SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization
miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorizat...
Saved in:
Published in | PLoS computational biology Vol. 17; no. 7; p. e1009165 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
12.07.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the
L
2
regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. |
---|---|
AbstractList | miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the
L
2
regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases.miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L.sub.2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are closely associated with many human diseases. In this study, we proposed a computational model based on Similarity Constrained Matrix Factorization for miRNA-Disease Association Prediction (SCMFMDA). In order to effectively combine different disease and miRNA similarity data, we applied similarity network fusion algorithm to obtain integrated disease similarity (composed of disease functional similarity, disease semantic similarity and disease Gaussian interaction profile kernel similarity) and integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity and miRNA Gaussian interaction profile kernel similarity). In addition, the L 2 regularization terms and similarity constraint terms were added to traditional Nonnegative Matrix Factorization algorithm to predict disease-related miRNAs. SCMFMDA achieved AUCs of 0.9675 and 0.9447 based on global Leave-one-out cross validation and five-fold cross validation, respectively. Furthermore, the case studies on two common human diseases were also implemented to demonstrate the prediction accuracy of SCMFMDA. The out of top 50 predicted miRNAs confirmed by experimental reports that indicated SCMFMDA was effective for prediction of relationship between miRNAs and diseases. Considerable studies have suggested that miRNAs are closely associated with many human diseases, so predicting potential associations between miRNAs and diseases can contribute to the diagnose and treatment of diseases. Several models of discovering unknown miRNA-diseases associations make the prediction more productive and effective. We proposed SCMFMDA to obtain more accuracy prediction result by applying similarity network fusion to fuse multi-source disease and miRNA information and utilizing similarity constrained matrix factorization to make prediction based on biological information. The global Leave-one-out cross validation and five-fold cross validation were applied to evaluate our model. Consequently, SCMFMDA could achieve AUCs of 0.9675 and 0.9447 that were obviously higher than previous computational models. Furthermore, we implemented case studies on significant human diseases including colon neoplasms and lung neoplasms, 47 and 46 of top-50 were confirmed by experimental reports. All results proved that SCMFMDA could be regard as an effective way to discover unverified connections of miRNA-disease. |
Audience | Academic |
Author | Zhang, Ming-Wen Ni, Jian-Cheng Gao, Zhen Zheng, Chun-Hou Su, Yansen Wang, Yu-Tian Li, Lei |
AuthorAffiliation | University of Electronic Science and Technology, CHINA 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China 2 School of Artifial Intelligence, Anhui University, Hefei, China |
AuthorAffiliation_xml | – name: 2 School of Artifial Intelligence, Anhui University, Hefei, China – name: University of Electronic Science and Technology, CHINA – name: 1 School of Cyber Science and Engineering, Qufu Normal University, Qufu, China |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0003-0013-2735 surname: Li fullname: Li, Lei – sequence: 2 givenname: Zhen orcidid: 0000-0001-7427-6032 surname: Gao fullname: Gao, Zhen – sequence: 3 givenname: Yu-Tian orcidid: 0000-0002-8033-8727 surname: Wang fullname: Wang, Yu-Tian – sequence: 4 givenname: Ming-Wen surname: Zhang fullname: Zhang, Ming-Wen – sequence: 5 givenname: Jian-Cheng orcidid: 0000-0001-5667-9807 surname: Ni fullname: Ni, Jian-Cheng – sequence: 6 givenname: Chun-Hou surname: Zheng fullname: Zheng, Chun-Hou – sequence: 7 givenname: Yansen surname: Su fullname: Su, Yansen |
