N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner
Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionall...
Saved in:
Published in | Genome Biology Vol. 22; no. 1; p. 168 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
03.06.2021
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit. |
---|---|
AbstractList | Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits.BACKGROUNDEpigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits.Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3' untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR.RESULTSHere we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3' untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR.Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.CONCLUSIONOur findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit. BACKGROUND: Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m⁶A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. RESULTS: Here we show that m⁶A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m⁶A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m⁶A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m⁶A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m⁶A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. CONCLUSION: Our findings uncover that m⁶A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit. Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit. Abstract Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit. |
ArticleNumber | 168 |
Author | Li, Xiaojing Tian, Shiping Li, Bingbing Qin, Guozheng Tang, Renkun Zhou, Leilei |
Author_xml | – sequence: 1 givenname: Leilei surname: Zhou fullname: Zhou, Leilei – sequence: 2 givenname: Renkun surname: Tang fullname: Tang, Renkun – sequence: 3 givenname: Xiaojing surname: Li fullname: Li, Xiaojing – sequence: 4 givenname: Shiping surname: Tian fullname: Tian, Shiping – sequence: 5 givenname: Bingbing surname: Li fullname: Li, Bingbing – sequence: 6 givenname: Guozheng orcidid: 0000-0003-3046-1177 surname: Qin fullname: Qin, Guozheng |
BookMark | eNqNkk1v1DAQhiNURD_gD3CKxIVLir-SOBekpYJSqSoSAombNbHHW68Se7Gdov33uLtFoj0gDiNb43ee8djvaXXkg8eqek3JOaWye5coJ-3QEEZLcNk25Fl1QkUvmr4jP47-2h9XpyltCKGDYN2L6pgL0ksh2Ek13nTNjPl2N4FBH5LzWH-9WdVzMM46DdkFX0dcLxNkTHXKEX6NGOOutnFxuY5ui975de18Db5efVg1BkuqwHI9g_cYX1bPLUwJXz2sZ9X3Tx-_XXxurr9cXl2srhvd8T6XsgF7CQS4BYqWUGtGIgCYJZoZgIEazhilppeaWGPHwcLYCmnQEIka-Fl1deCaABu1jW6GuFMBnNonQlwriNnpCRUio5y1Roy6FSiYZLoEoWQcekusLqz3B9Z2GWc0ukwTYXoEfXzi3a1ahzslac8lbwvg7QMghp8LpqxmlzROE3gMS1KsbenAe9p1_yHlnSSk5aRI3zyRbsISfXnVohJcDExIXlTyoNIxpBTRKu3y_ifLVd2kKFH3_lEH_6jiH7X3j7pvwJ6U_hn5H0W_Ad7pyo0 |
CitedBy_id | crossref_primary_10_1093_plphys_kiae120 crossref_primary_10_3390_genes13122284 crossref_primary_10_1002_pld3_70000 crossref_primary_10_1186_s13059_023_02947_4 crossref_primary_10_1016_j_molp_2023_04_005 crossref_primary_10_1111_pbi_13829 crossref_primary_10_1186_s13059_023_02872_6 crossref_primary_10_1093_plphys_kiae529 crossref_primary_10_1016_j_plantsci_2023_111794 crossref_primary_10_1111_pbi_13792 crossref_primary_10_1016_j_virol_2024_110373 crossref_primary_10_3390_plants11010103 crossref_primary_10_3390_genes15040459 crossref_primary_10_1371_journal_ppat_1012476 crossref_primary_10_1111_tpj_16257 crossref_primary_10_1093_plphys_kiad660 crossref_primary_10_1111_nph_20227 crossref_primary_10_1111_pce_14447 crossref_primary_10_1007_s12298_025_01565_7 crossref_primary_10_1016_j_hpj_2024_11_005 crossref_primary_10_3390_ijms23094522 crossref_primary_10_1093_plphys_kiae510 crossref_primary_10_1093_plphys_kiae511 crossref_primary_10_1016_j_xplc_2023_100546 crossref_primary_10_1016_j_plaphy_2023_108255 crossref_primary_10_3390_plants11081033 crossref_primary_10_1016_j_scienta_2024_113396 crossref_primary_10_1111_mpp_13239 crossref_primary_10_3389_fpls_2024_1429011 crossref_primary_10_3389_fpls_2023_1279031 crossref_primary_10_1007_s12374_022_09351_8 crossref_primary_10_1016_j_indcrop_2023_116625 crossref_primary_10_1093_hr_uhae158 crossref_primary_10_1093_hr_uhac013 crossref_primary_10_1016_j_hpj_2024_02_013 crossref_primary_10_1016_j_postharvbio_2025_113522 crossref_primary_10_1016_j_xplc_2024_101229 crossref_primary_10_3390_biom13101537 crossref_primary_10_3390_plants12152848 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1016_j_envexpbot_2023_105306 crossref_primary_10_1007_s00344_024_11340_9 crossref_primary_10_1016_j_plaphy_2024_108781 crossref_primary_10_1111_pbi_13733 crossref_primary_10_1016_j_postharvbio_2024_113173 crossref_primary_10_1038_s41467_022_34362_x crossref_primary_10_1016_j_gpb_2023_02_003 crossref_primary_10_1016_j_scienta_2024_113725 crossref_primary_10_1093_plphys_kiae451 crossref_primary_10_1016_j_gpb_2023_02_002 crossref_primary_10_1038_s41467_024_55294_8 crossref_primary_10_1016_j_plantsci_2023_111729 crossref_primary_10_1093_jxb_erac461 crossref_primary_10_1016_j_devcel_2024_12_033 crossref_primary_10_1186_s13059_022_02612_2 crossref_primary_10_1016_j_postharvbio_2022_111870 crossref_primary_10_1016_j_xplc_2024_101232 crossref_primary_10_1093_hr_uhac089 crossref_primary_10_1093_plphys_kiab509 crossref_primary_10_3390_ijms26062748 crossref_primary_10_3389_fpls_2024_1477240 crossref_primary_10_1016_j_hpj_2024_02_001 crossref_primary_10_1093_plphys_kiad470 crossref_primary_10_1360_SSV_2023_0213 crossref_primary_10_2503_hortj_QH_R003 crossref_primary_10_1093_plcell_koad224 crossref_primary_10_1111_nph_19568 crossref_primary_10_1111_pbi_14036 crossref_primary_10_3389_fpls_2023_1167789 crossref_primary_10_1146_annurev_arplant_071122_085813 crossref_primary_10_1186_s12870_024_04813_2 crossref_primary_10_1002_advs_202410334 crossref_primary_10_1093_hr_uhac230 crossref_primary_10_1016_j_ijbiomac_2025_140460 crossref_primary_10_1016_j_plaphy_2024_109368 crossref_primary_10_1016_j_aquaculture_2025_742198 crossref_primary_10_1016_j_jhazmat_2024_134904 crossref_primary_10_1016_j_scienta_2022_111683 crossref_primary_10_1016_j_jbc_2023_105250 crossref_primary_10_1093_jxb_erac400 crossref_primary_10_1111_nph_18069 crossref_primary_10_1111_nph_18583 crossref_primary_10_3390_foods13223624 crossref_primary_10_1111_pbi_13913 crossref_primary_10_1111_jipb_13681 crossref_primary_10_1016_j_hpj_2024_03_017 crossref_primary_10_1093_plphys_kiad625 crossref_primary_10_1016_j_cofs_2022_100843 crossref_primary_10_1016_j_pbi_2022_102287 crossref_primary_10_1002_advs_202401118 crossref_primary_10_1093_plphys_kiac483 crossref_primary_10_3390_ijms222312912 crossref_primary_10_1261_rna_079951_124 crossref_primary_10_1360_TB_2024_0097 crossref_primary_10_1093_plcell_koad044 crossref_primary_10_1111_pce_14844 crossref_primary_10_1016_j_postharvbio_2023_112436 crossref_primary_10_1016_j_plantsci_2024_112228 crossref_primary_10_3390_ijms24043139 crossref_primary_10_1016_j_plaphy_2024_108611 crossref_primary_10_1093_plcell_koad210 crossref_primary_10_1111_tpj_16274 crossref_primary_10_1111_ppl_70135 crossref_primary_10_1093_plphys_kiae371 crossref_primary_10_3390_ijms252212024 crossref_primary_10_1007_s11103_021_01199_9 crossref_primary_10_1007_s12374_024_09450_8 crossref_primary_10_1016_j_molp_2021_08_006 crossref_primary_10_3389_fpls_2022_1064131 crossref_primary_10_3390_horticulturae11030282 crossref_primary_10_1021_acs_jafc_3c03144 crossref_primary_10_1111_nph_20008 crossref_primary_10_1007_s11033_023_09163_0 crossref_primary_10_1016_j_ygeno_2022_110542 crossref_primary_10_3390_plants12071449 crossref_primary_10_1016_j_xplc_2024_101037 crossref_primary_10_1093_hr_uhae229 crossref_primary_10_3389_fpls_2022_994154 |
Cites_doi | 10.1101/2021.03.04.433875 10.1016/j.molcel.2019.04.025 10.1111/nph.16724 10.1093/jxb/ert028 10.1371/journal.pgen.1008120 10.3389/fpls.2020.619953 10.1111/j.1365-313X.2006.02913.x 10.1093/nar/gkt263 10.1186/s13059-018-1587-x 10.1126/scisignal.2003509 10.1038/nprot.2008.73 10.1111/nph.16822 10.1016/j.molcel.2016.05.041 10.1104/pp.15.00622 10.1016/j.mex.2014.11.004 10.1105/tpc.17.00854 10.1038/nature19342 10.1038/s41421-018-0019-0 10.1093/molbev/msr121 10.1038/nature25784 10.1146/annurev-arplant-042916-040906 10.1016/j.molcel.2018.02.015 10.1105/tpc.108.058883 10.1126/scisignal.aaa7981 10.1038/nchembio.687 10.1016/j.molcel.2012.10.015 10.1073/pnas.1812575115 10.1016/j.molp.2019.12.007 10.14806/ej.17.1.200 10.1038/s42003-020-01474-3 10.1016/j.cell.2015.05.014 10.1104/pp.111.177311 10.1073/pnas.1602883113 10.1038/nature11112 10.1016/j.xinn.2020.100066 10.1038/s42003-019-0281-1 10.1093/nar/gkx382 10.1038/nprot.2012.148 10.1038/s41556-018-0045-z 10.1093/bioinformatics/btu170 10.7554/eLife.07295 10.1038/cr.2014.151 10.1093/jxb/erp204 10.1073/pnas.1316717111 10.1038/cr.2017.100 10.1016/j.cell.2013.10.026 10.1016/j.devcel.2016.06.008 10.1016/j.cell.2015.09.036 10.1104/pp.112.202408 10.1104/pp.19.00323 10.1105/tpc.17.00875 10.1093/bioinformatics/btp324 10.1093/bioinformatics/btm404 10.1016/j.cell.2015.10.012 10.1105/tpc.113.122234 10.1111/jipb.12899 10.1038/nature12730 10.1105/tpc.17.00934 10.1016/j.molcel.2010.05.004 10.1038/nature18298 10.1016/j.copbio.2009.02.015 10.1105/tpc.110.073874 10.1038/nature08599 10.1104/pp.18.00245 10.1038/ncomms6630 10.1002/anie.201807942 10.1016/j.molcel.2016.03.021 10.1111/nph.15545 10.1105/tpc.019158 10.4161/rna.36281 10.1073/pnas.0505667103 10.1109/BIBM.2013.6732477 10.1111/j.2517-6161.1995.tb02031.x 10.1093/jxb/err207 10.1073/pnas.0907095106 10.1186/gb-2008-9-9-r137 10.1105/tpc.16.00912 10.1186/s13059-019-1771-7 10.1016/j.cell.2012.05.003 10.1186/s13059-015-0839-2 10.1104/pp.114.251314 10.1016/j.stem.2014.09.019 10.1093/bioinformatics/btp472 10.1038/nbt.1621 10.1038/nchembio.1432 10.1111/nph.14586 10.1038/cr.2014.3 10.1146/annurev-arplant-050312-120057 10.1093/nar/gku1221 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-021-02385-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 168 |
ExternalDocumentID | oai_doaj_org_article_ee21325d4bc54e4282c282010b97f0fc PMC8173835 10_1186_s13059_021_02385_0 |
GrantInformation_xml | – fundername: ; grantid: 31925035, 31930086, 31572174 – fundername: ; grantid: 2018YFD1000200 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c637t-de9e78a0a3fa1ef01fdb04aa2f0c2daa91d32211d78c0fdfb9fab548ded08eca3 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:22:02 EDT 2025 Thu Aug 21 14:02:35 EDT 2025 Fri Jul 11 03:06:55 EDT 2025 Fri Jul 11 01:56:48 EDT 2025 Fri Jul 25 12:08:54 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Tue Jul 01 03:10:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-de9e78a0a3fa1ef01fdb04aa2f0c2daa91d32211d78c0fdfb9fab548ded08eca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3046-1177 |
OpenAccessLink | https://doaj.org/article/ee21325d4bc54e4282c282010b97f0fc |
PMID | 34078442 |
PQID | 2543492483 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee21325d4bc54e4282c282010b97f0fc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8173835 proquest_miscellaneous_2551937166 proquest_miscellaneous_2536800530 proquest_journals_2543492483 crossref_citationtrail_10_1186_s13059_021_02385_0 crossref_primary_10_1186_s13059_021_02385_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-03 |
PublicationDateYYYYMMDD | 2021-06-03 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Genome Biology |
PublicationYear | 2021 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | Y Li (2385_CR40) 2014; 11 J Liu (2385_CR11) 2014; 10 M Salmon-Divon (2385_CR77) 2010; 11 PJ Batista (2385_CR5) 2014; 15 2385_CR92 A Shinozawa (2385_CR66) 2019; 2 K Ruzicka (2385_CR53) 2017; 215 TD Schmittgen (2385_CR83) 2008; 3 M Liu (2385_CR33) 2015; 169 KD Meyer (2385_CR70) 2015; 163 W Tan (2385_CR68) 2018; 14 C Trapnell (2385_CR81) 2010; 28 MA Larkin (2385_CR87) 2007; 23 KD Meyer (2385_CR43) 2012; 149 Z Lin (2385_CR30) 2009; 60 DP Patil (2385_CR15) 2016; 537 XL Ping (2385_CR14) 2014; 24 S Li (2385_CR31) 2019; 221 P Wang (2385_CR89) 2020; 3 K Tamura (2385_CR88) 2011; 28 A Marchler-Bauer (2385_CR86) 2015; 43 A Bertero (2385_CR9) 2018; 555 D Dominissini (2385_CR37) 2013; 8 K Xu (2385_CR84) 2017; 27 Y Xiao (2385_CR49) 2018; 57 Y Han (2385_CR59) 2015; 167 2385_CR80 G Jia (2385_CR18) 2011; 7 J Mistry (2385_CR85) 2013; 41 P Wang (2385_CR12) 2016; 63 L Shen (2385_CR20) 2016; 38 D Dominissini (2385_CR39) 2012; 485 HF Jia (2385_CR58) 2013; 64 Y Zhang (2385_CR76) 2008; 9 X Wang (2385_CR13) 2016; 534 ML Irigoyen (2385_CR62) 2014; 26 T Hoffmann (2385_CR54) 2006; 48 M Martin (2385_CR73) 2011; 17 S Heinz (2385_CR42) 2010; 38 K Wang (2385_CR60) 2018; 30 X Wang (2385_CR1) 2014; 505 J Wen (2385_CR16) 2018; 69 HF Jia (2385_CR34) 2011; 157 YM Chai (2385_CR57) 2011; 62 T Umezawa (2385_CR63) 2009; 106 H Shi (2385_CR4) 2019; 74 J Guo (2385_CR72) 2018; 177 H Chen (2385_CR90) 2008; 146 JJ Giovannoni (2385_CR27) 2004; 16 X Zhao (2385_CR2) 2014; 24 GZ Luo (2385_CR41) 2014; 5 G Zheng (2385_CR19) 2013; 49 JJ Giovannoni (2385_CR26) 2017; 68 J Scutenaire (2385_CR23) 2018; 30 AJ Matas (2385_CR29) 2009; 20 Y Yue (2385_CR17) 2018; 4 T Chen (2385_CR32) 2020; 228 JW Nicol (2385_CR79) 2009; 25 S Liu (2385_CR69) 2015; 4 C Zhang (2385_CR8) 2016; 113 YZ Wan (2385_CR44) 2015; 16 JF Cheng (2385_CR55) 2018; 19 X Wang (2385_CR3) 2015; 161 L Zhou (2385_CR36) 2019; 20 H Fujii (2385_CR45) 2009; 462 H Huang (2385_CR71) 2018; 20 Y Benjamini (2385_CR82) 1995; 57 C Merchante (2385_CR50) 2015; 163 J Meng (2385_CR78) 2013 Q Bai (2385_CR48) 2021; 11 S Zhong (2385_CR52) 2008; 20 JM Fustin (2385_CR6) 2013; 155 C Gu (2385_CR10) 2020; 1 MC Castillo (2385_CR61) 2015; 8 AM Bolger (2385_CR74) 2014; 30 GB Seymour (2385_CR28) 2013; 64 T Furihata (2385_CR46) 2006; 103 Y Shang (2385_CR47) 2010; 22 D Tang (2385_CR35) 2020; 228 K Chen (2385_CR56) 2020; 62 Z Liang (2385_CR51) 2020; 13 H Li (2385_CR75) 2009; 25 T Umezawa (2385_CR64) 2013; 6 Z Cai (2385_CR65) 2014; 111 F Zhang (2385_CR24) 2019; 15 LH Wei (2385_CR22) 2018; 30 X Liao (2385_CR38) 2018; 115 Z Miao (2385_CR25) 2020; 182 S Lin (2385_CR7) 2016; 62 HC Duan (2385_CR21) 2017; 29 GB Bhaskara (2385_CR67) 2012; 160 R Lei (2385_CR91) 2014; 2 |
References_xml | – ident: 2385_CR92 doi: 10.1101/2021.03.04.433875 – volume: 74 start-page: 640 issue: 4 year: 2019 ident: 2385_CR4 publication-title: Mol Cell. doi: 10.1016/j.molcel.2019.04.025 – volume: 228 start-page: 839 issue: 3 year: 2020 ident: 2385_CR35 publication-title: New Phytol. doi: 10.1111/nph.16724 – volume: 64 start-page: 1677 issue: 6 year: 2013 ident: 2385_CR58 publication-title: J Exp Bot. doi: 10.1093/jxb/ert028 – volume: 15 start-page: e1008120 issue: 5 year: 2019 ident: 2385_CR24 publication-title: Plos Genet. doi: 10.1371/journal.pgen.1008120 – volume: 11 start-page: 619953 year: 2021 ident: 2385_CR48 publication-title: Front Plant Sci. doi: 10.3389/fpls.2020.619953 – volume: 48 start-page: 818 issue: 5 year: 2006 ident: 2385_CR54 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02913.x – volume: 41 start-page: e121 issue: 12 year: 2013 ident: 2385_CR85 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt263 – volume: 19 start-page: 212 issue: 1 year: 2018 ident: 2385_CR55 publication-title: Genome Biol. doi: 10.1186/s13059-018-1587-x – volume: 6 start-page: rs8 year: 2013 ident: 2385_CR64 publication-title: Sci Signal doi: 10.1126/scisignal.2003509 – volume: 3 start-page: 1101 issue: 6 year: 2008 ident: 2385_CR83 publication-title: Nat Protoc. doi: 10.1038/nprot.2008.73 – volume: 228 start-page: 1219 issue: 4 year: 2020 ident: 2385_CR32 publication-title: New Phytol. doi: 10.1111/nph.16822 – volume: 63 start-page: 306 issue: 2 year: 2016 ident: 2385_CR12 publication-title: Mol Cell. doi: 10.1016/j.molcel.2016.05.041 – volume: 169 start-page: 2380 year: 2015 ident: 2385_CR33 publication-title: Plant Physiol. doi: 10.1104/pp.15.00622 – volume: 2 start-page: 24 year: 2014 ident: 2385_CR91 publication-title: MethodsX. doi: 10.1016/j.mex.2014.11.004 – volume: 30 start-page: 986 issue: 5 year: 2018 ident: 2385_CR23 publication-title: Plant Cell. doi: 10.1105/tpc.17.00854 – volume: 537 start-page: 369 issue: 7620 year: 2016 ident: 2385_CR15 publication-title: Nature. doi: 10.1038/nature19342 – volume: 4 start-page: 10 issue: 1 year: 2018 ident: 2385_CR17 publication-title: Cell Discov. doi: 10.1038/s41421-018-0019-0 – volume: 28 start-page: 2731 issue: 10 year: 2011 ident: 2385_CR88 publication-title: Mol Biol Evol. doi: 10.1093/molbev/msr121 – volume: 555 start-page: 256 issue: 7695 year: 2018 ident: 2385_CR9 publication-title: Nature. doi: 10.1038/nature25784 – volume: 68 start-page: 61 issue: 1 year: 2017 ident: 2385_CR26 publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-042916-040906 – volume: 69 start-page: 1028 issue: 6 year: 2018 ident: 2385_CR16 publication-title: Mol Cell. doi: 10.1016/j.molcel.2018.02.015 – volume: 20 start-page: 1278 issue: 5 year: 2008 ident: 2385_CR52 publication-title: Plant Cell. doi: 10.1105/tpc.108.058883 – volume: 8 start-page: ra89 year: 2015 ident: 2385_CR61 publication-title: Sci Signal doi: 10.1126/scisignal.aaa7981 – volume: 7 start-page: 885 issue: 12 year: 2011 ident: 2385_CR18 publication-title: Nat Chem Biol. doi: 10.1038/nchembio.687 – volume: 49 start-page: 18 issue: 1 year: 2013 ident: 2385_CR19 publication-title: Mol Cell. doi: 10.1016/j.molcel.2012.10.015 – volume: 115 start-page: E11542 issue: 49 year: 2018 ident: 2385_CR38 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1812575115 – volume: 146 start-page: 368 year: 2008 ident: 2385_CR90 publication-title: Plant Physiol. – volume: 13 start-page: 14 issue: 1 year: 2020 ident: 2385_CR51 publication-title: Mol Plant. doi: 10.1016/j.molp.2019.12.007 – volume: 17 start-page: 10 issue: 1 year: 2011 ident: 2385_CR73 publication-title: EMBnet J. doi: 10.14806/ej.17.1.200 – volume: 3 start-page: 730 issue: 1 year: 2020 ident: 2385_CR89 publication-title: Commun Biol. doi: 10.1038/s42003-020-01474-3 – volume: 161 start-page: 1388 issue: 6 year: 2015 ident: 2385_CR3 publication-title: Cell. doi: 10.1016/j.cell.2015.05.014 – volume: 157 start-page: 188 issue: 1 year: 2011 ident: 2385_CR34 publication-title: Plant Physiol. doi: 10.1104/pp.111.177311 – volume: 113 start-page: E2047 issue: 14 year: 2016 ident: 2385_CR8 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1602883113 – volume: 485 start-page: 201 issue: 7397 year: 2012 ident: 2385_CR39 publication-title: Nature. doi: 10.1038/nature11112 – volume: 1 start-page: 100066 issue: 3 year: 2020 ident: 2385_CR10 publication-title: The innovation. doi: 10.1016/j.xinn.2020.100066 – volume: 2 start-page: 30 issue: 1 year: 2019 ident: 2385_CR66 publication-title: Commun Biol. doi: 10.1038/s42003-019-0281-1 – ident: 2385_CR80 doi: 10.1093/nar/gkx382 – volume: 8 start-page: 176 issue: 1 year: 2013 ident: 2385_CR37 publication-title: Nat Protoc. doi: 10.1038/nprot.2012.148 – volume: 20 start-page: 285 issue: 3 year: 2018 ident: 2385_CR71 publication-title: Nat Cell Biol. doi: 10.1038/s41556-018-0045-z – volume: 30 start-page: 2114 issue: 15 year: 2014 ident: 2385_CR74 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu170 – volume: 4 start-page: e07295 year: 2015 ident: 2385_CR69 publication-title: eLife. doi: 10.7554/eLife.07295 – volume: 24 start-page: 1403 issue: 12 year: 2014 ident: 2385_CR2 publication-title: Cell Res. doi: 10.1038/cr.2014.151 – volume: 60 start-page: 3311 issue: 12 year: 2009 ident: 2385_CR30 publication-title: J Exp Bot. doi: 10.1093/jxb/erp204 – volume: 111 start-page: 9651 issue: 26 year: 2014 ident: 2385_CR65 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1316717111 – volume: 27 start-page: 1100 issue: 9 year: 2017 ident: 2385_CR84 publication-title: Cell Res. doi: 10.1038/cr.2017.100 – volume: 155 start-page: 793 issue: 4 year: 2013 ident: 2385_CR6 publication-title: Cell. doi: 10.1016/j.cell.2013.10.026 – volume: 38 start-page: 186 issue: 2 year: 2016 ident: 2385_CR20 publication-title: Dev Cell. doi: 10.1016/j.devcel.2016.06.008 – volume: 163 start-page: 684 issue: 3 year: 2015 ident: 2385_CR50 publication-title: Cell. doi: 10.1016/j.cell.2015.09.036 – volume: 160 start-page: 379 issue: 1 year: 2012 ident: 2385_CR67 publication-title: Plant Physiol. doi: 10.1104/pp.112.202408 – volume: 182 start-page: 345 issue: 1 year: 2020 ident: 2385_CR25 publication-title: Plant Physiol. doi: 10.1104/pp.19.00323 – volume: 30 start-page: 815 issue: 4 year: 2018 ident: 2385_CR60 publication-title: Plant Cell. doi: 10.1105/tpc.17.00875 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 2385_CR75 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp324 – volume: 23 start-page: 2947 issue: 21 year: 2007 ident: 2385_CR87 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btm404 – volume: 163 start-page: 999 issue: 4 year: 2015 ident: 2385_CR70 publication-title: Cell. doi: 10.1016/j.cell.2015.10.012 – volume: 26 start-page: 712 issue: 2 year: 2014 ident: 2385_CR62 publication-title: Plant Cell. doi: 10.1105/tpc.113.122234 – volume: 62 start-page: 25 issue: 1 year: 2020 ident: 2385_CR56 publication-title: J Integr Plant Biol. doi: 10.1111/jipb.12899 – volume: 505 start-page: 117 issue: 7481 year: 2014 ident: 2385_CR1 publication-title: Nature. doi: 10.1038/nature12730 – volume: 30 start-page: 968 issue: 5 year: 2018 ident: 2385_CR22 publication-title: Plant Cell. doi: 10.1105/tpc.17.00934 – volume: 38 start-page: 576 issue: 4 year: 2010 ident: 2385_CR42 publication-title: Mol Cell. doi: 10.1016/j.molcel.2010.05.004 – volume: 534 start-page: 575 issue: 7608 year: 2016 ident: 2385_CR13 publication-title: Nature. doi: 10.1038/nature18298 – volume: 20 start-page: 197 issue: 2 year: 2009 ident: 2385_CR29 publication-title: Curr Opin Biotechnol. doi: 10.1016/j.copbio.2009.02.015 – volume: 22 start-page: 1909 issue: 6 year: 2010 ident: 2385_CR47 publication-title: Plant Cell. doi: 10.1105/tpc.110.073874 – volume: 462 start-page: 660 issue: 7273 year: 2009 ident: 2385_CR45 publication-title: Nature. doi: 10.1038/nature08599 – volume: 14 start-page: e10073363 year: 2018 ident: 2385_CR68 publication-title: Plos Genet. – volume: 177 start-page: 339 issue: 1 year: 2018 ident: 2385_CR72 publication-title: Plant Physiol. doi: 10.1104/pp.18.00245 – volume: 5 start-page: 5630 issue: 1 year: 2014 ident: 2385_CR41 publication-title: Nat Commun. doi: 10.1038/ncomms6630 – volume: 57 start-page: 15995 issue: 49 year: 2018 ident: 2385_CR49 publication-title: Angew Chem Int Ed Engl. doi: 10.1002/anie.201807942 – volume: 62 start-page: 335 issue: 3 year: 2016 ident: 2385_CR7 publication-title: Mol Cell. doi: 10.1016/j.molcel.2016.03.021 – volume: 221 start-page: 1724 issue: 4 year: 2019 ident: 2385_CR31 publication-title: New Phytol. doi: 10.1111/nph.15545 – volume: 16 start-page: S170 issue: suppl_1 year: 2004 ident: 2385_CR27 publication-title: Plant Cell. doi: 10.1105/tpc.019158 – volume: 11 start-page: 1180 issue: 9 year: 2014 ident: 2385_CR40 publication-title: RNA Biol. doi: 10.4161/rna.36281 – volume: 103 start-page: 1988 issue: 6 year: 2006 ident: 2385_CR46 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0505667103 – start-page: 139 volume-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2013 ident: 2385_CR78 doi: 10.1109/BIBM.2013.6732477 – volume: 57 start-page: 289 year: 1995 ident: 2385_CR82 publication-title: J Roy Stat Soc B. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 62 start-page: 5079 issue: 14 year: 2011 ident: 2385_CR57 publication-title: J Exp Bot. doi: 10.1093/jxb/err207 – volume: 11 start-page: 415 year: 2010 ident: 2385_CR77 publication-title: Bioinformatics. – volume: 106 start-page: 17588 issue: 41 year: 2009 ident: 2385_CR63 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.0907095106 – volume: 9 start-page: R137 issue: 9 year: 2008 ident: 2385_CR76 publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 29 start-page: 2995 issue: 12 year: 2017 ident: 2385_CR21 publication-title: Plant Cell. doi: 10.1105/tpc.16.00912 – volume: 20 start-page: 156 issue: 1 year: 2019 ident: 2385_CR36 publication-title: Genome Biol. doi: 10.1186/s13059-019-1771-7 – volume: 149 start-page: 1635 issue: 7 year: 2012 ident: 2385_CR43 publication-title: Cell. doi: 10.1016/j.cell.2012.05.003 – volume: 16 start-page: 272 issue: 1 year: 2015 ident: 2385_CR44 publication-title: Genome Biol. doi: 10.1186/s13059-015-0839-2 – volume: 167 start-page: 915 issue: 3 year: 2015 ident: 2385_CR59 publication-title: Plant Physiol. doi: 10.1104/pp.114.251314 – volume: 15 start-page: 707 issue: 6 year: 2014 ident: 2385_CR5 publication-title: Cell Stem Cell. doi: 10.1016/j.stem.2014.09.019 – volume: 25 start-page: 2730 issue: 20 year: 2009 ident: 2385_CR79 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp472 – volume: 28 start-page: 511 issue: 5 year: 2010 ident: 2385_CR81 publication-title: Nat Biotechnol. doi: 10.1038/nbt.1621 – volume: 10 start-page: 93 issue: 2 year: 2014 ident: 2385_CR11 publication-title: Nat Chem Biol. doi: 10.1038/nchembio.1432 – volume: 215 start-page: 157 issue: 1 year: 2017 ident: 2385_CR53 publication-title: New Phytol. doi: 10.1111/nph.14586 – volume: 24 start-page: 177 issue: 2 year: 2014 ident: 2385_CR14 publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 64 start-page: 219 issue: 1 year: 2013 ident: 2385_CR28 publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-050312-120057 – volume: 43 start-page: D222 issue: D1 year: 2015 ident: 2385_CR86 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1221 |
SSID | ssj0019426 ssj0017866 |
Score | 2.6464405 |
Snippet | Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it... Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear... BACKGROUND: Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it... Abstract Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 168 |
SubjectTerms | 3' Untranslated regions Abscisic acid Biosynthesis Cell growth climacteric fruits Codons DNA methylation Epigenetics Fruits Genes Horticulture m6A methylation m6A methyltransferase Mammals methyltransferases mRNA stability N6-methyladenosine non-climacteric fruits Physiology Proteins Ripening RNA RNA modification Signal transduction Stem cells stop codon strawberries Strawberry tomatoes Translation efficiency |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0PRB3aRFhd6KiGzLepzKpjSEQPdQGtib0LNdSOzU6yXsv4_Gj2192aOtMQjNQ9_Io_kQ-iwFC0xYSkzwkTDmJTEqAbnIq2iD8jxSuCj8Y8mvbtj1qlqNB26bsaxyiol9oPaNgzPyc7i0zVKyIMuv938JsEbB39WRQuMpegaty8CqxWqfcOVCAlYZHxQrhqtGUIBYKT7doJH8fJMCeaUIVCvAFlYROtul-mb-MwQ6r5_8b0O6fImORySJF4PqT9CTUL9Czwduyd1rZJecAD307tZ4aAie0CT-uVzgu8ZDdVCvENwOTPRhg-HE48GGtt3h2G7XHU7BJMCZCV7X2NR4cbEgE2Fuh-8MMHa9QTeX3399uyIjoQJxvBRdElNBSENNGU0eIs2jt5QZU0TqCm-Myn3y7zz3QjoafbQqGptSGh88lcGZ8i06qps6vENYCRe9SEPKBGZ5bhIQpAaSmYQJlC8zlE8LqN3YbRxIL251n3VIrodF12nRdb_ommboy_6b-6HXxkHpC9DLXhL6ZPcvmva3Ht1Oh1CkdLvyzLoqGWWanSsA81CrRKTRZehs0qoenXej_5lahj7th5Pbwb8UU4dmCzIllxDB6CEZgMcpIeUZEjOLmU16PlKv__RNvmUuyoSO3x-e4Cl6UfRmywktz9BR127Dh4SSOvuxd4VH6QQQRA priority: 102 providerName: ProQuest |
Title | N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner |
URI | https://www.proquest.com/docview/2543492483 https://www.proquest.com/docview/2536800530 https://www.proquest.com/docview/2551937166 https://pubmed.ncbi.nlm.nih.gov/PMC8173835 https://doaj.org/article/ee21325d4bc54e4282c282010b97f0fc |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtSqGXkvRB3aRGhd6KiPalx9EuCSFQU0wDphchrSRqSNZhvab433dmHyZ7SS657GE1u0ijGc030miGkG9K5iGXjjMbfGR57hWzGoBcFEV0QXsROV4U_rkQVzf59apYPSj1hTFhXXrgjnHnIaTgMBU-d2UBvwUPoUzRanGnZeSxxNUXbN7gTPXnBxoMz3BFRonzLazUhWYYjoA2qmB8ZIbabP0jiDkOkHxgcS6PydseKtJZ18UT8iJU78jrrnjk_j1xC8Gw_vP-1nrM-A1wkS4XM3q38Rj-03Kc1l2p-bCluKXxz4W63tNY79YNhdUi4KYIXVfUVnQ2n7GhIm5D7yyW5PpAbi4vfv-4Yn3FBFaKTDZApoNUltss2iREnkTveG5tGnmZemt14kGBk8RLVfLoo9PROvBZfPBchdJmH8lRtanCJ0K1LKOX0KRtyJ1ILCA9btFbAaOvfTYhycBAU_bpxLGqxa1p3QolTMd0A0w3LdMNn5Dvh2_uu2Qaj1LPcV4OlJgIu30B4mF68TBPiceEnA2zanrt3BpMAJCD46lgFF8PzaBXeFhiq7DZIU0mFC5R_DEaxL_gcYoJkSOJGXV63FKt_7ZZvFUiM4C_n59jlKfkTdoKt2A8OyNHTb0LXwAsNW5KXsqVnJJX84vFr-W01RJ4Lud__gNZnBc0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkuFDASnJBV78uPA0IpUKW0zQG1Um7Gu7YhUrspm0RV_hS_kZl9BPaSW48bOytrPI9vvJ75CHmnZOYzWXBmvQssy5xiVgOQCyIPhddOBI6FwmcTMb7Ivk3z6Q7509fC4LXK3ic2jtrNSzwjP8Ci7QySBZV-uv7NkDUKv672FBqtWpz49Q2kbIuPx19gf98nydHX889j1rEKsFKkcsmc114qy20abOwDj4MreGZtEniZOGt17EDJ49hJVfLgQqGDLQDXO--48qVN4b13yF0IvByTPTndJHixVIiNugedJW1pE154zLXoK3aUOFhA4Mg1w9sRGDJzxgdRsSEPGCDe4X3N_wLg0SPysEOudNSq2mOy46sn5F7LZbl-SoqJYEhHvb60DhuQA3ql3ycjejV3eBupUQBat8z3fkHxhOWm8HW9pqFezZYUnJfHMxo6q6it6OhwxHqC3iW9ssgQ9oxc3Iqon5Pdal75PUK1LIOTMKStzwoRWwCe3GLyBBhEuzQicS9AU3bdzZFk49I0WY4SphW6AaGbRuiGR-TD5j_XbW-PrbMPcV82M7Evd_PDvP5pOjM33ieQ3ucuK8ocjABWVyaIsXihZeChjMh-v6umcxYL80-1I_J2Mwxmjt9ubOXnK5yTCoUek2-bg3AcEmARETnQmMGihyPV7FfTVFzFMgU0_mL7At-Q--Pzs1Nzejw5eUkeJI0KC8bTfbK7rFf-FSC0ZfG6MQtKfty2Hf4FbEdQyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-methyladenosine+RNA+modification+regulates+strawberry+fruit+ripening+in+an+ABA-dependent+manner&rft.jtitle=Genome+biology&rft.au=Zhou%2C+Leilei&rft.au=Tang%2C+Renkun&rft.au=Li%2C+Xiaojing&rft.au=Tian%2C+Shiping&rft.date=2021-06-03&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=22&rft.issue=1&rft.spage=168&rft_id=info:doi/10.1186%2Fs13059-021-02385-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |