Co-evolution of the branch site and SR proteins in eukaryotes

Serine–arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine–serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlat...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 24; no. 12; pp. 590 - 594
Main Authors Plass, Mireya, Agirre, Eneritz, Reyes, Diana, Camara, Francisco, Eyras, Eduardo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.12.2008
Cambridge, UK: Elsevier Trends Journals
Elsevier
Subjects
Online AccessGet full text
ISSN0168-9525
DOI10.1016/j.tig.2008.10.004

Cover

Loading…
Abstract Serine–arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine–serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.
AbstractList Serine–arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine–serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.
Serine-arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine-serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.Serine-arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with variable arginine-rich regions analogous to the arginine-serine-rich (RS) domain in metazoans. The density of RS repeats in these regions correlates with the conservation of the branch site signal, providing evidence for an ancestral origin of SR proteins and indicating that the SR proteins and the branch site co-evolved.
Author Plass, Mireya
Reyes, Diana
Camara, Francisco
Agirre, Eneritz
Eyras, Eduardo
Author_xml – sequence: 1
  givenname: Mireya
  surname: Plass
  fullname: Plass, Mireya
  organization: Computational Genomics Group, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
– sequence: 2
  givenname: Eneritz
  surname: Agirre
  fullname: Agirre, Eneritz
  organization: Computational Genomics Group, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
– sequence: 3
  givenname: Diana
  surname: Reyes
  fullname: Reyes, Diana
  organization: Centre for Genomic Regulation, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
– sequence: 4
  givenname: Francisco
  surname: Camara
  fullname: Camara, Francisco
  organization: Centre for Genomic Regulation, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
– sequence: 5
  givenname: Eduardo
  surname: Eyras
  fullname: Eyras, Eduardo
  email: eduardo.eyras@upf.edu
  organization: Computational Genomics Group, Universitat Pompeu Fabra, PRBB, Dr. Aiguader 88 E08003, Barcelona, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20942474$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18992956$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9rFDEQx_ehYn_oH-CL7ou-7TlJdjcJoiCHVqEgePY55LKTNte9pCbZQv97s9xVoWDvKczw-c5M5jun1ZEPHqvqFYEFAdK_3yyyu1pQAFHiBUB7VJ2UvGhkR7vj6jSlDQB0nHXPq2MipKSy60-qj8vQ4F0Yp-yCr4Ot8zXW66i9ua6Ty1hrP9Srn_VtDBmdT7XzNU43Ot6XOL2onlk9Jny5f8-qy69ffi2_NRc_zr8vP180pmciN6yXrB0odIR1Euww0I6sKRCO0DNODNDWUmK57oEKzoRthUZrBedWarPm7Kx6t6tbxvg9Ycpq65LBcdQew5RULwWVlLQHwVYQCi0XB0EKtAzDugK-3oPTeouDuo1uW36vHlZYgLd7QCejRzvvzqW_HAXZ0pbPo5EdZ2JIKaL9VwrUbKHaqGKhmi2cU8XCouGPNMZlPVuVo3bjk8o3O6XVQemrWCa6XJWVMyBd37IeCvFhR2Ax7s5hVMk49AYHF9FkNQT3ZP1Pj9RmdN6VBdzgPaZNmKIvF6GISlSBWs2nOF8iCADKydxe_r_AgeZ_ACeq5Tg
CitedBy_id crossref_primary_10_1080_07352689_2020_1770942
crossref_primary_10_7554_eLife_26036
crossref_primary_10_1038_s41467_020_16673_z
crossref_primary_10_1371_journal_ppat_1011036
crossref_primary_10_1128_IAI_00864_12
crossref_primary_10_1038_nsmb_3057
crossref_primary_10_1093_molbev_msv069
crossref_primary_10_1002_pld3_136
