Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models

Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional ana...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 49; no. 9; pp. 1658 - 1669
Main Authors Kainz, H., Modenese, L., Lloyd, D.G., Maine, S., Walsh, H.P.J., Carty, C.P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 14.06.2016
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
AbstractList Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13 degree were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
Abstract Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.
Author Walsh, H.P.J.
Kainz, H.
Maine, S.
Modenese, L.
Lloyd, D.G.
Carty, C.P.
Author_xml – sequence: 1
  givenname: H.
  surname: Kainz
  fullname: Kainz, H.
  email: hans.kainz@griffithuni.edu.au
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
– sequence: 2
  givenname: L.
  surname: Modenese
  fullname: Modenese, L.
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
– sequence: 3
  givenname: D.G.
  surname: Lloyd
  fullname: Lloyd, D.G.
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
– sequence: 4
  givenname: S.
  surname: Maine
  fullname: Maine, S.
  organization: Queensland Children׳s Motion Analysis Service, Queensland Paediatric Rehabilitation Service, Children׳s Health Queensland Hospital and Health Services, Brisbane, Australia
– sequence: 5
  givenname: H.P.J.
  surname: Walsh
  fullname: Walsh, H.P.J.
  organization: Queensland Children׳s Motion Analysis Service, Queensland Paediatric Rehabilitation Service, Children׳s Health Queensland Hospital and Health Services, Brisbane, Australia
– sequence: 6
  givenname: C.P.
  surname: Carty
  fullname: Carty, C.P.
  organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27139005$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFV6giceGSMLaT2JYQoqpoAVXiAJwtx5mA0yQudlKpb4_DdkW1B7YXe6z55rc985-Qo8lPSMgZhYICrd_2Rd84P6L9VbB0LoAXULFnZEOl4DnjEo7IBoDRXDEFx-Qkxh4ARCnUC3LMBOUKoNoQ-8W7ac5u3ISjmZ3NrBnsMqTQT1ljIrZZCuzgJpcyWesC2sf4HYa4xMxNa4CPEj-Nm7PRtzjEl-R5Z4aIrx72U_Lj8uP3i0_59derzxfn17mtuZxzDpVVreS1YqVoGELTqdp0kndVZ9uSQ0MbCaUAaoRMKcZ4WtuO1p1qmbH8lLzZ6t4G_3vBOOvRRYvDYCb0S9RUsqqsZEnhCSilUgGl_DAqFBOCKqgS-noP7f0SpvTnlSorXvKaJursgVqaEVt9G9xowr3eDSUB77aADT7GgJ22bv47kTkYN2gKevWA7vXOA3r1gAaukwdSeb1XvrvhYOGHbWGaGd45DDpah5PF7dR1691hifd7Ejvr3OA9xn_t0JFp0N9Wh64GpTWHkqb-_FfgKS_4A41m-CU
CitedBy_id crossref_primary_10_1080_14763141_2018_1494207
crossref_primary_10_1016_j_gaitpost_2018_01_010
crossref_primary_10_1016_j_jbiomech_2018_11_042
crossref_primary_10_1016_j_gaitpost_2018_05_033
crossref_primary_10_1080_10255842_2021_1968844
crossref_primary_10_1016_j_gaitpost_2017_11_020
crossref_primary_10_3389_fphys_2018_00218
crossref_primary_10_1016_j_gaitpost_2021_06_016
crossref_primary_10_1016_j_jbiomech_2018_08_023
crossref_primary_10_1371_journal_pone_0235966
crossref_primary_10_1016_j_gaitpost_2021_08_026
crossref_primary_10_1016_j_jbiomech_2024_112395
crossref_primary_10_1016_j_cmpb_2017_09_012
crossref_primary_10_1016_j_jbiomech_2023_111865
crossref_primary_10_3390_life11121306
crossref_primary_10_1038_s41598_024_79021_x
crossref_primary_10_3390_app122010197
crossref_primary_10_1186_s12891_021_04364_9
crossref_primary_10_3389_fbioe_2022_899799
crossref_primary_10_1016_j_gaitpost_2017_03_033
crossref_primary_10_1016_j_jbiomech_2018_03_039
crossref_primary_10_1016_j_jbiomech_2016_12_018
crossref_primary_10_1589_jpts_32_729
crossref_primary_10_1080_14763141_2021_1983636
crossref_primary_10_1142_S0219519419400438
crossref_primary_10_1016_j_jbiomech_2023_111758
crossref_primary_10_1016_j_gaitpost_2021_02_016
crossref_primary_10_1109_TIM_2022_3194935
crossref_primary_10_1142_S0219519423300028
crossref_primary_10_7717_peerj_14921
crossref_primary_10_3389_fbioe_2021_791238
crossref_primary_10_1016_j_gaitpost_2018_09_027
crossref_primary_10_1016_j_jbiomech_2020_110186
crossref_primary_10_1519_JSC_0000000000004790
crossref_primary_10_1016_j_compbiomed_2021_104436
crossref_primary_10_1519_JSC_0000000000004949
crossref_primary_10_1177_0363546518787518
crossref_primary_10_1136_bmjopen_2016_014950
crossref_primary_10_1016_j_jbiomech_2018_10_003
crossref_primary_10_1371_journal_pone_0291789
crossref_primary_10_3390_s24072338
crossref_primary_10_1186_s12938_023_01177_w
crossref_primary_10_1038_s41598_025_86137_1
crossref_primary_10_1016_j_jbiomech_2022_111072
crossref_primary_10_3390_s20236940
crossref_primary_10_1038_s41598_024_53857_9
crossref_primary_10_1016_j_humov_2020_102585
crossref_primary_10_1080_10255842_2024_2410505
crossref_primary_10_1002_wsbm_1368
crossref_primary_10_1016_j_gaitpost_2024_05_006
crossref_primary_10_2139_ssrn_3969846
crossref_primary_10_1115_1_4044503
crossref_primary_10_1097_JS9_0000000000001941
crossref_primary_10_1115_1_4056172
crossref_primary_10_1371_journal_pone_0252425
crossref_primary_10_1519_JSC_0000000000003874
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1080_10255842_2017_1390568
crossref_primary_10_1016_j_clinbiomech_2021_105402
crossref_primary_10_1016_j_clinbiomech_2021_105405
crossref_primary_10_3389_fbioe_2022_808027
crossref_primary_10_1016_j_imu_2020_100415
crossref_primary_10_1115_1_4034708
crossref_primary_10_1123_jab_2016_0282
crossref_primary_10_1186_s12984_024_01458_y
crossref_primary_10_1007_s10237_022_01606_0
crossref_primary_10_3389_fspor_2021_695383
crossref_primary_10_1123_jab_2023_0067
crossref_primary_10_1016_j_jbiomech_2021_110589
crossref_primary_10_1007_s11831_019_09393_1
crossref_primary_10_1115_1_4038741
crossref_primary_10_1002_jor_24394
crossref_primary_10_7717_peerj_13752
crossref_primary_10_3390_s18071980