BookMark | eNqVkl1v0zAUhiM0xD7gHyARiRu4aLHjjzi7QKoKg0rbQBtcWyeOXTwldrFdtPHrcdtMotOEhHIR65znfZ1z8h4XB847XRQvMZpiUuN3N34dHPTTlWrtFCPUYM6eFEeYMTKpCRMHf50Pi-MYbxDKx4Y_Kw4JrViFBD0qzPX84uziw-y0_Bp0Z1WyblkOVgV_dTmbdDZqiLqEGL2ykKx3sWxzpSu9K6MdbA_BprtS5UYKYF3uDJCCvS0NqOSD_b1VPS-eGuijfjG-T4rvZx-_zT9Pzr98Wsxn5xPFiUgTCoywliNumGi5UoCAKlprRgS0DIlaMYoNM5gLjRSDtgZBVGMaXTUNMYScFK92vqveRzmuKMqKcdzQvDWRicWO6DzcyFWwA4Q76cHKbcGHpYSQrOq1ZKJCqtNtVxmgLeMCVbxjXSVqSrkQLHu9H29bt4PulHZ5B_2e6X7H2R9y6X9JQSgTpM4Gb0aD4H-udUxysFHpvgen_Xrz3QxXGCNcZfT1A_Tx6UZqCXkA64zP96qNqZzxGjWCYMozNX2Eyk-n86_PMTM21_cEb_cEmUn6Ni1hHaNcXF_9B3u5z57u2Jy3GIM2Utm0DcwmTL3ESG6yfj-q3GRdjlnPYvpAfL_4f8r-AJ-1BGo |
CitedBy_id | crossref_primary_10_3390_genes13061021 crossref_primary_10_2174_0115748936293219240426051148 crossref_primary_10_3389_fgene_2022_958096 crossref_primary_10_1016_j_eswa_2022_119095 crossref_primary_10_1002_ese3_1273 crossref_primary_10_1093_bib_bbae481 crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_1093_bib_bbab526 crossref_primary_10_1186_s12864_022_08687_2 crossref_primary_10_3389_fgene_2022_936823 crossref_primary_10_1016_j_neucom_2023_127016 crossref_primary_10_1016_j_future_2022_04_012 crossref_primary_10_1186_s12859_022_04961_y crossref_primary_10_1093_jcde_qwac075 crossref_primary_10_3390_app12094776 crossref_primary_10_1093_bib_bbac390 crossref_primary_10_1155_2022_8011003 crossref_primary_10_3389_fbioe_2022_911769 crossref_primary_10_1016_j_eswa_2022_119041 crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_3389_fphar_2022_1020759 crossref_primary_10_1038_s41467_024_49813_w crossref_primary_10_1016_j_enconman_2022_116246 crossref_primary_10_3389_fninf_2022_1041799 crossref_primary_10_1007_s10462_022_10370_7 crossref_primary_10_1093_bib_bbac155 crossref_primary_10_1109_JBHI_2024_3467101 crossref_primary_10_3390_app12146907 crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1016_j_compbiomed_2022_105510 crossref_primary_10_1016_j_compbiomed_2022_105752 crossref_primary_10_1186_s12864_023_09501_3 crossref_primary_10_3389_fgene_2022_978975 crossref_primary_10_1002_er_8011 crossref_primary_10_1093_bib_bbac524 crossref_primary_10_1007_s12539_023_00594_8 crossref_primary_10_1016_j_compbiomed_2022_106069 crossref_primary_10_3389_fgene_2022_980497 crossref_primary_10_1109_JBHI_2024_3431693 crossref_primary_10_2174_1389201024666221025114500 |
Cites_doi | 10.1186/s12859-019-2956-5 10.1038/s41419-017-0003-x 10.1371/journal.pone.0070204 10.1016/j.patcog.2014.04.004 10.1016/j.ajhg.2008.02.013 10.1016/j.ygeno.2019.05.021 10.1093/bioinformatics/btz254 10.1007/s12021-018-9386-9 10.1093/bioinformatics/btx545 10.1186/s12859-020-3409-x 10.1093/nar/gkt1181 10.3322/caac.21262 10.1371/journal.pone.0092921 10.1016/0092-8674(93)90529-Y 10.1093/bioinformatics/btq241 10.1073/pnas.0701361104 10.1016/j.gde.2005.08.005 10.1038/nmeth.2810 10.1101/gr.118992.110 10.1371/journal.pone.0075504 10.1109/TCBB.2016.2550432 10.1186/1755-8417-2-7 10.1038/nature08349 10.1007/s11033-012-2442-x 10.1038/bjc.2013.192 10.4238/2014.March.24.5 10.1111/jcmm.13336 10.1038/srep21106 10.1371/journal.pone.0003420 10.1016/j.ccr.2006.01.025 10.1186/1752-0509-7-101 10.1111/jcmm.14048 10.1039/c2mb25180a 10.1186/s12859-019-2640-9 10.1371/journal.pcbi.1005455 10.1093/nar/gkt1023 10.1038/nrg1379 10.3389/fgene.2020.00384 10.1016/j.neucom.2018.01.085 10.3389/fgene.2020.00354 10.1016/j.cell.2009.01.002 10.1016/S0076-6879(07)27006-5 10.1016/j.jbi.2017.01.008 10.1093/nar/gkw1079 10.3389/fgene.2020.00389 10.1093/bioinformatics/btz297 10.1126/science.1113329 10.1016/j.tig.2004.09.010 10.1093/bib/bbz159 10.1186/1752-0509-4-S1-S2 10.1016/j.gde.2005.06.012 10.1016/j.jbi.2019.103358 10.1093/nar/gkn714 10.1155/2017/2498957 10.1038/srep13877 10.1002/ima.22141 10.1109/TCBB.2017.2776101 10.1186/s12967-019-2009-x 10.1007/s12021-018-9373-1 10.1016/S0092-8674(04)00045-5 10.1016/0092-8674(93)90530-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Li et al 2021 Li et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Li et al 2021 Li et al |
DBID | AAYXX CITATION ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1009165 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | SCMFMDA |
EISSN | 1553-7358 |
ExternalDocumentID | 2561943718 oai_doaj_org_article_5820cdebd2fa4b568026d5d287446885 PMC8345837 A670983146 10_1371_journal_pcbi_1009165 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: MMC202006 – fundername: ; grantid: ZR2020KC022 – fundername: ; grantid: 61872220 – fundername: ; grantid: 61873001 – fundername: ; grantid: U19A2064 – fundername: ; grantid: 11701318 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M PMFND 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 5PM PUEGO - AAPBV ABPTK ADACO BBAFP M~E PRINS |
ID | FETCH-LOGICAL-c638t-4a535b606f58b6cca0a4c47e538ab5087c541f5f168e0c5ab7a83c9f9e2993f33 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:11:48 EST 2021 Wed Aug 27 01:20:01 EDT 2025 Thu Aug 21 13:43:16 EDT 2025 Fri Jul 11 06:59:07 EDT 2025 Fri Jul 25 11:53:56 EDT 2025 Tue Jun 17 21:35:39 EDT 2025 Tue Jun 10 20:12:44 EDT 2025 Fri Jun 27 03:38:29 EDT 2025 Fri Jun 27 04:23:40 EDT 2025 Tue Jul 01 01:26:15 EDT 2025 Thu Apr 24 22:55:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c638t-4a535b606f58b6cca0a4c47e538ab5087c541f5f168e0c5ab7a83c9f9e2993f33 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0003-0013-2735 0000-0001-5667-9807 0000-0002-8033-8727 0000-0001-7427-6032 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1009165 |
PMID | 34252084 |
PQID | 2561943718 |
PQPubID | 1436340 |
ParticipantIDs | plos_journals_2561943718 doaj_primary_oai_doaj_org_article_5820cdebd2fa4b568026d5d287446885 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8345837 proquest_miscellaneous_2551211012 proquest_journals_2561943718 gale_infotracmisc_A670983146 gale_infotracacademiconefile_A670983146 gale_incontextgauss_ISR_A670983146 gale_incontextgauss_ISN_A670983146 crossref_citationtrail_10_1371_journal_pcbi_1009165 crossref_primary_10_1371_journal_pcbi_1009165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210712 |
PublicationDateYYYYMMDD | 2021-07-12 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210712 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | P Xuan (pcbi.1009165.ref048) 2013; 8 L He (pcbi.1009165.ref003) 2004; 5 M Lu (pcbi.1009165.ref050) 2008; 3 C Ji (pcbi.1009165.ref040) 2021; 1 Z Yang (pcbi.1009165.ref043) 2016; 45 C Yan (pcbi.1009165.ref035) 2019; 16 Y Zhang (pcbi.1009165.ref039) 2020; 11 X Chen (pcbi.1009165.ref026) 2012; 8 D Wang (pcbi.1009165.ref047) 2010; 26 OK Hiroko (pcbi.1009165.ref063) 2014; 9 Z Shen (pcbi.1009165.ref021) 2017; 2017 Y Jiang (pcbi.1009165.ref056) 2018; 16 X Chen (pcbi.1009165.ref020) 2016; 6 P Xu (pcbi.1009165.ref007) 2004; 20 JM Thomson (pcbi.1009165.ref015) 2007; 427 A Kozomara (pcbi.1009165.ref051) 2013; 42 S Yu (pcbi.1009165.ref017) 2019; 23 CE Lipscomb (pcbi.1009165.ref046) 2000; 88 B Wightman (pcbi.1009165.ref005) 1993; 75 DP Bartel (pcbi.1009165.ref001) 2004; 116 X Chen (pcbi.1009165.ref033) 2015; 5 J Ha (pcbi.1009165.ref025) 2020; 102 LA Torre (pcbi.1009165.ref062) 2015; 65 Y Niu (pcbi.1009165.ref032) 2019; 20 Y Liu (pcbi.1009165.ref030) 2017; 14 EA Miska (pcbi.1009165.ref009) 2005; 15 Q Xiao (pcbi.1009165.ref058) 2018; 34 Z You (pcbi.1009165.ref034) 2017; 13 CL Jopling (pcbi.1009165.ref006) 2005; 309 K Zheng (pcbi.1009165.ref037) 2019; 17 Q Wu (pcbi.1009165.ref055) 2020; 11 X Chen (pcbi.1009165.ref038) 2021; 22 S Chatterjee (pcbi.1009165.ref002) 2009; 461 H Shi (pcbi.1009165.ref029) 2013; 7 B Shao (pcbi.1009165.ref057) 2018; 16 Y Li (pcbi.1009165.ref041) 2013; 42 X Chen (pcbi.1009165.ref022) 2018; 9 Q Jiang (pcbi.1009165.ref042) 2009; 37 H Zhang (pcbi.1009165.ref028) 2014; 47 Y Zhao (pcbi.1009165.ref023) 2019; 35 RC Lee (pcbi.1009165.ref004) 1993; 75 S Mohammadi-Yeganeh (pcbi.1009165.ref014) 2013; 40 XY Zhu (pcbi.1009165.ref024) 2020; 11 BD Harfe (pcbi.1009165.ref010) 2005; 15 Y Gao (pcbi.1009165.ref060) 2019; 20 J Luo (pcbi.1009165.ref031) 2017; 66 N Meola (pcbi.1009165.ref011) 2009; 2 W Zhang (pcbi.1009165.ref053) 2018; 287 L Cheng (pcbi.1009165.ref045) 2013; 8 Z Gao (pcbi.1009165.ref059) 2020; 21 S Köhler (pcbi.1009165.ref027) 2008; 82 X Chen (pcbi.1009165.ref018) 2018; 22 X Chen (pcbi.1009165.ref061) 2020; 112 B Wang (pcbi.1009165.ref052) 2014; 11 N Yanaihara (pcbi.1009165.ref012) 2006; 9 A Sita-Lumsden (pcbi.1009165.ref013) 2013; 108 K Han (pcbi.1009165.ref016) 2014; 13 B Rana (pcbi.1009165.ref054) 2015; 25 Q Jiang (pcbi.1009165.ref019) 2010; 4 DP Bartel (pcbi.1009165.ref008) 2009; 136 J Peng (pcbi.1009165.ref036) 2019; 35 I Lee (pcbi.1009165.ref044) 2011; 21 KI Goh (pcbi.1009165.ref049) 2007; 104 |
References_xml | – volume: 20 start-page: 353 issue: 1 year: 2019 ident: pcbi.1009165.ref060 article-title: NPCMF: Nearest Profile-based Collaborative Matrix Factorization method for predicting miRNA-disease associations publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2956-5 – volume: 9 start-page: 3 issue: 1 year: 2018 ident: pcbi.1009165.ref022 article-title: EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction publication-title: Cell Death Dis doi: 10.1038/s41419-017-0003-x – volume: 8 start-page: e70204 issue: 9 year: 2013 ident: pcbi.1009165.ref048 article-title: Correction: Prediction of microRNAs Associated with Human Diseases Based on Weighted k Most Similar Neighbors publication-title: PLoS One doi: 10.1371/journal.pone.0070204 – volume: 47 start-page: 3168 issue: 9 year: 2014 ident: pcbi.1009165.ref028 article-title: A locality correlation preserving support vector machine publication-title: Pattern Recognition doi: 10.1016/j.patcog.2014.04.004 – volume: 82 start-page: 949 issue: 4 year: 2008 ident: pcbi.1009165.ref027 article-title: Walking the Interactome for Prioritization of Candidate Disease Genes publication-title: The Am J Hum Genet doi: 10.1016/j.ajhg.2008.02.013 – volume: 112 start-page: 809 issue: 1 year: 2020 ident: pcbi.1009165.ref061 article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization publication-title: Genomics doi: 10.1016/j.ygeno.2019.05.021 – volume: 35 start-page: 4364 issue: 21 year: 2019 ident: pcbi.1009165.ref036 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz254 – volume: 16 start-page: 363 year: 2018 ident: pcbi.1009165.ref056 article-title: Predict MiRNA-Disease Association with Collaborative Filtering publication-title: Neuroinformatics doi: 10.1007/s12021-018-9386-9 – volume: 34 start-page: 239 issue: 2 year: 2018 ident: pcbi.1009165.ref058 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 21 start-page: 61 year: 2020 ident: pcbi.1009165.ref059 article-title: Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-020-3409-x – volume: 42 start-page: D68 issue: D1 year: 2013 ident: pcbi.1009165.ref051 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 – volume: 65 start-page: 87 issue: 2 year: 2015 ident: pcbi.1009165.ref062 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J Clin doi: 10.3322/caac.21262 – volume: 9 start-page: e92921 issue: 4 year: 2014 ident: pcbi.1009165.ref063 article-title: Circulating Exosomal microRNAs as Biomarkers of Colon Cancer publication-title: PLoS One doi: 10.1371/journal.pone.0092921 – volume: 75 start-page: 843 issue: 5 year: 1993 ident: pcbi.1009165.ref004 article-title: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 publication-title: Cell doi: 10.1016/0092-8674(93)90529-Y – volume: 26 start-page: 1644 issue: 13 year: 2010 ident: pcbi.1009165.ref047 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 104 start-page: 8685 issue: 27 year: 2007 ident: pcbi.1009165.ref049 article-title: The human disease network publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0701361104 – volume: 15 start-page: 563 issue: 5 year: 2005 ident: pcbi.1009165.ref009 article-title: How microRNAs control cell division, differentiation and death publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.08.005 – volume: 11 start-page: 333 issue: 3 year: 2014 ident: pcbi.1009165.ref052 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 21 start-page: 1109 issue: 7 year: 2011 ident: pcbi.1009165.ref044 article-title: Prioritizing candidate disease genes by network-based boosting of genome-wide association data publication-title: Genome Res doi: 10.1101/gr.118992.110 – volume: 8 start-page: e75504 issue: 10 year: 2013 ident: pcbi.1009165.ref045 article-title: SIDD: A Semantically Integrated Database towards a Global View of Human Disease publication-title: PLoS One. doi: 10.1371/journal.pone.0075504 – volume: 14 start-page: 905 issue: 4 year: 2017 ident: pcbi.1009165.ref030 article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2550432 – volume: 2 start-page: 7 issue: 1 year: 2009 ident: pcbi.1009165.ref011 article-title: microRNAs and genetic diseases publication-title: Pathogenetics doi: 10.1186/1755-8417-2-7 – volume: 461 start-page: 546 issue: 7263 year: 2009 ident: pcbi.1009165.ref002 article-title: Active turnover modulates mature microRNA activity in Caenorhabditis elegans publication-title: Nature doi: 10.1038/nature08349 – volume: 40 start-page: 3665 issue: 5 year: 2013 ident: pcbi.1009165.ref014 article-title: Development of a robust, low cost stem-loop real-time quantification PCR technique for miRNA expression analysis publication-title: Mol Biol Rep doi: 10.1007/s11033-012-2442-x – volume: 88 start-page: 265 issue: 3 year: 2000 ident: pcbi.1009165.ref046 article-title: Medical Subject Headings (MeSH) publication-title: Bull Med Libr Assoc – volume: 108 start-page: 1925 issue: 10 year: 2013 ident: pcbi.1009165.ref013 article-title: Circulating microRNAs as potential new biomarkers for prostate cancer publication-title: Br J Cancer doi: 10.1038/bjc.2013.192 – volume: 13 start-page: 2009 issue: 1 year: 2014 ident: pcbi.1009165.ref016 article-title: Prediction of disease-related microRNAs by incorporating functional similarity and common association information publication-title: Genet Mol Res doi: 10.4238/2014.March.24.5 – volume: 22 start-page: 472 issue: 1 year: 2018 ident: pcbi.1009165.ref018 article-title: DRMDA: deep representations–based miRNA–disease association prediction publication-title: J Cell Mol Med doi: 10.1111/jcmm.13336 – volume: 6 start-page: 21106 year: 2016 ident: pcbi.1009165.ref020 article-title: WBSMDA: Within and Between Score for MiRNA-Disease Association prediction publication-title: Sci Rep doi: 10.1038/srep21106 – volume: 3 start-page: e3420 issue: 10 year: 2008 ident: pcbi.1009165.ref050 article-title: An Analysis of Human MicroRNA and Disease Associations publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – volume: 9 start-page: 189 issue: 3 year: 2006 ident: pcbi.1009165.ref012 article-title: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis publication-title: Cancer Cell doi: 10.1016/j.ccr.2006.01.025 – volume: 7 start-page: 101 year: 2013 ident: pcbi.1009165.ref029 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-101 – volume: 23 start-page: 1427 issue: 2 year: 2019 ident: pcbi.1009165.ref017 article-title: MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation publication-title: J Cell Mol Med doi: 10.1111/jcmm.14048 – volume: 8 start-page: 2792 issue: 10 year: 2012 ident: pcbi.1009165.ref026 article-title: RWRMDA: predicting novel human