crossref_primary_10_1002_wrna_1763
crossref_primary_10_1093_gbe_evt115
crossref_primary_10_1007_s00294_020_01054_2
crossref_primary_10_1261_rna_030767_111
crossref_primary_10_3389_fgene_2022_839963
crossref_primary_10_1002_wrna_100
crossref_primary_10_1186_s12859_017_1875_6
crossref_primary_10_1186_s13059_018_1499_9
crossref_primary_10_1093_jxb_erad433
crossref_primary_10_1101_gr_089276_108
crossref_primary_10_1186_1745_6150_6_24
crossref_primary_10_1371_journal_pcbi_1001016
crossref_primary_10_3390_jof8101056
crossref_primary_10_1002_wrna_1131
crossref_primary_10_1038_nrg2776
crossref_primary_10_1186_gb_2013_14_12_r143
crossref_primary_10_1111_mmi_13643
crossref_primary_10_1371_journal_pone_0072742
crossref_primary_10_1104_pp_111_189019
crossref_primary_10_1186_s12859_017_1864_9
crossref_primary_10_1371_journal_pgen_1005768
crossref_primary_10_1093_molbev_msv251
Cites_doi 10.1146/annurev.biochem.72.121801.161720
10.1126/science.273.5282.1706
10.1371/journal.pgen.0020191
10.1101/gad.1449106
10.1016/S1097-2765(04)00025-5
10.1128/MCB.19.10.6991
10.1101/gad.12.13.1998
10.1101/gad.1422106
10.1093/nar/gkg845
10.1016/S0166-6851(99)00091-2
10.1017/S1355838202010786
10.1093/nar/gkg213
10.1101/gad.12.7.996
10.1128/EC.3.5.1088-1100.2004
10.1016/S0092-8674(00)81153-8
10.1101/gr.3936206
10.1016/j.tig.2005.10.006
10.1016/j.tig.2006.10.002
10.1101/gr.6818908
10.1038/nrg1451
10.1016/j.tig.2007.04.001
10.1016/j.molcel.2004.10.021
10.1093/molbev/msi091
10.1101/gad.1265905
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
DOI 10.1016/j.tig.2008.10.004
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Genetics Abstracts


AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 594
ExternalDocumentID 18992956
20942474
10_1016_j_tig_2008_10_004
US201301564360
S0168952508002710
1_s2_0_S0168952508002710
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
AACTN
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AFCTW
AFMIJ
AJBFU
DOVZS
EFLBG
G8K
XFK
ZA5
ABMYL
FBQ
AAYXX
AGRNS
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
M7N
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c638t-36934d20513590fdd251b2017e06371c024f21f7a6028738f48aeff877f9acb73
IEDL.DBID AIKHN
ISSN 0168-9525
IngestDate Fri Jul 11 08:47:28 EDT 2025
Thu Jul 10 22:36:50 EDT 2025
Mon Jul 21 11:16:46 EDT 2025
Mon Jul 21 06:02:25 EDT 2025
Mon Jul 21 09:16:43 EDT 2025
Tue Jul 01 01:43:32 EDT 2025
Thu Apr 24 22:59:43 EDT 2025
Wed Mar 13 07:57:05 EDT 2024
Fri Feb 23 02:22:39 EST 2024
Sun Feb 23 10:18:56 EST 2025
Tue Aug 26 19:58:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Eukaryote
Molecular evolution
Genetics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-36934d20513590fdd251b2017e06371c024f21f7a6028738f48aeff877f9acb73
Notes http://dx.doi.org/10.1016/j.tig.2008.10.004
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18992956
PQID 20260235
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_69829214
proquest_miscellaneous_48120478
proquest_miscellaneous_20260235
pubmed_primary_18992956
pascalfrancis_primary_20942474
crossref_primary_10_1016_j_tig_2008_10_004
crossref_citationtrail_10_1016_j_tig_2008_10_004
fao_agris_US201301564360
elsevier_sciencedirect_doi_10_1016_j_tig_2008_10_004
elsevier_clinicalkeyesjournals_1_s2_0_S0168952508002710
elsevier_clinicalkey_doi_10_1016_j_tig_2008_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: England
PublicationTitle Trends in genetics
PublicationTitleAlternate Trends Genet
PublicationYear 2008
Publisher Elsevier Ltd