crossref_primary_10_1080_10255842_2018_1522532
crossref_primary_10_1080_10255842_2019_1705798
crossref_primary_10_3390_s23146535
crossref_primary_10_1016_j_gaitpost_2018_08_027
crossref_primary_10_1016_j_gaitpost_2021_09_046
crossref_primary_10_1016_j_gaitpost_2017_04_001
crossref_primary_10_1007_s10439_017_1894_5
crossref_primary_10_1371_journal_pone_0291458
crossref_primary_10_1186_s12891_018_2329_7
crossref_primary_10_1123_jab_2018_0332
crossref_primary_10_3390_bioengineering11090896
crossref_primary_10_1371_journal_pone_0270423
crossref_primary_10_21105_joss_02562
crossref_primary_10_1016_j_gaitpost_2021_09_058
crossref_primary_10_1016_j_gaitpost_2017_06_364
crossref_primary_10_1016_j_gaitpost_2017_06_002
crossref_primary_10_1016_j_autcon_2020_103471
crossref_primary_10_1016_j_gaitpost_2016_09_011
crossref_primary_10_1007_s11517_023_02906_y
crossref_primary_10_1016_j_gaitpost_2021_04_039
crossref_primary_10_1186_s12891_024_07642_4
crossref_primary_10_1016_j_clinbiomech_2019_02_003
crossref_primary_10_1080_21681163_2020_1835551
crossref_primary_10_1371_journal_pone_0295152
Cites_doi 10.1371/journal.pone.0102098
10.1016/j.gaitpost.2009.11.005
10.1016/0021-9290(89)90179-6
10.1016/j.gaitpost.2009.05.020
10.1016/j.jbiomech.2013.04.010
10.1016/j.gaitpost.2009.04.004
10.1016/j.jbiomech.2013.11.047
10.1016/j.gaitpost.2012.03.020
10.1109/TBME.2007.890735
10.1016/j.gaitpost.2003.09.004
10.1016/j.gaitpost.2014.03.185
10.1016/j.jneumeth.2003.11.013
10.1016/j.gaitpost.2013.11.010
10.1016/j.jbiomech.2015.02.050
10.1109/10.102791
10.1002/jor.22908
10.1016/j.jbiomech.2012.08.007
10.1115/1.4004890
10.1097/01.bpo.0000229970.55694.5c
10.1016/S0021-9290(01)00222-6
10.1016/j.jbiomech.2008.03.015
10.1016/S0021-9290(00)00056-7
10.1002/jor.20142
10.1016/j.gaitpost.2005.04.012
10.1016/j.jbiomech.2010.06.010
10.1115/1.3138397
10.1080/14639230701231493
10.1016/j.apmr.2010.01.016
10.3109/10929080009148877
10.1016/j.ridd.2014.07.053
10.1016/j.gaitpost.2004.04.004
10.1016/S0021-9290(03)00087-3
10.1016/j.gaitpost.2008.07.008
10.1016/j.gaitpost.2012.05.022
10.1016/j.jbiomech.2015.09.040
10.1016/j.jbiomech.2004.03.031
10.1016/j.gaitpost.2010.11.003
10.1016/j.gaitpost.2014.04.204
10.1002/jor.1100080310
10.1016/j.jbiomech.2014.08.016
10.1080/10255840802459412
10.1016/0021-9290(93)90098-Y
10.1016/j.jbiomech.2012.01.011
10.1016/j.jbiomech.2006.02.003
10.1016/j.gaitpost.2008.09.003
10.1371/journal.pone.0128877
10.1016/0167-9457(91)90046-Z
10.1016/j.gaitpost.2004.05.002
10.1123/jab.29.1.105
10.1016/j.jbiomech.2015.06.034
10.2522/ptj.20090062
10.3109/17453674.2015.1011927
10.1016/S0966-6362(99)00042-9
10.1016/j.jbiomech.2015.11.006
10.1016/j.jbiomech.2009.03.033
10.1177/0954411913518747
10.1016/j.gaitpost.2007.11.009
10.1016/j.gaitpost.2005.08.002
10.1016/j.jbiomech.2015.01.010
10.1016/j.simpat.2006.09.001
10.1016/0021-9290(95)95278-D
10.1109/TBME.2007.901024
10.1016/j.jbiomech.2012.11.045
10.1249/MSS.0000000000000236
10.1016/j.gaitpost.2008.01.013
10.1016/S0021-9290(98)00158-4
10.1111/j.1469-8749.1997.tb07414.x
10.1371/journal.pone.0112625
10.1016/j.jbiomech.2009.08.034
10.1016/j.ocl.2010.06.009
10.1177/0363546513480465
10.1016/j.clinbiomech.2015.02.005
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2016
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2016.03.052
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Collection
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Physical Education Index
MEDLINE
Research Library Prep



Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 1669
ExternalDocumentID 4081346311
27139005
10_1016_j_jbiomech_2016_03_052
S0021929016304134
1_s2_0_S0021929016304134
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c638t-305c9d8369247b2e0bf96af83f5fcd430b1b804701a78f96223f96df16f9d2ac3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Mon Jul 21 11:15:55 EDT 2025
Tue Aug 05 09:05:31 EDT 2025
Mon Jul 21 10:20:20 EDT 2025
Wed Aug 13 10:47:17 EDT 2025
Wed Feb 19 02:41:16 EST 2025
Tue Jul 01 01:14:10 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Fri Feb 23 02:28:49 EST 2024
Tue Feb 25 20:12:58 EST 2025
Tue Aug 26 17:09:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords OpenSim
Plug-in-Gait
Inverse Kinematics
Subject specific model
Gait analysis
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c638t-305c9d8369247b2e0bf96af83f5fcd430b1b804701a78f96223f96df16f9d2ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27139005
PQID 1794534361
PQPubID 1226346
PageCount 12
ParticipantIDs proquest_miscellaneous_1825458410
proquest_miscellaneous_1811890113
proquest_miscellaneous_1792771905
proquest_journals_1794534361
pubmed_primary_27139005
crossref_citationtrail_10_1016_j_jbiomech_2016_03_052
crossref_primary_10_1016_j_jbiomech_2016_03_052
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_03_052
elsevier_clinicalkeyesjournals_1_s2_0_S0021929016304134
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_03_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-14
PublicationDateYYYYMMDD 2016-06-14
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (bib31) 2015; 48
Modenese, Gopalakrishnan, Phillips (bib47) 2013; 46
Benoit, Damsgaard, Andersen (bib8) 2015; 48
Charlton, Tate, Smyth, Roren (bib15) 2004; 20
Filho, Yoshida, Carvalho Wda, Stein, Novo (bib29) 2008; 28
de Asla, Wan, Rubash, Li, Six (bib4) 2006; 24
Parr, Chatterjee, Soligo (bib52) 2012; 45
Duprey, Cheze, Dumas (bib91) 2010; 43
Besier, Sturnieks, Alderson, Lloyd (bib10) 2003; 36
Gage (bib30) 1993
Gilles, Christophe, Magnenat-Thalmann (bib32) 2009; 42
Leardini, Chiari, Della Croce, Cappozzo (bib42) 2005; 21
Grood, Suntay (bib35) 1983; 105
Wu, Siegler, Allard (bib73) 2002; 35
Andersen, Benoit, Damsgaard, Ramsey, Rasmussen (bib2) 2010; 43
Li, Zheng, Tashman, Zhang (bib43) 2012; 45
Robinson, Donnelly, Tsao, Vanrenterghem (bib57) 2014; 46
Taddei, Ansaloni, Testi, Viceconti (bib66) 2007; 32
Chang, Rhodes, Flynn, Carollo (bib13) 2010; 41
Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib22) 2006; 14
Graham, Carty, Lloyd, Lichtwark, Barrett (bib34) 2014; 47
Schache, Baker, Lamoreux (bib59) 2006; 24
Varady, Glitsch, Augat (bib71) 2015; 48
Stief, Böhm, Michel, Schwirtz, Döderlein (bib65) 2013; 29
Harrington, Zavatsky, Lawson, Yuan, Theologis (bib36) 2007; 40
Clement, Dumas, Hagemeister, de Guise (bib19) 2015; 48
Vicon Motion Systems (bib72) 2010
Kadaba, Ramakrishnan, Wootten (bib38) 1990; 8
Damiano, Arnold, Steele, Delp (bib21) 2010; 90
Sancisi, Parenti-Castelli (bib58) 2011; 3
Zakotnik, Matheson, Durr (bib76) 2004; 135
Cheze, Fregly, Dimnet (bib17) 1995; 28
Mokhtarzadeh, Yeow, Hong Goh, Oetomo, Malekipour, Lee (bib49) 2013; 46
Baker, McGinley, Schwartz (bib5) 2009; 30
Valente, Pitto, Testi (bib70) 2014; 9
Cappozzo, Della Croce, Leardini, Chiari (bib12) 2005; 21
Palisano, Rosenbaum, Walter, Russell, Wood, Galuppi (bib51) 1997; 39
Boeth, Duda, Heller (bib11) 2013; 41
Schwartz, Rozumalski, Trost (bib61) 2008; 41
Duffell, Hope, McGregor (bib26) 2014; 228
McGinley, Baker, Wolfe, Morris (bib46) 2009; 29
Morgan, Donnelly, Reinbolt (bib50) 2014; 47
Thomason, Selber, Graham (bib68) 2013; 37
Chen, Wang, Liu (bib16) 2015; 33
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib25) 1990; 37
Hoang, Reinbolt (bib37) 2012; 36
Yin, Chen, Guo, Cheng, Wang, Yang (bib75) 2015; 10
Benoit, Ramsey, Lamontagne, Xu, Wretenberg, Renstrom (bib9) 2006; 24
Goudriaan, Jonkers, van Dieen, Bruijn (bib33) 2014; 40
Manal, McClay, Stanhope, Richards, Galinat (bib45) 2000; 11
Scheys, Desloovere, Spaepen, Suetens, Jonkers (bib60) 2011; 33
Collins, Ghoussayni, Ewins, Kent (bib20) 2009; 30
Lu, O׳Connor (bib44) 1999; 32
Klejman, Andrysek, Dupuis, Wright (bib40) 2010; 91
Bar-On, Molenaers, Aertbelien, Monari, Feys, Desloovere (bib6) 2014; 35
Soderkvist, Wedin (bib63) 1993; 26
Riley, Franz, Dicharry, Kerrigan (bib56) 2010; 31
Chiari, Della Croce, Leardini, Cappozzo (bib18) 2005; 21
Delp, Anderson, Arnold (bib24) 2007; 54
Terjesen, Lofterod, Skaaret (bib67) 2015; 86
Yamaguchi, Zajac (bib74) 1989; 22
Zatsiorsky (bib77) 1998
Ferrari, Benedetti, Pavan (bib28) 2008; 28
Pinzone, Schwartz, Thomason, Baker (bib54) 2014; 40
Piazza, Cavanagh (bib53) 2000; 33
Arnold, Salinas, Asakawa, Delp (bib3) 2000; 5
Modenese, Ceseracciu, Reggiani, Lloyd (bib48) 2016; 49
Stagni, Fantozzi, Cappello (bib64) 2009; 29
Reinbolt, Schutte, Fregly (bib55) 2005; 38
Kainz, Carty, Modenese, Boyd, Lloyd (bib39) 2015; 30
Baudet, Morisset, d׳Athis (bib7) 2014; 9
Davis, Õunpuu, Tyburski, Gage (bib23) 1991; 10
Seisler, Sheehan (bib62) 2007; 54
Chang, Seidl, Muthusamy, Meininger, Carollo (bib14) 2006; 26
Tugui, Antonescu (bib69) 2013; 8
Andersen, Damsgaard, Rasmussen (bib1) 2009; 12
Laracca, Stewart, Postans, Roberts (bib41) 2014; 39
Morgan (10.1016/j.jbiomech.2016.03.052_bib50) 2014; 47
Cheze (10.1016/j.jbiomech.2016.03.052_bib17) 1995; 28
Gasparutto (10.1016/j.jbiomech.2016.03.052_bib31) 2015; 48
Duprey (10.1016/j.jbiomech.2016.03.052_bib91) 2010; 43
Gilles (10.1016/j.jbiomech.2016.03.052_bib32) 2009; 42
Tugui (10.1016/j.jbiomech.2016.03.052_bib69) 2013; 8
Harrington (10.1016/j.jbiomech.2016.03.052_bib36) 2007; 40
Li (10.1016/j.jbiomech.2016.03.052_bib43) 2012; 45
de Asla (10.1016/j.jbiomech.2016.03.052_bib4) 2006; 24
Chang (10.1016/j.jbiomech.2016.03.052_bib14) 2006; 26
Filho (10.1016/j.jbiomech.2016.03.052_bib29) 2008; 28
Kadaba (10.1016/j.jbiomech.2016.03.052_bib38) 1990; 8
Laracca (10.1016/j.jbiomech.2016.03.052_bib41) 2014; 39
Terjesen (10.1016/j.jbiomech.2016.03.052_bib67) 2015; 86
Modenese (10.1016/j.jbiomech.2016.03.052_bib48) 2016; 49
Vicon Motion Systems (10.1016/j.jbiomech.2016.03.052_bib72) 2010
Thomason (10.1016/j.jbiomech.2016.03.052_bib68) 2013; 37
Arnold (10.1016/j.jbiomech.2016.03.052_bib3) 2000; 5
Grood (10.1016/j.jbiomech.2016.03.052_bib35) 1983; 105
McGinley (10.1016/j.jbiomech.2016.03.052_bib46) 2009; 29
Duffell (10.1016/j.jbiomech.2016.03.052_bib26) 2014; 228
Yin (10.1016/j.jbiomech.2016.03.052_bib75) 2015; 10
Lu (10.1016/j.jbiomech.2016.03.052_bib44) 1999; 32
Yamaguchi (10.1016/j.jbiomech.2016.03.052_bib74) 1989; 22
Damiano (10.1016/j.jbiomech.2016.03.052_bib21) 2010; 90
Taddei (10.1016/j.jbiomech.2016.03.052_bib66) 2007; 32
Wu (10.1016/j.jbiomech.2016.03.052_bib73) 2002; 35
Mokhtarzadeh (10.1016/j.jbiomech.2016.03.052_bib49) 2013; 46
Scheys (10.1016/j.jbiomech.2016.03.052_bib60) 2011; 33
Damsgaard (10.1016/j.jbiomech.2016.03.052_bib22) 2006; 14
Ferrari (10.1016/j.jbiomech.2016.03.052_bib28) 2008; 28
Bar-On (10.1016/j.jbiomech.2016.03.052_bib6) 2014; 35
Gage (10.1016/j.jbiomech.2016.03.052_bib30) 1993
Andersen (10.1016/j.jbiomech.2016.03.052_bib2) 2010; 43
Besier (10.1016/j.jbiomech.2016.03.052_bib10) 2003; 36
Delp (10.1016/j.jbiomech.2016.03.052_bib24) 2007; 54
Palisano (10.1016/j.jbiomech.2016.03.052_bib51) 1997; 39
Davis (10.1016/j.jbiomech.2016.03.052_bib23) 1991; 10
Chang (10.1016/j.jbiomech.2016.03.052_bib13) 2010; 41
Piazza (10.1016/j.jbiomech.2016.03.052_bib53) 2000; 33
Reinbolt (10.1016/j.jbiomech.2016.03.052_bib55) 2005; 38
Benoit (10.1016/j.jbiomech.2016.03.052_bib8) 2015; 48
Cappozzo (10.1016/j.jbiomech.2016.03.052_bib12) 2005; 21
Parr (10.1016/j.jbiomech.2016.03.052_bib52) 2012; 45
Zakotnik (10.1016/j.jbiomech.2016.03.052_bib76) 2004; 135
Benoit (10.1016/j.jbiomech.2016.03.052_bib9) 2006; 24
Soderkvist (10.1016/j.jbiomech.2016.03.052_bib63) 1993; 26
Manal (10.1016/j.jbiomech.2016.03.052_bib45) 2000; 11
Hoang (10.1016/j.jbiomech.2016.03.052_bib37) 2012; 36
Baudet (10.1016/j.jbiomech.2016.03.052_bib7) 2014; 9
Collins (10.1016/j.jbiomech.2016.03.052_bib20) 2009; 30
Delp (10.1016/j.jbiomech.2016.03.052_bib25) 1990; 37
Kainz (10.1016/j.jbiomech.2016.03.052_bib39) 2015; 30
Varady (10.1016/j.jbiomech.2016.03.052_bib71) 2015; 48
Charlton (10.1016/j.jbiomech.2016.03.052_bib15) 2004; 20
Boeth (10.1016/j.jbiomech.2016.03.052_bib11) 2013; 41
Valente (10.1016/j.jbiomech.2016.03.052_bib70) 2014; 9
Andersen (10.1016/j.jbiomech.2016.03.052_bib1) 2009; 12
Schache (10.1016/j.jbiomech.2016.03.052_bib59) 2006; 24
Goudriaan (10.1016/j.jbiomech.2016.03.052_bib33) 2014; 40
Stagni (10.1016/j.jbiomech.2016.03.052_bib64) 2009; 29
Pinzone (10.1016/j.jbiomech.2016.03.052_bib54) 2014; 40
Schwartz (10.1016/j.jbiomech.2016.03.052_bib61) 2008; 41
Seisler (10.1016/j.jbiomech.2016.03.052_bib62) 2007; 54
Stief (10.1016/j.jbiomech.2016.03.052_bib65) 2013; 29
Robinson (10.1016/j.jbiomech.2016.03.052_bib57) 2014; 46
Baker (10.1016/j.jbiomech.2016.03.052_bib5) 2009; 30
Graham (10.1016/j.jbiomech.2016.03.052_bib34) 2014; 47
Sancisi (10.1016/j.jbiomech.2016.03.052_bib58) 2011; 3
Chiari (10.1016/j.jbiomech.2016.03.052_bib18) 2005; 21
Klejman (10.1016/j.jbiomech.2016.03.052_bib40) 2010; 91
Leardini (10.1016/j.jbiomech.2016.03.052_bib42) 2005; 21
Clement (10.1016/j.jbiomech.2016.03.052_bib19) 2015; 48
Chen (10.1016/j.jbiomech.2016.03.052_bib16) 2015; 33
Modenese (10.1016/j.jbiomech.2016.03.052_bib47) 2013; 46
Riley (10.1016/j.jbiomech.2016.03.052_bib56) 2010; 31
Zatsiorsky (10.1016/j.jbiomech.2016.03.052_bib77) 1998
References_xml – volume: 29
  start-page: 360
  year: 2009
  end-page: 369
  ident: bib46
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
– volume: 33
  start-page: 158
  year: 2011
  end-page: 164
  ident: bib60
  article-title: Calculating gait kinematics using MR-based kinematic models
  publication-title: Gait Posture
– volume: 40
  start-page: 321
  year: 2014
  end-page: 326
  ident: bib33
  article-title: Arm swing in human walking: what is their drive?
  publication-title: Gait Posture
– volume: 46
  start-page: 1193
  year: 2013
  end-page: 1200
  ident: bib47
  article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector
  publication-title: J. Biomech.
– volume: 28
  start-page: 207
  year: 2008
  end-page: 216
  ident: bib28
  article-title: Quantitative comparison of five current protocols in gait analysis
  publication-title: Gait Posture
– volume: 21
  start-page: 197
  year: 2005
  end-page: 211
  ident: bib18
  article-title: Human movement analysis using stereophotogrammetry. Part 2: instrumental errors
  publication-title: Gait Posture
– volume: 43
  start-page: 2858
  year: 2010
  end-page: 2862
  ident: bib91
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: Journal of Biomechanics
– volume: 32
  start-page: 129
  year: 1999
  end-page: 134
  ident: bib44
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: J. Biomech.
– volume: 35
  start-page: 3354
  year: 2014
  end-page: 3364
  ident: bib6
  article-title: The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy
  publication-title: Res. Dev. Disabil.
– volume: 26
  start-page: 612
  year: 2006
  end-page: 616
  ident: bib14
  article-title: Effectiveness of instrumented gait analysis in children with cerebral palsy – comparison of outcomes
  publication-title: J Pediatr. Orthop.
– volume: 24
  start-page: 152
  year: 2006
  end-page: 164
  ident: bib9
  article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo
  publication-title: Gait Posture
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib24
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 49
  start-page: 141
  year: 2016
  end-page: 148
  ident: bib48
  article-title: Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique
  publication-title: J. Biomech.
– volume: 30
  start-page: 319
  year: 2015
  end-page: 329
  ident: bib39
  article-title: Estimation of the hip joint centre in human motion analysis: a systematic review
  publication-title: Clin. Biomech.
– volume: 36
  start-page: 1159
  year: 2003
  end-page: 1168
  ident: bib10
  article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis
  publication-title: J. Biomech.
– volume: 228
  start-page: 206
  year: 2014
  end-page: 210
  ident: bib26
  article-title: Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon׳s plug-in gait
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 28
  start-page: 316
  year: 2008
  end-page: 322
  ident: bib29
  article-title: Are the recommendations from three-dimensional gait analysis associated with better postoperative outcomes in patients with cerebral palsy?
  publication-title: Gait Posture
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib25
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 46
  start-page: 1269
  year: 2014
  end-page: 1276
  ident: bib57
  article-title: Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk
  publication-title: Med. Sci. Sports Exerc.
– volume: 26
  start-page: 1473
  year: 1993
  end-page: 1477
  ident: bib63
  article-title: Determining the movements of the skeleton using well-configured markers
  publication-title: J. Biomech.
– volume: 12
  start-page: 371
  year: 2009
  end-page: 384
  ident: bib1
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: bib73
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics
  publication-title: J. Biomech.
– volume: 9
  start-page: e102098
  year: 2014
  ident: bib7
  article-title: Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal
  publication-title: PloS One
– volume: 21
  start-page: 186
  year: 2005
  end-page: 196
  ident: bib12
  article-title: Human movement analysis using stereophotogrammetry. Part 1: theoretical background
  publication-title: Gait Posture
– volume: 86
  start-page: 511
  year: 2015
  end-page: 517
  ident: bib67
  article-title: Gait improvement surgery in ambulatory children with diplegic cerebral palsy
  publication-title: Acta Orthop.
– volume: 135
  start-page: 43
  year: 2004
  end-page: 54
  ident: bib76
  article-title: A posture optimization algorithm for model-based motion capture of movement sequences
  publication-title: J. Neurosci. Methods
– volume: 48
  start-page: 3227
  year: 2015
  end-page: 3233
  ident: bib71
  article-title: Loads in the hip joint during physically demanding occupational tasks: a motion analysis study
  publication-title: J. Biomech.
– volume: 28
  start-page: 879
  year: 1995
  end-page: 884
  ident: bib17
  article-title: A solidification procedure to facilitate kinematic analyses based on video system data
  publication-title: J. Biomech.
– volume: 40
  start-page: 595
  year: 2007
  end-page: 602
  ident: bib36
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
– volume: 39
  start-page: 847
  year: 2014
  end-page: 851
  ident: bib41
  article-title: The effects of surgical lengthening of hamstring muscles in children with cerebral palsy – the consequences of pre-operative muscle length measurement
  publication-title: Gait Posture
– volume: 43
  start-page: 268
  year: 2010
  end-page: 273
  ident: bib2
  article-title: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics
  publication-title: J. Biomech.
– volume: 5
  start-page: 108
  year: 2000
  end-page: 119
  ident: bib3
  article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity
  publication-title: Comput. Aided Surg.
– volume: 30
  start-page: 265
  year: 2009
  end-page: 269
  ident: bib5
  article-title: The gait profile score and movement analysis profile
  publication-title: Gait Posture
– volume: 48
  start-page: 3796
  year: 2015
  end-page: 3802
  ident: bib19
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
– volume: 10
  start-page: 575
  year: 1991
  end-page: 587
  ident: bib23
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
– volume: 36
  start-page: 405
  year: 2012
  end-page: 408
  ident: bib37
  article-title: Crouched posture maximizes ground reaction forces generated by muscles
  publication-title: Gait Posture
– volume: 24
  start-page: 1019
  year: 2006
  end-page: 1027
  ident: bib4
  article-title: in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique
  publication-title: J. Orthop. Res.
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: bib38
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
– volume: 31
  start-page: 279
  year: 2010
  end-page: 283
  ident: bib56
  article-title: Changes in hip joint muscle-tendon lengths with mode of locomotion
  publication-title: Gait Posture
– volume: 21
  start-page: 212
  year: 2005
  end-page: 225
  ident: bib42
  article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait Posture
– volume: 46
  start-page: 1913
  year: 2013
  end-page: 1920
  ident: bib49
  article-title: Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing
  publication-title: J. Biomech.
– volume: 39
  start-page: 214
  year: 1997
  end-page: 223
  ident: bib51
  article-title: Development and reliability of a system to classify gross motor function in children with cerebral palsy
  publication-title: Dev. Med. Child Neurol.
– volume: 40
  start-page: 286
  year: 2014
  end-page: 290
  ident: bib54
  article-title: The comparison of normative reference data from different gait analysis services
  publication-title: Gait Posture
– volume: 14
  start-page: 1100
  year: 2006
  end-page: 1111
  ident: bib22
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
– volume: 20
  start-page: 213
  year: 2004
  end-page: 221
  ident: bib15
  article-title: Repeatability of an optimised lower body model
  publication-title: Gait Posture
– volume: 42
  start-page: 1201
  year: 2009
  end-page: 1205
  ident: bib32
  article-title: MRI-based assessment of hip joint translations
  publication-title: J. Biomech.
– volume: 45
  start-page: 1103
  year: 2012
  end-page: 1107
  ident: bib52
  article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions
  publication-title: J. Biomech.
– volume: 32
  start-page: 191
  year: 2007
  end-page: 198
  ident: bib66
  article-title: Virtual palpation of skeletal landmarks with multimodal display interfaces
  publication-title: Med. Inform. Internet Med.
– volume: 22
  start-page: 1
  year: 1989
  end-page: 10
  ident: bib74
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: bib35
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
– volume: 10
  start-page: e0128877
  year: 2015
  ident: bib75
  article-title: Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study
  publication-title: PloS One
– volume: 41
  start-page: 1051
  year: 2013
  end-page: 1057
  ident: bib11
  article-title: Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements
  publication-title: Am. J. Sports Med.
– volume: 33
  start-page: 1287
  year: 2015
  end-page: 1296
  ident: bib16
  article-title: Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait
  publication-title: J. Orthop. Res.
– volume: 45
  start-page: 2719
  year: 2012
  end-page: 2723
  ident: bib43
  article-title: The inaccuracy of surface-measured model-derived tibiofemoral kinematics
  publication-title: J. Biomech.
– volume: 90
  start-page: 269
  year: 2010
  end-page: 279
  ident: bib21
  article-title: Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy
  publication-title: Phys. Ther.
– volume: 8
  start-page: 388
  year: 2013
  end-page: 393
  ident: bib69
  article-title: Cerebral palsy gait, clinical importance
  publication-title: Maedica
– volume: 29
  start-page: 105
  year: 2013
  end-page: 111
  ident: bib65
  article-title: Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols
  publication-title: J. Appl. Biomech.
– volume: 37
  start-page: 23
  year: 2013
  end-page: 28
  ident: bib68
  article-title: Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study
  publication-title: Gait Posture
– year: 1998
  ident: bib77
  article-title: Kinematics of Human Motion
– volume: 54
  start-page: 1333
  year: 2007
  end-page: 1341
  ident: bib62
  article-title: Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study
  publication-title: IEEE Trans. Bio-med. Eng.
– volume: 91
  start-page: 781
  year: 2010
  end-page: 787
  ident: bib40
  article-title: Test–retest reliability of discrete gait parameters in children with cerebral palsy
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 33
  start-page: 1029
  year: 2000
  end-page: 1034
  ident: bib53
  article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment
  publication-title: J. Biomech.
– volume: 48
  start-page: 2124
  year: 2015
  end-page: 2129
  ident: bib8
  article-title: Surface marker cluster translation, rotation, scaling and deformation: their contribution to soft tissue artefact and impact on knee joint kinematics
  publication-title: J. Biomech.
– volume: 3
  start-page: 041003
  year: 2011
  ident: bib58
  article-title: A new kinematic model of the passive motion of the knee inclusive of the patella
  publication-title: J. Mech. Robot.
– volume: 24
  start-page: 100
  year: 2006
  end-page: 109
  ident: bib59
  article-title: Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait Posture
– start-page: 126
  year: 1993
  end-page: 134
  ident: bib30
  article-title: Gait analysis. An essential tool in the treatment of cerebral palsy
  publication-title: Clin. Orthop. Relat. Res.
– volume: 11
  start-page: 38
  year: 2000
  end-page: 45
  ident: bib45
  article-title: Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study
  publication-title: Gait Posture
– volume: 29
  start-page: 119
  year: 2009
  end-page: 122
  ident: bib64
  article-title: Double calibration vs. global optimisation: performance and effectiveness for clinical application
  publication-title: Gait Posture
– volume: 47
  start-page: 667
  year: 2014
  end-page: 674
  ident: bib34
  article-title: Muscle contributions to recovery from forward loss of balance by stepping
  publication-title: J. Biomech.
– volume: 41
  start-page: 1639
  year: 2008
  end-page: 1650
  ident: bib61
  article-title: The effect of walking speed on the gait of typically developing children
  publication-title: J. Biomech.
– year: 2010
  ident: bib72
  article-title: Plug-in Gait Product Guide – Foundation Notes
– volume: 38
  start-page: 621
  year: 2005
  end-page: 626
  ident: bib55
  article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization
  publication-title: J. Biomech.
– volume: 30
  start-page: 173
  year: 2009
  end-page: 180
  ident: bib20
  article-title: A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set
  publication-title: Gait Posture
– volume: 41
  start-page: 489
  year: 2010
  end-page: 506
  ident: bib13
  article-title: The role of gait analysis in treating gait abnormalities in cerebral pals
  publication-title: Orthop. Clin. N. Am.
– volume: 9
  start-page: e112625
  year: 2014
  ident: bib70
  article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
  publication-title: PLoS One
– volume: 47
  start-page: 3295
  year: 2014
  end-page: 3302
  ident: bib50
  article-title: Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk
  publication-title: J. Biomech.
– volume: 48
  start-page: 1141
  year: 2015
  end-page: 1146
  ident: bib31
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
– volume: 9
  start-page: e102098
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib7
  article-title: Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal
  publication-title: PloS One
  doi: 10.1371/journal.pone.0102098
– volume: 31
  start-page: 279
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib56
  article-title: Changes in hip joint muscle-tendon lengths with mode of locomotion
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.11.005
– volume: 22
  start-page: 1
  year: 1989
  ident: 10.1016/j.jbiomech.2016.03.052_bib74
  article-title: A planar model of the knee joint to characterize the knee extensor mechanism
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(89)90179-6
– volume: 30
  start-page: 265
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib5
  article-title: The gait profile score and movement analysis profile
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.05.020
– volume: 46
  start-page: 1913
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib49
  article-title: Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.04.010
– volume: 30
  start-page: 173
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib20
  article-title: A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.04.004
– volume: 47
  start-page: 667
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib34
  article-title: Muscle contributions to recovery from forward loss of balance by stepping
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.11.047
– volume: 36
  start-page: 405
  year: 2012
  ident: 10.1016/j.jbiomech.2016.03.052_bib37
  article-title: Crouched posture maximizes ground reaction forces generated by muscles
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.020
– volume: 54
  start-page: 1333
  year: 2007
  ident: 10.1016/j.jbiomech.2016.03.052_bib62
  article-title: Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study
  publication-title: IEEE Trans. Bio-med. Eng.
  doi: 10.1109/TBME.2007.890735
– volume: 8
  start-page: 388
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib69
  article-title: Cerebral palsy gait, clinical importance
  publication-title: Maedica
– volume: 20
  start-page: 213
  year: 2004
  ident: 10.1016/j.jbiomech.2016.03.052_bib15
  article-title: Repeatability of an optimised lower body model
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.09.004
– volume: 40
  start-page: 286
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib54
  article-title: The comparison of normative reference data from different gait analysis services
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.03.185
– volume: 135
  start-page: 43
  year: 2004
  ident: 10.1016/j.jbiomech.2016.03.052_bib76
  article-title: A posture optimization algorithm for model-based motion capture of movement sequences
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.11.013
– volume: 39
  start-page: 847
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib41
  article-title: The effects of surgical lengthening of hamstring muscles in children with cerebral palsy – the consequences of pre-operative muscle length measurement
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.11.010
– volume: 48
  start-page: 2124
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib8
  article-title: Surface marker cluster translation, rotation, scaling and deformation: their contribution to soft tissue artefact and impact on knee joint kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.02.050
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2016.03.052_bib25
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 33
  start-page: 1287
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib16
  article-title: Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22908
– volume: 45
  start-page: 2719
  year: 2012
  ident: 10.1016/j.jbiomech.2016.03.052_bib43
  article-title: The inaccuracy of surface-measured model-derived tibiofemoral kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.08.007
– volume: 21
  start-page: 186
  year: 2005
  ident: 10.1016/j.jbiomech.2016.03.052_bib12
  article-title: Human movement analysis using stereophotogrammetry. Part 1: theoretical background
  publication-title: Gait Posture
– volume: 3
  start-page: 041003
  year: 2011
  ident: 10.1016/j.jbiomech.2016.03.052_bib58
  article-title: A new kinematic model of the passive motion of the knee inclusive of the patella
  publication-title: J. Mech. Robot.
  doi: 10.1115/1.4004890
– volume: 26
  start-page: 612
  year: 2006
  ident: 10.1016/j.jbiomech.2016.03.052_bib14
  article-title: Effectiveness of instrumented gait analysis in children with cerebral palsy – comparison of outcomes
  publication-title: J Pediatr. Orthop.
  doi: 10.1097/01.bpo.0000229970.55694.5c
– volume: 35
  start-page: 543
  year: 2002
  ident: 10.1016/j.jbiomech.2016.03.052_bib73
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 41
  start-page: 1639
  year: 2008
  ident: 10.1016/j.jbiomech.2016.03.052_bib61
  article-title: The effect of walking speed on the gait of typically developing children
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.03.015
– volume: 33
  start-page: 1029
  year: 2000
  ident: 10.1016/j.jbiomech.2016.03.052_bib53
  article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00056-7
– volume: 24
  start-page: 1019
  year: 2006
  ident: 10.1016/j.jbiomech.2016.03.052_bib4
  article-title: in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20142
– volume: 24
  start-page: 152
  year: 2006
  ident: 10.1016/j.jbiomech.2016.03.052_bib9
  article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.04.012
– volume: 43
  start-page: 2858
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib91
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.06.010
– volume: 105
  start-page: 136
  year: 1983
  ident: 10.1016/j.jbiomech.2016.03.052_bib35
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 32
  start-page: 191
  year: 2007
  ident: 10.1016/j.jbiomech.2016.03.052_bib66
  article-title: Virtual palpation of skeletal landmarks with multimodal display interfaces
  publication-title: Med. Inform. Internet Med.
  doi: 10.1080/14639230701231493
– volume: 91
  start-page: 781
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib40
  article-title: Test–retest reliability of discrete gait parameters in children with cerebral palsy
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2010.01.016
– volume: 5
  start-page: 108
  year: 2000
  ident: 10.1016/j.jbiomech.2016.03.052_bib3
  article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity
  publication-title: Comput. Aided Surg.
  doi: 10.3109/10929080009148877
– volume: 35
  start-page: 3354
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib6
  article-title: The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy
  publication-title: Res. Dev. Disabil.
  doi: 10.1016/j.ridd.2014.07.053
– volume: 21
  start-page: 197
  year: 2005
  ident: 10.1016/j.jbiomech.2016.03.052_bib18
  article-title: Human movement analysis using stereophotogrammetry. Part 2: instrumental errors
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.04.004
– volume: 36
  start-page: 1159
  year: 2003
  ident: 10.1016/j.jbiomech.2016.03.052_bib10
  article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00087-3
– volume: 29
  start-page: 119
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib64
  article-title: Double calibration vs. global optimisation: performance and effectiveness for clinical application
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.07.008
– volume: 37
  start-page: 23
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib68
  article-title: Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.05.022
– volume: 48
  start-page: 3796
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib19
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.040
– volume: 38
  start-page: 621
  year: 2005
  ident: 10.1016/j.jbiomech.2016.03.052_bib55
  article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.031
– volume: 33
  start-page: 158
  year: 2011
  ident: 10.1016/j.jbiomech.2016.03.052_bib60
  article-title: Calculating gait kinematics using MR-based kinematic models
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.11.003
– volume: 40
  start-page: 321
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib33
  article-title: Arm swing in human walking: what is their drive?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.04.204
– volume: 8
  start-page: 383
  year: 1990
  ident: 10.1016/j.jbiomech.2016.03.052_bib38
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 47
  start-page: 3295
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib50
  article-title: Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.08.016
– volume: 12
  start-page: 371
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib1
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802459412
– volume: 26
  start-page: 1473
  year: 1993
  ident: 10.1016/j.jbiomech.2016.03.052_bib63
  article-title: Determining the movements of the skeleton using well-configured markers
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90098-Y
– volume: 45
  start-page: 1103
  year: 2012
  ident: 10.1016/j.jbiomech.2016.03.052_bib52
  article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.011
– volume: 40
  start-page: 595
  year: 2007
  ident: 10.1016/j.jbiomech.2016.03.052_bib36
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.02.003
– start-page: 126
  year: 1993
  ident: 10.1016/j.jbiomech.2016.03.052_bib30
  article-title: Gait analysis. An essential tool in the treatment of cerebral palsy
  publication-title: Clin. Orthop. Relat. Res.
– volume: 29
  start-page: 360
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib46
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.09.003
– volume: 10
  start-page: e0128877
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib75
  article-title: Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study
  publication-title: PloS One
  doi: 10.1371/journal.pone.0128877
– volume: 10
  start-page: 575
  year: 1991
  ident: 10.1016/j.jbiomech.2016.03.052_bib23
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 21
  start-page: 212
  year: 2005
  ident: 10.1016/j.jbiomech.2016.03.052_bib42
  article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– volume: 29
  start-page: 105
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib65
  article-title: Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.29.1.105
– year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib72
– volume: 48
  start-page: 3227
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib71
  article-title: Loads in the hip joint during physically demanding occupational tasks: a motion analysis study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.06.034
– volume: 90
  start-page: 269
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib21
  article-title: Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy
  publication-title: Phys. Ther.
  doi: 10.2522/ptj.20090062
– volume: 86
  start-page: 511
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib67
  article-title: Gait improvement surgery in ambulatory children with diplegic cerebral palsy
  publication-title: Acta Orthop.
  doi: 10.3109/17453674.2015.1011927
– volume: 11
  start-page: 38
  year: 2000
  ident: 10.1016/j.jbiomech.2016.03.052_bib45
  article-title: Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00042-9
– volume: 49
  start-page: 141
  year: 2016
  ident: 10.1016/j.jbiomech.2016.03.052_bib48
  article-title: Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.11.006
– volume: 42
  start-page: 1201
  year: 2009
  ident: 10.1016/j.jbiomech.2016.03.052_bib32
  article-title: MRI-based assessment of hip joint translations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.033
– year: 1998
  ident: 10.1016/j.jbiomech.2016.03.052_bib77
– volume: 228
  start-page: 206
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib26
  article-title: Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon׳s plug-in gait
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411913518747
– volume: 28
  start-page: 207
  year: 2008
  ident: 10.1016/j.jbiomech.2016.03.052_bib28
  article-title: Quantitative comparison of five current protocols in gait analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.11.009
– volume: 24
  start-page: 100
  year: 2006
  ident: 10.1016/j.jbiomech.2016.03.052_bib59
  article-title: Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.08.002
– volume: 48
  start-page: 1141
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib31
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.010
– volume: 14
  start-page: 1100
  year: 2006
  ident: 10.1016/j.jbiomech.2016.03.052_bib22
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2006.09.001
– volume: 28
  start-page: 879
  year: 1995
  ident: 10.1016/j.jbiomech.2016.03.052_bib17
  article-title: A solidification procedure to facilitate kinematic analyses based on video system data
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)95278-D
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2016.03.052_bib24
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 46
  start-page: 1193
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib47
  article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.11.045
– volume: 46
  start-page: 1269
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib57
  article-title: Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000000236
– volume: 28
  start-page: 316
  year: 2008
  ident: 10.1016/j.jbiomech.2016.03.052_bib29
  article-title: Are the recommendations from three-dimensional gait analysis associated with better postoperative outcomes in patients with cerebral palsy?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.013
– volume: 32
  start-page: 129
  year: 1999
  ident: 10.1016/j.jbiomech.2016.03.052_bib44
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00158-4
– volume: 39
  start-page: 214
  year: 1997
  ident: 10.1016/j.jbiomech.2016.03.052_bib51
  article-title: Development and reliability of a system to classify gross motor function in children with cerebral palsy
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/j.1469-8749.1997.tb07414.x
– volume: 9
  start-page: e112625
  year: 2014
  ident: 10.1016/j.jbiomech.2016.03.052_bib70
  article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112625
– volume: 43
  start-page: 268
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib2
  article-title: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.08.034
– volume: 41
  start-page: 489
  year: 2010
  ident: 10.1016/j.jbiomech.2016.03.052_bib13
  article-title: The role of gait analysis in treating gait abnormalities in cerebral pals
  publication-title: Orthop. Clin. N. Am.
  doi: 10.1016/j.ocl.2010.06.009
– volume: 41
  start-page: 1051
  year: 2013
  ident: 10.1016/j.jbiomech.2016.03.052_bib11
  article-title: Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546513480465
– volume: 30
  start-page: 319
  year: 2015
  ident: 10.1016/j.jbiomech.2016.03.052_bib39
  article-title: Estimation of the hip joint centre in human motion analysis: a systematic review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2015.02.005
SSID ssj0007479
Score 2.5131464
Snippet Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate...
Abstract Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1658
SubjectTerms Adolescent
Ankle
Biomechanical Phenomena
Cerebral palsy
Cerebral Palsy - diagnostic imaging
Cerebral Palsy - physiopathology
Child
Child, Preschool
Children & youth
Computation
Consistency
Data collection
Estimates
Female
Gait
Gait - physiology
Gait analysis
Humans
Inverse Kinematics
Joints - diagnostic imaging
Joints - physiopathology
Kinematics
Knee
Magnetic Resonance Imaging
Male
Markers
Mathematical models
Mean square errors
Models, Biological
OpenSim
Physical Medicine and Rehabilitation
Plug-in-Gait
Studies
Subject specific model
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFT1gOCAYMsjUJCRELd0_UrsHKuKqqpUTlTqzUpiG2WBbEWyBy58O2PH2S5CLQguu8l6Rtmdseex8wJ4q2nbaFvZvFKVziUqkbyWkufOh7FWtfVWhNrhiw_l2aU8vyqu9uBkroUJaZVJ9k8yPUrr9MkyUXN53XWhxhdPWwgDluiSMxF6gkqpwi4_-nGT5oHmckrzYHmA3qkSXh2tYo17DEqwMjY7LfhtCuo2AzQqotNH8DBZkOR4-pKPYc_1Czg47tF7_vqdvCMxpzP-Wb6ABzvtBhdw7yIF0g-gPV93_Ug-403s2UqQVW2a5EWCZrMEL-aySTIRaQc8JHNsBtL14cLtLHyqu5HE8TrDE7g8ff_x5CxP8xbyFk_hmOPRbyurRYk-mWq4o42vytpr4QvfWilowxpNpaKsVhqX0LLAV-tZ6SvL61Y8hf1-3bvnQFpuvRCFKGtHpZdNzTjVzuObKitEz6CYiWza1Iw8zMT4Yuass5WZmWMCcwwVBpmTwXKLdz214_gjhpp5aGaqoXg0qDH-DdMN6ZQPhpmBG2p-24kZVFvMXzbzXz31cN5o5uZBKDULIUXJMnizXUZBEKI7de_WmwjDlUL7rrgDRqM_GYqNxV0wPARTJaMZPJs2-pbUXKHDgHL7xX_8wJdwP9yFdDsmD2F__LZxr9CwG5vX8eT-BCqZS2M
  priority: 102
  providerName: Elsevier
Title Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016304134
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016304134
https://dx.doi.org/10.1016/j.jbiomech.2016.03.052
https://www.ncbi.nlm.nih.gov/pubmed/27139005
https://www.proquest.com/docview/1794534361
https://www.proquest.com/docview/1792771905
https://www.proquest.com/docview/1811890113
https://www.proquest.com/docview/1825458410
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9IltEoIDgg5YYVRGQtyy2bHzdUIFbSpDqxBiUm9WEseohaWDpAcu_Hbec5zQywrikqSyn9L4Pb8Pvy-AVykvi9RkJsiSLA0UCpEgVyoMKkttrXJjjaTc4ct5PLtSF4to4Q_cGh9W2fNEx6jNuqQz8lMinEgqGYs3N98D6hpF3lXfQmMPDqh0GVF1shgMLqoN70M8RIBqAN_KEF6drFx-u3NIiNgVOo3C24TTbcqnE0LnD-GB1x7ZtEP3I7hT1SM4nNZoOV__ZK-Zi-d0B-UjuL9VanAEdy-9E_0Qyov1sm7ZV_zh6rUyRFPpu3gxkmqG4UOfMsk6obc1nQI5Ng1b1vRQbQ18yZctc611msdwdX72-d0s8L0WghJ3YBvgti8zk8oY7bGkCCte2CzObSptZEujJC9EkXKVcJEnKQ6hVoFXY0VsMxPmpXwC-_W6ro6AlaGxUkYyziuurCpyEfK0snhL4gzBxxD1i6xLX4ic-mF8033E2Ur3yNGEHM2lRuSM4XSAu-lKcfwVIulxqPtVQ9aoUVr8H2TV-B3eaKGbUHNNzm5BtIV6LUeFQI0hGyC9EtPh6Z_eetwTmv7zooHwx_ByGEYmQJ6dvK7WGzcnTBLU7aIdc1K0JSnRWO6aE5IjVQk-hqcdoQ9LHSZoLCDPfrb7Tz6He_RFFE0n1DHstz821QvU29piAnsnv8TEbdEJHEzff5jN8f72bP7x029r5EUl
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUCcoBwZQlUMBIwC3UW7YDQhVQTZfpqZXmZpLYRjOFTCEZof4U38izszCXDgiplyyyXxa_l7fkbQCvUloWqc50mCVZGkoUImEuJQ-NdW2tcm21cLnDk5N4fCYPp9F0A371uTAurLLniZ5R60Xp_pHvOsKJhBQxe3_xPXRdo5x3tW-h0ZLFkbn8iSZb_e7gI-L3Nef7n04_jMOuq0BYIq01IRJ4melUxGh5JAU3tLBZnNtU2MiWWgpasCKlMqEsT1IcQvmJW21ZbDPN81LgdW_ATRS81Bl7yXQw8Fwt-i6khIWodtCVjOT527nPp_cOEBb7wqoRv0oYXqXseqG3fw_udtoq2WvJ6z5smGoE23sVWurfLskb4uNH_Y_5EdxZKW04gluTzmm_DeXhYlY15BxPfH1YgmRRdl3DiJOimuBBn6JJWiG7Mt0FjixrMqvcgVkZ-JLPGuJb-dQP4OxasPAQNqtFZR4DKbm2QkQizg2VVhY54zQ1FndJnCF4AFG_yKrsCp-7_htfVR_hNlc9cpRDjqJCIXIC2B3gLtrSH3-FSHocqn7VkBUrlE7_B2nqjqPUiqmaK6qcc5052kI9mqICIgPIBshOaWrx9E933ekJTf250fChBfByGEam4zxJeWUWSz-HJwnqktGaOSnari6xWaybw53jVjIawKOW0Iel5gkaJygjnqx_yBdwe3w6OVbHBydHT2HLvZ2L5GNyBzabH0vzDHXGpnjuP1QCn6-bM_wGRR59Zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSqYIHBCmHocAiAW8me_l6QKjQRj1oVCEq9W1re3dR0uIU7Aj11_g6Zn2RlwaE1Bcf2h0fO-M5PBfAq5jmWawT7SdREvsShYifSsl9Y11bq1RbLVzu8NEk3DuRB6fB6Rr86nJhXFhlxxNrRq3nuftHPnKEEwgpQjaybVjE8c74_eV333WQcp7Wrp1GQyKH5uonmm_lu_0dxPVrzse7Xz7u-W2HAT9Huqt8JPY80bEI0QqJMm5oZpMwtbGwgc21FDRjWUxlRFkaxTiEshS32rLQJpqnucDr3oL1yFlFA1j_sDs5_tzLAVTU2wAT5qMSQpfyk2dvZ3V2fe0OYWFdZjXg14nG61TfWgSO78HdVncl2w2x3Yc1Uwxhc7tAu_3bFXlD6mjS-jf9EO4sFTocwsZR68LfhPxgPi0qco4ndbVYgkSStz3EiJOpmuBBl7BJGpG7NN2FkSxKMi3cgVka-JpOK1I39ikfwMmN4OEhDIp5YR4Dybm2QgQiTA2VVmYp4zQ2FndRmCC4B0G3yCpvy6C7bhwXqot3m6kOOcohR1GhEDkejHq4y6YQyF8hog6Hqls1ZMwKZdX_QZqy5S-lYqrkiirnameOtlCrpqiOSA-SHrJVoRo8_dNdtzpCU39u1H92Hrzsh5EFOb9SWpj5op7Dowg1y2DFnBgtWZfmLFbN4c6NKxn14FFD6P1S8whNFZQYT1Y_5AvYQK6gPu1PDp_CbfdyLqyPyS0YVD8W5hkqkFX2vP1SCZzdNHP4DbF4gwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+kinematic+calculation+based+on+clinical+direct+kinematic+versus+inverse+kinematic+gait+models&rft.jtitle=Journal+of+biomechanics&rft.au=Kainz%2C+H.&rft.au=Modenese%2C+L.&rft.au=Lloyd%2C+D.G.&rft.au=Maine%2C+S.&rft.date=2016-06-14&rft.issn=0021-9290&rft.volume=49&rft.issue=9&rft.spage=1658&rft.epage=1669&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.03.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2016_03_052
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00097%2Fcov150h.gif