SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization

miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorizat...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 17; no. 7; p. e1009165
Main Authors Li, Lei, Gao, Zhen, Wang, Yu-Tian, Zhang, Ming-Wen, Ni, Jian-Cheng, Zheng, Chun-Hou, Su, Yansen
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 12.07.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L 2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.
AbstractList miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L 2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L.sub.2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L 2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. Considerable studies have suggested that miRNAs are closely associated with many human diseases, so predicting potential associations between miRNAs and diseases can contribute to the diagnose and treatment of diseases. Several models of discovering unknown miRNA-diseases associations make the prediction more productive and effective. We proposed SCMFMDA to obtain more accuracy prediction result by applying similarity network fusion to fuse multi-source disease and miRNA information and utilizing similarity constrained matrix factorization to make prediction based on biological information. The global Leave-one-out cross validation and five-fold cross validation were applied to evaluate our model. Consequently, SCMFMDA could achieve AUCs of 0.9675 and 0.9447 that were obviously higher than previous computational models. Furthermore, we implemented case studies on significant human diseases including colon neoplasms and lung neoplasms, 47 and 46 of top-50 were confirmed by experimental reports. All results proved that SCMFMDA could be regard as an effective way to discover unverified connections of miRNA-disease.
Audience Academic
Author Zhang, Ming-Wen
Ni, Jian-Cheng
Gao, Zhen
Zheng, Chun-Hou
Su, Yansen
Wang, Yu-Tian
Li, Lei
AuthorAffiliation University of Electronic Science and Technology, CHINA
1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
2 School of Artifial Intelligence, Anhui University, Hefei, China
AuthorAffiliation_xml – name: 2 School of Artifial Intelligence, Anhui University, Hefei, China
– name: University of Electronic Science and Technology, CHINA
– name: 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-0013-2735
  surname: Li
  fullname: Li, Lei
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0001-7427-6032
  surname: Gao
  fullname: Gao, Zhen
– sequence: 3
  givenname: Yu-Tian
  orcidid: 0000-0002-8033-8727
  surname: Wang
  fullname: Wang, Yu-Tian
– sequence: 4
  givenname: Ming-Wen
  surname: Zhang
  fullname: Zhang, Ming-Wen
– sequence: 5
  givenname: Jian-Cheng
  orcidid: 0000-0001-5667-9807
  surname: Ni
  fullname: Ni, Jian-Cheng
– sequence: 6
  givenname: Chun-Hou
  surname: Zheng
  fullname: Zheng, Chun-Hou
– sequence: 7
  givenname: Yansen
  surname: Su
  fullname: Su, Yansen
BookMark eNqVkl1v0zAUhiM0xD7gHyARiRu4aLHjjzi7QKoKg0rbQBtcWyeOXTwldrFdtPHrcdtMotOEhHIR65znfZ1z8h4XB847XRQvMZpiUuN3N34dHPTTlWrtFCPUYM6eFEeYMTKpCRMHf50Pi-MYbxDKx4Y_Kw4JrViFBD0qzPX84uziw-y0_Bp0Z1WyblkOVgV_dTmbdDZqiLqEGL2ykKx3sWxzpSu9K6MdbA_BprtS5UYKYF3uDJCCvS0NqOSD_b1VPS-eGuijfjG-T4rvZx-_zT9Pzr98Wsxn5xPFiUgTCoywliNumGi5UoCAKlprRgS0DIlaMYoNM5gLjRSDtgZBVGMaXTUNMYScFK92vqveRzmuKMqKcdzQvDWRicWO6DzcyFWwA4Q76cHKbcGHpYSQrOq1ZKJCqtNtVxmgLeMCVbxjXSVqSrkQLHu9H29bt4PulHZ5B_2e6X7H2R9y6X9JQSgTpM4Gb0aD4H-udUxysFHpvgen_Xrz3QxXGCNcZfT1A_Tx6UZqCXkA64zP96qNqZzxGjWCYMozNX2Eyk-n86_PMTM21_cEb_cEmUn6Ni1hHaNcXF_9B3u5z57u2Jy3GIM2Utm0DcwmTL3ESG6yfj-q3GRdjlnPYvpAfL_4f8r-AJ-1BGo