microRNA-disease associations publication-title: Mol Biosyst doi: 10.1039/c2mb25180a – volume: 20 start-page: 59 year: 2019 ident: pcbi.1009165.ref032 article-title: Integrating random walk and binary regression to identify novel miRNA-disease association publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-2640-9 – volume: 13 start-page: e1005455 issue: 1 year: 2017 ident: pcbi.1009165.ref034 article-title: PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005455 – volume: 42 start-page: D1070 year: 2013 ident: pcbi.1009165.ref041 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1023 – volume: 5 start-page: 522 issue: 7 year: 2004 ident: pcbi.1009165.ref003 article-title: MicroRNAs: small RNAs with a big role in gene regulation publication-title: Nat Rev Genet doi: 10.1038/nrg1379 – volume: 11 start-page: 384 issue: 1 year: 2020 ident: pcbi.1009165.ref024 article-title: BHCMDA: A New Biased Conduction Based Method for Potential MiRNA-Disease Association Prediction publication-title: Front Genet doi: 10.3389/fgene.2020.00384 – volume: 287 start-page: 154 year: 2018 ident: pcbi.1009165.ref053 article-title: Feature-derived graph regularized matrix factorization for predicting drug side effects-Science Direct publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.085 – volume: 11 start-page: 354 year: 2020 ident: pcbi.1009165.ref055 article-title: MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association publication-title: Front Genet doi: 10.3389/fgene.2020.00354 – volume: 136 start-page: 215 issue: 2 year: 2009 ident: pcbi.1009165.ref008 article-title: MicroRNAs: Target Recognition and Regulatory Functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 427 start-page: 107 year: 2007 ident: pcbi.1009165.ref015 article-title: Microarray Analysis of miRNA Gene Expression publication-title: Methods Enzymol doi: 10.1016/S0076-6879(07)27006-5 – volume: 66 start-page: 194 year: 2017 ident: pcbi.1009165.ref031 article-title: A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heterogeneous network publication-title: J Biomed Inform doi: 10.1016/j.jbi.2017.01.008 – volume: 45 start-page: D812 issue: D1 year: 2016 ident: pcbi.1009165.ref043 article-title: dbDEMC 2.0: Updated database of differentially expressed miRNAs in human cancers publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1079 – volume: 11 start-page: 389 year: 2020 ident: pcbi.1009165.ref039 article-title: MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection publication-title: Front Genet doi: 10.3389/fgene.2020.00389 – volume: 35 start-page: 4730 issue: 22 year: 2019 ident: pcbi.1009165.ref023 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz297 – volume: 1 start-page: 99 issue: 1 year: 2021 ident: pcbi.1009165.ref040 article-title: A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 309 start-page: 1577 issue: 5740 year: 2005 ident: pcbi.1009165.ref006 article-title: Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA publication-title: Science doi: 10.1126/science.1113329 – volume: 20 start-page: 617 issue: 12 year: 2004 ident: pcbi.1009165.ref007 article-title: MicroRNAs and the regulation of cell death publication-title: Trends Genet doi: 10.1016/j.tig.2004.09.010 – volume: 22 start-page: 485 issue: 1 year: 2021 ident: pcbi.1009165.ref038 article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion publication-title: Brief Bioinform doi: 10.1093/bib/bbz159 – volume: 4 start-page: S2 issue: SUPPL. 1 year: 2010 ident: pcbi.1009165.ref019 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 15 start-page: 410 issue: 4 year: 2005 ident: pcbi.1009165.ref010 article-title: MicroRNAs in vertebrate development publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.06.012 – volume: 102 start-page: 103358 year: 2020 ident: pcbi.1009165.ref025 article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization publication-title: J Biomed Inform doi: 10.1016/j.jbi.2019.103358 – volume: 37 start-page: D98 year: 2009 ident: pcbi.1009165.ref042 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 2017 start-page: 1 year: 2017 ident: pcbi.1009165.ref021 article-title: miRNA-Disease Association Prediction with Collaborative Matrix Factorization publication-title: Complexity doi: 10.1155/2017/2498957 – volume: 5 start-page: 13877 issue: 1 year: 2015 ident: pcbi.1009165.ref033 article-title: RBMMMDA: predicting multiple types of disease-microRNA associations publication-title: Sci Rep doi: 10.1038/srep13877 – volume: 25 start-page: 245 issue: 3 year: 2015 ident: pcbi.1009165.ref054 article-title: Graph Theory based Spectral Feature Selection for Computer Aided Diagnosis of Parkinson’s Disease Using T1-weighted MRI publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22141 – volume: 16 start-page: 233 issue: 1 year: 2019 ident: pcbi.1009165.ref035 article-title: DNRLMF-MDA: Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2017.2776101 – volume: 17 start-page: 260 issue: 1 year: 2019 ident: pcbi.1009165.ref037 article-title: MLMDA: a machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogeneous information source publication-title: J Transl Med doi: 10.1186/s12967-019-2009-x – volume: 16 start-page: 373 year: 2018 ident: pcbi.1009165.ref057 article-title: SACMDA: MiRNA-Disease Association Prediction with Short Acyclic Connections in Heterogeneous Graph publication-title: Neuroinformatics doi: 10.1007/s12021-018-9373-1 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: pcbi.1009165.ref001 article-title: MicroRNAs: Genomics, Biogenesis, Mechanism, and Function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 75 start-page: 855 issue: 5 year: 1993 ident: pcbi.1009165.ref005 article-title: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans publication-title: Cell doi: 10.1016/0092-8674(93)90530-4 |
SSID | ssj0035896 |
Score | 2.5185506 |
Snippet | miRNAs belong to small non-coding RNAs that are related to a number of complicated biological processes. Considerable studies have suggested that miRNAs are... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e1009165 |
SubjectTerms | Algorithms Biological activity Biology and life sciences Case studies Computer and Information Sciences Computer applications Constraints Disease Diseases Factorization Gene expression Health aspects Kernels Machine learning Medicine and Health Sciences MicroRNA MicroRNAs miRNA Neighborhoods Neural networks Non-coding RNA Performance evaluation Physical Sciences Predictions Regularization Research and Analysis Methods Ribonucleic acid RNA RNA sequencing Semantics Similarity Social Sciences Technology application Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYjMNjL2E-arR3aGOxJq21JlrK3rFvoBg2jXSFvRpKlLdDYoU5g_e93ZytZBRt92WvuHOy7k-47dPqOkLfaFD7zpWdOOMtEHXJmijpjeQC8bERu8rpn-5yXp5fi60Iubo36wp6wgR54MNyxhBTlam_rIhhhZamhaKhl3dO2l1r37KWQ83bF1LAHc6n7yVw4FIcpLhbx0hxX-XH00fu1s0vsEQB8JJOk1HP373fo0fqq7RL4mTZP3spGs0fkYYSRdDq8_mNyzzdPyP1hsOTNUxIuTs5mZ5-mH-i3azyJwd5musLeu_P5lMVDGWr-uKajmM5q2ja0W66WUO4COqcOwSPOkADJCrn8f9FhPk-8vPmMXM4-fz85ZXGiAnOwzjZMGMmlhZolSG1LcF5mhBPKw65nLEA15aTIgwx5qX3mpLHKaO4mYeIha_HA-XMyatrGHxDqATgpVRsHthY-CGu0LXA4OIdV7jM5Jnxn0spFunF846uqP0NTUHYMpqrQEVV0xJiw_VPrgW7jDv2P6K29LpJl9z9ACFUxhKq7QmhM3qCvK6TDaLDf5ofZdl315WJeTZHeTnNIJ_9UOk-U3kWl0MLHOhPvOIDJkGYr0TxMNGFRu0R8gHG3--auAmSaTwSYQcOTu1j8u_j1Xox_ij10jW-3qCORzw8QyZioJIYT86WSZvmz5xzXHA_Y1Yv_Ye-X5EGBnUFIT1ocktHmeuuPANpt7Kt-Ff8GeHNLtA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELegCIkXxKdWNlBASDyZJbGdeLygMqgG0iq0Malvlu3Yo9KalKaVxn_PXeJmWOLjNb44ic_n-118_h0hr6XOXeoKRy23hvLKZ1TnVUozD3hZ80xnVcf2OStOLviXuZiHH25tSKvcrYndQl01Fv-RH4JrhnibwVL6fvWDYtUo3F0NJTRukztIXYYpXeV8CLiYkF19LiyNQ0vG5-HoHHRyGDT1dmXNAjMFACWJyDV1DP7DOj1aXTVtBELjFMrffNL0AbkfwGQy6bX_kNxy9SNyty8v-fMx8efHp9PTj5N3ydc17sdghnOyxAy8s9mEhq2ZRN8oqE3QqVVJUyftYrmAoBcwemIRQmIlCWhZIqP_ddJX6QlHOJ-Qi-mnb8cnNNRVoBasbUO5FkwYiFy8kKYAFaaaW146WPu0AcBWWsEzL3xWSJdaoU2pJbNH_siB72KesadkVDe12yOJA_hUlpW2MNbceW60NDmWCGdg6y4VY8J2Q6psIB3HN75S3U5aCcFHP1QKFaGCIsaEDnetetKN_8h_QG0NskiZ3V1o1pcqWKASgHVs5UyVe82NKCREn5WoOv7_Qkro5BXqWiEpRo1ZN5d627bq8_lMTZDkTjJwKn8VOouE3gQh38DHWh1OOsCQIdlWJHkQSYJp26h5D-fd7ptbdWMEcOduLv65-eXQjJ1iJl3tmi3KCGT1A1wyJmU0h6Phi1vqxfeOeVwy3GYvn_374fvkXo6ZP0g_mh-Q0Wa9dc8Bum3Mi84-fwEmP0PT priority: 102 providerName: ProQuest |
Title | SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization |
URI | https://www.proquest.com/docview/2561943718 https://www.proquest.com/docview/2551211012 https://pubmed.ncbi.nlm.nih.gov/PMC8345837 https://doaj.org/article/5820cdebd2fa4b568026d5d287446885 http://dx.doi.org/10.1371/journal.pcbi.1009165 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBZtymAvYz9pti54Y7Anl9iWLGUwhtPW6wYJJV0gb0aSpS6Q2FmcQPvf786Rsxlaxl4SEp1FfKfzfcqdviPkg5Ch6ZvY-Jpq5dPcBr4M874fWMDLkgYyyGu2z3F8OaXfZ2x2QJqerU6B1b1bO-wnNV0vTm9_3X0Bh_9cd23gQXPR6UqrOWb9AfGwQ3IEsYmjq47oPq8QMVF37MJmOT6HT-4w3UOztIJVzem_f3J3VouyasHSdlHlX1EqfUqeOHjpJbv18IwcmOI5ebRrOHn3gtjrs1E6Ok8-eVdrzNBgzbO3xJq8yTjxXbLGk39MVnkY5nKvLLxqvpyDrgC1expBJfaWgJElcvzferu-Pe5Q50syTS9-nF36rtOCr8H_Nj6VLGIK9jKWCRWDUfuSasoNPA2lAgjHNaOBZTaIhelrJhWXItIDOzAQzSIbRa9IpygLc0w8A4CK81xq0C41liopVIhNwyPwftNnXRI1Ks20oyHHX7zI6twah-3ITlUZGiJzhugSf3_VakfD8Q_5IVprL4sk2vUX5fomcz6ZMUA_OjcqD62kisUC9qM5y-uOALEQMMl7tHWGNBkF1uHcyG1VZd-ux1mCtHcigjDzoNCkJfTRCdkSblZLd_YBVIb0Wy3Jk5YkOLtuDR_jumvuucoAsQYDCmoQcGWzFu8ffrcfxkmxtq4w5RZlGPL8AVLpEt5awy31tUeK-c-ai1xEmHjnr__TPm_I4xCLg5ChNDwhnc16a94CutuoHjnkMw6vIv3aI0fJ8HyYwvvwYnw16dX_mPRql_4NTMZVXA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemTgi-oPHSCgMMAvHJLA87yZAQKhtVy9YK7SH1m2c79qi0JqVpBfun-Bu5y6MjEo9P-1pf0uR8vvtdfL4fIa8SFVjPRpYZbjTjqfOZClKP-Q7wsuK-8tOy2-c4GpzxzxMx2SA_m7MwWFbZ-MTSUae5wW_kuxCaId8OwZV-mH9jyBqFu6sNhUZlFof26jukbMX74QHM7-sg6H863R-wmlWAGbC1JeNKhEIDbnci0RG8gKe44bGFla80wJXYCO474fwosZ4RSscqCc2e27PguUOHH0DB5W9C4PVwRcWTdYIXiqTkA0MqHhaHfFIf1YOH3q0t4-3c6ClWJgAqE61QWDIGrONCZ36ZFy3Q2y7Z_C0G9rfI3Rq80l5lbffIhs3uk1sVneXVA-JO9kf90UHvHf2ywP0frKimM6z4Ox73WL0VRNW1QRQUg2hK84wW09kUkmzICahByIrMFTAyQwaBH7RiBaqPjD4kZzei8Uekk-WZ3SbUAlyL41QZ0DW3jmuV6AApyUPwLdYTXRI2KpWmbnKOT3wpy527GJKdSlUSJ0LWE9ElbH3VvGry8R_5jzhba1ls0V3-kC8uZL3ipQBsZVKr08AprkWUQLabirTkG4iSBG7yEudaYhOODKt8LtSqKOTwZCx72FQvCSGI_VXouCX0phZyObysUfXJClAZNvdqSe60JMGVmNbwNtpd886FvF50cGVji38efrEexpti5V5m8xXKCOwiCDioS-KWDbfU1x7Jpl_LTudJiNv68eN___lzcntwOjqSR8Px4RNyJ8CqI2x9GuyQznKxsk8BNi71s3KtUnJ-087hF2D3gJQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIhBfEE-tMMAgEJ9C87ATDwmhslKtjFXTxqR-M45jj0prUppWsH-Nv467xMmIxOPTvsaXh-_O94jP9yPkhVCh8U1sPM106rHMBp4KM98LLMTLigUqyKpun9N4_5R9nPHZFvnZnIXBssrGJlaGOis0_iMfgGuGfDsCUzqwriziaDR-t_zmIYIU7rQ2cBq1ihyYi--QvpVvJyOQ9cswHH_4vLfvOYQBT4PerT2meMRTiOEtF2kMk_EV0ywxYAVUCqFLojkLLLdBLIyvuUoTJSK9a3cNWPHI4s9QMP_XkogHuMaSWZvsRVxU2GAIy-MlEZu5Y3swgYHTktdLnc6xSgEiNN5xixV6QOsjesvzouwEwN3yzd_84fg2ueUCWTqsNe8O2TL5XXK9hra8uEfsyd7h-HA0fEOPVrgXhNXVdIHVf8fToee2hai6VI6SokPNaJHTcr6YQ8IN-QHVGL4iigWMLBBN4AetEYLc8dH75PRKOP6A9PIiN9uEGgjdkiRTGnjNjGWpEmmI8OQgDd_4vE-ihqVSu4bn-MXnstrFSyDxqVklURDSCaJPvPauZd3w4z_071FaLS22664uFKsz6Va_5BBn6cykWWgVS3ksIPPNeFZhD8RCwEOeo6wlNuTIUbXP1KYs5eRkKofYYE9E4ND-SnTcIXrliGwBk9XKnbIAlmGjrw7lTocSzIruDG-j3jVzLuXlAoQ7G1388_CzdhgfilV8uSk2SMOxoyDERH2SdHS4w77uSD7_WnU9FxFu8ScP__3yp-QGmAX5aTI9eERuhliAhF1Qwx3SW6825jFEkOv0SbVUKfly1bbhF2JUhMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SCMFMDA%3A+Predicting+microRNA-disease+associations+based+on+similarity+constrained+matrix+factorization&rft.jtitle=PLoS+computational+biology&rft.au=Li%2C+Lei&rft.au=Gao%2C+Zhen&rft.au=Wang%2C+Yu-Tian&rft.au=Zhang%2C+Ming-Wen&rft.date=2021-07-12&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=17&rft.issue=7&rft.spage=e1009165&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1009165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |