10.1109/ISBI53787.2023.10230678 – ident: r8 doi: 10.1155/2014/503645 – ident: r41 doi: 10.1038/s41592-023-02151-z – ident: r2 doi: 10.1136/bjophthalmol-2019-315020 – ident: r9 doi: 10.1109/TMI.2020.3037187 – ident: r11 doi: 10.1117/12.2653753 – ident: r19 doi: 10.1109/TMI.2016.2587628 – ident: r31 doi: 10.1016/j.neuroimage.2008.10.040 – ident: r3 doi: 10.1097/SCS.0000000000007014 – ident: r28 doi: 10.1109/CVPR.2018.00964 – ident: r40 doi: 10.1016/j.neuroimage.2009.09.062 – ident: r10 doi: 10.1038/s41556-023-01194-w – ident: r39 doi: 10.1117/1.JMI.1.2.024003 – year: 2014 ident: r42 article-title: Adam: a method for stochastic optimization – ident: r13 doi: 10.1016/j.neuroimage.2010.09.025 – ident: r43 doi: 10.3389/fninf.2017.00001 – ident: r34 doi: 10.1016/j.bspc.2021.102976 – ident: r35 doi: 10.1007/978-3-031-44689-4_12 – ident: r44 doi: 10.1177/1971400916648338 – ident: r29 doi: 10.1007/978-3-319-47118-1_8 – ident: r45 doi: 10.1109/BHI50953.2021.9508553 – ident: r26 doi: 10.1016/j.neuroimage.2007.07.007 – ident: r18 doi: 10.1371/journal.pone.0018746 – ident: r32 doi: 10.1016/j.media.2019.07.006 – ident: r1 doi: 10.1364/BOE.428430 – ident: r33 doi: 10.1109/ICCV.2019.01070 – ident: r38 doi: 10.3389/fninf.2014.00044 – ident: r21 doi: 10.1038/s41598-017-00525-w – ident: r6 doi: 10.3980/j.issn.2222-3959.2015.06.30 – ident: r24 doi: 10.1016/j.compbiomed.2022.105555 – ident: r30 doi: 10.1109/42.796284 – ident: r23 doi: 10.1117/12.2580561 – ident: r25 doi: 10.1117/12.2608290 – ident: r16 doi: 10.1093/cercor/bhh165 – ident: r12 doi: 10.1109/TMI.2019.2897538 – ident: r22 doi: 10.1038/s41597-020-0379-9 – ident: r7 doi: 10.1167/iovs.04-0292 – ident: r15 doi: 10.1016/j.media.2005.03.002 – ident: r17 doi: 10.1016/j.cell.2020.04.007 – ident: r36 doi: 10.1007/978-3-031-43993-3_17 – ident: r5 doi: 10.1038/s41598-017-16173-z – ident: r4 doi: 10.1097/00001665-199807000-00011 |
SSID | ssj0001105214 |
Score | 2.2748976 |
Snippet | Eye morphology varies significantly across the population, especially for the orbit and optic nerve. These variations limit the feasibility and robustness of... |
SourceID | proquest gale pubmed crossref spie |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 064004 |
SubjectTerms | Bibliography CT imaging Medical imaging equipment |
Title | Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement |
URI | http://www.dx.doi.org/10.1117/1.JMI.11.6.064004 https://www.ncbi.nlm.nih.gov/pubmed/39554509 https://www.proquest.com/docview/3129688313 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyFeEN8UBgoSAokqXfNRO3ksbFU3rQjRTeubcfyBKtQ0WpMH9tdzjt0m6UZVeKnS-JpL_Ltefrbvzgi992Qo4gEMSxQR2A1ZIt04ioVL-lJhP4k4VzpRePIVjy_Ds9lg1mr9qEUtFXnS4zd35pX8D6pwDnDVWbL_gOzmonACjgFf-ASE4XMvjKdFJq9dGDBbLSY80C3Dz9kq7xZpMoe3lOjK37LLciDK0mazCSkzHZuVlAV2V6aQswLGuQmEuU1YF3ZNZ74wOxsBN9XZPXBoc631xky92tSCDfIZL7vj-cYGp6wo82lKpyTYopqOtRs720D-KkXiu9SaTTjglC0KaLuqT1b4oc3aq0I8Tk8qBwdkLnbDoN_0xl7N6vBfnHxZJqB3NjmFLz3c06uRZhPjrdrZQ_BXet2SkHvowCdEL-QfDI8n59NqHs7T6cthuQehvR27-A1qjm4padCX7Zd4jcW0V9lc1pjKxSP00CLmDI29PEYtmT5B9yc2iOIputo2G6dpNs7abBwwG8eajaPNxtFm4zTMxqnM5hm6HJ1cfBm7dn8Nl4PXzV2mVKTL68cM_LbyCCe-F3ABHcJZKIGJ61XXSHHg3FjnLEuGA0_x0O8PIozjJHiO2ukylS-RI4B2Y9IXfjKAt4LiCRBDIrEfEhgO4CDpoE_rbqOZKaNCzfCTUI9CH8MhxdT0cQd91B1LNejw3JzZTBFQpYuV0QrVDvrQkPxpSrXfJXjYEAQfyhvN79YYUt2kAw9TuSxWNAA-jKMo8IIOemHA3TxAEAMXB8IN96vRptYzrHY9WdKU1O1g-EbmM-O_ZpNzlopvxyN6M8-2f76HRCZUB4kdSka6Lsrua-whAmpe7Y3Sa_Sg8gWHqJ1fF_INUPk8eWv_jX8AUQfvNw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+multi-contrast+unbiased+eye+atlases+with+deep+probabilistic+refinement&rft.jtitle=Journal+of+medical+imaging+%28Bellingham%2C+Wash.%29&rft.au=Lee%2C+Ho+Hin&rft.au=Saunders%2C+Adam+M&rft.au=Kim%2C+Michael+E&rft.au=Remedios%2C+Samuel+W&rft.date=2024-11-01&rft.pub=SPIE&rft.issn=2329-4302&rft.volume=11&rft.issue=6&rft_id=info:doi/10.1117%2F1.JMI.11.6.064004&rft.externalDocID=A832979977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-4302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-4302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-4302&client=summon |