Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology
To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper r...
Saved in:
Published in | Vaccine Vol. 40; no. 41; pp. 5892 - 5903 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
29.09.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease. |
---|---|
AbstractList | AbstractTo control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease. To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease. To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease. |
Author | Hashiguchi, Takao Sato, Yuko Suzuki, Tadaki Kanno, Takayuki Tamura, Koji Nagata, Noriyo Tobiume, Minoru Iida, Shun Ueno, Akira Saito, Shinji Iwata-Yoshikawa, Naoko Sano, Kaori Miyamoto, Sho Shiwa-Sudo, Nozomi Suzuki, Ryosuke Hemmi, Takuya Hasegawa, Hideki Ainai, Akira |
Author_xml | – sequence: 1 givenname: Takuya surname: Hemmi fullname: Hemmi, Takuya organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 2 givenname: Akira orcidid: 0000-0003-3054-8846 surname: Ainai fullname: Ainai, Akira email: ainai@niid.go.jp organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 3 givenname: Takao surname: Hashiguchi fullname: Hashiguchi, Takao organization: Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan – sequence: 4 givenname: Minoru surname: Tobiume fullname: Tobiume, Minoru organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 5 givenname: Takayuki surname: Kanno fullname: Kanno, Takayuki organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 6 givenname: Naoko surname: Iwata-Yoshikawa fullname: Iwata-Yoshikawa, Naoko organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 7 givenname: Shun surname: Iida fullname: Iida, Shun organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 8 givenname: Yuko orcidid: 0000-0003-2927-1149 surname: Sato fullname: Sato, Yuko organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 9 givenname: Sho surname: Miyamoto fullname: Miyamoto, Sho organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 10 givenname: Akira surname: Ueno fullname: Ueno, Akira organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 11 givenname: Kaori surname: Sano fullname: Sano, Kaori organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 12 givenname: Shinji surname: Saito fullname: Saito, Shinji organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 13 givenname: Nozomi surname: Shiwa-Sudo fullname: Shiwa-Sudo, Nozomi organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 14 givenname: Noriyo surname: Nagata fullname: Nagata, Noriyo organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 15 givenname: Koji surname: Tamura fullname: Tamura, Koji organization: Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan – sequence: 16 givenname: Ryosuke surname: Suzuki fullname: Suzuki, Ryosuke organization: Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 17 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki organization: Research Center for Influenza and Respiratory Virus, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 18 givenname: Tadaki surname: Suzuki fullname: Suzuki, Tadaki organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36064667$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl2LEzEUhgdZcT_0JygBb7yZmsxkMjOIK6X4UVgQrIp3IZM5bU93mtQkU-lf8lea2XYXLcjuVQh53-ecnPOeJyfGGkiS54yOGGXi9Wq0VVqjgVFGs2xEqxHl9aPkjFVlnmYFq06SM5oJnnJGf5wm596vKKVFzuonyWkuqOBClGfJ76kJThnlVUf2QBXQGoKm7TW0RDvrfbpxNoAOuAXiQTsI1u3IdDEmygRsbIvgiVooND6Q2fjLLJ3Y72kWgQ6jwpNfGJbEQUSiWZCwBLKJwOiNVR36a2LnpOvjE1iPxm6W2KEmuF738aLC0nZ2sXuaPJ6rzsOzw3mRfPvw_uvkU3r1-eN0Mr5KtcjLkAIt57wq2nlRMtXovGx1HAmn0GrBWsVFBYo3dSuaQhUNb1gh6rppKlUW85JnKr9ILvfcTd-sowuGCXVy43Ct3E5ahfLfF4NLubBbWfO8jqUi4NUB4OzPHnyQa_Qauk4ZsL2XWcmqPBYtxUOktC5zxgfpyyPpyvbOxEkMqiLLi5KyqHrxd_N3Xd9uPAre7AU3m3UwlxrDzc7jX7CTjMohX3IlD_mSQ74krWTMV3QXR-7bAvf53u19EBe3RXDSawQTE4YuBku2Fu8lXB4RdIcGtequYQf-bhZM-uiRsyH7Q_SzjDKaV8P83v4f8IAG_gCe7Bvy |
CitedBy_id | crossref_primary_10_4142_jvs_22227 crossref_primary_10_3389_fimmu_2023_1224634 crossref_primary_10_4110_in_2023_23_e47 crossref_primary_10_3390_vaccines12080921 crossref_primary_10_3390_vaccines11040849 crossref_primary_10_1111_1348_0421_13179 crossref_primary_10_1021_acs_nanolett_4c03228 crossref_primary_10_1038_s41541_025_01095_z crossref_primary_10_1016_j_isci_2024_110174 crossref_primary_10_1093_jleuko_qiae010 |
Cites_doi | 10.1016/j.immuni.2021.01.014 10.1371/journal.pone.0035421 10.4049/jimmunol.168.6.2930 10.1016/S0140-6736(20)32623-4 10.1165/rcmb.2013-0086MA 10.1016/0264-410X(88)90140-5 10.1056/NEJMoa2001017 10.1056/NEJMoa2101544 10.1002/jmv.20173 10.1111/1348-0421.12754 10.1371/journal.pone.0215822 10.1038/s41586-022-04441-6 10.1016/S0140-6736(20)30211-7 10.1084/jem.187.8.1193 10.1126/sciimmunol.abn8590 10.4049/jimmunol.181.9.6337 10.1016/0264-410X(90)90250-P 10.1093/oxfordjournals.aje.a120955 10.1128/JVI.06048-11 10.1128/JVI.00983-14 10.1128/JVI.02980-14 10.3389/fimmu.2021.803090 10.1016/j.ebiom.2022.103841 10.1128/JVI.79.5.2910-2919.2005 10.1128/JVI.01805-09 10.1002/eji.1830210602 10.1016/j.isci.2021.103037 10.1128/AAC.39.11.2574 10.1126/science.abd0826 10.1056/NEJMoa2034577 10.1016/j.vaccine.2021.03.006 10.1038/s41467-020-20653-8 10.1038/s41586-020-2349-y 10.1016/j.immuni.2021.06.015 10.1038/s41591-020-0913-5 10.1016/j.immuni.2021.08.025 10.1073/pnas.2002589117 10.1016/j.xcrm.2022.100603 10.1038/s41586-022-04479-6 10.1056/NEJMoa2035389 10.1016/j.celrep.2021.109452 10.1126/sciadv.abh3827 10.1073/pnas.1718957115 10.1016/j.immuni.2014.10.004 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd 2022 Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: 2022 – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd – notice: 2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7T2 7T5 7U9 7X7 7XB 88C 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9- K9. KB0 LK8 M0R M0S M0T M1P M2O M7N M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.vaccine.2022.08.049 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Immunology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library Health & Safety Science Abstracts ProQuest Public Health ProQuest Central Basic ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-2518 |
EndPage | 5903 |
ExternalDocumentID | PMC9439873 36064667 10_1016_j_vaccine_2022_08_049 S0264410X22010386 1_s2_0_S0264410X22010386 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABKYH ABMAC ABMZM ABRWV ABUWG ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEUYN AEVXI AEXOQ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGGSO AGUBO AGYEJ AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AQUVI AXJTR AZQEC BBNVY BENPR BHPHI BKEYQ BKNYI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CJTIS CNWQP CS3 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W K9- KOM L7B LK8 LUGTX LW9 M0R M0T M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ SAB SCC SDF SDG SDP SES SNL SPCBC SSH SSI SSZ T5K UKHRP UV1 WH7 WOW Z5R ~G- .GJ 29Q 3V. AACTN AAQXK ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFCTW AFJKZ AFKWA AGHFR AHHHB AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HEJ HLV HMG HMK HMO HVGLF HX~ HZ~ R2- RIG SAE SEW SIN SVS WUQ XPP ZGI ZXP AAIAV ABLVK ABYKQ AESVU AJBFU EFLBG LCYCR QYZTP AAYXX ACMHX ADSLC AGQPQ AGRNS AGWPP CITATION CGR CUY CVF ECM EIF NPM 7QL 7T2 7T5 7U9 7XB 8FK C1K H94 K9. M7N MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c637t-e07f485df571abc37dc87340edc61da468ea4b9d6b5a5b4b15699bb8a75f742a3 |
IEDL.DBID | 7X7 |
ISSN | 0264-410X 1873-2518 |
IngestDate | Thu Aug 21 18:20:48 EDT 2025 Thu Jul 10 19:56:03 EDT 2025 Fri Jul 11 16:35:39 EDT 2025 Wed Aug 13 03:44:05 EDT 2025 Wed Feb 19 02:25:50 EST 2025 Thu Apr 24 22:57:34 EDT 2025 Tue Jul 01 01:07:09 EDT 2025 Fri Feb 23 02:39:34 EST 2024 Tue Feb 25 20:03:51 EST 2025 Tue Aug 26 16:34:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | COVID-19 SARS-CoV-2 secretory IgA antibody Intranasal vaccination Lung eosinophilic immunopathology |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-e07f485df571abc37dc87340edc61da468ea4b9d6b5a5b4b15699bb8a75f742a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3054-8846 0000-0003-2927-1149 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9439873 |
PMID | 36064667 |
PQID | 2715235701 |
PQPubID | 105530 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9439873 proquest_miscellaneous_2718369976 proquest_miscellaneous_2710973146 proquest_journals_2715235701 pubmed_primary_36064667 crossref_citationtrail_10_1016_j_vaccine_2022_08_049 crossref_primary_10_1016_j_vaccine_2022_08_049 elsevier_sciencedirect_doi_10_1016_j_vaccine_2022_08_049 elsevier_clinicalkeyesjournals_1_s2_0_S0264410X22010386 elsevier_clinicalkey_doi_10_1016_j_vaccine_2022_08_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-29 |
PublicationDateYYYYMMDD | 2022-09-29 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Kidlington |
PublicationTitle | Vaccine |
PublicationTitleAlternate | Vaccine |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | World Health Organization. The COVID-19 vaccine tracker and landscape compiles detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline. Onodera, Kita, Adachi, Moriyama, Sato, Nomura (b0150) 2021; 54 Honda-Okubo, Barnard, Ong, Peng, Tseng, Petrovsky (b0110) 2015; 89 Tian, Patel, Haupt, Zhou, Weston, Hammond (b0185) 2021; 12 Chen, Zhou, Dong, Qu, Gong, Han (b0005) 2020; 395 Nao, Sato, Yamagishi, Tahara, Nakatsu, Seki (b0175) 2019; 14 World Health Organization. Interim Statement on COVID-19 vaccines in the context of the circulation of the Omicron SARS-CoV-2 Variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC) Mantus, Nyhoff, Edara, Zarnitsyna, Ciric, Flowers (b0225) 2022; 3 Baden, El Sahly, Essink, Kotloff, Frey, Novak (b0020) 2021; 384 Tamura, Funato, Hirabayashi, Kikuta, Suzuki, Nagamine (b0045) 1990; 8 Knoll, Wonodi (b0025) 2021; 397 Pinto, Park, Beltramello, Walls, Tortorici, Bianchi (b0165) 2020; 583 Asahi, Yoshikawa, Watanabe, Iwasaki, Hasegawa, Sato (b0055) 2002; 168 Halfmann, Iida, Iwatsuki-Horimoto, Maemura, Kiso, Scheaffer (b0235) 2022; 603 Amanat, Stadlbauer, Strohmeier, Nguyen, Chromikova, McMahon (b0145) 2020; 26 Tseng, Sbrana, Iwata-Yoshikawa, Newman, Garron, Atmar (b0090) 2012; 7 Norton, Clements, Voss, Cárdenas-Freytag (b0215) 2010; 84 2020 [accessed 6 May 2022]. U.S. Food and Drug Administration. Development and licensure of vaccines to prevent COVID-19 Ishii, Nomura, Yamamoto, Nishizawa, Thu Hau, Harada (b0195) 2022; 3 Sekimukai, Iwata‐Yoshikawa, Fukushi, Tani, Kataoka, Suzuki (b0100) 2020; 64 Misharin, Morales-Nebreda, Mutlu, Budinger, Perlman (b0190) 2013; 49 Nakagawa, Tanino, Onishi, Tofukuji, Kanazawa, Ishioka (b0140) 2021; 12 Kotaki, Adachi, Moriyama, Onodera, Fukushi, Nagakura (b0220) 2022; 7 Du, Xu, Feng, Hu, Zhang, Zhang (b0130) 2021; 39 Tamura, Samegai, Kurata, Nagamine, Aizawa, Kurata (b0040) 1988; 6 Hsieh, Goldsmith, Schaub, DiVenere, Kuo, Javanmardi (b0160) 2020; 369 Iwata-Yoshikawa, Shiwa, Sekizuka, Sano, Ainai, Hemmi (b0115) 2022; 8 2020 [accessed 15 May 2022]. Medicines and Healthcare products Regulatory Agency. UK medicines regulator gives approval for first UK COVID-19 vaccine. Hashiguchi, Fukuda, Matsuoka, Kuroda, Kubota, Shirogane (b0155) 2018; 115 Bolles, Deming, Long, Agnihothram, Whitmore, Ferris (b0085) 2011; 85 Miyamoto, Arashiro, Adachi, Moriyama, Kinoshita, Kanno (b0230) 2022; 3 Polack, Thomas, Kitchin, Absalon, Gurtman, Lockhart (b0015) 2020; 383 Tamura, Funato, Hirabayashi, Suzuki, Nagamine, Aizawa (b0050) 1991; 21 Matsuyama, Nao, Shirato, Kawase, Saito, Takayama (b0180) 2020; 117 Moriyama, Adachi, Sato, Tonouchi, Sun, Fukushi (b0170) 2021; 54 Wong, Saravolac, Sabuda, Levy, Kende (b0210) 1995; 39 Sadoff, Gray, Vandebosch, Cárdenas, Shukarev, Grinsztejn (b0030) 2021; 384 Hassan, Shrihari, Gorman, Ying, Yaun, Raju (b0200) 2021; 36 Quast, Tarlinton (b0250) 2021; 54 Zhu, Zhang, Wang, Li, Yang, Song (b0010) 2020; 382 Asahi-Ozaki, Yoshikawa, Iwakura, Suzuki, Tamura, Kurata (b0060) 2004; 74 Yasui, Kai, Kitabatake, Inoue, Yoneda, Yokochi (b0095) 2008; 181 Hui, Ho, Cheung, Ng, Ching, Lai (b0240) 2022; 603 An, Martinez-Paniagua, Rezvan, Sefat, Fathi, Singh (b0125) 2021; 24 Toellner, Luther, Sze, Choy, Taylor, MacLennan (b0205) 1998; 187 Ichinohe, Watanabe, Ito, Fujii, Moriyama, Tamura (b0065) 2005; 79 2022 [accessed 6 May 2022]. Iwata-Yoshikawa, Uda, Suzuki, Tsunetsugu-Yokota, Sato, Morikawa (b0105) 2014; 88 Kim, Canchola, Brandt, Pyles, Chanock, Jensen (b0120) 1969; 89 Alu, Chen, Lei, Wei, Tian, Wei (b0080) 2022; 76 Crotty (b0245) 2014; 41 Sekimukai (10.1016/j.vaccine.2022.08.049_b0100) 2020; 64 10.1016/j.vaccine.2022.08.049_b0075 Tian (10.1016/j.vaccine.2022.08.049_b0185) 2021; 12 Wong (10.1016/j.vaccine.2022.08.049_b0210) 1995; 39 Iwata-Yoshikawa (10.1016/j.vaccine.2022.08.049_b0115) 2022; 8 10.1016/j.vaccine.2022.08.049_b0070 Tamura (10.1016/j.vaccine.2022.08.049_b0045) 1990; 8 Nao (10.1016/j.vaccine.2022.08.049_b0175) 2019; 14 Honda-Okubo (10.1016/j.vaccine.2022.08.049_b0110) 2015; 89 10.1016/j.vaccine.2022.08.049_b0035 Amanat (10.1016/j.vaccine.2022.08.049_b0145) 2020; 26 Tamura (10.1016/j.vaccine.2022.08.049_b0050) 1991; 21 Bolles (10.1016/j.vaccine.2022.08.049_b0085) 2011; 85 Miyamoto (10.1016/j.vaccine.2022.08.049_b0230) 2022; 3 Kotaki (10.1016/j.vaccine.2022.08.049_b0220) 2022; 7 Yasui (10.1016/j.vaccine.2022.08.049_b0095) 2008; 181 Hashiguchi (10.1016/j.vaccine.2022.08.049_b0155) 2018; 115 Baden (10.1016/j.vaccine.2022.08.049_b0020) 2021; 384 Asahi-Ozaki (10.1016/j.vaccine.2022.08.049_b0060) 2004; 74 Polack (10.1016/j.vaccine.2022.08.049_b0015) 2020; 383 Hui (10.1016/j.vaccine.2022.08.049_b0240) 2022; 603 Hsieh (10.1016/j.vaccine.2022.08.049_b0160) 2020; 369 Iwata-Yoshikawa (10.1016/j.vaccine.2022.08.049_b0105) 2014; 88 Asahi (10.1016/j.vaccine.2022.08.049_b0055) 2002; 168 Kim (10.1016/j.vaccine.2022.08.049_b0120) 1969; 89 Du (10.1016/j.vaccine.2022.08.049_b0130) 2021; 39 Knoll (10.1016/j.vaccine.2022.08.049_b0025) 2021; 397 Nakagawa (10.1016/j.vaccine.2022.08.049_b0140) 2021; 12 Sadoff (10.1016/j.vaccine.2022.08.049_b0030) 2021; 384 Alu (10.1016/j.vaccine.2022.08.049_b0080) 2022; 76 Ishii (10.1016/j.vaccine.2022.08.049_b0195) 2022; 3 Toellner (10.1016/j.vaccine.2022.08.049_b0205) 1998; 187 Tseng (10.1016/j.vaccine.2022.08.049_b0090) 2012; 7 10.1016/j.vaccine.2022.08.049_b0135 Ichinohe (10.1016/j.vaccine.2022.08.049_b0065) 2005; 79 Moriyama (10.1016/j.vaccine.2022.08.049_b0170) 2021; 54 Matsuyama (10.1016/j.vaccine.2022.08.049_b0180) 2020; 117 Hassan (10.1016/j.vaccine.2022.08.049_b0200) 2021; 36 Norton (10.1016/j.vaccine.2022.08.049_b0215) 2010; 84 Quast (10.1016/j.vaccine.2022.08.049_b0250) 2021; 54 Tamura (10.1016/j.vaccine.2022.08.049_b0040) 1988; 6 An (10.1016/j.vaccine.2022.08.049_b0125) 2021; 24 Mantus (10.1016/j.vaccine.2022.08.049_b0225) 2022; 3 Pinto (10.1016/j.vaccine.2022.08.049_b0165) 2020; 583 Chen (10.1016/j.vaccine.2022.08.049_b0005) 2020; 395 Onodera (10.1016/j.vaccine.2022.08.049_b0150) 2021; 54 Zhu (10.1016/j.vaccine.2022.08.049_b0010) 2020; 382 Misharin (10.1016/j.vaccine.2022.08.049_b0190) 2013; 49 Halfmann (10.1016/j.vaccine.2022.08.049_b0235) 2022; 603 Crotty (10.1016/j.vaccine.2022.08.049_b0245) 2014; 41 |
References_xml | – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: b0015 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N Engl J Med – reference: World Health Organization. The COVID-19 vaccine tracker and landscape compiles detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline., – volume: 21 start-page: 1337 year: 1991 end-page: 1344 ident: b0050 article-title: Cross-protection against influenza A virus infection by passively transferred respiratory tract IgA antibodies to different hemagglutinin molecules publication-title: Eur J Immunol – volume: 89 start-page: 422 year: 1969 end-page: 434 ident: b0120 article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine publication-title: Am J Epidemiol – volume: 36 start-page: 109452 year: 2021 ident: b0200 article-title: An intranasal vaccine durably protects against SARS-CoV-2 variants in mice publication-title: Cell Rep – volume: 3 start-page: 100603 year: 2022 ident: b0225 article-title: Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination publication-title: Cell Rep Med – volume: 384 start-page: 2187 year: 2021 end-page: 2201 ident: b0030 article-title: Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19 publication-title: N Engl J Med – volume: 395 start-page: 507 year: 2020 end-page: 513 ident: b0005 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet – volume: 603 start-page: 687 year: 2022 end-page: 692 ident: b0235 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature – volume: 397 start-page: 72 year: 2021 end-page: 74 ident: b0025 article-title: Oxford-AstraZeneca COVID-19 vaccine efficacy publication-title: Lancet – volume: 117 start-page: 7001 year: 2020 end-page: 7003 ident: b0180 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc Natl Acad Sci U S A – reference: World Health Organization. Interim Statement on COVID-19 vaccines in the context of the circulation of the Omicron SARS-CoV-2 Variant from the WHO Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC), – volume: 181 start-page: 6337 year: 2008 end-page: 6348 ident: b0095 article-title: Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV publication-title: J Immunol – reference: ; 2022 [accessed 6 May 2022]. – volume: 84 start-page: 2983 year: 2010 end-page: 2995 ident: b0215 article-title: Prophylactic administration of bacterially derived immunomodulators improves the outcome of influenza virus infection in a murine model publication-title: J Virol – volume: 7 start-page: e35421 year: 2012 ident: b0090 article-title: Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus publication-title: PLoS One – volume: 79 start-page: 2910 year: 2005 end-page: 2919 ident: b0065 article-title: Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection publication-title: J Virol – volume: 89 start-page: 2995 year: 2015 end-page: 3007 ident: b0110 article-title: Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology publication-title: J Virol – volume: 8 year: 2022 ident: b0115 article-title: A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection publication-title: Sci Adv – volume: 7 year: 2022 ident: b0220 article-title: SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine publication-title: Sci Immunol – reference: ; 2020 [accessed 15 May 2022]. – volume: 54 start-page: 205 year: 2021 end-page: 210 ident: b0250 article-title: B cell memory: understanding COVID-19 publication-title: Immunity – volume: 26 start-page: 1033 year: 2020 end-page: 1036 ident: b0145 article-title: A serological assay to detect SARS-CoV-2 seroconversion in humans publication-title: Nat Med – volume: 85 start-page: 12201 year: 2011 end-page: 12215 ident: b0085 article-title: A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge publication-title: J Virol – volume: 74 start-page: 328 year: 2004 end-page: 335 ident: b0060 article-title: Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus publication-title: J Med Virol – volume: 115 start-page: 2496 year: 2018 end-page: 2501 ident: b0155 article-title: Structures of the prefusion form of measles virus fusion protein in complex with inhibitors publication-title: Proc Natl Acad Sci U S A – volume: 54 start-page: 1841 year: 2021 end-page: 1852.e4 ident: b0170 article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants publication-title: Immunity – volume: 168 start-page: 2930 year: 2002 end-page: 2938 ident: b0055 article-title: Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines publication-title: J Immunol – volume: 24 start-page: 103037 year: 2021 ident: b0125 article-title: Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2 publication-title: iScience – reference: ; 2020 [accessed 6 May 2022]. – volume: 88 start-page: 8597 year: 2014 end-page: 8614 ident: b0105 article-title: Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine publication-title: J Virol – volume: 39 start-page: 2280 year: 2021 end-page: 2287 ident: b0130 article-title: Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse publication-title: Vaccine – volume: 3 start-page: 249 year: 2022 end-page: 261.e4 ident: b0230 article-title: Vaccination-infection interval determines cross-neutralization potency to SARS-CoV-2 Omicron after breakthrough infection by other variants publication-title: Med (NY) – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: b0165 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 54 start-page: 2385 year: 2021 end-page: 2398.e10 ident: b0150 article-title: A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site publication-title: Immunity – volume: 603 start-page: 715 year: 2022 end-page: 720 ident: b0240 article-title: SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo publication-title: Nature – volume: 41 start-page: 529 year: 2014 end-page: 542 ident: b0245 article-title: T follicular helper cell differentiation, function, and roles in disease publication-title: Immunity – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: b0010 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N Engl J Med – volume: 14 start-page: e0215822 year: 2019 ident: b0175 article-title: Consensus and variations in cell line specificity among human metapneumovirus strains publication-title: PLoS One – volume: 76 start-page: 103841 year: 2022 ident: b0080 article-title: Intranasal COVID-19 vaccines: From bench to bed publication-title: EBioMedicine – volume: 8 start-page: 479 year: 1990 end-page: 485 ident: b0045 article-title: Functional role of respiratory tract haemagglutinin-specific IgA antibodies in protection against influenza publication-title: Vaccine – volume: 369 start-page: 1501 year: 2020 end-page: 1505 ident: b0160 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science – volume: 12 year: 2021 ident: b0140 article-title: S-540956, a CpG Oligonucleotide Annealed to a Complementary Strand With an Amphiphilic Chain Unit, Acts as a Potent Cancer Vaccine Adjuvant by Targeting Draining Lymph Nodes publication-title: Front Immunol – volume: 6 start-page: 409 year: 1988 end-page: 413 ident: b0040 article-title: Protection against influenza virus infection by vaccine inoculated intranasally with cholera toxin B subunit publication-title: Vaccine – volume: 39 start-page: 2574 year: 1995 end-page: 2576 ident: b0210 article-title: Prophylactic and therapeutic efficacies of poly(IC.LC) against respiratory influenza A virus infection in mice publication-title: Antimicrob Agents Chemother – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: b0020 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N Engl J Med – volume: 187 start-page: 1193 year: 1998 end-page: 1204 ident: b0205 article-title: T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching publication-title: J Exp Med – volume: 49 start-page: 503 year: 2013 end-page: 510 ident: b0190 article-title: Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung publication-title: Am J Respir Cell Mol Biol – reference: Medicines and Healthcare products Regulatory Agency. UK medicines regulator gives approval for first UK COVID-19 vaccine., – reference: U.S. Food and Drug Administration. Development and licensure of vaccines to prevent COVID-19, – volume: 64 start-page: 33 year: 2020 end-page: 51 ident: b0100 article-title: Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs publication-title: Microbiol Immunol – volume: 3 year: 2022 ident: b0195 article-title: Neutralizing-antibody-independent SARS-CoV-2 control correlated with intranasal-vaccine-induced CD8(+) T cell responses publication-title: Cell Rep Med – volume: 12 year: 2021 ident: b0185 article-title: SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice publication-title: Nat Commun – ident: 10.1016/j.vaccine.2022.08.049_b0070 – volume: 54 start-page: 205 issue: 2 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0250 article-title: B cell memory: understanding COVID-19 publication-title: Immunity doi: 10.1016/j.immuni.2021.01.014 – volume: 7 start-page: e35421 issue: 4 year: 2012 ident: 10.1016/j.vaccine.2022.08.049_b0090 article-title: Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus publication-title: PLoS One doi: 10.1371/journal.pone.0035421 – volume: 168 start-page: 2930 issue: 6 year: 2002 ident: 10.1016/j.vaccine.2022.08.049_b0055 article-title: Protection against influenza virus infection in polymeric Ig receptor knockout mice immunized intranasally with adjuvant-combined vaccines publication-title: J Immunol doi: 10.4049/jimmunol.168.6.2930 – volume: 397 start-page: 72 issue: 10269 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0025 article-title: Oxford-AstraZeneca COVID-19 vaccine efficacy publication-title: Lancet doi: 10.1016/S0140-6736(20)32623-4 – volume: 49 start-page: 503 issue: 4 year: 2013 ident: 10.1016/j.vaccine.2022.08.049_b0190 article-title: Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2013-0086MA – volume: 6 start-page: 409 issue: 5 year: 1988 ident: 10.1016/j.vaccine.2022.08.049_b0040 article-title: Protection against influenza virus infection by vaccine inoculated intranasally with cholera toxin B subunit publication-title: Vaccine doi: 10.1016/0264-410X(88)90140-5 – volume: 382 start-page: 727 issue: 8 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0010 article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019 publication-title: N Engl J Med doi: 10.1056/NEJMoa2001017 – ident: 10.1016/j.vaccine.2022.08.049_b0135 – volume: 384 start-page: 2187 issue: 23 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0030 article-title: Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2101544 – volume: 74 start-page: 328 issue: 2 year: 2004 ident: 10.1016/j.vaccine.2022.08.049_b0060 article-title: Secretory IgA antibodies provide cross-protection against infection with different strains of influenza B virus publication-title: J Med Virol doi: 10.1002/jmv.20173 – volume: 64 start-page: 33 issue: 1 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0100 article-title: Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs publication-title: Microbiol Immunol doi: 10.1111/1348-0421.12754 – volume: 14 start-page: e0215822 issue: 4 year: 2019 ident: 10.1016/j.vaccine.2022.08.049_b0175 article-title: Consensus and variations in cell line specificity among human metapneumovirus strains publication-title: PLoS One doi: 10.1371/journal.pone.0215822 – volume: 603 start-page: 687 issue: 7902 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0235 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 395 start-page: 507 issue: 10223 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0005 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – volume: 187 start-page: 1193 issue: 8 year: 1998 ident: 10.1016/j.vaccine.2022.08.049_b0205 article-title: T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching publication-title: J Exp Med doi: 10.1084/jem.187.8.1193 – volume: 7 issue: 70 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0220 article-title: SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine publication-title: Sci Immunol doi: 10.1126/sciimmunol.abn8590 – volume: 181 start-page: 6337 issue: 9 year: 2008 ident: 10.1016/j.vaccine.2022.08.049_b0095 article-title: Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV publication-title: J Immunol doi: 10.4049/jimmunol.181.9.6337 – ident: 10.1016/j.vaccine.2022.08.049_b0035 – volume: 3 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0195 article-title: Neutralizing-antibody-independent SARS-CoV-2 control correlated with intranasal-vaccine-induced CD8(+) T cell responses publication-title: Cell Rep Med – volume: 8 start-page: 479 issue: 5 year: 1990 ident: 10.1016/j.vaccine.2022.08.049_b0045 article-title: Functional role of respiratory tract haemagglutinin-specific IgA antibodies in protection against influenza publication-title: Vaccine doi: 10.1016/0264-410X(90)90250-P – volume: 89 start-page: 422 year: 1969 ident: 10.1016/j.vaccine.2022.08.049_b0120 article-title: Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine publication-title: Am J Epidemiol doi: 10.1093/oxfordjournals.aje.a120955 – volume: 85 start-page: 12201 issue: 23 year: 2011 ident: 10.1016/j.vaccine.2022.08.049_b0085 article-title: A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge publication-title: J Virol doi: 10.1128/JVI.06048-11 – volume: 88 start-page: 8597 issue: 15 year: 2014 ident: 10.1016/j.vaccine.2022.08.049_b0105 article-title: Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of BALB/c mice immunized with UV-inactivated severe acute respiratory syndrome-related coronavirus vaccine publication-title: J Virol doi: 10.1128/JVI.00983-14 – volume: 89 start-page: 2995 issue: 6 year: 2015 ident: 10.1016/j.vaccine.2022.08.049_b0110 article-title: Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology publication-title: J Virol doi: 10.1128/JVI.02980-14 – volume: 12 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0140 article-title: S-540956, a CpG Oligonucleotide Annealed to a Complementary Strand With an Amphiphilic Chain Unit, Acts as a Potent Cancer Vaccine Adjuvant by Targeting Draining Lymph Nodes publication-title: Front Immunol doi: 10.3389/fimmu.2021.803090 – volume: 76 start-page: 103841 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0080 article-title: Intranasal COVID-19 vaccines: From bench to bed publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.103841 – volume: 79 start-page: 2910 issue: 5 year: 2005 ident: 10.1016/j.vaccine.2022.08.049_b0065 article-title: Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection publication-title: J Virol doi: 10.1128/JVI.79.5.2910-2919.2005 – volume: 84 start-page: 2983 issue: 6 year: 2010 ident: 10.1016/j.vaccine.2022.08.049_b0215 article-title: Prophylactic administration of bacterially derived immunomodulators improves the outcome of influenza virus infection in a murine model publication-title: J Virol doi: 10.1128/JVI.01805-09 – volume: 3 start-page: 249 issue: 4 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0230 article-title: Vaccination-infection interval determines cross-neutralization potency to SARS-CoV-2 Omicron after breakthrough infection by other variants publication-title: Med (NY) – volume: 21 start-page: 1337 issue: 6 year: 1991 ident: 10.1016/j.vaccine.2022.08.049_b0050 article-title: Cross-protection against influenza A virus infection by passively transferred respiratory tract IgA antibodies to different hemagglutinin molecules publication-title: Eur J Immunol doi: 10.1002/eji.1830210602 – volume: 24 start-page: 103037 issue: 9 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0125 article-title: Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2 publication-title: iScience doi: 10.1016/j.isci.2021.103037 – volume: 39 start-page: 2574 issue: 11 year: 1995 ident: 10.1016/j.vaccine.2022.08.049_b0210 article-title: Prophylactic and therapeutic efficacies of poly(IC.LC) against respiratory influenza A virus infection in mice publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.39.11.2574 – volume: 369 start-page: 1501 issue: 6510 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0160 article-title: Structure-based design of prefusion-stabilized SARS-CoV-2 spikes publication-title: Science doi: 10.1126/science.abd0826 – volume: 383 start-page: 2603 issue: 27 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0015 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2034577 – volume: 39 start-page: 2280 issue: 16 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0130 article-title: Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse publication-title: Vaccine doi: 10.1016/j.vaccine.2021.03.006 – volume: 12 issue: 1 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0185 article-title: SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice publication-title: Nat Commun doi: 10.1038/s41467-020-20653-8 – volume: 583 start-page: 290 issue: 7815 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0165 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 54 start-page: 1841 issue: 8 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0170 article-title: Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants publication-title: Immunity doi: 10.1016/j.immuni.2021.06.015 – volume: 26 start-page: 1033 issue: 7 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0145 article-title: A serological assay to detect SARS-CoV-2 seroconversion in humans publication-title: Nat Med doi: 10.1038/s41591-020-0913-5 – volume: 54 start-page: 2385 issue: 10 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0150 article-title: A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site publication-title: Immunity doi: 10.1016/j.immuni.2021.08.025 – volume: 117 start-page: 7001 issue: 13 year: 2020 ident: 10.1016/j.vaccine.2022.08.049_b0180 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2002589117 – volume: 3 start-page: 100603 issue: 4 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0225 article-title: Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2022.100603 – volume: 603 start-page: 715 issue: 7902 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0240 article-title: SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo publication-title: Nature doi: 10.1038/s41586-022-04479-6 – volume: 384 start-page: 403 issue: 5 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0020 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2035389 – volume: 36 start-page: 109452 issue: 4 year: 2021 ident: 10.1016/j.vaccine.2022.08.049_b0200 article-title: An intranasal vaccine durably protects against SARS-CoV-2 variants in mice publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109452 – volume: 8 issue: 1 year: 2022 ident: 10.1016/j.vaccine.2022.08.049_b0115 article-title: A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection publication-title: Sci Adv doi: 10.1126/sciadv.abh3827 – ident: 10.1016/j.vaccine.2022.08.049_b0075 – volume: 115 start-page: 2496 issue: 10 year: 2018 ident: 10.1016/j.vaccine.2022.08.049_b0155 article-title: Structures of the prefusion form of measles virus fusion protein in complex with inhibitors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1718957115 – volume: 41 start-page: 529 issue: 4 year: 2014 ident: 10.1016/j.vaccine.2022.08.049_b0245 article-title: T follicular helper cell differentiation, function, and roles in disease publication-title: Immunity doi: 10.1016/j.immuni.2014.10.004 |
SSID | ssj0005319 |
Score | 2.4579623 |
Snippet | To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome... AbstractTo control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5892 |
SubjectTerms | Adaptive immunity adjuvants Adjuvants, Immunologic Administration, Intranasal Allergy and Immunology alum Alum Compounds Animals Antibodies Antibodies, Neutralizing Antibodies, Viral Antigens blood serum CD4-positive T-lymphocytes Clinical trials Combined vaccines Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 infection COVID-19 Vaccines Disease control Experiments FDA approval Humans Immune response Immune system Immunoglobulin A Immunoglobulin A, Secretory Immunoglobulin G immunopathology Infections Infectious diseases Influenza Intranasal vaccination Leukocytes (eosinophilic) Lung Lung eosinophilic immunopathology Lungs lymph Lymph nodes Lymphocytes T Mice mRNA vaccines Mucosa Mutation nasal mucosa oligodeoxyribonucleotides Oligonucleotides pandemic Pandemics Pneumonia protective effect Proteins Respiratory diseases Respiratory syncytial virus Respiratory tract respiratory tract diseases Risk SARS-CoV-2 secretory IgA antibody Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus Spike protein Vaccination Vaccines Viral diseases Viral infections Viruses γ-Interferon |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQ0qa9TKz76sammzTxRNo0duL4saqGYBITWgH1zbKTlAWhpCIFiZf9QfyV3DkfpQONaY9t7uLYvjuf7bvfMfbVCpGi1ihPKZF5gkcp6pwSXmhk5lOOj3W4BYc_ov0T8X0WzjbYpM2FobDKxvbXNt1Z6-afYTOaw0WeD6e-W8v9WUAXujwm2G0hJEn54Pe9MA_uinsQsUfUqyye4fng2iR0fY3bxCBwSJ4Eqfn4-vTQ__wzjPLeurS3xV42DiWM629-xTayosee1SUmb3rs-WFzed5jO0c1TPXNLhyvsq6qXdiBoxWANfL0TilGxiXqQsv-mt0eUPuFqbC1ukduUgE39SgeKbj-eA3uA9pQqMgjpTt8ODgbA85gbkuKWQRzZnL0SmE6_jn1JuWpF-ALURGKZQV0LgyXhCeLayqgdwoLfCHyYqsUBg_lHC7QQEFWVnlRLug8KIGcslxKqq7suvCGnex9O57se02lBy-JuFx6mS_nIg7TeShHxiZcpkksufBxbKNRakQUZ0ZYlUY2NKEVFjedSlkbGxnOcW9v-Fu2WZRF9p5BpFIlqNBLIhPBE7pINImNQ4XeAJ339plo51cnDQw6VeO40G2827luxEKTWGiq0ilUnw06tkWNA_IUQ9QKj26TXNEsa1ypnmKUjzFmVWNcKj3SFRLrBwrQZ3HHuaZD_9LodivfumsnkOjc8VD6oz770j1G80N3SqbIyitHQ4BPuN7-lSbmOGESad7VKtONIccNtIgiib1eU6aOgODP158U-S8Hg67Ql0Yp-fD_vf7IXtAvCv8J1DbbXF5eZZ_Qx1zaz86I3AGgVYDM priority: 102 providerName: Elsevier |
Title | Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X22010386 https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X22010386 https://dx.doi.org/10.1016/j.vaccine.2022.08.049 https://www.ncbi.nlm.nih.gov/pubmed/36064667 https://www.proquest.com/docview/2715235701 https://www.proquest.com/docview/2710973146 https://www.proquest.com/docview/2718369976 https://pubmed.ncbi.nlm.nih.gov/PMC9439873 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfYJhAXBAVGYUxGQjstWxI7dnxCpdrUglZV6zb1ZtlJOjpNSVk6pF34g_grec_5KINp45JGil9cx-_Tfv49Qj5azlOQGuUpxTOPM5GCzCnuRUZmPp7xsQ634GgkBqf8yzSa1gtuZZ1W2ehEp6jTIsE18v1QgqVhkfSDT4vvHlaNwt3VuoTGGtlA6DLkajmVqxQP5gp7QJjBPR7409UJnv2LvR8mwa1rCBHD0KF4Ipzm3bbpX9_z7xTKP2zS4XPyrHYmaa-a_RfkUZZ3yOOqvORNhzw5qjfOO2RnXEFU3-zSk9WJq3KX7tDxCrwaaDpnmB_jDunShvwl-TXE_nNTQm_ViNyEUgjogTVS6sbj1ZgPoD9pid4o7t_T4XmPwuzNbYH5itScmzl4pHTSO554_eLMC-GFIAT5sqS4JkyvEEsW7CkFz5Qu4IVAC71iCjwtZvQSlBPNinKeFwtcC0roHE-4FFhZ2Q3hFTk9PDjpD7y6yoOXCCaXXubLGY-jdBbJwNiEyTSJJeM-fFsRpIaLODPcqlTYyESWWwg4lbI2NjKaQVxv2Guynhd59oZQoVLFschLIhPOEtxENImNIwWeAK71dglv5lcnNQQ6VuK41E2u24Wu2UIjW2is0MlVl-y1ZIsKA-QhAtEwj24OuIJK1mClHiKUdxFmZa1YSh3oEhrrie8cWX8aYjYDi0WXxC1l7TtVPtH_dLrV8Ldu-1mJW5d8aB-D6sH9JJNnxbVrg2BPYGvvbRMzmDAJbTYrkWm_IYPgmQshYdS3hKltgNDnt5_k828OAl2BHw1c8vb-v_6OPMVxYnpPqLbI-vLqOnsPPuTSbpO1vZ_BtlMXcI37cL_RG34djOD388FofPwbCH17hg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEJcXBOVWGGAk2NOypYkTxw8IVYVpZes00W7qm2cn7sg0JWXpQP1LPPAbOce5dINp42XP8bHr-lztc75DyDvNWAJSIxwhmHGYHyYgc4I5geLGxRofbXELBrvh1j77Mg7GS-R3XQuDaZW1TrSKOsljvCPf8DhYGj_gbufj9LuDXaPwdbVuoVGyxbaZ_4SQrfjQ_wTn-97zNj-PeltO1VXAiUOfzxzj8gmLgmQS8I7Ssc-TOOI-c00Sh51EsTAyimmRhDpQgWYaAhwhtI4UDyYQRyof5r1FbjMfRBMr03vnUkp820gEwhrmsI47XlQMbRyv_1AxPpVDSOp5FjUU4Tsvt4X_-rp_p2yes4GbD8mDynml3ZLbHpElk7XInbKd5bxF7g6qh_oWWd0rIbHna3S0qPAq1ugq3VuAZQNN6wDzcWxRMK3JH5NffVw_UwWsVu7IMhBNswRYMaF2P06FMQH6mhbo_WK-AO0fdSlwS6pzzI-k6kil4AHTYffr0OnlB44HE4LQZbOC4h00PUXsWrDfFDxhOoUJgRZWxZR7mk_oCShDavIizfIp3j3FNMWKmhw7OdstPCH7N3L-T8lylmfmOaGhSATDpjIxj5kf46OlinUUCPA88G65TVh9vjKuINex88eJrHPrjmXFFhLZQmJHUCbaZL0hm5aYI9cRhDXzyLqgFkyABKt4HSG_jNAUlSIrZEcWMFgOXes4u2MPsyf8KGyTqKGsfLXSB_ufRVdq_pbNOgvxbpO3zWdQdfh-pTKTn9kxCC4Ftv3KMZEPB8ZhzLNSZJr_0IdgnYUhh11fEKZmAEKtX_ySpd8s5LoAvx245MXVP_0Nubc1GuzInf7u9ktyH_eMqUWeWCHLs9Mz8wr815l-bZUGJYc3raX-ADrhtEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBMvCMqtMMBIsKdlTRMnjh8QqjqmlbGpotvUN8923JFpSsrSgfqX-An8Os7JrRtMGy97jo9d1-dqn_MdQt5pxmKQGuEIwazD_DAGmRPMCRS3Ltb46AK3YHcv3D5gn8fBeIn8rmthMK2y1omFoo4zg3fkHY-DpfED7nY7kyotYri59XH63cEOUvjSWrfTKFlkx85_QviWfxhswlm_97ytT_v9bafqMOCY0Oczx7p8wqIgngS8q7TxeWwi7jPXxibsxoqFkVVMizjUgQo00xDsCKF1pHgwgZhS-TDvHXKX-zxCGYv6F9JL_KKpCIQ4zGFdd7yoHuqcbPxQBp_NITz1vAJBFKE8r7aL__q9f6dvXrCHWw_Jg8qRpb2S8x6RJZu2yL2yteW8RVZ2q0f7FlkblvDY83W6v6j2ytfpGh0ugLOBpnWIuTlFgTCtyR-TXwNcP1U5rFbuqGAmmqQxsGVMi_04Fd4E6G6aoyeMuQN0cNyjwDmJzjBXkqpjlYA3TEe9ryOnnx06HkwIApjOcor30fQMcWzBllPwiukUJgRaWBXT72k2oaegGKnN8iTNpngPZWiC1TUZdnUutvCEHNzK-T8ly2mW2ueEhiIWDBvMGG6Yb_ABUxkdBQK8ELxnbhNWn680Ffw6dgE5lXWe3Yms2EIiW0jsDspEm2w0ZNMSf-QmgrBmHlkX14I5kGAhbyLkVxHavFJquezKHAbLkVs40e7Yw0wKPwrbJGooK7-t9Mf-Z9HVmr9ls85C1NvkbfMZ1B6-ZanUZufFGASaAjt_7ZjIhwPjMOZZKTLNf-hD4M7CkMOuLwlTMwBh1y9_SZNvBfy6AB8euOTF9T_9DVkB_SS_DPZ2XpL7uGXMMvLEKlmenZ3bV-DKzvTrQmdQcnTbSuoPcY24eg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intranasal+vaccination+induced+cross-protective+secretory+IgA+antibodies+against+SARS-CoV-2+variants+with+reducing+the+potential+risk+of+lung+eosinophilic+immunopathology&rft.jtitle=Vaccine&rft.au=Hemmi%2C+Takuya&rft.au=Ainai%2C+Akira&rft.au=Hashiguchi%2C+Takao&rft.au=Tobiume%2C+Minoru&rft.date=2022-09-29&rft.pub=Elsevier+Ltd&rft.issn=0264-410X&rft.volume=40&rft.issue=41&rft.spage=5892&rft.epage=5903&rft_id=info:doi/10.1016%2Fj.vaccine.2022.08.049&rft.externalDocID=S0264410X22010386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-410X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-410X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-410X&client=summon |