Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models
Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional ana...
Saved in:
Published in | Journal of biomechanics Vol. 49; no. 9; pp. 1658 - 1669 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
14.06.2016
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders.
The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models.
Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. |
---|---|
AbstractList | Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13 degree were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Abstract Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates.Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. |
Author | Walsh, H.P.J. Kainz, H. Maine, S. Modenese, L. Lloyd, D.G. Carty, C.P. |
Author_xml | – sequence: 1 givenname: H. surname: Kainz fullname: Kainz, H. email: hans.kainz@griffithuni.edu.au organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia – sequence: 2 givenname: L. surname: Modenese fullname: Modenese, L. organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia – sequence: 3 givenname: D.G. surname: Lloyd fullname: Lloyd, D.G. organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia – sequence: 4 givenname: S. surname: Maine fullname: Maine, S. organization: Queensland Children׳s Motion Analysis Service, Queensland Paediatric Rehabilitation Service, Children׳s Health Queensland Hospital and Health Services, Brisbane, Australia – sequence: 5 givenname: H.P.J. surname: Walsh fullname: Walsh, H.P.J. organization: Queensland Children׳s Motion Analysis Service, Queensland Paediatric Rehabilitation Service, Children׳s Health Queensland Hospital and Health Services, Brisbane, Australia – sequence: 6 givenname: C.P. surname: Carty fullname: Carty, C.P. organization: School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27139005$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URLeFV6giceGSMLaT2JYQoqpoAVXiAJwtx5mA0yQudlKpb4_DdkW1B7YXe6z55rc985-Qo8lPSMgZhYICrd_2Rd84P6L9VbB0LoAXULFnZEOl4DnjEo7IBoDRXDEFx-Qkxh4ARCnUC3LMBOUKoNoQ-8W7ac5u3ISjmZ3NrBnsMqTQT1ljIrZZCuzgJpcyWesC2sf4HYa4xMxNa4CPEj-Nm7PRtzjEl-R5Z4aIrx72U_Lj8uP3i0_59derzxfn17mtuZxzDpVVreS1YqVoGELTqdp0kndVZ9uSQ0MbCaUAaoRMKcZ4WtuO1p1qmbH8lLzZ6t4G_3vBOOvRRYvDYCb0S9RUsqqsZEnhCSilUgGl_DAqFBOCKqgS-noP7f0SpvTnlSorXvKaJursgVqaEVt9G9xowr3eDSUB77aADT7GgJ22bv47kTkYN2gKevWA7vXOA3r1gAaukwdSeb1XvrvhYOGHbWGaGd45DDpah5PF7dR1691hifd7Ejvr3OA9xn_t0JFp0N9Wh64GpTWHkqb-_FfgKS_4A41m-CU |
CitedBy_id | crossref_primary_10_1080_14763141_2018_1494207 crossref_primary_10_1016_j_gaitpost_2018_01_010 crossref_primary_10_1016_j_jbiomech_2018_11_042 crossref_primary_10_1016_j_gaitpost_2018_05_033 crossref_primary_10_1080_10255842_2021_1968844 crossref_primary_10_1016_j_gaitpost_2017_11_020 crossref_primary_10_3389_fphys_2018_00218 crossref_primary_10_1016_j_gaitpost_2021_06_016 crossref_primary_10_1016_j_jbiomech_2018_08_023 crossref_primary_10_1371_journal_pone_0235966 crossref_primary_10_1016_j_gaitpost_2021_08_026 crossref_primary_10_1016_j_jbiomech_2024_112395 crossref_primary_10_1016_j_cmpb_2017_09_012 crossref_primary_10_1016_j_jbiomech_2023_111865 crossref_primary_10_3390_life11121306 crossref_primary_10_1038_s41598_024_79021_x crossref_primary_10_3390_app122010197 crossref_primary_10_1186_s12891_021_04364_9 crossref_primary_10_3389_fbioe_2022_899799 crossref_primary_10_1016_j_gaitpost_2017_03_033 crossref_primary_10_1016_j_jbiomech_2018_03_039 crossref_primary_10_1016_j_jbiomech_2016_12_018 crossref_primary_10_1589_jpts_32_729 crossref_primary_10_1080_14763141_2021_1983636 crossref_primary_10_1142_S0219519419400438 crossref_primary_10_1016_j_jbiomech_2023_111758 crossref_primary_10_1016_j_gaitpost_2021_02_016 crossref_primary_10_1109_TIM_2022_3194935 crossref_primary_10_1142_S0219519423300028 crossref_primary_10_7717_peerj_14921 crossref_primary_10_3389_fbioe_2021_791238 crossref_primary_10_1016_j_gaitpost_2018_09_027 crossref_primary_10_1016_j_jbiomech_2020_110186 crossref_primary_10_1519_JSC_0000000000004790 crossref_primary_10_1016_j_compbiomed_2021_104436 crossref_primary_10_1519_JSC_0000000000004949 crossref_primary_10_1177_0363546518787518 crossref_primary_10_1136_bmjopen_2016_014950 crossref_primary_10_1016_j_jbiomech_2018_10_003 crossref_primary_10_1371_journal_pone_0291789 crossref_primary_10_3390_s24072338 crossref_primary_10_1186_s12938_023_01177_w crossref_primary_10_1038_s41598_025_86137_1 crossref_primary_10_1016_j_jbiomech_2022_111072 crossref_primary_10_3390_s20236940 crossref_primary_10_1038_s41598_024_53857_9 crossref_primary_10_1016_j_humov_2020_102585 crossref_primary_10_1080_10255842_2024_2410505 crossref_primary_10_1002_wsbm_1368 crossref_primary_10_1016_j_gaitpost_2024_05_006 crossref_primary_10_2139_ssrn_3969846 crossref_primary_10_1115_1_4044503 crossref_primary_10_1097_JS9_0000000000001941 crossref_primary_10_1115_1_4056172 crossref_primary_10_1371_journal_pone_0252425 crossref_primary_10_1519_JSC_0000000000003874 crossref_primary_10_3389_fncom_2017_00096 crossref_primary_10_1080_10255842_2017_1390568 crossref_primary_10_1016_j_clinbiomech_2021_105402 crossref_primary_10_1016_j_clinbiomech_2021_105405 crossref_primary_10_3389_fbioe_2022_808027 crossref_primary_10_1016_j_imu_2020_100415 crossref_primary_10_1115_1_4034708 crossref_primary_10_1123_jab_2016_0282 crossref_primary_10_1186_s12984_024_01458_y crossref_primary_10_1007_s10237_022_01606_0 crossref_primary_10_3389_fspor_2021_695383 crossref_primary_10_1123_jab_2023_0067 crossref_primary_10_1016_j_jbiomech_2021_110589 crossref_primary_10_1007_s11831_019_09393_1 crossref_primary_10_1115_1_4038741 crossref_primary_10_1002_jor_24394 crossref_primary_10_7717_peerj_13752 crossref_primary_10_3390_s18071980 crossref_primary_10_1080_10255842_2018_1522532 crossref_primary_10_1080_10255842_2019_1705798 crossref_primary_10_3390_s23146535 crossref_primary_10_1016_j_gaitpost_2018_08_027 crossref_primary_10_1016_j_gaitpost_2021_09_046 crossref_primary_10_1016_j_gaitpost_2017_04_001 crossref_primary_10_1007_s10439_017_1894_5 crossref_primary_10_1371_journal_pone_0291458 crossref_primary_10_1186_s12891_018_2329_7 crossref_primary_10_1123_jab_2018_0332 crossref_primary_10_3390_bioengineering11090896 crossref_primary_10_1371_journal_pone_0270423 crossref_primary_10_21105_joss_02562 crossref_primary_10_1016_j_gaitpost_2021_09_058 crossref_primary_10_1016_j_gaitpost_2017_06_364 crossref_primary_10_1016_j_gaitpost_2017_06_002 crossref_primary_10_1016_j_autcon_2020_103471 crossref_primary_10_1016_j_gaitpost_2016_09_011 crossref_primary_10_1007_s11517_023_02906_y crossref_primary_10_1016_j_gaitpost_2021_04_039 crossref_primary_10_1186_s12891_024_07642_4 crossref_primary_10_1016_j_clinbiomech_2019_02_003 crossref_primary_10_1080_21681163_2020_1835551 crossref_primary_10_1371_journal_pone_0295152 |
Cites_doi | 10.1371/journal.pone.0102098 10.1016/j.gaitpost.2009.11.005 10.1016/0021-9290(89)90179-6 10.1016/j.gaitpost.2009.05.020 10.1016/j.jbiomech.2013.04.010 10.1016/j.gaitpost.2009.04.004 10.1016/j.jbiomech.2013.11.047 10.1016/j.gaitpost.2012.03.020 10.1109/TBME.2007.890735 10.1016/j.gaitpost.2003.09.004 10.1016/j.gaitpost.2014.03.185 10.1016/j.jneumeth.2003.11.013 10.1016/j.gaitpost.2013.11.010 10.1016/j.jbiomech.2015.02.050 10.1109/10.102791 10.1002/jor.22908 10.1016/j.jbiomech.2012.08.007 10.1115/1.4004890 10.1097/01.bpo.0000229970.55694.5c 10.1016/S0021-9290(01)00222-6 10.1016/j.jbiomech.2008.03.015 10.1016/S0021-9290(00)00056-7 10.1002/jor.20142 10.1016/j.gaitpost.2005.04.012 10.1016/j.jbiomech.2010.06.010 10.1115/1.3138397 10.1080/14639230701231493 10.1016/j.apmr.2010.01.016 10.3109/10929080009148877 10.1016/j.ridd.2014.07.053 10.1016/j.gaitpost.2004.04.004 10.1016/S0021-9290(03)00087-3 10.1016/j.gaitpost.2008.07.008 10.1016/j.gaitpost.2012.05.022 10.1016/j.jbiomech.2015.09.040 10.1016/j.jbiomech.2004.03.031 10.1016/j.gaitpost.2010.11.003 10.1016/j.gaitpost.2014.04.204 10.1002/jor.1100080310 10.1016/j.jbiomech.2014.08.016 10.1080/10255840802459412 10.1016/0021-9290(93)90098-Y 10.1016/j.jbiomech.2012.01.011 10.1016/j.jbiomech.2006.02.003 10.1016/j.gaitpost.2008.09.003 10.1371/journal.pone.0128877 10.1016/0167-9457(91)90046-Z 10.1016/j.gaitpost.2004.05.002 10.1123/jab.29.1.105 10.1016/j.jbiomech.2015.06.034 10.2522/ptj.20090062 10.3109/17453674.2015.1011927 10.1016/S0966-6362(99)00042-9 10.1016/j.jbiomech.2015.11.006 10.1016/j.jbiomech.2009.03.033 10.1177/0954411913518747 10.1016/j.gaitpost.2007.11.009 10.1016/j.gaitpost.2005.08.002 10.1016/j.jbiomech.2015.01.010 10.1016/j.simpat.2006.09.001 10.1016/0021-9290(95)95278-D 10.1109/TBME.2007.901024 10.1016/j.jbiomech.2012.11.045 10.1249/MSS.0000000000000236 10.1016/j.gaitpost.2008.01.013 10.1016/S0021-9290(98)00158-4 10.1111/j.1469-8749.1997.tb07414.x 10.1371/journal.pone.0112625 10.1016/j.jbiomech.2009.08.034 10.1016/j.ocl.2010.06.009 10.1177/0363546513480465 10.1016/j.clinbiomech.2015.02.005 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2016 |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2016.03.052 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Collection Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Physical Education Index MEDLINE Research Library Prep Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 1669 |
ExternalDocumentID | 4081346311 27139005 10_1016_j_jbiomech_2016_03_052 S0021929016304134 1_s2_0_S0021929016304134 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c638t-305c9d8369247b2e0bf96af83f5fcd430b1b804701a78f96223f96df16f9d2ac3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Mon Jul 21 11:15:55 EDT 2025 Tue Aug 05 09:05:31 EDT 2025 Mon Jul 21 10:20:20 EDT 2025 Wed Aug 13 10:47:17 EDT 2025 Wed Feb 19 02:41:16 EST 2025 Tue Jul 01 01:14:10 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Fri Feb 23 02:28:49 EST 2024 Tue Feb 25 20:12:58 EST 2025 Tue Aug 26 17:09:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | OpenSim Plug-in-Gait Inverse Kinematics Subject specific model Gait analysis |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c638t-305c9d8369247b2e0bf96af83f5fcd430b1b804701a78f96223f96df16f9d2ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27139005 |
PQID | 1794534361 |
PQPubID | 1226346 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1825458410 proquest_miscellaneous_1811890113 proquest_miscellaneous_1792771905 proquest_journals_1794534361 pubmed_primary_27139005 crossref_citationtrail_10_1016_j_jbiomech_2016_03_052 crossref_primary_10_1016_j_jbiomech_2016_03_052 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_03_052 elsevier_clinicalkeyesjournals_1_s2_0_S0021929016304134 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_03_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-14 |
PublicationDateYYYYMMDD | 2016-06-14 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (bib31) 2015; 48 Modenese, Gopalakrishnan, Phillips (bib47) 2013; 46 Benoit, Damsgaard, Andersen (bib8) 2015; 48 Charlton, Tate, Smyth, Roren (bib15) 2004; 20 Filho, Yoshida, Carvalho Wda, Stein, Novo (bib29) 2008; 28 de Asla, Wan, Rubash, Li, Six (bib4) 2006; 24 Parr, Chatterjee, Soligo (bib52) 2012; 45 Duprey, Cheze, Dumas (bib91) 2010; 43 Besier, Sturnieks, Alderson, Lloyd (bib10) 2003; 36 Gage (bib30) 1993 Gilles, Christophe, Magnenat-Thalmann (bib32) 2009; 42 Leardini, Chiari, Della Croce, Cappozzo (bib42) 2005; 21 Grood, Suntay (bib35) 1983; 105 Wu, Siegler, Allard (bib73) 2002; 35 Andersen, Benoit, Damsgaard, Ramsey, Rasmussen (bib2) 2010; 43 Li, Zheng, Tashman, Zhang (bib43) 2012; 45 Robinson, Donnelly, Tsao, Vanrenterghem (bib57) 2014; 46 Taddei, Ansaloni, Testi, Viceconti (bib66) 2007; 32 Chang, Rhodes, Flynn, Carollo (bib13) 2010; 41 Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib22) 2006; 14 Graham, Carty, Lloyd, Lichtwark, Barrett (bib34) 2014; 47 Schache, Baker, Lamoreux (bib59) 2006; 24 Varady, Glitsch, Augat (bib71) 2015; 48 Stief, Böhm, Michel, Schwirtz, Döderlein (bib65) 2013; 29 Harrington, Zavatsky, Lawson, Yuan, Theologis (bib36) 2007; 40 Clement, Dumas, Hagemeister, de Guise (bib19) 2015; 48 Vicon Motion Systems (bib72) 2010 Kadaba, Ramakrishnan, Wootten (bib38) 1990; 8 Damiano, Arnold, Steele, Delp (bib21) 2010; 90 Sancisi, Parenti-Castelli (bib58) 2011; 3 Zakotnik, Matheson, Durr (bib76) 2004; 135 Cheze, Fregly, Dimnet (bib17) 1995; 28 Mokhtarzadeh, Yeow, Hong Goh, Oetomo, Malekipour, Lee (bib49) 2013; 46 Baker, McGinley, Schwartz (bib5) 2009; 30 Valente, Pitto, Testi (bib70) 2014; 9 Cappozzo, Della Croce, Leardini, Chiari (bib12) 2005; 21 Palisano, Rosenbaum, Walter, Russell, Wood, Galuppi (bib51) 1997; 39 Boeth, Duda, Heller (bib11) 2013; 41 Schwartz, Rozumalski, Trost (bib61) 2008; 41 Duffell, Hope, McGregor (bib26) 2014; 228 McGinley, Baker, Wolfe, Morris (bib46) 2009; 29 Morgan, Donnelly, Reinbolt (bib50) 2014; 47 Thomason, Selber, Graham (bib68) 2013; 37 Chen, Wang, Liu (bib16) 2015; 33 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib25) 1990; 37 Hoang, Reinbolt (bib37) 2012; 36 Yin, Chen, Guo, Cheng, Wang, Yang (bib75) 2015; 10 Benoit, Ramsey, Lamontagne, Xu, Wretenberg, Renstrom (bib9) 2006; 24 Goudriaan, Jonkers, van Dieen, Bruijn (bib33) 2014; 40 Manal, McClay, Stanhope, Richards, Galinat (bib45) 2000; 11 Scheys, Desloovere, Spaepen, Suetens, Jonkers (bib60) 2011; 33 Collins, Ghoussayni, Ewins, Kent (bib20) 2009; 30 Lu, O׳Connor (bib44) 1999; 32 Klejman, Andrysek, Dupuis, Wright (bib40) 2010; 91 Bar-On, Molenaers, Aertbelien, Monari, Feys, Desloovere (bib6) 2014; 35 Soderkvist, Wedin (bib63) 1993; 26 Riley, Franz, Dicharry, Kerrigan (bib56) 2010; 31 Chiari, Della Croce, Leardini, Cappozzo (bib18) 2005; 21 Delp, Anderson, Arnold (bib24) 2007; 54 Terjesen, Lofterod, Skaaret (bib67) 2015; 86 Yamaguchi, Zajac (bib74) 1989; 22 Zatsiorsky (bib77) 1998 Ferrari, Benedetti, Pavan (bib28) 2008; 28 Pinzone, Schwartz, Thomason, Baker (bib54) 2014; 40 Piazza, Cavanagh (bib53) 2000; 33 Arnold, Salinas, Asakawa, Delp (bib3) 2000; 5 Modenese, Ceseracciu, Reggiani, Lloyd (bib48) 2016; 49 Stagni, Fantozzi, Cappello (bib64) 2009; 29 Reinbolt, Schutte, Fregly (bib55) 2005; 38 Kainz, Carty, Modenese, Boyd, Lloyd (bib39) 2015; 30 Baudet, Morisset, d׳Athis (bib7) 2014; 9 Davis, Õunpuu, Tyburski, Gage (bib23) 1991; 10 Seisler, Sheehan (bib62) 2007; 54 Chang, Seidl, Muthusamy, Meininger, Carollo (bib14) 2006; 26 Tugui, Antonescu (bib69) 2013; 8 Andersen, Damsgaard, Rasmussen (bib1) 2009; 12 Laracca, Stewart, Postans, Roberts (bib41) 2014; 39 Morgan (10.1016/j.jbiomech.2016.03.052_bib50) 2014; 47 Cheze (10.1016/j.jbiomech.2016.03.052_bib17) 1995; 28 Gasparutto (10.1016/j.jbiomech.2016.03.052_bib31) 2015; 48 Duprey (10.1016/j.jbiomech.2016.03.052_bib91) 2010; 43 Gilles (10.1016/j.jbiomech.2016.03.052_bib32) 2009; 42 Tugui (10.1016/j.jbiomech.2016.03.052_bib69) 2013; 8 Harrington (10.1016/j.jbiomech.2016.03.052_bib36) 2007; 40 Li (10.1016/j.jbiomech.2016.03.052_bib43) 2012; 45 de Asla (10.1016/j.jbiomech.2016.03.052_bib4) 2006; 24 Chang (10.1016/j.jbiomech.2016.03.052_bib14) 2006; 26 Filho (10.1016/j.jbiomech.2016.03.052_bib29) 2008; 28 Kadaba (10.1016/j.jbiomech.2016.03.052_bib38) 1990; 8 Laracca (10.1016/j.jbiomech.2016.03.052_bib41) 2014; 39 Terjesen (10.1016/j.jbiomech.2016.03.052_bib67) 2015; 86 Modenese (10.1016/j.jbiomech.2016.03.052_bib48) 2016; 49 Vicon Motion Systems (10.1016/j.jbiomech.2016.03.052_bib72) 2010 Thomason (10.1016/j.jbiomech.2016.03.052_bib68) 2013; 37 Arnold (10.1016/j.jbiomech.2016.03.052_bib3) 2000; 5 Grood (10.1016/j.jbiomech.2016.03.052_bib35) 1983; 105 McGinley (10.1016/j.jbiomech.2016.03.052_bib46) 2009; 29 Duffell (10.1016/j.jbiomech.2016.03.052_bib26) 2014; 228 Yin (10.1016/j.jbiomech.2016.03.052_bib75) 2015; 10 Lu (10.1016/j.jbiomech.2016.03.052_bib44) 1999; 32 Yamaguchi (10.1016/j.jbiomech.2016.03.052_bib74) 1989; 22 Damiano (10.1016/j.jbiomech.2016.03.052_bib21) 2010; 90 Taddei (10.1016/j.jbiomech.2016.03.052_bib66) 2007; 32 Wu (10.1016/j.jbiomech.2016.03.052_bib73) 2002; 35 Mokhtarzadeh (10.1016/j.jbiomech.2016.03.052_bib49) 2013; 46 Scheys (10.1016/j.jbiomech.2016.03.052_bib60) 2011; 33 Damsgaard (10.1016/j.jbiomech.2016.03.052_bib22) 2006; 14 Ferrari (10.1016/j.jbiomech.2016.03.052_bib28) 2008; 28 Bar-On (10.1016/j.jbiomech.2016.03.052_bib6) 2014; 35 Gage (10.1016/j.jbiomech.2016.03.052_bib30) 1993 Andersen (10.1016/j.jbiomech.2016.03.052_bib2) 2010; 43 Besier (10.1016/j.jbiomech.2016.03.052_bib10) 2003; 36 Delp (10.1016/j.jbiomech.2016.03.052_bib24) 2007; 54 Palisano (10.1016/j.jbiomech.2016.03.052_bib51) 1997; 39 Davis (10.1016/j.jbiomech.2016.03.052_bib23) 1991; 10 Chang (10.1016/j.jbiomech.2016.03.052_bib13) 2010; 41 Piazza (10.1016/j.jbiomech.2016.03.052_bib53) 2000; 33 Reinbolt (10.1016/j.jbiomech.2016.03.052_bib55) 2005; 38 Benoit (10.1016/j.jbiomech.2016.03.052_bib8) 2015; 48 Cappozzo (10.1016/j.jbiomech.2016.03.052_bib12) 2005; 21 Parr (10.1016/j.jbiomech.2016.03.052_bib52) 2012; 45 Zakotnik (10.1016/j.jbiomech.2016.03.052_bib76) 2004; 135 Benoit (10.1016/j.jbiomech.2016.03.052_bib9) 2006; 24 Soderkvist (10.1016/j.jbiomech.2016.03.052_bib63) 1993; 26 Manal (10.1016/j.jbiomech.2016.03.052_bib45) 2000; 11 Hoang (10.1016/j.jbiomech.2016.03.052_bib37) 2012; 36 Baudet (10.1016/j.jbiomech.2016.03.052_bib7) 2014; 9 Collins (10.1016/j.jbiomech.2016.03.052_bib20) 2009; 30 Delp (10.1016/j.jbiomech.2016.03.052_bib25) 1990; 37 Kainz (10.1016/j.jbiomech.2016.03.052_bib39) 2015; 30 Varady (10.1016/j.jbiomech.2016.03.052_bib71) 2015; 48 Charlton (10.1016/j.jbiomech.2016.03.052_bib15) 2004; 20 Boeth (10.1016/j.jbiomech.2016.03.052_bib11) 2013; 41 Valente (10.1016/j.jbiomech.2016.03.052_bib70) 2014; 9 Andersen (10.1016/j.jbiomech.2016.03.052_bib1) 2009; 12 Schache (10.1016/j.jbiomech.2016.03.052_bib59) 2006; 24 Goudriaan (10.1016/j.jbiomech.2016.03.052_bib33) 2014; 40 Stagni (10.1016/j.jbiomech.2016.03.052_bib64) 2009; 29 Pinzone (10.1016/j.jbiomech.2016.03.052_bib54) 2014; 40 Schwartz (10.1016/j.jbiomech.2016.03.052_bib61) 2008; 41 Seisler (10.1016/j.jbiomech.2016.03.052_bib62) 2007; 54 Stief (10.1016/j.jbiomech.2016.03.052_bib65) 2013; 29 Robinson (10.1016/j.jbiomech.2016.03.052_bib57) 2014; 46 Baker (10.1016/j.jbiomech.2016.03.052_bib5) 2009; 30 Graham (10.1016/j.jbiomech.2016.03.052_bib34) 2014; 47 Sancisi (10.1016/j.jbiomech.2016.03.052_bib58) 2011; 3 Chiari (10.1016/j.jbiomech.2016.03.052_bib18) 2005; 21 Klejman (10.1016/j.jbiomech.2016.03.052_bib40) 2010; 91 Leardini (10.1016/j.jbiomech.2016.03.052_bib42) 2005; 21 Clement (10.1016/j.jbiomech.2016.03.052_bib19) 2015; 48 Chen (10.1016/j.jbiomech.2016.03.052_bib16) 2015; 33 Modenese (10.1016/j.jbiomech.2016.03.052_bib47) 2013; 46 Riley (10.1016/j.jbiomech.2016.03.052_bib56) 2010; 31 Zatsiorsky (10.1016/j.jbiomech.2016.03.052_bib77) 1998 |
References_xml | – volume: 29 start-page: 360 year: 2009 end-page: 369 ident: bib46 article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review publication-title: Gait Posture – volume: 33 start-page: 158 year: 2011 end-page: 164 ident: bib60 article-title: Calculating gait kinematics using MR-based kinematic models publication-title: Gait Posture – volume: 40 start-page: 321 year: 2014 end-page: 326 ident: bib33 article-title: Arm swing in human walking: what is their drive? publication-title: Gait Posture – volume: 46 start-page: 1193 year: 2013 end-page: 1200 ident: bib47 article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector publication-title: J. Biomech. – volume: 28 start-page: 207 year: 2008 end-page: 216 ident: bib28 article-title: Quantitative comparison of five current protocols in gait analysis publication-title: Gait Posture – volume: 21 start-page: 197 year: 2005 end-page: 211 ident: bib18 article-title: Human movement analysis using stereophotogrammetry. Part 2: instrumental errors publication-title: Gait Posture – volume: 43 start-page: 2858 year: 2010 end-page: 2862 ident: bib91 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: Journal of Biomechanics – volume: 32 start-page: 129 year: 1999 end-page: 134 ident: bib44 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J. Biomech. – volume: 35 start-page: 3354 year: 2014 end-page: 3364 ident: bib6 article-title: The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy publication-title: Res. Dev. Disabil. – volume: 26 start-page: 612 year: 2006 end-page: 616 ident: bib14 article-title: Effectiveness of instrumented gait analysis in children with cerebral palsy – comparison of outcomes publication-title: J Pediatr. Orthop. – volume: 24 start-page: 152 year: 2006 end-page: 164 ident: bib9 article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo publication-title: Gait Posture – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib24 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 49 start-page: 141 year: 2016 end-page: 148 ident: bib48 article-title: Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique publication-title: J. Biomech. – volume: 30 start-page: 319 year: 2015 end-page: 329 ident: bib39 article-title: Estimation of the hip joint centre in human motion analysis: a systematic review publication-title: Clin. Biomech. – volume: 36 start-page: 1159 year: 2003 end-page: 1168 ident: bib10 article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis publication-title: J. Biomech. – volume: 228 start-page: 206 year: 2014 end-page: 210 ident: bib26 article-title: Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon׳s plug-in gait publication-title: Proc. Inst. Mech. Eng. H – volume: 28 start-page: 316 year: 2008 end-page: 322 ident: bib29 article-title: Are the recommendations from three-dimensional gait analysis associated with better postoperative outcomes in patients with cerebral palsy? publication-title: Gait Posture – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib25 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 46 start-page: 1269 year: 2014 end-page: 1276 ident: bib57 article-title: Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk publication-title: Med. Sci. Sports Exerc. – volume: 26 start-page: 1473 year: 1993 end-page: 1477 ident: bib63 article-title: Determining the movements of the skeleton using well-configured markers publication-title: J. Biomech. – volume: 12 start-page: 371 year: 2009 end-page: 384 ident: bib1 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: bib73 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics publication-title: J. Biomech. – volume: 9 start-page: e102098 year: 2014 ident: bib7 article-title: Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal publication-title: PloS One – volume: 21 start-page: 186 year: 2005 end-page: 196 ident: bib12 article-title: Human movement analysis using stereophotogrammetry. Part 1: theoretical background publication-title: Gait Posture – volume: 86 start-page: 511 year: 2015 end-page: 517 ident: bib67 article-title: Gait improvement surgery in ambulatory children with diplegic cerebral palsy publication-title: Acta Orthop. – volume: 135 start-page: 43 year: 2004 end-page: 54 ident: bib76 article-title: A posture optimization algorithm for model-based motion capture of movement sequences publication-title: J. Neurosci. Methods – volume: 48 start-page: 3227 year: 2015 end-page: 3233 ident: bib71 article-title: Loads in the hip joint during physically demanding occupational tasks: a motion analysis study publication-title: J. Biomech. – volume: 28 start-page: 879 year: 1995 end-page: 884 ident: bib17 article-title: A solidification procedure to facilitate kinematic analyses based on video system data publication-title: J. Biomech. – volume: 40 start-page: 595 year: 2007 end-page: 602 ident: bib36 article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging publication-title: J. Biomech. – volume: 39 start-page: 847 year: 2014 end-page: 851 ident: bib41 article-title: The effects of surgical lengthening of hamstring muscles in children with cerebral palsy – the consequences of pre-operative muscle length measurement publication-title: Gait Posture – volume: 43 start-page: 268 year: 2010 end-page: 273 ident: bib2 article-title: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics publication-title: J. Biomech. – volume: 5 start-page: 108 year: 2000 end-page: 119 ident: bib3 article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity publication-title: Comput. Aided Surg. – volume: 30 start-page: 265 year: 2009 end-page: 269 ident: bib5 article-title: The gait profile score and movement analysis profile publication-title: Gait Posture – volume: 48 start-page: 3796 year: 2015 end-page: 3802 ident: bib19 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. – volume: 10 start-page: 575 year: 1991 end-page: 587 ident: bib23 article-title: A gait analysis data collection and reduction technique publication-title: Hum. Mov. Sci. – volume: 36 start-page: 405 year: 2012 end-page: 408 ident: bib37 article-title: Crouched posture maximizes ground reaction forces generated by muscles publication-title: Gait Posture – volume: 24 start-page: 1019 year: 2006 end-page: 1027 ident: bib4 article-title: in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique publication-title: J. Orthop. Res. – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: bib38 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. – volume: 31 start-page: 279 year: 2010 end-page: 283 ident: bib56 article-title: Changes in hip joint muscle-tendon lengths with mode of locomotion publication-title: Gait Posture – volume: 21 start-page: 212 year: 2005 end-page: 225 ident: bib42 article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation publication-title: Gait Posture – volume: 46 start-page: 1913 year: 2013 end-page: 1920 ident: bib49 article-title: Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing publication-title: J. Biomech. – volume: 39 start-page: 214 year: 1997 end-page: 223 ident: bib51 article-title: Development and reliability of a system to classify gross motor function in children with cerebral palsy publication-title: Dev. Med. Child Neurol. – volume: 40 start-page: 286 year: 2014 end-page: 290 ident: bib54 article-title: The comparison of normative reference data from different gait analysis services publication-title: Gait Posture – volume: 14 start-page: 1100 year: 2006 end-page: 1111 ident: bib22 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory – volume: 20 start-page: 213 year: 2004 end-page: 221 ident: bib15 article-title: Repeatability of an optimised lower body model publication-title: Gait Posture – volume: 42 start-page: 1201 year: 2009 end-page: 1205 ident: bib32 article-title: MRI-based assessment of hip joint translations publication-title: J. Biomech. – volume: 45 start-page: 1103 year: 2012 end-page: 1107 ident: bib52 article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions publication-title: J. Biomech. – volume: 32 start-page: 191 year: 2007 end-page: 198 ident: bib66 article-title: Virtual palpation of skeletal landmarks with multimodal display interfaces publication-title: Med. Inform. Internet Med. – volume: 22 start-page: 1 year: 1989 end-page: 10 ident: bib74 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: J. Biomech. – volume: 105 start-page: 136 year: 1983 end-page: 144 ident: bib35 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. – volume: 10 start-page: e0128877 year: 2015 ident: bib75 article-title: Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study publication-title: PloS One – volume: 41 start-page: 1051 year: 2013 end-page: 1057 ident: bib11 article-title: Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements publication-title: Am. J. Sports Med. – volume: 33 start-page: 1287 year: 2015 end-page: 1296 ident: bib16 article-title: Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait publication-title: J. Orthop. Res. – volume: 45 start-page: 2719 year: 2012 end-page: 2723 ident: bib43 article-title: The inaccuracy of surface-measured model-derived tibiofemoral kinematics publication-title: J. Biomech. – volume: 90 start-page: 269 year: 2010 end-page: 279 ident: bib21 article-title: Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy publication-title: Phys. Ther. – volume: 8 start-page: 388 year: 2013 end-page: 393 ident: bib69 article-title: Cerebral palsy gait, clinical importance publication-title: Maedica – volume: 29 start-page: 105 year: 2013 end-page: 111 ident: bib65 article-title: Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols publication-title: J. Appl. Biomech. – volume: 37 start-page: 23 year: 2013 end-page: 28 ident: bib68 article-title: Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study publication-title: Gait Posture – year: 1998 ident: bib77 article-title: Kinematics of Human Motion – volume: 54 start-page: 1333 year: 2007 end-page: 1341 ident: bib62 article-title: Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study publication-title: IEEE Trans. Bio-med. Eng. – volume: 91 start-page: 781 year: 2010 end-page: 787 ident: bib40 article-title: Test–retest reliability of discrete gait parameters in children with cerebral palsy publication-title: Arch. Phys. Med. Rehabil. – volume: 33 start-page: 1029 year: 2000 end-page: 1034 ident: bib53 article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment publication-title: J. Biomech. – volume: 48 start-page: 2124 year: 2015 end-page: 2129 ident: bib8 article-title: Surface marker cluster translation, rotation, scaling and deformation: their contribution to soft tissue artefact and impact on knee joint kinematics publication-title: J. Biomech. – volume: 3 start-page: 041003 year: 2011 ident: bib58 article-title: A new kinematic model of the passive motion of the knee inclusive of the patella publication-title: J. Mech. Robot. – volume: 24 start-page: 100 year: 2006 end-page: 109 ident: bib59 article-title: Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait Posture – start-page: 126 year: 1993 end-page: 134 ident: bib30 article-title: Gait analysis. An essential tool in the treatment of cerebral palsy publication-title: Clin. Orthop. Relat. Res. – volume: 11 start-page: 38 year: 2000 end-page: 45 ident: bib45 article-title: Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study publication-title: Gait Posture – volume: 29 start-page: 119 year: 2009 end-page: 122 ident: bib64 article-title: Double calibration vs. global optimisation: performance and effectiveness for clinical application publication-title: Gait Posture – volume: 47 start-page: 667 year: 2014 end-page: 674 ident: bib34 article-title: Muscle contributions to recovery from forward loss of balance by stepping publication-title: J. Biomech. – volume: 41 start-page: 1639 year: 2008 end-page: 1650 ident: bib61 article-title: The effect of walking speed on the gait of typically developing children publication-title: J. Biomech. – year: 2010 ident: bib72 article-title: Plug-in Gait Product Guide – Foundation Notes – volume: 38 start-page: 621 year: 2005 end-page: 626 ident: bib55 article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization publication-title: J. Biomech. – volume: 30 start-page: 173 year: 2009 end-page: 180 ident: bib20 article-title: A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set publication-title: Gait Posture – volume: 41 start-page: 489 year: 2010 end-page: 506 ident: bib13 article-title: The role of gait analysis in treating gait abnormalities in cerebral pals publication-title: Orthop. Clin. N. Am. – volume: 9 start-page: e112625 year: 2014 ident: bib70 article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? publication-title: PLoS One – volume: 47 start-page: 3295 year: 2014 end-page: 3302 ident: bib50 article-title: Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk publication-title: J. Biomech. – volume: 48 start-page: 1141 year: 2015 end-page: 1146 ident: bib31 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. – volume: 9 start-page: e102098 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib7 article-title: Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): a new proposal publication-title: PloS One doi: 10.1371/journal.pone.0102098 – volume: 31 start-page: 279 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib56 article-title: Changes in hip joint muscle-tendon lengths with mode of locomotion publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.11.005 – volume: 22 start-page: 1 year: 1989 ident: 10.1016/j.jbiomech.2016.03.052_bib74 article-title: A planar model of the knee joint to characterize the knee extensor mechanism publication-title: J. Biomech. doi: 10.1016/0021-9290(89)90179-6 – volume: 30 start-page: 265 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib5 article-title: The gait profile score and movement analysis profile publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.05.020 – volume: 46 start-page: 1913 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib49 article-title: Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.04.010 – volume: 30 start-page: 173 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib20 article-title: A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set publication-title: Gait Posture doi: 10.1016/j.gaitpost.2009.04.004 – volume: 47 start-page: 667 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib34 article-title: Muscle contributions to recovery from forward loss of balance by stepping publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.11.047 – volume: 36 start-page: 405 year: 2012 ident: 10.1016/j.jbiomech.2016.03.052_bib37 article-title: Crouched posture maximizes ground reaction forces generated by muscles publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.020 – volume: 54 start-page: 1333 year: 2007 ident: 10.1016/j.jbiomech.2016.03.052_bib62 article-title: Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study publication-title: IEEE Trans. Bio-med. Eng. doi: 10.1109/TBME.2007.890735 – volume: 8 start-page: 388 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib69 article-title: Cerebral palsy gait, clinical importance publication-title: Maedica – volume: 20 start-page: 213 year: 2004 ident: 10.1016/j.jbiomech.2016.03.052_bib15 article-title: Repeatability of an optimised lower body model publication-title: Gait Posture doi: 10.1016/j.gaitpost.2003.09.004 – volume: 40 start-page: 286 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib54 article-title: The comparison of normative reference data from different gait analysis services publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.03.185 – volume: 135 start-page: 43 year: 2004 ident: 10.1016/j.jbiomech.2016.03.052_bib76 article-title: A posture optimization algorithm for model-based motion capture of movement sequences publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.11.013 – volume: 39 start-page: 847 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib41 article-title: The effects of surgical lengthening of hamstring muscles in children with cerebral palsy – the consequences of pre-operative muscle length measurement publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.11.010 – volume: 48 start-page: 2124 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib8 article-title: Surface marker cluster translation, rotation, scaling and deformation: their contribution to soft tissue artefact and impact on knee joint kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.02.050 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2016.03.052_bib25 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 33 start-page: 1287 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib16 article-title: Effect of component mal-rotation on knee loading in total knee arthroplasty using multi-body dynamics modeling under a simulated walking gait publication-title: J. Orthop. Res. doi: 10.1002/jor.22908 – volume: 45 start-page: 2719 year: 2012 ident: 10.1016/j.jbiomech.2016.03.052_bib43 article-title: The inaccuracy of surface-measured model-derived tibiofemoral kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.08.007 – volume: 21 start-page: 186 year: 2005 ident: 10.1016/j.jbiomech.2016.03.052_bib12 article-title: Human movement analysis using stereophotogrammetry. Part 1: theoretical background publication-title: Gait Posture – volume: 3 start-page: 041003 year: 2011 ident: 10.1016/j.jbiomech.2016.03.052_bib58 article-title: A new kinematic model of the passive motion of the knee inclusive of the patella publication-title: J. Mech. Robot. doi: 10.1115/1.4004890 – volume: 26 start-page: 612 year: 2006 ident: 10.1016/j.jbiomech.2016.03.052_bib14 article-title: Effectiveness of instrumented gait analysis in children with cerebral palsy – comparison of outcomes publication-title: J Pediatr. Orthop. doi: 10.1097/01.bpo.0000229970.55694.5c – volume: 35 start-page: 543 year: 2002 ident: 10.1016/j.jbiomech.2016.03.052_bib73 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00222-6 – volume: 41 start-page: 1639 year: 2008 ident: 10.1016/j.jbiomech.2016.03.052_bib61 article-title: The effect of walking speed on the gait of typically developing children publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.03.015 – volume: 33 start-page: 1029 year: 2000 ident: 10.1016/j.jbiomech.2016.03.052_bib53 article-title: Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00056-7 – volume: 24 start-page: 1019 year: 2006 ident: 10.1016/j.jbiomech.2016.03.052_bib4 article-title: in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique publication-title: J. Orthop. Res. doi: 10.1002/jor.20142 – volume: 24 start-page: 152 year: 2006 ident: 10.1016/j.jbiomech.2016.03.052_bib9 article-title: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.04.012 – volume: 43 start-page: 2858 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib91 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2010.06.010 – volume: 105 start-page: 136 year: 1983 ident: 10.1016/j.jbiomech.2016.03.052_bib35 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 32 start-page: 191 year: 2007 ident: 10.1016/j.jbiomech.2016.03.052_bib66 article-title: Virtual palpation of skeletal landmarks with multimodal display interfaces publication-title: Med. Inform. Internet Med. doi: 10.1080/14639230701231493 – volume: 91 start-page: 781 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib40 article-title: Test–retest reliability of discrete gait parameters in children with cerebral palsy publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2010.01.016 – volume: 5 start-page: 108 year: 2000 ident: 10.1016/j.jbiomech.2016.03.052_bib3 article-title: Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity publication-title: Comput. Aided Surg. doi: 10.3109/10929080009148877 – volume: 35 start-page: 3354 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib6 article-title: The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy publication-title: Res. Dev. Disabil. doi: 10.1016/j.ridd.2014.07.053 – volume: 21 start-page: 197 year: 2005 ident: 10.1016/j.jbiomech.2016.03.052_bib18 article-title: Human movement analysis using stereophotogrammetry. Part 2: instrumental errors publication-title: Gait Posture doi: 10.1016/j.gaitpost.2004.04.004 – volume: 36 start-page: 1159 year: 2003 ident: 10.1016/j.jbiomech.2016.03.052_bib10 article-title: Repeatability of gait data using a functional hip joint centre and a mean helical knee axis publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00087-3 – volume: 29 start-page: 119 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib64 article-title: Double calibration vs. global optimisation: performance and effectiveness for clinical application publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.07.008 – volume: 37 start-page: 23 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib68 article-title: Single Event Multilevel Surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.05.022 – volume: 48 start-page: 3796 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib19 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.040 – volume: 38 start-page: 621 year: 2005 ident: 10.1016/j.jbiomech.2016.03.052_bib55 article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.031 – volume: 33 start-page: 158 year: 2011 ident: 10.1016/j.jbiomech.2016.03.052_bib60 article-title: Calculating gait kinematics using MR-based kinematic models publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.11.003 – volume: 40 start-page: 321 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib33 article-title: Arm swing in human walking: what is their drive? publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.04.204 – volume: 8 start-page: 383 year: 1990 ident: 10.1016/j.jbiomech.2016.03.052_bib38 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume: 47 start-page: 3295 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib50 article-title: Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.08.016 – volume: 12 start-page: 371 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib1 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802459412 – volume: 26 start-page: 1473 year: 1993 ident: 10.1016/j.jbiomech.2016.03.052_bib63 article-title: Determining the movements of the skeleton using well-configured markers publication-title: J. Biomech. doi: 10.1016/0021-9290(93)90098-Y – volume: 45 start-page: 1103 year: 2012 ident: 10.1016/j.jbiomech.2016.03.052_bib52 article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.011 – volume: 40 start-page: 595 year: 2007 ident: 10.1016/j.jbiomech.2016.03.052_bib36 article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.02.003 – start-page: 126 year: 1993 ident: 10.1016/j.jbiomech.2016.03.052_bib30 article-title: Gait analysis. An essential tool in the treatment of cerebral palsy publication-title: Clin. Orthop. Relat. Res. – volume: 29 start-page: 360 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib46 article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.09.003 – volume: 10 start-page: e0128877 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib75 article-title: Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study publication-title: PloS One doi: 10.1371/journal.pone.0128877 – volume: 10 start-page: 575 year: 1991 ident: 10.1016/j.jbiomech.2016.03.052_bib23 article-title: A gait analysis data collection and reduction technique publication-title: Hum. Mov. Sci. doi: 10.1016/0167-9457(91)90046-Z – volume: 21 start-page: 212 year: 2005 ident: 10.1016/j.jbiomech.2016.03.052_bib42 article-title: Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation publication-title: Gait Posture doi: 10.1016/j.gaitpost.2004.05.002 – volume: 29 start-page: 105 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib65 article-title: Reliability and accuracy in three-dimensional gait analysis: a comparison of two lower body protocols publication-title: J. Appl. Biomech. doi: 10.1123/jab.29.1.105 – year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib72 – volume: 48 start-page: 3227 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib71 article-title: Loads in the hip joint during physically demanding occupational tasks: a motion analysis study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.06.034 – volume: 90 start-page: 269 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib21 article-title: Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy publication-title: Phys. Ther. doi: 10.2522/ptj.20090062 – volume: 86 start-page: 511 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib67 article-title: Gait improvement surgery in ambulatory children with diplegic cerebral palsy publication-title: Acta Orthop. doi: 10.3109/17453674.2015.1011927 – volume: 11 start-page: 38 year: 2000 ident: 10.1016/j.jbiomech.2016.03.052_bib45 article-title: Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00042-9 – volume: 49 start-page: 141 year: 2016 ident: 10.1016/j.jbiomech.2016.03.052_bib48 article-title: Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.11.006 – volume: 42 start-page: 1201 year: 2009 ident: 10.1016/j.jbiomech.2016.03.052_bib32 article-title: MRI-based assessment of hip joint translations publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.033 – year: 1998 ident: 10.1016/j.jbiomech.2016.03.052_bib77 – volume: 228 start-page: 206 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib26 article-title: Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon׳s plug-in gait publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411913518747 – volume: 28 start-page: 207 year: 2008 ident: 10.1016/j.jbiomech.2016.03.052_bib28 article-title: Quantitative comparison of five current protocols in gait analysis publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.11.009 – volume: 24 start-page: 100 year: 2006 ident: 10.1016/j.jbiomech.2016.03.052_bib59 article-title: Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.08.002 – volume: 48 start-page: 1141 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib31 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.01.010 – volume: 14 start-page: 1100 year: 2006 ident: 10.1016/j.jbiomech.2016.03.052_bib22 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2006.09.001 – volume: 28 start-page: 879 year: 1995 ident: 10.1016/j.jbiomech.2016.03.052_bib17 article-title: A solidification procedure to facilitate kinematic analyses based on video system data publication-title: J. Biomech. doi: 10.1016/0021-9290(95)95278-D – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2016.03.052_bib24 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 46 start-page: 1193 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib47 article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.11.045 – volume: 46 start-page: 1269 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib57 article-title: Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000000236 – volume: 28 start-page: 316 year: 2008 ident: 10.1016/j.jbiomech.2016.03.052_bib29 article-title: Are the recommendations from three-dimensional gait analysis associated with better postoperative outcomes in patients with cerebral palsy? publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.013 – volume: 32 start-page: 129 year: 1999 ident: 10.1016/j.jbiomech.2016.03.052_bib44 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00158-4 – volume: 39 start-page: 214 year: 1997 ident: 10.1016/j.jbiomech.2016.03.052_bib51 article-title: Development and reliability of a system to classify gross motor function in children with cerebral palsy publication-title: Dev. Med. Child Neurol. doi: 10.1111/j.1469-8749.1997.tb07414.x – volume: 9 start-page: e112625 year: 2014 ident: 10.1016/j.jbiomech.2016.03.052_bib70 article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? publication-title: PLoS One doi: 10.1371/journal.pone.0112625 – volume: 43 start-page: 268 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib2 article-title: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.08.034 – volume: 41 start-page: 489 year: 2010 ident: 10.1016/j.jbiomech.2016.03.052_bib13 article-title: The role of gait analysis in treating gait abnormalities in cerebral pals publication-title: Orthop. Clin. N. Am. doi: 10.1016/j.ocl.2010.06.009 – volume: 41 start-page: 1051 year: 2013 ident: 10.1016/j.jbiomech.2016.03.052_bib11 article-title: Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements publication-title: Am. J. Sports Med. doi: 10.1177/0363546513480465 – volume: 30 start-page: 319 year: 2015 ident: 10.1016/j.jbiomech.2016.03.052_bib39 article-title: Estimation of the hip joint centre in human motion analysis: a systematic review publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2015.02.005 |
SSID | ssj0007479 |
Score | 2.5131464 |
Snippet | Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate... Abstract Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1658 |
SubjectTerms | Adolescent Ankle Biomechanical Phenomena Cerebral palsy Cerebral Palsy - diagnostic imaging Cerebral Palsy - physiopathology Child Child, Preschool Children & youth Computation Consistency Data collection Estimates Female Gait Gait - physiology Gait analysis Humans Inverse Kinematics Joints - diagnostic imaging Joints - physiopathology Kinematics Knee Magnetic Resonance Imaging Male Markers Mathematical models Mean square errors Models, Biological OpenSim Physical Medicine and Rehabilitation Plug-in-Gait Studies Subject specific model |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFT1gOCAYMsjUJCRELd0_UrsHKuKqqpUTlTqzUpiG2WBbEWyBy58O2PH2S5CLQguu8l6Rtmdseex8wJ4q2nbaFvZvFKVziUqkbyWkufOh7FWtfVWhNrhiw_l2aU8vyqu9uBkroUJaZVJ9k8yPUrr9MkyUXN53XWhxhdPWwgDluiSMxF6gkqpwi4_-nGT5oHmckrzYHmA3qkSXh2tYo17DEqwMjY7LfhtCuo2AzQqotNH8DBZkOR4-pKPYc_1Czg47tF7_vqdvCMxpzP-Wb6ABzvtBhdw7yIF0g-gPV93_Ug-403s2UqQVW2a5EWCZrMEL-aySTIRaQc8JHNsBtL14cLtLHyqu5HE8TrDE7g8ff_x5CxP8xbyFk_hmOPRbyurRYk-mWq4o42vytpr4QvfWilowxpNpaKsVhqX0LLAV-tZ6SvL61Y8hf1-3bvnQFpuvRCFKGtHpZdNzTjVzuObKitEz6CYiWza1Iw8zMT4Yuass5WZmWMCcwwVBpmTwXKLdz214_gjhpp5aGaqoXg0qDH-DdMN6ZQPhpmBG2p-24kZVFvMXzbzXz31cN5o5uZBKDULIUXJMnizXUZBEKI7de_WmwjDlUL7rrgDRqM_GYqNxV0wPARTJaMZPJs2-pbUXKHDgHL7xX_8wJdwP9yFdDsmD2F__LZxr9CwG5vX8eT-BCqZS2M priority: 102 providerName: Elsevier |
Title | Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016304134 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016304134 https://dx.doi.org/10.1016/j.jbiomech.2016.03.052 https://www.ncbi.nlm.nih.gov/pubmed/27139005 https://www.proquest.com/docview/1794534361 https://www.proquest.com/docview/1792771905 https://www.proquest.com/docview/1811890113 https://www.proquest.com/docview/1825458410 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9IltEoIDgg5YYVRGQtyy2bHzdUIFbSpDqxBiUm9WEseohaWDpAcu_Hbec5zQywrikqSyn9L4Pb8Pvy-AVykvi9RkJsiSLA0UCpEgVyoMKkttrXJjjaTc4ct5PLtSF4to4Q_cGh9W2fNEx6jNuqQz8lMinEgqGYs3N98D6hpF3lXfQmMPDqh0GVF1shgMLqoN70M8RIBqAN_KEF6drFx-u3NIiNgVOo3C24TTbcqnE0LnD-GB1x7ZtEP3I7hT1SM4nNZoOV__ZK-Zi-d0B-UjuL9VanAEdy-9E_0Qyov1sm7ZV_zh6rUyRFPpu3gxkmqG4UOfMsk6obc1nQI5Ng1b1vRQbQ18yZctc611msdwdX72-d0s8L0WghJ3YBvgti8zk8oY7bGkCCte2CzObSptZEujJC9EkXKVcJEnKQ6hVoFXY0VsMxPmpXwC-_W6ro6AlaGxUkYyziuurCpyEfK0snhL4gzBxxD1i6xLX4ic-mF8033E2Ur3yNGEHM2lRuSM4XSAu-lKcfwVIulxqPtVQ9aoUVr8H2TV-B3eaKGbUHNNzm5BtIV6LUeFQI0hGyC9EtPh6Z_eetwTmv7zooHwx_ByGEYmQJ6dvK7WGzcnTBLU7aIdc1K0JSnRWO6aE5IjVQk-hqcdoQ9LHSZoLCDPfrb7Tz6He_RFFE0n1DHstz821QvU29piAnsnv8TEbdEJHEzff5jN8f72bP7x029r5EUl |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUCcoBwZQlUMBIwC3UW7YDQhVQTZfpqZXmZpLYRjOFTCEZof4U38izszCXDgiplyyyXxa_l7fkbQCvUloWqc50mCVZGkoUImEuJQ-NdW2tcm21cLnDk5N4fCYPp9F0A371uTAurLLniZ5R60Xp_pHvOsKJhBQxe3_xPXRdo5x3tW-h0ZLFkbn8iSZb_e7gI-L3Nef7n04_jMOuq0BYIq01IRJ4melUxGh5JAU3tLBZnNtU2MiWWgpasCKlMqEsT1IcQvmJW21ZbDPN81LgdW_ATRS81Bl7yXQw8Fwt-i6khIWodtCVjOT527nPp_cOEBb7wqoRv0oYXqXseqG3fw_udtoq2WvJ6z5smGoE23sVWurfLskb4uNH_Y_5EdxZKW04gluTzmm_DeXhYlY15BxPfH1YgmRRdl3DiJOimuBBn6JJWiG7Mt0FjixrMqvcgVkZ-JLPGuJb-dQP4OxasPAQNqtFZR4DKbm2QkQizg2VVhY54zQ1FndJnCF4AFG_yKrsCp-7_htfVR_hNlc9cpRDjqJCIXIC2B3gLtrSH3-FSHocqn7VkBUrlE7_B2nqjqPUiqmaK6qcc5052kI9mqICIgPIBshOaWrx9E933ekJTf250fChBfByGEam4zxJeWUWSz-HJwnqktGaOSnari6xWaybw53jVjIawKOW0Iel5gkaJygjnqx_yBdwe3w6OVbHBydHT2HLvZ2L5GNyBzabH0vzDHXGpnjuP1QCn6-bM_wGRR59Zg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSqYIHBCmHocAiAW8me_l6QKjQRj1oVCEq9W1re3dR0uIU7Aj11_g6Zn2RlwaE1Bcf2h0fO-M5PBfAq5jmWawT7SdREvsShYifSsl9Y11bq1RbLVzu8NEk3DuRB6fB6Rr86nJhXFhlxxNrRq3nuftHPnKEEwgpQjaybVjE8c74_eV333WQcp7Wrp1GQyKH5uonmm_lu_0dxPVrzse7Xz7u-W2HAT9Huqt8JPY80bEI0QqJMm5oZpMwtbGwgc21FDRjWUxlRFkaxTiEshS32rLQJpqnucDr3oL1yFlFA1j_sDs5_tzLAVTU2wAT5qMSQpfyk2dvZ3V2fe0OYWFdZjXg14nG61TfWgSO78HdVncl2w2x3Yc1Uwxhc7tAu_3bFXlD6mjS-jf9EO4sFTocwsZR68LfhPxgPi0qco4ndbVYgkSStz3EiJOpmuBBl7BJGpG7NN2FkSxKMi3cgVka-JpOK1I39ikfwMmN4OEhDIp5YR4Dybm2QgQiTA2VVmYp4zQ2FndRmCC4B0G3yCpvy6C7bhwXqot3m6kOOcohR1GhEDkejHq4y6YQyF8hog6Hqls1ZMwKZdX_QZqy5S-lYqrkiirnameOtlCrpqiOSA-SHrJVoRo8_dNdtzpCU39u1H92Hrzsh5EFOb9SWpj5op7Dowg1y2DFnBgtWZfmLFbN4c6NKxn14FFD6P1S8whNFZQYT1Y_5AvYQK6gPu1PDp_CbfdyLqyPyS0YVD8W5hkqkFX2vP1SCZzdNHP4DbF4gwE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+kinematic+calculation+based+on+clinical+direct+kinematic+versus+inverse+kinematic+gait+models&rft.jtitle=Journal+of+biomechanics&rft.au=Kainz%2C+H.&rft.au=Modenese%2C+L.&rft.au=Lloyd%2C+D.G.&rft.au=Maine%2C+S.&rft.date=2016-06-14&rft.issn=0021-9290&rft.volume=49&rft.issue=9&rft.spage=1658&rft.epage=1669&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.03.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2016_03_052 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00097%2Fcov150h.gif |