Cambridge, UK: Elsevier Trends Journals
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Cambridge, UK: Elsevier Trends Journals
– name: Elsevier
References Shen, Green (bib11) 2006; 20
Blencowe (bib12) 1998; 12
Ismaili (bib16) 1999; 102
Jeffares (bib22) 2006; 22
Valcarcel (bib7) 1996; 273
Prasad (bib21) 1999; 19
Kupfer (bib2) 2004; 3
Tacke (bib13) 1998; 93
Collins, Penny (bib3) 2005; 22
Shen (bib9) 2004; 13
Liu (bib18) 1998; 12
Schwartz (bib5) 2008; 18
Barbosa-Morais (bib14) 2006; 16
Ram, Ast (bib24) 2007; 23
Ast (bib23) 2004; 5
Irimia (bib4) 2007; 23
Izquierdo, Valcarcel (bib8) 2006; 20
Lund, Kjems (bib17) 2002; 8
Black (bib6) 2003; 72
Philipps (bib20) 2003; 31
Shen, Green (bib10) 2004; 16
Webb (bib15) 2005; 19
Stadler (bib19) 2006; 2
Bon (bib1) 2003; 31
Schwartz (10.1016/j.tig.2008.10.004_bib5) 2008; 18
Ast (10.1016/j.tig.2008.10.004_bib23) 2004; 5
Tacke (10.1016/j.tig.2008.10.004_bib13) 1998; 93
Blencowe (10.1016/j.tig.2008.10.004_bib12) 1998; 12
Webb (10.1016/j.tig.2008.10.004_bib15) 2005; 19
Liu (10.1016/j.tig.2008.10.004_bib18) 1998; 12
Bon (10.1016/j.tig.2008.10.004_bib1) 2003; 31
Valcarcel (10.1016/j.tig.2008.10.004_bib7) 1996; 273
Shen (10.1016/j.tig.2008.10.004_bib9) 2004; 13
Prasad (10.1016/j.tig.2008.10.004_bib21) 1999; 19
Black (10.1016/j.tig.2008.10.004_bib6) 2003; 72
Izquierdo (10.1016/j.tig.2008.10.004_bib8) 2006; 20
Shen (10.1016/j.tig.2008.10.004_bib11) 2006; 20
Lund (10.1016/j.tig.2008.10.004_bib17) 2002; 8
Philipps (10.1016/j.tig.2008.10.004_bib20) 2003; 31
Jeffares (10.1016/j.tig.2008.10.004_bib22) 2006; 22
Irimia (10.1016/j.tig.2008.10.004_bib4) 2007; 23
Barbosa-Morais (10.1016/j.tig.2008.10.004_bib14) 2006; 16
Kupfer (10.1016/j.tig.2008.10.004_bib2) 2004; 3
Collins (10.1016/j.tig.2008.10.004_bib3) 2005; 22
Ram (10.1016/j.tig.2008.10.004_bib24) 2007; 23
Ismaili (10.1016/j.tig.2008.10.004_bib16) 1999; 102
Stadler (10.1016/j.tig.2008.10.004_bib19) 2006; 2
Shen (10.1016/j.tig.2008.10.004_bib10) 2004; 16
References_xml – volume: 20
  start-page: 1679
  year: 2006
  end-page: 1684
  ident: bib8
  article-title: A simple principle to explain the evolution of pre-mRNA splicing
  publication-title: Genes Dev.
– volume: 102
  start-page: 103
  year: 1999
  end-page: 115
  ident: bib16
  article-title: Characterization of a SR protein from
  publication-title: Mol. Biochem. Parasitol.
– volume: 19
  start-page: 6991
  year: 1999
  end-page: 7000
  ident: bib21
  article-title: The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing
  publication-title: Mol. Cell. Biol.
– volume: 13
  start-page: 367
  year: 2004
  end-page: 376
  ident: bib9
  article-title: Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly
  publication-title: Mol. Cell
– volume: 31
  start-page: 6502
  year: 2003
  end-page: 6508
  ident: bib20
  article-title: Arginine/serine repeats are sufficient to constitute a splicing activation domain
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 1053
  year: 2005
  end-page: 1066
  ident: bib3
  article-title: Complex spliceosomal organization ancestral to extant eukaryotes
  publication-title: Mol. Biol. Evol.
– volume: 273
  start-page: 1706
  year: 1996
  end-page: 1709
  ident: bib7
  article-title: Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA
  publication-title: Science
– volume: 23
  start-page: 321
  year: 2007
  end-page: 325
  ident: bib4
  article-title: Coevolution of genomic intron number and splice sites
  publication-title: Trends Genet.
– volume: 31
  start-page: 1121
  year: 2003
  end-page: 1135
  ident: bib1
  article-title: Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 1088
  year: 2004
  end-page: 1100
  ident: bib2
  article-title: Introns and splicing elements of five diverse fungi
  publication-title: Eukaryot. Cell
– volume: 2
  start-page: e191
  year: 2006
  ident: bib19
  article-title: Inference of splicing regulatory activities by sequence neighborhood analysis
  publication-title: PLoS Genet.
– volume: 20
  start-page: 1755
  year: 2006
  end-page: 1765
  ident: bib11
  article-title: RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans
  publication-title: Genes Dev.
– volume: 12
  start-page: 996
  year: 1998
  end-page: 1009
  ident: bib12
  article-title: A coactivator of pre-mRNA splicing
  publication-title: Genes Dev.
– volume: 93
  start-page: 139
  year: 1998
  end-page: 148
  ident: bib13
  article-title: Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing
  publication-title: Cell
– volume: 8
  start-page: 166
  year: 2002
  end-page: 179
  ident: bib17
  article-title: Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end
  publication-title: RNA
– volume: 72
  start-page: 291
  year: 2003
  end-page: 336
  ident: bib6
  article-title: Mechanisms of alternative pre-messenger RNA splicing
  publication-title: Annu. Rev. Biochem.
– volume: 22
  start-page: 16
  year: 2006
  end-page: 22
  ident: bib22
  article-title: The biology of intron gain and loss
  publication-title: Trends Genet.
– volume: 23
  start-page: 5
  year: 2007
  end-page: 7
  ident: bib24
  article-title: SR proteins: a foot on the exon before the transition from intron to exon definition
  publication-title: Trends Genet.
– volume: 16
  start-page: 363
  year: 2004
  end-page: 373
  ident: bib10
  article-title: A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly
  publication-title: Mol. Cell
– volume: 19
  start-page: 242
  year: 2005
  end-page: 254
  ident: bib15
  article-title: Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin
  publication-title: Genes Dev.
– volume: 5
  start-page: 773
  year: 2004
  end-page: 782
  ident: bib23
  article-title: How did alternative splicing evolve?
  publication-title: Nat. Rev. Genet.
– volume: 16
  start-page: 66
  year: 2006
  end-page: 77
  ident: bib14
  article-title: Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion
  publication-title: Genome Res.
– volume: 18
  start-page: 88
  year: 2008
  end-page: 103
  ident: bib5
  article-title: Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes
  publication-title: Genome Res.
– volume: 12
  start-page: 1998
  year: 1998
  end-page: 2012
  ident: bib18
  article-title: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins
  publication-title: Genes Dev.
– volume: 72
  start-page: 291
  year: 2003
  ident: 10.1016/j.tig.2008.10.004_bib6
  article-title: Mechanisms of alternative pre-messenger RNA splicing
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161720
– volume: 273
  start-page: 1706
  year: 1996
  ident: 10.1016/j.tig.2008.10.004_bib7
  article-title: Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA
  publication-title: Science
  doi: 10.1126/science.273.5282.1706
– volume: 2
  start-page: e191
  year: 2006
  ident: 10.1016/j.tig.2008.10.004_bib19
  article-title: Inference of splicing regulatory activities by sequence neighborhood analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020191
– volume: 20
  start-page: 1679
  year: 2006
  ident: 10.1016/j.tig.2008.10.004_bib8
  article-title: A simple principle to explain the evolution of pre-mRNA splicing
  publication-title: Genes Dev.
  doi: 10.1101/gad.1449106
– volume: 13
  start-page: 367
  year: 2004
  ident: 10.1016/j.tig.2008.10.004_bib9
  article-title: Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(04)00025-5
– volume: 19
  start-page: 6991
  year: 1999
  ident: 10.1016/j.tig.2008.10.004_bib21
  article-title: The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.10.6991
– volume: 12
  start-page: 1998
  year: 1998
  ident: 10.1016/j.tig.2008.10.004_bib18
  article-title: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.13.1998
– volume: 20
  start-page: 1755
  year: 2006
  ident: 10.1016/j.tig.2008.10.004_bib11
  article-title: RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans
  publication-title: Genes Dev.
  doi: 10.1101/gad.1422106
– volume: 31
  start-page: 6502
  year: 2003
  ident: 10.1016/j.tig.2008.10.004_bib20
  article-title: Arginine/serine repeats are sufficient to constitute a splicing activation domain
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg845
– volume: 102
  start-page: 103
  year: 1999
  ident: 10.1016/j.tig.2008.10.004_bib16
  article-title: Characterization of a SR protein from Trypanosoma brucei with homology to RNA-binding cis-splicing proteins
  publication-title: Mol. Biochem. Parasitol.
  doi: 10.1016/S0166-6851(99)00091-2
– volume: 8
  start-page: 166
  year: 2002
  ident: 10.1016/j.tig.2008.10.004_bib17
  article-title: Defining a 5′ splice site by functional selection in the presence and absence of U1 snRNA 5′ end
  publication-title: RNA
  doi: 10.1017/S1355838202010786
– volume: 31
  start-page: 1121
  year: 2003
  ident: 10.1016/j.tig.2008.10.004_bib1
  article-title: Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg213
– volume: 12
  start-page: 996
  year: 1998
  ident: 10.1016/j.tig.2008.10.004_bib12
  article-title: A coactivator of pre-mRNA splicing
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.7.996
– volume: 3
  start-page: 1088
  year: 2004
  ident: 10.1016/j.tig.2008.10.004_bib2
  article-title: Introns and splicing elements of five diverse fungi
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.3.5.1088-1100.2004
– volume: 93
  start-page: 139
  year: 1998
  ident: 10.1016/j.tig.2008.10.004_bib13
  article-title: Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81153-8
– volume: 16
  start-page: 66
  year: 2006
  ident: 10.1016/j.tig.2008.10.004_bib14
  article-title: Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion
  publication-title: Genome Res.
  doi: 10.1101/gr.3936206
– volume: 22
  start-page: 16
  year: 2006
  ident: 10.1016/j.tig.2008.10.004_bib22
  article-title: The biology of intron gain and loss
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2005.10.006
– volume: 23
  start-page: 5
  year: 2007
  ident: 10.1016/j.tig.2008.10.004_bib24
  article-title: SR proteins: a foot on the exon before the transition from intron to exon definition
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2006.10.002
– volume: 18
  start-page: 88
  year: 2008
  ident: 10.1016/j.tig.2008.10.004_bib5
  article-title: Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes
  publication-title: Genome Res.
  doi: 10.1101/gr.6818908
– volume: 5
  start-page: 773
  year: 2004
  ident: 10.1016/j.tig.2008.10.004_bib23
  article-title: How did alternative splicing evolve?
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1451
– volume: 23
  start-page: 321
  year: 2007
  ident: 10.1016/j.tig.2008.10.004_bib4
  article-title: Coevolution of genomic intron number and splice sites
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2007.04.001
– volume: 16
  start-page: 363
  year: 2004
  ident: 10.1016/j.tig.2008.10.004_bib10
  article-title: A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.10.021
– volume: 22
  start-page: 1053
  year: 2005
  ident: 10.1016/j.tig.2008.10.004_bib3
  article-title: Complex spliceosomal organization ancestral to extant eukaryotes
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msi091
– volume: 19
  start-page: 242
  year: 2005
  ident: 10.1016/j.tig.2008.10.004_bib15
  article-title: Exonic splicing enhancers in fission yeast: functional conservation demonstrates an early evolutionary origin
  publication-title: Genes Dev.
  doi: 10.1101/gad.1265905
SSID ssj0005735
Score 2.0962489
Snippet Serine–arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with...
Serine-arginine-rich (SR) proteins are essential for splicing in metazoans but are absent in yeast. By contrast, many fungi have SR protein homologs with...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 590
SubjectTerms Animalia
Biological and medical sciences
Biological evolution
coevolution
eukaryotic cells
Eukaryotic Cells - metabolism
Evolution, Molecular
Exons - genetics
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Medical Education
Metazoa
Nuclear Proteins - chemistry
Nuclear Proteins - genetics
Nucleic Acid Conformation
Protein Binding
Protein Structure, Tertiary
proteins
RNA Splicing
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
Serine-Arginine Splicing Factors
yeasts
Title Co-evolution of the branch site and SR proteins in eukaryotes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168952508002710
https://www.clinicalkey.es/playcontent/1-s2.0-S0168952508002710
https://dx.doi.org/10.1016/j.tig.2008.10.004
https://www.ncbi.nlm.nih.gov/pubmed/18992956
https://www.proquest.com/docview/20260235
https://www.proquest.com/docview/48120478
https://www.proquest.com/docview/69829214
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaVKBeUCmPBmjwgRPSkvixa_vAoYpaBVB7IETqzfLu2mWh2q26CVIv_HbGa2-qiqZIHBPNxNnZmfFnzecZhN7xkgmTpzyRZOISzgVLcl6SpDQuNymzpOz6dJ-eZbMF_3yenm-haX8XxtMqY-4POb3L1vGbcbTm-KqqxnMAK1L5qpzHPMJfs9qhTGVygHaOPn2Znd0yPUSYswnyiVfoi5sdzWtZXQRGZcfx4pu2p21nGs-bNC2YzoWZF5tBabc5neyhJxFV4qPwx5-iLVvvo0dhzuTNPnp8Givoz9DHaZPYX9HfcOMwAECc-5W-Y19IxqYu8fwr7vo3VHWLqxrb1U9zfQOf2-docXL8bTpL4giFpIDAWiYsU4yXFCKPpWriyhLgTA57vrAATQQpYId2lDhhMsAZgknHpbHOSSGcMkUu2As0qJvaHiCsClGkJge4AxiKSCOpVYXNlAEAIiCyh2jSW04Xsb-4H3NxqXsi2Q8Nxg5zL4lvSsqH6P1a5So013hImPavQ_e3RiHPaUj9DymJ-5RsGyO11US3VE_0X940RHytecch_7XgAXiKNheQovViTn1h2PfjYRn84uiO-6wfmcIRm3IBum97f9IQ5L5yY2rbrFqQgGMnZelmCQ5AzTda2iyRKUkVJbDKy-CqtyaHMzeFc_Kr_3vk12i3I9F0HJ83aLC8XtlDQGrLfIS2P_wmoxiPfwA1DTXm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FHtchq17NHu0Ouw0QEgsyZZ12KEIVqRrk8PSAL0Jsi113ga7qJMB_fejbDlFsaUDdkxARjFNUp_ATyTAB1FwabJY0DQaOyqE5DQTRUQL4zITcxsVbZ_u2TyZLsWXi_hiByb9XRhPqwy5v8vpbbYO34yCNUdXZTlaIFhJla_Kecwj_TWrXd-dSgxg9-jkdDq_ZXrIbs4mylOv0Bc3W5rXqrzsGJUtx0ts254eOFN73qRp0HSum3mxHZS2m9PxM3gaUCU56v74c9ix1R487OZM3uzBo1mooL-AT5Oa2l_B30jtCAJAkvmVvhFfSCamKsjiK2n7N5RVQ8qK2PUPc32Dn5uXsDz-fD6Z0jBCgeYYWCvKE8VFwTDyeKzGrigQzmS450uL0ERGOe7QjkVOmgRxhuSpE6mxzqVSOmXyTPJXMKjqyu4DUbnMY5Mh3EEMFaUmZVblNlEGAYjEyB7CuLeczkN_cT_m4qfuiWTfNRq7m3sZ-aakYggfNypXXXON-4RZ_zp0f2sU85zG1H-fkvybkm1CpDY60g3TY_2HNw1BbDTvOOS_FtxHT9HmElO0Xi6YLwz7fjw8wV88uOM-m0dmeMRm6LhDOOz9SWOQ-8qNqWy9blACj52Mx9slBAI132hpu0SiUqZYhKu87lz11uR45mZ4Tn7zf498CI-n57MzfXYyP30LT1pCTcv3eQeD1fXavkfUtsoOQlT-BoL0N84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-evolution+of+the+branch+site+and+SR+proteins+in+eukaryotes&rft.jtitle=Trends+in+genetics&rft.au=Plass%2C+Mireya&rft.au=Agirre%2C+Eneritz&rft.au=Reyes%2C+Diana&rft.au=Camara%2C+Francisco&rft.date=2008-12-01&rft.pub=Cambridge%2C+UK%3A+Elsevier+Trends+Journals&rft.issn=0168-9525&rft.volume=24&rft.issue=12&rft.spage=590&rft.epage=594&rft_id=info:doi/10.1016%2Fj.tig.2008.10.004&rft.externalDocID=US201301564360
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01689525%2FS0168952508X00125%2Fcov150h.gif