Facile Isolation and the Characterization of Human Retinal Stem Cells

This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the ret...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 101; no. 44; pp. 15772 - 15777
Main Authors Brenda L. K. Coles, Angénieux, Brigitte, Inoue, Tomoyuki, Del Rio-Tsonis, Katia, Spence, Jason R., McInnes, Roderick R., Arsenijevic, Yvan, van der Kooy, Derek, Dryja, Thaddeus P.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.11.2004
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of ≈1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (≈10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.
AbstractList This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of ~1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (~10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.
This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of approximately 1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (approximately equal to 10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.
This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of ≈1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (≈10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.
This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of ≈1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (≈10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.
This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of {approx}1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells ({approx}10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases. [PUBLICATION ABSTRACT]
Author Angénieux, Brigitte
van der Kooy, Derek
Inoue, Tomoyuki
Dryja, Thaddeus P.
Brenda L. K. Coles
Arsenijevic, Yvan
Del Rio-Tsonis, Katia
Spence, Jason R.
McInnes, Roderick R.
AuthorAffiliation Departments of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada M5S 1A8; ‡ Unit of Oculogenetic, Hôpital Ophtalmique Jules Gonin, 1004 Lausanne, Switzerland; § Department of Zoology, Miami University, Oxford, OH 45056-1400; and ¶ Department of Molecular and Medical Genetics, University of Toronto, and Programs in Development and Genetics, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
AuthorAffiliation_xml – name: Departments of Medical Genetics and Microbiology, University of Toronto, Toronto, ON, Canada M5S 1A8; ‡ Unit of Oculogenetic, Hôpital Ophtalmique Jules Gonin, 1004 Lausanne, Switzerland; § Department of Zoology, Miami University, Oxford, OH 45056-1400; and ¶ Department of Molecular and Medical Genetics, University of Toronto, and Programs in Development and Genetics, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
Author_xml – sequence: 1
  fullname: Brenda L. K. Coles
– sequence: 2
  givenname: Brigitte
  surname: Angénieux
  fullname: Angénieux, Brigitte
– sequence: 3
  givenname: Tomoyuki
  surname: Inoue
  fullname: Inoue, Tomoyuki
– sequence: 4
  givenname: Katia
  surname: Del Rio-Tsonis
  fullname: Del Rio-Tsonis, Katia
– sequence: 5
  givenname: Jason R.
  surname: Spence
  fullname: Spence, Jason R.
– sequence: 6
  givenname: Roderick R.
  surname: McInnes
  fullname: McInnes, Roderick R.
– sequence: 7
  givenname: Yvan
  surname: Arsenijevic
  fullname: Arsenijevic, Yvan
– sequence: 8
  givenname: Derek
  surname: van der Kooy
  fullname: van der Kooy, Derek
– sequence: 9
  givenname: Thaddeus P.
  surname: Dryja
  fullname: Dryja, Thaddeus P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15505221$$D View this record in MEDLINE/PubMed
BookMark eNqF0T1vFDEQBmALBZFLoKZBaEWBRLHJjD_XRQp0SkikSEh81JZ3z8vtadc-bC8Cfj0-3SkHNKlczPOOZjxn5MQH7wh5iXCBoNjl1tt0ARxQaImAT8gCQWMtuYYTsgCgqm445afkLKUNAGjRwDNyikKAoBQX5PrGdsPoqrsURpuH4CvrV1Veu2q5ttF22cXh974Q-up2nqyvPrk8eDtWn7ObqqUbx_ScPO3tmNyLw3tOvt5cf1ne1vcfP9wt39_XnWRNrlUHuEKrGGuk7LjuyxTctkK3WgC4Mq2UrUSu2h4FrqTljltUfUul0pY6dk6u9n23czu5Ved8jnY02zhMNv4ywQ7m34of1uZb-GEE5Q0VJf_2kI_h--xSNtOQurKB9S7MyUgFDGUjH4WopNaoocA3_8FNmGP5nWQoIG1k07CCLveoiyGl6PqHiRHM7o5md0dzvGNJvP570aM_HK6A6gB2yWM7NJwXpRQt5N0jxPTzOGb3Mxf7am83KYf4gBlTTCFlfwDbk7t2
CitedBy_id crossref_primary_10_1016_j_neulet_2012_11_006
crossref_primary_10_1002_stem_676
crossref_primary_10_1016_j_exer_2008_01_004
crossref_primary_10_1016_j_mexoft_2015_09_006
crossref_primary_10_5483_BMBRep_2015_48_4_276
crossref_primary_10_1016_j_cca_2016_11_030
crossref_primary_10_1134_S106236041901003X
crossref_primary_10_1186_s13287_021_02136_9
crossref_primary_10_1007_s10517_006_0315_9
crossref_primary_10_1080_14653240802714819
crossref_primary_10_1517_13543784_16_8_1209
crossref_primary_10_3109_14653249_2010_523075
crossref_primary_10_1371_journal_pone_0041798
crossref_primary_10_3171_FOC_2008_24_3_4_E10
crossref_primary_10_1196_annals_1334_012
crossref_primary_10_1196_annals_1334_011
crossref_primary_10_3389_fcell_2023_1177838
crossref_primary_10_1186_s40942_019_0158_y
crossref_primary_10_3727_096368914X685744
crossref_primary_10_1002_stem_423
crossref_primary_10_1016_j_jconrel_2015_09_065
crossref_primary_10_1155_2019_4568979
crossref_primary_10_1007_s11033_021_06301_4
crossref_primary_10_1016_j_preteyeres_2018_09_001
crossref_primary_10_1097_ICU_0b013e32833866db
crossref_primary_10_1016_j_preteyeres_2012_02_001
crossref_primary_10_1016_j_brainres_2007_06_018
crossref_primary_10_3390_ijms22126528
crossref_primary_10_1185_030079906X148517
crossref_primary_10_1242_bio_2012027
crossref_primary_10_1080_17469899_2019_1568872
crossref_primary_10_1016_j_gep_2013_10_003
crossref_primary_10_1002_dneu_20973
crossref_primary_10_1002_stem_579
crossref_primary_10_1074_jbc_M113_513713
crossref_primary_10_1002_stem_694
crossref_primary_10_1016_j_exer_2012_03_008
crossref_primary_10_1038_eye_2008_420
crossref_primary_10_1146_annurev_cellbio_042308_113259
crossref_primary_10_1016_j_ydbio_2005_10_035
crossref_primary_10_3390_ijms25031521
crossref_primary_10_1007_s10517_005_0334_y
crossref_primary_10_4199_C00053ED1V01Y201204SCB001
crossref_primary_10_1016_j_stem_2008_10_015
crossref_primary_10_15283_ijsc21062
crossref_primary_10_4103_1673_5374_150651
crossref_primary_10_1080_02713683_2017_1403630
crossref_primary_10_1002_stem_1470
crossref_primary_10_1007_s00717_008_0302_9
crossref_primary_10_1007_s10517_011_1368_y
crossref_primary_10_1038_ncponc1132
crossref_primary_10_1186_1471_2415_9_1
crossref_primary_10_1146_annurev_genom_083118_015043
crossref_primary_10_1186_1471_213X_10_1
crossref_primary_10_1073_pnas_0600589103
crossref_primary_10_1016_j_mod_2007_08_002
crossref_primary_10_1016_j_exer_2009_06_019
crossref_primary_10_1007_s11033_016_4095_7
crossref_primary_10_1016_j_exer_2008_09_020
crossref_primary_10_1111_j_1755_148X_2010_00793_x
crossref_primary_10_1097_IJG_0b013e3180391a18
crossref_primary_10_1586_17469899_3_3_265
crossref_primary_10_1016_j_stem_2008_05_002
crossref_primary_10_1177_0963689720946031
crossref_primary_10_3390_life12030382
crossref_primary_10_1002_ijc_26039
crossref_primary_10_1016_j_biomaterials_2009_12_004
crossref_primary_10_1016_S0140_6736_06_69740_7
crossref_primary_10_3390_biomedicines8070208
crossref_primary_10_1155_2020_8883616
crossref_primary_10_1073_pnas_0708202104
crossref_primary_10_1134_S1062360407040029
crossref_primary_10_1038_s41598_018_20421_1
crossref_primary_10_1080_08820538_2019_1620808
crossref_primary_10_1016_j_exer_2013_07_009
crossref_primary_10_1016_j_neulet_2008_11_031
crossref_primary_10_1155_2014_287896
crossref_primary_10_1016_j_pneurobio_2006_11_007
crossref_primary_10_1016_j_exer_2012_09_013
crossref_primary_10_1007_s12015_010_9192_8
crossref_primary_10_1016_j_survophthal_2007_06_013
crossref_primary_10_1016_j_exer_2009_04_005
crossref_primary_10_1097_IAE_0b013e31817d8c1b
crossref_primary_10_1016_j_cdev_2023_203848
crossref_primary_10_2217_rme_11_94
crossref_primary_10_1016_j_preteyeres_2015_06_004
crossref_primary_10_1155_2013_531579
crossref_primary_10_1002_dneu_20887
crossref_primary_10_1111_j_1755_3768_2011_02198_x
crossref_primary_10_1080_02713680903050592
crossref_primary_10_1089_ten_2006_12_ft_276
crossref_primary_10_4236_scd_2012_22010
crossref_primary_10_1016_j_exer_2005_08_020
crossref_primary_10_1080_15384101_2020_1777805
crossref_primary_10_1016_j_biomaterials_2012_03_062
crossref_primary_10_1042_BC20040521
crossref_primary_10_3390_cells11233755
crossref_primary_10_1002_cne_21860
crossref_primary_10_1007_s00441_012_1335_6
crossref_primary_10_1038_cr_2013_48
crossref_primary_10_1039_D1LC00790D
crossref_primary_10_1007_s40135_019_00195_z
crossref_primary_10_1371_journal_pone_0032428
crossref_primary_10_1097_ICU_0b013e328329b5f2
crossref_primary_10_1073_pnas_0901596106
crossref_primary_10_3390_jfb2030213
crossref_primary_10_1002_ar_22746
crossref_primary_10_1016_j_scr_2017_05_001
crossref_primary_10_1016_j_mcn_2008_03_008
crossref_primary_10_1002_jcp_22814
crossref_primary_10_1634_stemcells_2007_0035
crossref_primary_10_1016_j_pneurobio_2011_08_012
crossref_primary_10_1016_j_preteyeres_2021_100970
crossref_primary_10_1002_ar_a_20346
crossref_primary_10_1186_s13287_021_02630_0
crossref_primary_10_1016_j_preteyeres_2009_05_002
crossref_primary_10_1016_j_neuroscience_2014_09_023
crossref_primary_10_1073_pnas_0605934104
crossref_primary_10_3724_SP_J_1141_2012_01085
crossref_primary_10_3390_cells10082045
crossref_primary_10_5653_cerm_2011_38_4_216
crossref_primary_10_2217_ahe_09_76
crossref_primary_10_1016_j_preteyeres_2015_01_003
crossref_primary_10_1089_ten_tea_2010_0106
crossref_primary_10_1002_9780470151808_sc01h04s19
crossref_primary_10_1038_ncomms7286
crossref_primary_10_1586_17469899_2_3_497
crossref_primary_10_1002_cne_24677
crossref_primary_10_1155_2012_675805
crossref_primary_10_1002_stem_279
crossref_primary_10_1186_1471_2202_14_130
crossref_primary_10_1155_2011_412743
crossref_primary_10_1038_444156a
crossref_primary_10_1016_j_ddstr_2010_11_003
crossref_primary_10_1093_carcin_bgi299
crossref_primary_10_1371_journal_pmed_0020332
crossref_primary_10_1080_02713680600681210
crossref_primary_10_1007_s00347_005_1188_4
crossref_primary_10_3109_09273948_2012_702843
crossref_primary_10_1016_j_gendis_2017_01_002
crossref_primary_10_1016_j_exphem_2008_08_007
crossref_primary_10_1016_j_biotechadv_2014_01_001
crossref_primary_10_1002_bies_200800168
crossref_primary_10_1002_adhm_201100039
crossref_primary_10_1016_j_mexoft_2014_05_002
crossref_primary_10_1089_scd_2013_0177
crossref_primary_10_1634_stemcells_2006_0724
crossref_primary_10_1007_s00417_011_1764_z
crossref_primary_10_1007_s00417_011_1797_3
crossref_primary_10_3389_fnsys_2016_00105
crossref_primary_10_1634_stemcells_2007_0900
crossref_primary_10_1080_00914037_2017_1297939
crossref_primary_10_1007_s13311_011_0077_6
crossref_primary_10_1634_stemcells_2005_0311
crossref_primary_10_1016_j_isci_2021_102574
crossref_primary_10_4061_2011_201371
crossref_primary_10_1371_journal_pone_0035611
crossref_primary_10_1073_pnas_0608155103
crossref_primary_10_3389_fcell_2022_853215
crossref_primary_10_4252_wjsc_v13_i10_1446
crossref_primary_10_1016_j_semcdb_2007_09_011
crossref_primary_10_1007_s12015_012_9394_3
crossref_primary_10_3390_bioengineering8100135
crossref_primary_10_1186_s12967_022_03738_4
crossref_primary_10_1007_s11174_005_0039_1
crossref_primary_10_1111_j_1442_9071_2008_01770_x
crossref_primary_10_1016_j_pbiomolbio_2021_06_009
crossref_primary_10_1155_2013_752161
crossref_primary_10_1016_j_ymthe_2020_10_026
crossref_primary_10_1517_14728222_11_5_625
crossref_primary_10_1586_eop_10_86
crossref_primary_10_1016_j_patbio_2005_02_002
crossref_primary_10_3389_fbioe_2021_709488
crossref_primary_10_1155_2016_1236721
crossref_primary_10_1093_bmb_lds013
crossref_primary_10_1038_s10038_017_0348_0
crossref_primary_10_1371_journal_pone_0076157
crossref_primary_10_1016_j_preteyeres_2013_01_003
crossref_primary_10_1016_j_brainres_2011_11_054
crossref_primary_10_2217_rme_11_37
crossref_primary_10_1097_APO_0b013e31828615b7
crossref_primary_10_4103_1673_5374_280303
crossref_primary_10_1016_j_preteyeres_2017_01_004
crossref_primary_10_1089_scd_2014_0257
crossref_primary_10_1007_s12041_017_0880_x
crossref_primary_10_4199_C00122ED1V01Y201412NGL003
crossref_primary_10_1111_j_1460_9568_2012_08123_x
crossref_primary_10_1016_j_exer_2010_07_003
crossref_primary_10_1371_journal_pone_0033338
crossref_primary_10_1016_j_ophtha_2006_07_042
crossref_primary_10_1002_ar_22800
crossref_primary_10_1016_j_brainres_2006_12_032
crossref_primary_10_4252_wjsc_v5_i4_163
crossref_primary_10_1039_D2BM00886F
crossref_primary_10_1111_j_1600_0749_2007_00407_x
crossref_primary_10_1634_stemcells_2005_0124
crossref_primary_10_2217_rme_09_59
crossref_primary_10_1016_j_exer_2011_09_015
crossref_primary_10_1371_journal_pone_0097316
crossref_primary_10_2217_17460751_1_6_777
crossref_primary_10_1089_scd_2014_0021
crossref_primary_10_1634_stemcells_2005_0009
crossref_primary_10_1007_s00441_007_0501_8
crossref_primary_10_1016_j_bbrc_2015_05_102
crossref_primary_10_1038_sj_mt_6300084
crossref_primary_10_1083_jcb_201611057
crossref_primary_10_1155_2017_9428176
crossref_primary_10_1002_ijc_22880
crossref_primary_10_1002_neu_20158
crossref_primary_10_1634_stemcells_2008_0558
crossref_primary_10_1002_btpr_2800
crossref_primary_10_1016_j_ydbio_2007_01_021
crossref_primary_10_1186_1471_2407_10_579
crossref_primary_10_1016_j_humpath_2008_06_028
crossref_primary_10_3129_i10_077
crossref_primary_10_1007_s40135_015_0078_4
crossref_primary_10_1634_stemcells_2007_0308
crossref_primary_10_1089_ten_2006_12_3007
crossref_primary_10_3129_i10_070
crossref_primary_10_3109_02713683_2011_576796
crossref_primary_10_1002_stem_1283
crossref_primary_10_1016_j_preteyeres_2015_03_001
crossref_primary_10_1111_j_1444_0938_2007_00156_x
crossref_primary_10_1523_JNEUROSCI_3247_05_2005
crossref_primary_10_3109_15569527_2015_1011746
crossref_primary_10_1007_s10571_018_0636_z
crossref_primary_10_1016_j_preteyeres_2006_07_002
crossref_primary_10_4252_wjsc_v2_i4_67
crossref_primary_10_1586_eop_10_42
crossref_primary_10_1016_j_pneurobio_2013_10_002
crossref_primary_10_1002_stem_1960
crossref_primary_10_1016_j_biomaterials_2018_12_015
crossref_primary_10_1371_journal_pone_0011917
crossref_primary_10_1016_j_preteyeres_2014_06_002
crossref_primary_10_1016_j_neures_2009_07_008
crossref_primary_10_1007_s10517_009_0657_1
crossref_primary_10_1111_ceo_14309
crossref_primary_10_1177_20417314221113391
crossref_primary_10_1167_iovs_62_3_31
crossref_primary_10_1016_j_exer_2008_01_018
crossref_primary_10_1097_OPX_0b013e31817841f7
crossref_primary_10_1371_journal_pone_0065974
crossref_primary_10_1517_14712598_2013_793304
crossref_primary_10_1016_j_scr_2018_11_005
crossref_primary_10_1007_s00441_008_0653_1
crossref_primary_10_1292_jvms_13_0005
crossref_primary_10_3389_fncel_2019_00334
crossref_primary_10_1242_jcs_169086
crossref_primary_10_1002_mco2_198
Cites_doi 10.1038/nature02301
10.1006/exnr.2002.7955
10.1634/stemcells.22-3-396
10.1126/science.287.5460.2032
10.1006/exnr.1999.7098
10.1128/JVI.72.10.8150-8157.1998
10.1089/104454903770238085
10.1006/exnr.2001.7691
10.1006/mcne.2000.0869
10.1006/dbio.1997.8645
10.1089/neu.1999.16.689
10.1002/(SICI)1097-4547(20000201)59:3<321::AID-JNR5>3.0.CO;2-9
10.1016/0165-3806(85)90211-1
10.1038/427685a
10.1006/bbrc.2000.2153
10.1002/stem.5530150826
10.1006/bbrc.2000.2473
10.1006/exnr.1998.6998
10.1038/nn1088
10.3109/02713688908997401
10.1016/S0301-472X(01)00761-5
ContentType Journal Article
Copyright Copyright 1993/2004 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Nov 2, 2004
Copyright © 2004, The National Academy of Sciences 2004
Copyright_xml – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Nov 2, 2004
– notice: Copyright © 2004, The National Academy of Sciences 2004
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7X8
5PM
DOI 10.1073/pnas.0401596101
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE


MEDLINE - Academic

CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 15777
ExternalDocumentID 794323861
10_1073_pnas_0401596101
15505221
101_44_15772
3373712
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
ADQXQ
7X8
5PM
ID FETCH-LOGICAL-c638t-7c01d1a733866c49f5054ab59b9500e02766b6147bf151d6a4e4a17fb2679a2e3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:42:43 EDT 2024
Fri Aug 16 11:42:56 EDT 2024
Thu Aug 15 22:39:02 EDT 2024
Thu Oct 10 17:33:48 EDT 2024
Fri Aug 23 00:57:19 EDT 2024
Sat Sep 28 07:47:21 EDT 2024
Wed Nov 11 00:29:30 EST 2020
Thu May 30 08:50:36 EDT 2019
Fri Feb 02 07:04:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-7c01d1a733866c49f5054ab59b9500e02766b6147bf151d6a4e4a17fb2679a2e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Abbreviations: RSC, retinal stem cell; NSC, neural stem cell; RPE, retinal pigmented epithelium; EGFP, enhanced GFP; EGF, epidermal growth factor; F+H, fibroblast growth factor 2 plus heparin; E+F+H, EGF plus fibroblast growth factor plus heparin; MAP2, microtubule-associated protein 2.
Author contributions: Y.A. and D.v.d.K. designed research; B.L.K.C., B.A., T.I., K.D.R.-T., J.R.S., and Y.A. performed research; R.R.M. contributed new reagents/analytical tools; B.L.K.C., B.A., T.I., K.D.R.-T., J.R.S., R.R.M., and Y.A. analyzed data; and B.L.K.C. and D.v.d.K. wrote the paper.
Edited by Thaddeus P. Dryja, Harvard Medical School, Boston, MA
This paper was submitted directly (Track II) to the PNAS office.
B.L.K.C. and B.A. contributed equally to this work.
To whom correspondence may be addressed at: Unit of Oculogenetic, Hôpital Ophtalmique Jules Gonin, 15, Av. de France, 1004 Lausanne, Switzerland. E-mail: yvan.arsenijevic@chuv.hospvd.ch. **To whom correspondence may be addressed at: Department of Medical Genetics and Microbiology, University of Toronto, 1 Kings College Circle, Toronto, Canada M5S 1A8. E-mail: derek.van.der.kooy@utoronto.ca.
OpenAccessLink https://europepmc.org/articles/pmc524825?pdf=render
PMID 15505221
PQID 201286883
PQPubID 42026
PageCount 6
ParticipantIDs proquest_journals_201286883
crossref_primary_10_1073_pnas_0401596101
pnas_primary_101_44_15772
pubmedcentral_primary_oai_pubmedcentral_nih_gov_524825
pubmed_primary_15505221
proquest_miscellaneous_67031686
proquest_miscellaneous_17699190
pnas_primary_101_44_15772_fulltext
jstor_primary_3373712
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2004-11-02
PublicationDateYYYYMMDD 2004-11-02
PublicationDate_xml – month: 11
  year: 2004
  text: 2004-11-02
  day: 02
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2004
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 4041905 - Brain Res. 1985 Aug;353(2):229-39
10679293 - Biochem Biophys Res Commun. 2000 Feb 24;268(3):842-6
10511241 - J Neurotrauma. 1999 Aug;16(8):689-93
10328940 - Exp Neurol. 1999 Apr;156(2):333-44
15153616 - Stem Cells. 2004;22(3):396-404
9733856 - J Virol. 1998 Oct;72(10):8150-7
10192778 - Exp Neurol. 1999 Mar;156(1):71-83
10753656 - Biochem Biophys Res Commun. 2000 Apr 13;270(2):517-21
10720333 - Science. 2000 Mar 17;287(5460):2032-6
12429235 - Exp Neurol. 2002 Sep;177(1):326-31
10415135 - Exp Neurol. 1999 Aug;158(2):265-78
9368342 - Stem Cells. 1997;15 Suppl 1:199-203; discussion 204-7
9268574 - Dev Biol. 1997 Aug 15;188(2):267-79
14973461 - Nature. 2004 Feb 19;427(6976):685-6
2612197 - Curr Eye Res. 1989 Oct;8(10):1083-92
11823032 - Exp Hematol. 2002 Jan;30(1):11-7
10995547 - Mol Cell Neurosci. 2000 Sep;16(3):197-205
12845328 - Nat Neurosci. 2003 Aug;6(8):863-8
10679767 - J Neurosci Res. 2000 Feb 1;59(3):321-31
14973487 - Nature. 2004 Feb 19;427(6976):740-4
14611682 - DNA Cell Biol. 2003 Oct;22(10):607-20
11421583 - Exp Neurol. 2001 Jul;170(1):48-62
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
(e_1_3_2_10_2) 1995; 156
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_22_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_11_2
  doi: 10.1038/nature02301
– volume: 156
  start-page: 333
  year: 1995
  ident: e_1_3_2_10_2
  publication-title: Exp. Neurol.
– ident: e_1_3_2_3_2
  doi: 10.1006/exnr.2002.7955
– ident: e_1_3_2_21_2
  doi: 10.1634/stemcells.22-3-396
– ident: e_1_3_2_1_2
  doi: 10.1126/science.287.5460.2032
– ident: e_1_3_2_7_2
  doi: 10.1006/exnr.1999.7098
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.72.10.8150-8157.1998
– ident: e_1_3_2_18_2
  doi: 10.1089/104454903770238085
– ident: e_1_3_2_9_2
  doi: 10.1006/exnr.2001.7691
– ident: e_1_3_2_16_2
  doi: 10.1006/mcne.2000.0869
– ident: e_1_3_2_4_2
  doi: 10.1006/dbio.1997.8645
– ident: e_1_3_2_5_2
  doi: 10.1089/neu.1999.16.689
– ident: e_1_3_2_6_2
  doi: 10.1002/(SICI)1097-4547(20000201)59:3<321::AID-JNR5>3.0.CO;2-9
– ident: e_1_3_2_22_2
  doi: 10.1016/0165-3806(85)90211-1
– ident: e_1_3_2_12_2
  doi: 10.1038/427685a
– ident: e_1_3_2_17_2
  doi: 10.1006/bbrc.2000.2153
– ident: e_1_3_2_15_2
  doi: 10.1002/stem.5530150826
– ident: e_1_3_2_2_2
  doi: 10.1006/bbrc.2000.2473
– ident: e_1_3_2_8_2
  doi: 10.1006/exnr.1998.6998
– ident: e_1_3_2_20_2
  doi: 10.1038/nn1088
– ident: e_1_3_2_19_2
  doi: 10.3109/02713688908997401
– ident: e_1_3_2_14_2
  doi: 10.1016/S0301-472X(01)00761-5
SSID ssj0009580
Score 2.3923914
Snippet This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15772
SubjectTerms Adolescent
Adult
Aged
Amacrine cells
Animals
Biological Sciences
Cell Differentiation
Cell Separation - methods
Cellular differentiation
Chick Embryo
Child
Child, Preschool
Eyes & eyesight
Humans
In Vitro Techniques
Infant
Infant, Newborn
Mice
Mice, Inbred NOD
Mice, SCID
Middle Aged
Multipotent stem cells
Multipotent Stem Cells - cytology
Multipotent Stem Cells - transplantation
Neural stem cells
Neuroglia
Neurology
Neurons
Photoreceptors
Retina
Retina - chemistry
Retinal bipolar cells
Retinal rods
Stem Cell Transplantation
Stem cells
Studies
Title Facile Isolation and the Characterization of Human Retinal Stem Cells
URI https://www.jstor.org/stable/3373712
http://www.pnas.org/content/101/44/15772.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15505221
https://www.proquest.com/docview/201286883
https://search.proquest.com/docview/17699190
https://search.proquest.com/docview/67031686
https://pubmed.ncbi.nlm.nih.gov/PMC524825
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RnrggWgqY0mIhDuWQ3fgjtnNEVVcVUhEHKvVmOd5ErES9q2b7_xk7TpZF9MLZk6_xjN5zPPMM8MkJJ0zFPaY4j6LaXVUgCJdFi_AgkH93chn7nW--qetb-fWuustNYX0uqwy-Wc3Cr_tZWP1MtZWbez8f68Tm328uKy5xYTM_gAMtxLhCn4R2zdB2go82kstRzkeL-Sa4foZBiwiOpCGdERP5OedsD5SGusQodor2_yKef9dP_gFIi5fwIjNJ-mV44yN41oZjOMq52tOLLCj9-RVcLZzH5KcrjLM0EdSFJUXmR_0k1zx0Y9J1R9OpfTQ2N8bbR51nGv_u9ydwu7j6cXld5OMTCo9JtS20L9mSOXSRUcrLusNvla6p6qauyrJFBynVIDrrpkPYXyonW-mY7hqudO14K17DYViH9i1QnMzaKxY3NYXkLt5LeyOFxuVIZZQncDH6z24GlQybdre1sNGLdud1AifJv5OdEFpoxgmQZLm7nFkpLauQ_hP4-OSY7XKRDIHTcaZszsPe8oi_yhhB4MM0igkU_eZCu37sLdMKOXJdPm2hosa_MorAm2Hedy-S44eA2ouIySCKd--PYEwnEe8hht_974Wn8HyQnGRFyd_D4fbhsT1DerRtziM4VecpK34DDLoLlw
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BOcClUCgQCtRCHMoh2fgjdnJEVVcLdCsOXak3y_Em6gqaXTW7F349Y8fJshU9wNnjJPa8yczIM88AHw03PM-YRRNnjlS7zmJ0wmlcoXvgGH_XYu76nacXcjITX6-yq9AU1oayysaWi6T5eZM0i2tfW7m6saO-Tmz0fXqaMYGJzeghPEJzZVmfow9Uu3nXeIIvzwUTPaGP4qNVY9oEYYs-HMMGf0uMi9AZoztuqatMdHSnKP-30PNuBeUfLmn8FGb9YrpKlB_JZl0m9tcdnsd_Xe0z2A8xKvncjR7Ag6p5DgfhL9CSk0BV_ekFnI2Nxd8KWSCCvYqJaeYEY0piByLors-TLGvi7wMkrm3SPd4xSBN3btAewmx8dnk6icPFDLFFc13HyqZ0To3C9FZKK4oa91CYMivKIkvTCjdeyhL9viprDCjm0ohKGKrqkklVGFbxl7DXLJvqNRCESWEldcelXDDjnqVsLrjCRCfLpY3gpNeLXnX8G9qfmyuunXb0VpsRHHq9DXKcK64oiyDyktvpVAuhaYaJRQQf7h3TdSi_ieCoR4AOFt5q5jy7zHMewfEwiqbp9s001XLTaqokRt9Fer-EdLcHyFxG8KrD0_ZDAi4jkDtIGwQcLfjuCOLH04N3eHnzvxOP4fHkcnquz79cfDuCJx2xJY1T9hb21reb6h0GYevyvbe535hKLHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlW9UGhpm1KKVfVAD3n4ETs5VsCKPkAcikRPluMkYtWSXZHdS399x85jWVQunD2xHM83nhl55jPAJ8MNz1Jm0cSZI9Wu0xCdcBJW6B44xt-1KF2_89m5PL0U367Sqw3Ihl4YX7Rvi2nU_LmJmum1r62c39h4qBOLL86OUiYwsYnnZR0_gadoskwNefpIt5t1zSe4gEwwMZD6KB7PG9NGCF304xg6-JdiXJTOGF1zTV11oqM8Rfn_hZ_3qyjvuKXJC_g1_FBXjfI7Wi6KyP69x_X4mD_ehq0-ViVfOokd2Kial7DTnwYtOewpqz-_gpOJsXi8kCki2auamKYkGFsSOxJCd_2eZFYT_y4gce2TbnrHJE3c_UG7C5eTk59Hp2H_QENo0WwXobIJLalRmOZKaUVe4z4KU6R5kadJUuHmS1mg_1dFjYFFKY2ohKGqLphUuWEVfw2bzayp3gJBuORWUndtygUzbi5lM8EVJjxpJm0Ah4Nu9Lzj4dD-_lxx7TSkVxoNYNfrbpTjXHFFWQCBl1x9TrUQmqaYYATw8cExXfdlOAHsDSjQvaW3mjkPL7OMB3AwjqKJun0zTTVbtpoqiVF4njwsId0rAjKTAbzpMLVaSI_NAOQa2kYBRw--PoIY8jThHWbePfbDA3h2cTzRP76ef9-D5x2_JQ0T9h42F7fLah9jsUXxwZvdPxYvLvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Isolation+and+the+Characterization+of+Human+Retinal+Stem+Cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Brenda+L.+K.+Coles&rft.au=Ang%C3%A9nieux%2C+Brigitte&rft.au=Inoue%2C+Tomoyuki&rft.au=Del+Rio-Tsonis%2C+Katia&rft.date=2004-11-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=101&rft.issue=44&rft.spage=15772&rft.epage=15777&rft_id=info:doi/10.1073%2Fpnas.0401596101&rft.externalDocID=3373712
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F44.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F44.cover.gif