CitedBy_id crossref_primary_10_3390_genes13061021
crossref_primary_10_2174_0115748936293219240426051148
crossref_primary_10_3389_fgene_2022_958096
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1002_ese3_1273
crossref_primary_10_1093_bib_bbae481
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_1093_bib_bbab526
crossref_primary_10_1186_s12864_022_08687_2
crossref_primary_10_3389_fgene_2022_936823
crossref_primary_10_1016_j_neucom_2023_127016
crossref_primary_10_1016_j_future_2022_04_012
crossref_primary_10_1186_s12859_022_04961_y
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_3390_app12094776
crossref_primary_10_1093_bib_bbac390
crossref_primary_10_1155_2022_8011003
crossref_primary_10_3389_fbioe_2022_911769
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_3389_fphar_2022_1020759
crossref_primary_10_1038_s41467_024_49813_w
crossref_primary_10_1016_j_enconman_2022_116246
crossref_primary_10_3389_fninf_2022_1041799
crossref_primary_10_1007_s10462_022_10370_7
crossref_primary_10_1093_bib_bbac155
crossref_primary_10_1109_JBHI_2024_3467101
crossref_primary_10_3390_app12146907
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1016_j_compbiomed_2022_105510
crossref_primary_10_1016_j_compbiomed_2022_105752
crossref_primary_10_1186_s12864_023_09501_3
crossref_primary_10_3389_fgene_2022_978975
crossref_primary_10_1002_er_8011
crossref_primary_10_1093_bib_bbac524
crossref_primary_10_1007_s12539_023_00594_8
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_3389_fgene_2022_980497
crossref_primary_10_1109_JBHI_2024_3431693
crossref_primary_10_2174_1389201024666221025114500
Cites_doi 10.1186/s12859-019-2956-5
10.1038/s41419-017-0003-x
10.1371/journal.pone.0070204
10.1016/j.patcog.2014.04.004
10.1016/j.ajhg.2008.02.013
10.1016/j.ygeno.2019.05.021
10.1093/bioinformatics/btz254
10.1007/s12021-018-9386-9
10.1093/bioinformatics/btx545
10.1186/s12859-020-3409-x
10.1093/nar/gkt1181
10.3322/caac.21262
10.1371/journal.pone.0092921
10.1016/0092-8674(93)90529-Y
10.1093/bioinformatics/btq241
10.1073/pnas.0701361104
10.1016/j.gde.2005.08.005
10.1038/nmeth.2810
10.1101/gr.118992.110
10.1371/journal.pone.0075504
10.1109/TCBB.2016.2550432
10.1186/1755-8417-2-7
10.1038/nature08349
10.1007/s11033-012-2442-x
10.1038/bjc.2013.192
10.4238/2014.March.24.5
10.1111/jcmm.13336
10.1038/srep21106
10.1371/journal.pone.0003420
10.1016/j.ccr.2006.01.025
10.1186/1752-0509-7-101
10.1111/jcmm.14048
10.1039/c2mb25180a
10.1186/s12859-019-2640-9
10.1371/journal.pcbi.1005455
10.1093/nar/gkt1023
10.1038/nrg1379
10.3389/fgene.2020.00384
10.1016/j.neucom.2018.01.085
10.3389/fgene.2020.00354
10.1016/j.cell.2009.01.002
10.1016/S0076-6879(07)27006-5
10.1016/j.jbi.2017.01.008
10.1093/nar/gkw1079
10.3389/fgene.2020.00389
10.1093/bioinformatics/btz297
10.1126/science.1113329
10.1016/j.tig.2004.09.010
10.1093/bib/bbz159
10.1186/1752-0509-4-S1-S2
10.1016/j.gde.2005.06.012
10.1016/j.jbi.2019.103358
10.1093/nar/gkn714
10.1155/2017/2498957
10.1038/srep13877
10.1002/ima.22141
10.1109/TCBB.2017.2776101
10.1186/s12967-019-2009-x
10.1007/s12021-018-9373-1
10.1016/S0092-8674(04)00045-5
10.1016/0092-8674(93)90530-4
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Li et al 2021 Li et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Li et al 2021 Li et al
DBID AAYXX
CITATION
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1009165
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate SCMFMDA
EISSN 1553-7358
ExternalDocumentID 2561943718
oai_doaj_org_article_5820cdebd2fa4b568026d5d287446885
PMC8345837
A670983146
10_1371_journal_pcbi_1009165
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: MMC202006
– fundername: ;
  grantid: ZR2020KC022
– fundername: ;
  grantid: 61872220
– fundername: ;
  grantid: 61873001
– fundername: ;
  grantid: U19A2064
– fundername: ;
  grantid: 11701318
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
PMFND
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
PUEGO
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
PRINS
ID FETCH-LOGICAL-c638t-4a535b606f58b6cca0a4c47e538ab5087c541f5f168e0c5ab7a83c9f9e2993f33
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:11:48 EST 2021
Wed Aug 27 01:20:01 EDT 2025
Thu Aug 21 13:43:16 EDT 2025
Fri Jul 11 06:59:07 EDT 2025
Fri Jul 25 11:53:56 EDT 2025
Tue Jun 17 21:35:39 EDT 2025
Tue Jun 10 20:12:44 EDT 2025
Fri Jun 27 03:38:29 EDT 2025
Fri Jun 27 04:23:40 EDT 2025
Tue Jul 01 01:26:15 EDT 2025
Thu Apr 24 22:55:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-4a535b606f58b6cca0a4c47e538ab5087c541f5f168e0c5ab7a83c9f9e2993f33
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-0013-2735
0000-0001-5667-9807
0000-0002-8033-8727
0000-0001-7427-6032
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009165
PMID 34252084
PQID 2561943718
PQPubID 1436340
ParticipantIDs plos_journals_2561943718
doaj_primary_oai_doaj_org_article_5820cdebd2fa4b568026d5d287446885
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8345837
proquest_miscellaneous_2551211012
proquest_journals_2561943718
gale_infotracmisc_A670983146
gale_infotracacademiconefile_A670983146
gale_incontextgauss_ISR_A670983146
gale_incontextgauss_ISN_A670983146
crossref_citationtrail_10_1371_journal_pcbi_1009165
crossref_primary_10_1371_journal_pcbi_1009165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210712
PublicationDateYYYYMMDD 2021-07-12
PublicationDate_xml – month: 7
  year: 2021
  text: 20210712
  day: 12
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Xuan (pcbi.1009165.ref048) 2013; 8
L He (pcbi.1009165.ref003) 2004; 5
M Lu (pcbi.1009165.ref050) 2008; 3
C Ji (pcbi.1009165.ref040) 2021; 1
Z Yang (pcbi.1009165.ref043) 2016; 45
C Yan (pcbi.1009165.ref035) 2019; 16
Y Zhang (pcbi.1009165.ref039) 2020; 11
X Chen (pcbi.1009165.ref026) 2012; 8
D Wang (pcbi.1009165.ref047) 2010; 26
OK Hiroko (pcbi.1009165.ref063) 2014; 9
Z Shen (pcbi.1009165.ref021) 2017; 2017
Y Jiang (pcbi.1009165.ref056) 2018; 16
X Chen (pcbi.1009165.ref020) 2016; 6
P Xu (pcbi.1009165.ref007) 2004; 20
JM Thomson (pcbi.1009165.ref015) 2007; 427
A Kozomara (pcbi.1009165.ref051) 2013; 42
S Yu (pcbi.1009165.ref017) 2019; 23
CE Lipscomb (pcbi.1009165.ref046) 2000; 88
B Wightman (pcbi.1009165.ref005) 1993; 75
DP Bartel (pcbi.1009165.ref001) 2004; 116
X Chen (pcbi.1009165.ref033) 2015; 5
J Ha (pcbi.1009165.ref025) 2020; 102
LA Torre (pcbi.1009165.ref062) 2015; 65
Y Niu (pcbi.1009165.ref032) 2019; 20
Y Liu (pcbi.1009165.ref030) 2017; 14
EA Miska (pcbi.1009165.ref009) 2005; 15
Q Xiao (pcbi.1009165.ref058) 2018; 34
Z You (pcbi.1009165.ref034) 2017; 13
CL Jopling (pcbi.1009165.ref006) 2005; 309
K Zheng (pcbi.1009165.ref037) 2019; 17
Q Wu (pcbi.1009165.ref055) 2020; 11
X Chen (pcbi.1009165.ref038) 2021; 22
S Chatterjee (pcbi.1009165.ref002) 2009; 461
H Shi (pcbi.1009165.ref029) 2013; 7
B Shao (pcbi.1009165.ref057) 2018; 16
Y Li (pcbi.1009165.ref041) 2013; 42
X Chen (pcbi.1009165.ref022) 2018; 9
Q Jiang (pcbi.1009165.ref042) 2009; 37
H Zhang (pcbi.1009165.ref028) 2014; 47
Y Zhao (pcbi.1009165.ref023) 2019; 35
RC Lee (pcbi.1009165.ref004) 1993; 75
S Mohammadi-Yeganeh (pcbi.1009165.ref014) 2013; 40
XY Zhu (pcbi.1009165.ref024) 2020; 11
BD Harfe (pcbi.1009165.ref010) 2005; 15
Y Gao (pcbi.1009165.ref060) 2019; 20
J Luo (pcbi.1009165.ref031) 2017; 66
N Meola (pcbi.1009165.ref011) 2009; 2
W Zhang (pcbi.1009165.ref053) 2018; 287
L Cheng (pcbi.1009165.ref045) 2013; 8
Z Gao (pcbi.1009165.ref059) 2020; 21
S Köhler (pcbi.1009165.ref027) 2008; 82
X Chen (pcbi.1009165.ref018) 2018; 22
X Chen (pcbi.1009165.ref061) 2020; 112
B Wang (pcbi.1009165.ref052) 2014; 11
N Yanaihara (pcbi.1009165.ref012) 2006; 9
A Sita-Lumsden (pcbi.1009165.ref013) 2013; 108
K Han (pcbi.1009165.ref016) 2014; 13
B Rana (pcbi.1009165.ref054) 2015; 25
Q Jiang (pcbi.1009165.ref019) 2010; 4
DP Bartel (pcbi.1009165.ref008) 2009; 136
J Peng (pcbi.1009165.ref036) 2019; 35
I Lee (pcbi.1009165.ref044) 2011; 21
KI Goh (pcbi.1009165.ref049) 2007; 104
References_xml – volume: 20
  start-page: 353
  issue: 1
  year: 2019
  ident: pcbi.1009165.ref060
  article-title: NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2956-5
– volume: 9
  start-page: 3
  issue: 1
  year: 2018
  ident: pcbi.1009165.ref022
  article-title: EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-017-0003-x
– volume: 8
  start-page: e70204
  issue: 9
  year: 2013
  ident: pcbi.1009165.ref048
  article-title: Correction: Prediction of microRNAs Associated with Human Diseases Based on Weighted k Most Similar Neighbors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070204
– volume: 47
  start-page: 3168
  issue: 9
  year: 2014
  ident: pcbi.1009165.ref028
  article-title: A locality correlation preserving support vector machine
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2014.04.004
– volume: 82
  start-page: 949
  issue: 4
  year: 2008
  ident: pcbi.1009165.ref027
  article-title: Walking the Interactome for Prioritization of Candidate Disease Genes
  publication-title: The Am J Hum Genet
  doi: 10.1016/j.ajhg.2008.02.013
– volume: 112
  start-page: 809
  issue: 1
  year: 2020
  ident: pcbi.1009165.ref061
  article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.05.021
– volume: 35
  start-page: 4364
  issue: 21
  year: 2019
  ident: pcbi.1009165.ref036
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz254
– volume: 16
  start-page: 363
  year: 2018
  ident: pcbi.1009165.ref056
  article-title: Predict MiRNA-Disease Association with Collaborative Filtering
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9386-9
– volume: 34
  start-page: 239
  issue: 2
  year: 2018
  ident: pcbi.1009165.ref058
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 21
  start-page: 61
  year: 2020
  ident: pcbi.1009165.ref059
  article-title: Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-020-3409-x
– volume: 42
  start-page: D68
  issue: D1
  year: 2013
  ident: pcbi.1009165.ref051
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1181
– volume: 65
  start-page: 87
  issue: 2
  year: 2015
  ident: pcbi.1009165.ref062
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 9
  start-page: e92921
  issue: 4
  year: 2014
  ident: pcbi.1009165.ref063
  article-title: Circulating Exosomal microRNAs as Biomarkers of Colon Cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0092921
– volume: 75
  start-page: 843
  issue: 5
  year: 1993
  ident: pcbi.1009165.ref004
  article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90529-Y
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: pcbi.1009165.ref047
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 104
  start-page: 8685
  issue: 27
  year: 2007
  ident: pcbi.1009165.ref049
  article-title: The human disease network
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0701361104
– volume: 15
  start-page: 563
  issue: 5
  year: 2005
  ident: pcbi.1009165.ref009
  article-title: How microRNAs control cell division, differentiation and death
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2005.08.005
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: pcbi.1009165.ref052
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 21
  start-page: 1109
  issue: 7
  year: 2011
  ident: pcbi.1009165.ref044
  article-title: Prioritizing candidate disease genes by network-based boosting of genome-wide association data
  publication-title: Genome Res
  doi: 10.1101/gr.118992.110
– volume: 8
  start-page: e75504
  issue: 10
  year: 2013
  ident: pcbi.1009165.ref045
  article-title: SIDD: A Semantically Integrated Database towards a Global View of Human Disease
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0075504
– volume: 14
  start-page: 905
  issue: 4
  year: 2017
  ident: pcbi.1009165.ref030
  article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2550432
– volume: 2
  start-page: 7
  issue: 1
  year: 2009
  ident: pcbi.1009165.ref011
  article-title: microRNAs and genetic diseases
  publication-title: Pathogenetics
  doi: 10.1186/1755-8417-2-7
– volume: 461
  start-page: 546
  issue: 7263
  year: 2009
  ident: pcbi.1009165.ref002
  article-title: Active turnover modulates mature microRNA activity in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/nature08349
– volume: 40
  start-page: 3665
  issue: 5
  year: 2013
  ident: pcbi.1009165.ref014
  article-title: Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-012-2442-x
– volume: 88
  start-page: 265
  issue: 3
  year: 2000
  ident: pcbi.1009165.ref046
  article-title: Medical Subject Headings (MeSH)
  publication-title: Bull Med Libr Assoc
– volume: 108
  start-page: 1925
  issue: 10
  year: 2013
  ident: pcbi.1009165.ref013
  article-title: Circulating microRNAs as potential new biomarkers for prostate cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2013.192
– volume: 13
  start-page: 2009
  issue: 1
  year: 2014
  ident: pcbi.1009165.ref016
  article-title: Prediction of disease-related microRNAs by incorporating functional similarity and common association information
  publication-title: Genet Mol Res
  doi: 10.4238/2014.March.24.5
– volume: 22
  start-page: 472
  issue: 1
  year: 2018
  ident: pcbi.1009165.ref018
  article-title: DRMDA: deep representations–based miRNA–disease association prediction
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13336
– volume: 6
  start-page: 21106
  year: 2016
  ident: pcbi.1009165.ref020
  article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction
  publication-title: Sci Rep
  doi: 10.1038/srep21106
– volume: 3
  start-page: e3420
  issue: 10
  year: 2008
  ident: pcbi.1009165.ref050
  article-title: An Analysis of Human MicroRNA and Disease Associations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– volume: 9
  start-page: 189
  issue: 3
  year: 2006
  ident: pcbi.1009165.ref012
  article-title: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2006.01.025
– volume: 7
  start-page: 101
  year: 2013
  ident: pcbi.1009165.ref029
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-101
– volume: 23
  start-page: 1427
  issue: 2
  year: 2019
  ident: pcbi.1009165.ref017
  article-title: MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.14048
– volume: 8
  start-page: 2792
  issue: 10
  year: 2012
  ident: pcbi.1009165.ref026
  article-title: RWRMDA: predicting novel human microRNA-disease associations
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb25180a
– volume: 20
  start-page: 59
  year: 2019
  ident: pcbi.1009165.ref032
  article-title: Integrating random walk and binary regression to identify novel miRNA-disease association
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-2640-9
– volume: 13
  start-page: e1005455
  issue: 1
  year: 2017
  ident: pcbi.1009165.ref034
  article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005455
– volume: 42
  start-page: D1070
  year: 2013
  ident: pcbi.1009165.ref041
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1023
– volume: 5
  start-page: 522
  issue: 7
  year: 2004
  ident: pcbi.1009165.ref003
  article-title: MicroRNAs: small RNAs with a big role in gene regulation
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1379
– volume: 11
  start-page: 384
  issue: 1
  year: 2020
  ident: pcbi.1009165.ref024
  article-title: BHCMDA: A New Biased Conduction Based Method for Potential MiRNA-Disease Association Prediction
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00384
– volume: 287
  start-page: 154
  year: 2018
  ident: pcbi.1009165.ref053
  article-title: Feature-derived graph regularized matrix factorization for predicting drug side effects-Science Direct
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.085
– volume: 11
  start-page: 354
  year: 2020
  ident: pcbi.1009165.ref055
  article-title: MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00354
– volume: 136
  start-page: 215
  issue: 2
  year: 2009
  ident: pcbi.1009165.ref008
  article-title: MicroRNAs: Target Recognition and Regulatory Functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 427
  start-page: 107
  year: 2007
  ident: pcbi.1009165.ref015
  article-title: Microarray Analysis of miRNA Gene Expression
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(07)27006-5
– volume: 66
  start-page: 194
  year: 2017
  ident: pcbi.1009165.ref031
  article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.01.008
– volume: 45
  start-page: D812
  issue: D1
  year: 2016
  ident: pcbi.1009165.ref043
  article-title: dbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1079
– volume: 11
  start-page: 389
  year: 2020
  ident: pcbi.1009165.ref039
  article-title: MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00389
– volume: 35
  start-page: 4730
  issue: 22
  year: 2019
  ident: pcbi.1009165.ref023
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz297
– volume: 1
  start-page: 99
  issue: 1
  year: 2021
  ident: pcbi.1009165.ref040
  article-title: A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 309
  start-page: 1577
  issue: 5740
  year: 2005
  ident: pcbi.1009165.ref006
  article-title: Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA
  publication-title: Science
  doi: 10.1126/science.1113329
– volume: 20
  start-page: 617
  issue: 12
  year: 2004
  ident: pcbi.1009165.ref007
  article-title: MicroRNAs and the regulation of cell death
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2004.09.010
– volume: 22
  start-page: 485
  issue: 1
  year: 2021
  ident: pcbi.1009165.ref038
  article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz159
– volume: 4
  start-page: S2
  issue: SUPPL. 1
  year: 2010
  ident: pcbi.1009165.ref019
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 15
  start-page: 410
  issue: 4
  year: 2005
  ident: pcbi.1009165.ref010
  article-title: MicroRNAs in vertebrate development
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2005.06.012
– volume: 102
  start-page: 103358
  year: 2020
  ident: pcbi.1009165.ref025
  article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2019.103358
– volume: 37
  start-page: D98
  year: 2009
  ident: pcbi.1009165.ref042
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 2017
  start-page: 1
  year: 2017
  ident: pcbi.1009165.ref021
  article-title: miRNA-Disease Association Prediction with Collaborative Matrix Factorization
  publication-title: Complexity
  doi: 10.1155/2017/2498957
– volume: 5
  start-page: 13877
  issue: 1
  year: 2015
  ident: pcbi.1009165.ref033
  article-title: RBMMMDA: predicting multiple types of disease-microRNA associations
  publication-title: Sci Rep
  doi: 10.1038/srep13877
– volume: 25
  start-page: 245
  issue: 3
  year: 2015
  ident: pcbi.1009165.ref054
  article-title: Graph Theory based Spectral Feature Selection for Computer Aided Diagnosis of Parkinson’s Disease Using T1-weighted MRI
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22141
– volume: 16
  start-page: 233
  issue: 1
  year: 2019
  ident: pcbi.1009165.ref035
  article-title: DNRLMF-MDA: Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2017.2776101
– volume: 17
  start-page: 260
  issue: 1
  year: 2019
  ident: pcbi.1009165.ref037
  article-title: MLMDA: a machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogeneous information source
  publication-title: J Transl Med
  doi: 10.1186/s12967-019-2009-x
– volume: 16
  start-page: 373
  year: 2018
  ident: pcbi.1009165.ref057
  article-title: SACMDA: MiRNA-Disease Association Prediction with Short Acyclic Connections in Heterogeneous Graph
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9373-1
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: pcbi.1009165.ref001
  article-title: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 75
  start-page: 855
  issue: 5
  year: 1993
  ident: pcbi.1009165.ref005
  article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90530-4
SSID ssj0035896
Score 2.5185506
Snippet miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e1009165
SubjectTerms Algorithms
Biological activity
Biology and life sciences
Case studies
Computer and Information Sciences
Computer applications
Constraints
Disease
Diseases
Factorization
Gene expression
Health aspects
Kernels
Machine learning
Medicine and Health Sciences
MicroRNA
MicroRNAs
miRNA
Neighborhoods
Neural networks
Non-coding RNA
Performance evaluation
Physical Sciences
Predictions
Regularization
Research and Analysis Methods
Ribonucleic acid
RNA
RNA sequencing
Semantics
Similarity
Social Sciences
Technology application
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYjMNjL2E-arR3aGOxJq21JlrK3rFvoBg2jXSFvRpKlLdDYoU5g_e93ZytZBRt92WvuHOy7k-47dPqOkLfaFD7zpWdOOMtEHXJmijpjeQC8bERu8rpn-5yXp5fi60Iubo36wp6wgR54MNyxhBTlam_rIhhhZamhaKhl3dO2l1r37KWQ83bF1LAHc6n7yVw4FIcpLhbx0hxX-XH00fu1s0vsEQB8JJOk1HP373fo0fqq7RL4mTZP3spGs0fkYYSRdDq8_mNyzzdPyP1hsOTNUxIuTs5mZ5-mH-i3azyJwd5musLeu_P5lMVDGWr-uKajmM5q2ja0W66WUO4COqcOwSPOkADJCrn8f9FhPk-8vPmMXM4-fz85ZXGiAnOwzjZMGMmlhZolSG1LcF5mhBPKw65nLEA15aTIgwx5qX3mpLHKaO4mYeIha_HA-XMyatrGHxDqATgpVRsHthY-CGu0LXA4OIdV7jM5Jnxn0spFunF846uqP0NTUHYMpqrQEVV0xJiw_VPrgW7jDv2P6K29LpJl9z9ACFUxhKq7QmhM3qCvK6TDaLDf5ofZdl315WJeTZHeTnNIJ_9UOk-U3kWl0MLHOhPvOIDJkGYr0TxMNGFRu0R8gHG3--auAmSaTwSYQcOTu1j8u_j1Xox_ij10jW-3qCORzw8QyZioJIYT86WSZvmz5xzXHA_Y1Yv_Ye-X5EGBnUFIT1ocktHmeuuPANpt7Kt-Ff8GeHNLtA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxKdWNlBASDyZJbGdeLygMqgG0iq0Malvlu3Yo9KalKaVxn_PXeJmWOLjNb44ic_n-118_h0hr6XOXeoKRy23hvLKZ1TnVUozD3hZ80xnVcf2OStOLviXuZiHH25tSKvcrYndQl01Fv-RH4JrhnibwVL6fvWDYtUo3F0NJTRukztIXYYpXeV8CLiYkF19LiyNQ0vG5-HoHHRyGDT1dmXNAjMFACWJyDV1DP7DOj1aXTVtBELjFMrffNL0AbkfwGQy6bX_kNxy9SNyty8v-fMx8efHp9PTj5N3ydc17sdghnOyxAy8s9mEhq2ZRN8oqE3QqVVJUyftYrmAoBcwemIRQmIlCWhZIqP_ddJX6QlHOJ-Qi-mnb8cnNNRVoBasbUO5FkwYiFy8kKYAFaaaW146WPu0AcBWWsEzL3xWSJdaoU2pJbNH_siB72KesadkVDe12yOJA_hUlpW2MNbceW60NDmWCGdg6y4VY8J2Q6psIB3HN75S3U5aCcFHP1QKFaGCIsaEDnetetKN_8h_QG0NskiZ3V1o1pcqWKASgHVs5UyVe82NKCREn5WoOv7_Qkro5BXqWiEpRo1ZN5d627bq8_lMTZDkTjJwKn8VOouE3gQh38DHWh1OOsCQIdlWJHkQSYJp26h5D-fd7ptbdWMEcOduLv65-eXQjJ1iJl3tmi3KCGT1A1wyJmU0h6Phi1vqxfeOeVwy3GYvn_374fvkXo6ZP0g_mh-Q0Wa9dc8Bum3Mi84-fwEmP0PT
  priority: 102
  providerName: ProQuest
Title SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization
URI https://www.proquest.com/docview/2561943718
https://www.proquest.com/docview/2551211012
https://pubmed.ncbi.nlm.nih.gov/PMC8345837
https://doaj.org/article/5820cdebd2fa4b568026d5d287446885
http://dx.doi.org/10.1371/journal.pcbi.1009165
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZtymAvYz9pti54Y7Anl9iWLGUwhtPW6wYJJV0gb0aSpS6Q2FmcQPvf786Rsxlaxl4SEp1FfKfzfcqdviPkg5Ch6ZvY-Jpq5dPcBr4M874fWMDLkgYyyGu2z3F8OaXfZ2x2QJqerU6B1b1bO-wnNV0vTm9_3X0Bh_9cd23gQXPR6UqrOWb9AfGwQ3IEsYmjq47oPq8QMVF37MJmOT6HT-4w3UOztIJVzem_f3J3VouyasHSdlHlX1EqfUqeOHjpJbv18IwcmOI5ebRrOHn3gtjrs1E6Ok8-eVdrzNBgzbO3xJq8yTjxXbLGk39MVnkY5nKvLLxqvpyDrgC1expBJfaWgJElcvzferu-Pe5Q50syTS9-nF36rtOCr8H_Nj6VLGIK9jKWCRWDUfuSasoNPA2lAgjHNaOBZTaIhelrJhWXItIDOzAQzSIbRa9IpygLc0w8A4CK81xq0C41liopVIhNwyPwftNnXRI1Ks20oyHHX7zI6twah-3ITlUZGiJzhugSf3_VakfD8Q_5IVprL4sk2vUX5fomcz6ZMUA_OjcqD62kisUC9qM5y-uOALEQMMl7tHWGNBkF1uHcyG1VZd-ux1mCtHcigjDzoNCkJfTRCdkSblZLd_YBVIb0Wy3Jk5YkOLtuDR_jumvuucoAsQYDCmoQcGWzFu8ffrcfxkmxtq4w5RZlGPL8AVLpEt5awy31tUeK-c-ai1xEmHjnr__TPm_I4xCLg5ChNDwhnc16a94CutuoHjnkMw6vIv3aI0fJ8HyYwvvwYnw16dX_mPRql_4NTMZVXA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemTgi-oPHSCgMMAvHJLA87yZAQKhtVy9YK7SH1m2c79qi0JqVpBfun-Bu5y6MjEo9P-1pf0uR8vvtdfL4fIa8SFVjPRpYZbjTjqfOZClKP-Q7wsuK-8tOy2-c4GpzxzxMx2SA_m7MwWFbZ-MTSUae5wW_kuxCaId8OwZV-mH9jyBqFu6sNhUZlFof26jukbMX74QHM7-sg6H863R-wmlWAGbC1JeNKhEIDbnci0RG8gKe44bGFla80wJXYCO474fwosZ4RSscqCc2e27PguUOHH0DB5W9C4PVwRcWTdYIXiqTkA0MqHhaHfFIf1YOH3q0t4-3c6ClWJgAqE61QWDIGrONCZ36ZFy3Q2y7Z_C0G9rfI3Rq80l5lbffIhs3uk1sVneXVA-JO9kf90UHvHf2ywP0frKimM6z4Ox73WL0VRNW1QRQUg2hK84wW09kUkmzICahByIrMFTAyQwaBH7RiBaqPjD4kZzei8Uekk-WZ3SbUAlyL41QZ0DW3jmuV6AApyUPwLdYTXRI2KpWmbnKOT3wpy527GJKdSlUSJ0LWE9ElbH3VvGry8R_5jzhba1ls0V3-kC8uZL3ipQBsZVKr08AprkWUQLabirTkG4iSBG7yEudaYhOODKt8LtSqKOTwZCx72FQvCSGI_VXouCX0phZyObysUfXJClAZNvdqSe60JMGVmNbwNtpd886FvF50cGVji38efrEexpti5V5m8xXKCOwiCDioS-KWDbfU1x7Jpl_LTudJiNv68eN___lzcntwOjqSR8Px4RNyJ8CqI2x9GuyQznKxsk8BNi71s3KtUnJ-087hF2D3gJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIhBfEE-tMMAgEJ9C87ATDwmhslKtjFXTxqR-M45jj0prUppWsH-Nv467xMmIxOPTvsaXh-_O94jP9yPkhVCh8U1sPM106rHMBp4KM98LLMTLigUqyKpun9N4_5R9nPHZFvnZnIXBssrGJlaGOis0_iMfgGuGfDsCUzqwriziaDR-t_zmIYIU7rQ2cBq1ihyYi--QvpVvJyOQ9cswHH_4vLfvOYQBT4PerT2meMRTiOEtF2kMk_EV0ywxYAVUCqFLojkLLLdBLIyvuUoTJSK9a3cNWPHI4s9QMP_XkogHuMaSWZvsRVxU2GAIy-MlEZu5Y3swgYHTktdLnc6xSgEiNN5xixV6QOsjesvzouwEwN3yzd_84fg2ueUCWTqsNe8O2TL5XXK9hra8uEfsyd7h-HA0fEOPVrgXhNXVdIHVf8fToee2hai6VI6SokPNaJHTcr6YQ8IN-QHVGL4iigWMLBBN4AetEYLc8dH75PRKOP6A9PIiN9uEGgjdkiRTGnjNjGWpEmmI8OQgDd_4vE-ihqVSu4bn-MXnstrFSyDxqVklURDSCaJPvPauZd3w4z_071FaLS22664uFKsz6Va_5BBn6cykWWgVS3ksIPPNeFZhD8RCwEOeo6wlNuTIUbXP1KYs5eRkKofYYE9E4ND-SnTcIXrliGwBk9XKnbIAlmGjrw7lTocSzIruDG-j3jVzLuXlAoQ7G1388_CzdhgfilV8uSk2SMOxoyDERH2SdHS4w77uSD7_WnU9FxFu8ScP__3yp-QGmAX5aTI9eERuhliAhF1Qwx3SW6825jFEkOv0SbVUKfly1bbhF2JUhMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCMFMDA%3A+Predicting+microRNA-disease+associations+based+on+similarity+constrained+matrix+factorization&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Lei&rft.au=Gao%2C+Zhen&rft.au=Wang%2C+Yu-Tian&rft.au=Zhang%2C+Ming-Wen&rft.date=2021-07-12&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=17&rft.issue=7&rft.spage=e1009165&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1009165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon