N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner

Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionall...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 22; no. 1; p. 168
Main Authors Zhou, Leilei, Tang, Renkun, Li, Xiaojing, Tian, Shiping, Li, Bingbing, Qin, Guozheng
Format Journal Article
LanguageEnglish
Published London BioMed Central 03.06.2021
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.
AbstractList Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits.BACKGROUNDEpigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits.Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3' untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR.RESULTSHere we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3' untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR.Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.CONCLUSIONOur findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.
BACKGROUND: Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m⁶A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. RESULTS: Here we show that m⁶A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m⁶A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m⁶A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m⁶A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m⁶A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. CONCLUSION: Our findings uncover that m⁶A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.
Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.
Abstract Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear whether mRNA m6A methylation, which has been shown to regulate ripening of the tomato, a typical climacteric fruit, is functionally conserved for ripening control among different types of fruits. Results Here we show that m6A methylation displays a dramatic change at ripening onset of strawberry, a classical non-climacteric fruit. The m6A modification in coding sequence (CDS) regions appears to be ripening-specific and tends to stabilize the mRNAs, whereas m6A around the stop codons and within the 3′ untranslated regions is generally negatively correlated with the abundance of associated mRNAs. We identified thousands of transcripts with m6A hypermethylation in the CDS regions, including those of NCED5, ABAR, and AREB1 in the abscisic acid (ABA) biosynthesis and signaling pathway. We demonstrate that the methyltransferases MTA and MTB are indispensable for normal ripening of strawberry fruit, and MTA-mediated m6A modification promotes mRNA stability of NCED5 and AREB1, while facilitating translation of ABAR. Conclusion Our findings uncover that m6A methylation regulates ripening of the non-climacteric strawberry fruit by targeting the ABA pathway, which is distinct from that in the climacteric tomato fruit.
ArticleNumber 168
Author Li, Xiaojing
Tian, Shiping
Li, Bingbing
Qin, Guozheng
Tang, Renkun
Zhou, Leilei
Author_xml – sequence: 1
  givenname: Leilei
  surname: Zhou
  fullname: Zhou, Leilei
– sequence: 2
  givenname: Renkun
  surname: Tang
  fullname: Tang, Renkun
– sequence: 3
  givenname: Xiaojing
  surname: Li
  fullname: Li, Xiaojing
– sequence: 4
  givenname: Shiping
  surname: Tian
  fullname: Tian, Shiping
– sequence: 5
  givenname: Bingbing
  surname: Li
  fullname: Li, Bingbing
– sequence: 6
  givenname: Guozheng
  orcidid: 0000-0003-3046-1177
  surname: Qin
  fullname: Qin, Guozheng
BookMark eNqNkk1v1DAQhiNURD_gD3CKxIVLir-SOBekpYJSqSoSAombNbHHW68Se7Gdov33uLtFoj0gDiNb43ee8djvaXXkg8eqek3JOaWye5coJ-3QEEZLcNk25Fl1QkUvmr4jP47-2h9XpyltCKGDYN2L6pgL0ksh2Ek13nTNjPl2N4FBH5LzWH-9WdVzMM46DdkFX0dcLxNkTHXKEX6NGOOutnFxuY5ui975de18Db5efVg1BkuqwHI9g_cYX1bPLUwJXz2sZ9X3Tx-_XXxurr9cXl2srhvd8T6XsgF7CQS4BYqWUGtGIgCYJZoZgIEazhilppeaWGPHwcLYCmnQEIka-Fl1deCaABu1jW6GuFMBnNonQlwriNnpCRUio5y1Roy6FSiYZLoEoWQcekusLqz3B9Z2GWc0ukwTYXoEfXzi3a1ahzslac8lbwvg7QMghp8LpqxmlzROE3gMS1KsbenAe9p1_yHlnSSk5aRI3zyRbsISfXnVohJcDExIXlTyoNIxpBTRKu3y_ifLVd2kKFH3_lEH_6jiH7X3j7pvwJ6U_hn5H0W_Ad7pyo0
CitedBy_id crossref_primary_10_1093_plphys_kiae120
crossref_primary_10_3390_genes13122284
crossref_primary_10_1002_pld3_70000
crossref_primary_10_1186_s13059_023_02947_4
crossref_primary_10_1016_j_molp_2023_04_005
crossref_primary_10_1111_pbi_13829
crossref_primary_10_1186_s13059_023_02872_6
crossref_primary_10_1093_plphys_kiae529
crossref_primary_10_1016_j_plantsci_2023_111794
crossref_primary_10_1111_pbi_13792
crossref_primary_10_1016_j_virol_2024_110373
crossref_primary_10_3390_plants11010103
crossref_primary_10_3390_genes15040459
crossref_primary_10_1371_journal_ppat_1012476
crossref_primary_10_1111_tpj_16257
crossref_primary_10_1093_plphys_kiad660
crossref_primary_10_1111_nph_20227
crossref_primary_10_1111_pce_14447
crossref_primary_10_1007_s12298_025_01565_7
crossref_primary_10_1016_j_hpj_2024_11_005
crossref_primary_10_3390_ijms23094522
crossref_primary_10_1093_plphys_kiae510
crossref_primary_10_1093_plphys_kiae511
crossref_primary_10_1016_j_xplc_2023_100546
crossref_primary_10_1016_j_plaphy_2023_108255
crossref_primary_10_3390_plants11081033
crossref_primary_10_1016_j_scienta_2024_113396
crossref_primary_10_1111_mpp_13239
crossref_primary_10_3389_fpls_2024_1429011
crossref_primary_10_3389_fpls_2023_1279031
crossref_primary_10_1007_s12374_022_09351_8
crossref_primary_10_1016_j_indcrop_2023_116625
crossref_primary_10_1093_hr_uhae158
crossref_primary_10_1093_hr_uhac013
crossref_primary_10_1016_j_hpj_2024_02_013
crossref_primary_10_1016_j_postharvbio_2025_113522
crossref_primary_10_1016_j_xplc_2024_101229
crossref_primary_10_3390_biom13101537
crossref_primary_10_3390_plants12152848
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1016_j_envexpbot_2023_105306
crossref_primary_10_1007_s00344_024_11340_9
crossref_primary_10_1016_j_plaphy_2024_108781
crossref_primary_10_1111_pbi_13733
crossref_primary_10_1016_j_postharvbio_2024_113173
crossref_primary_10_1038_s41467_022_34362_x
crossref_primary_10_1016_j_gpb_2023_02_003
crossref_primary_10_1016_j_scienta_2024_113725
crossref_primary_10_1093_plphys_kiae451
crossref_primary_10_1016_j_gpb_2023_02_002
crossref_primary_10_1038_s41467_024_55294_8
crossref_primary_10_1016_j_plantsci_2023_111729
crossref_primary_10_1093_jxb_erac461
crossref_primary_10_1016_j_devcel_2024_12_033
crossref_primary_10_1186_s13059_022_02612_2
crossref_primary_10_1016_j_postharvbio_2022_111870
crossref_primary_10_1016_j_xplc_2024_101232
crossref_primary_10_1093_hr_uhac089
crossref_primary_10_1093_plphys_kiab509
crossref_primary_10_3390_ijms26062748
crossref_primary_10_3389_fpls_2024_1477240
crossref_primary_10_1016_j_hpj_2024_02_001
crossref_primary_10_1093_plphys_kiad470
crossref_primary_10_1360_SSV_2023_0213
crossref_primary_10_2503_hortj_QH_R003
crossref_primary_10_1093_plcell_koad224
crossref_primary_10_1111_nph_19568
crossref_primary_10_1111_pbi_14036
crossref_primary_10_3389_fpls_2023_1167789
crossref_primary_10_1146_annurev_arplant_071122_085813
crossref_primary_10_1186_s12870_024_04813_2
crossref_primary_10_1002_advs_202410334
crossref_primary_10_1093_hr_uhac230
crossref_primary_10_1016_j_ijbiomac_2025_140460
crossref_primary_10_1016_j_plaphy_2024_109368
crossref_primary_10_1016_j_aquaculture_2025_742198
crossref_primary_10_1016_j_jhazmat_2024_134904
crossref_primary_10_1016_j_scienta_2022_111683
crossref_primary_10_1016_j_jbc_2023_105250
crossref_primary_10_1093_jxb_erac400
crossref_primary_10_1111_nph_18069
crossref_primary_10_1111_nph_18583
crossref_primary_10_3390_foods13223624
crossref_primary_10_1111_pbi_13913
crossref_primary_10_1111_jipb_13681
crossref_primary_10_1016_j_hpj_2024_03_017
crossref_primary_10_1093_plphys_kiad625
crossref_primary_10_1016_j_cofs_2022_100843
crossref_primary_10_1016_j_pbi_2022_102287
crossref_primary_10_1002_advs_202401118
crossref_primary_10_1093_plphys_kiac483
crossref_primary_10_3390_ijms222312912
crossref_primary_10_1261_rna_079951_124
crossref_primary_10_1360_TB_2024_0097
crossref_primary_10_1093_plcell_koad044
crossref_primary_10_1111_pce_14844
crossref_primary_10_1016_j_postharvbio_2023_112436
crossref_primary_10_1016_j_plantsci_2024_112228
crossref_primary_10_3390_ijms24043139
crossref_primary_10_1016_j_plaphy_2024_108611
crossref_primary_10_1093_plcell_koad210
crossref_primary_10_1111_tpj_16274
crossref_primary_10_1111_ppl_70135
crossref_primary_10_1093_plphys_kiae371
crossref_primary_10_3390_ijms252212024
crossref_primary_10_1007_s11103_021_01199_9
crossref_primary_10_1007_s12374_024_09450_8
crossref_primary_10_1016_j_molp_2021_08_006
crossref_primary_10_3389_fpls_2022_1064131
crossref_primary_10_3390_horticulturae11030282
crossref_primary_10_1021_acs_jafc_3c03144
crossref_primary_10_1111_nph_20008
crossref_primary_10_1007_s11033_023_09163_0
crossref_primary_10_1016_j_ygeno_2022_110542
crossref_primary_10_3390_plants12071449
crossref_primary_10_1016_j_xplc_2024_101037
crossref_primary_10_1093_hr_uhae229
crossref_primary_10_3389_fpls_2022_994154
Cites_doi 10.1101/2021.03.04.433875
10.1016/j.molcel.2019.04.025
10.1111/nph.16724
10.1093/jxb/ert028
10.1371/journal.pgen.1008120
10.3389/fpls.2020.619953
10.1111/j.1365-313X.2006.02913.x
10.1093/nar/gkt263
10.1186/s13059-018-1587-x
10.1126/scisignal.2003509
10.1038/nprot.2008.73
10.1111/nph.16822
10.1016/j.molcel.2016.05.041
10.1104/pp.15.00622
10.1016/j.mex.2014.11.004
10.1105/tpc.17.00854
10.1038/nature19342
10.1038/s41421-018-0019-0
10.1093/molbev/msr121
10.1038/nature25784
10.1146/annurev-arplant-042916-040906
10.1016/j.molcel.2018.02.015
10.1105/tpc.108.058883
10.1126/scisignal.aaa7981
10.1038/nchembio.687
10.1016/j.molcel.2012.10.015
10.1073/pnas.1812575115
10.1016/j.molp.2019.12.007
10.14806/ej.17.1.200
10.1038/s42003-020-01474-3
10.1016/j.cell.2015.05.014
10.1104/pp.111.177311
10.1073/pnas.1602883113
10.1038/nature11112
10.1016/j.xinn.2020.100066
10.1038/s42003-019-0281-1
10.1093/nar/gkx382
10.1038/nprot.2012.148
10.1038/s41556-018-0045-z
10.1093/bioinformatics/btu170
10.7554/eLife.07295
10.1038/cr.2014.151
10.1093/jxb/erp204
10.1073/pnas.1316717111
10.1038/cr.2017.100
10.1016/j.cell.2013.10.026
10.1016/j.devcel.2016.06.008
10.1016/j.cell.2015.09.036
10.1104/pp.112.202408
10.1104/pp.19.00323
10.1105/tpc.17.00875
10.1093/bioinformatics/btp324
10.1093/bioinformatics/btm404
10.1016/j.cell.2015.10.012
10.1105/tpc.113.122234
10.1111/jipb.12899
10.1038/nature12730
10.1105/tpc.17.00934
10.1016/j.molcel.2010.05.004
10.1038/nature18298
10.1016/j.copbio.2009.02.015
10.1105/tpc.110.073874
10.1038/nature08599
10.1104/pp.18.00245
10.1038/ncomms6630
10.1002/anie.201807942
10.1016/j.molcel.2016.03.021
10.1111/nph.15545
10.1105/tpc.019158
10.4161/rna.36281
10.1073/pnas.0505667103
10.1109/BIBM.2013.6732477
10.1111/j.2517-6161.1995.tb02031.x
10.1093/jxb/err207
10.1073/pnas.0907095106
10.1186/gb-2008-9-9-r137
10.1105/tpc.16.00912
10.1186/s13059-019-1771-7
10.1016/j.cell.2012.05.003
10.1186/s13059-015-0839-2
10.1104/pp.114.251314
10.1016/j.stem.2014.09.019
10.1093/bioinformatics/btp472
10.1038/nbt.1621
10.1038/nchembio.1432
10.1111/nph.14586
10.1038/cr.2014.3
10.1146/annurev-arplant-050312-120057
10.1093/nar/gku1221
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-021-02385-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 168
ExternalDocumentID oai_doaj_org_article_ee21325d4bc54e4282c282010b97f0fc
PMC8173835
10_1186_s13059_021_02385_0
GrantInformation_xml – fundername: ;
  grantid: 31925035, 31930086, 31572174
– fundername: ;
  grantid: 2018YFD1000200
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c637t-de9e78a0a3fa1ef01fdb04aa2f0c2daa91d32211d78c0fdfb9fab548ded08eca3
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:22:02 EDT 2025
Thu Aug 21 14:02:35 EDT 2025
Fri Jul 11 03:06:55 EDT 2025
Fri Jul 11 01:56:48 EDT 2025
Fri Jul 25 12:08:54 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Tue Jul 01 03:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-de9e78a0a3fa1ef01fdb04aa2f0c2daa91d32211d78c0fdfb9fab548ded08eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3046-1177
OpenAccessLink https://doaj.org/article/ee21325d4bc54e4282c282010b97f0fc
PMID 34078442
PQID 2543492483
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ee21325d4bc54e4282c282010b97f0fc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8173835
proquest_miscellaneous_2551937166
proquest_miscellaneous_2536800530
proquest_journals_2543492483
crossref_citationtrail_10_1186_s13059_021_02385_0
crossref_primary_10_1186_s13059_021_02385_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-03
PublicationDateYYYYMMDD 2021-06-03
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Genome Biology
PublicationYear 2021
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References Y Li (2385_CR40) 2014; 11
J Liu (2385_CR11) 2014; 10
M Salmon-Divon (2385_CR77) 2010; 11
PJ Batista (2385_CR5) 2014; 15
2385_CR92
A Shinozawa (2385_CR66) 2019; 2
K Ruzicka (2385_CR53) 2017; 215
TD Schmittgen (2385_CR83) 2008; 3
M Liu (2385_CR33) 2015; 169
KD Meyer (2385_CR70) 2015; 163
W Tan (2385_CR68) 2018; 14
C Trapnell (2385_CR81) 2010; 28
MA Larkin (2385_CR87) 2007; 23
KD Meyer (2385_CR43) 2012; 149
Z Lin (2385_CR30) 2009; 60
DP Patil (2385_CR15) 2016; 537
XL Ping (2385_CR14) 2014; 24
S Li (2385_CR31) 2019; 221
P Wang (2385_CR89) 2020; 3
K Tamura (2385_CR88) 2011; 28
A Marchler-Bauer (2385_CR86) 2015; 43
A Bertero (2385_CR9) 2018; 555
D Dominissini (2385_CR37) 2013; 8
K Xu (2385_CR84) 2017; 27
Y Xiao (2385_CR49) 2018; 57
Y Han (2385_CR59) 2015; 167
2385_CR80
G Jia (2385_CR18) 2011; 7
J Mistry (2385_CR85) 2013; 41
P Wang (2385_CR12) 2016; 63
L Shen (2385_CR20) 2016; 38
D Dominissini (2385_CR39) 2012; 485
HF Jia (2385_CR58) 2013; 64
Y Zhang (2385_CR76) 2008; 9
X Wang (2385_CR13) 2016; 534
ML Irigoyen (2385_CR62) 2014; 26
T Hoffmann (2385_CR54) 2006; 48
M Martin (2385_CR73) 2011; 17
S Heinz (2385_CR42) 2010; 38
K Wang (2385_CR60) 2018; 30
X Wang (2385_CR1) 2014; 505
J Wen (2385_CR16) 2018; 69
HF Jia (2385_CR34) 2011; 157
YM Chai (2385_CR57) 2011; 62
T Umezawa (2385_CR63) 2009; 106
H Shi (2385_CR4) 2019; 74
J Guo (2385_CR72) 2018; 177
H Chen (2385_CR90) 2008; 146
JJ Giovannoni (2385_CR27) 2004; 16
X Zhao (2385_CR2) 2014; 24
GZ Luo (2385_CR41) 2014; 5
G Zheng (2385_CR19) 2013; 49
JJ Giovannoni (2385_CR26) 2017; 68
J Scutenaire (2385_CR23) 2018; 30
AJ Matas (2385_CR29) 2009; 20
Y Yue (2385_CR17) 2018; 4
T Chen (2385_CR32) 2020; 228
JW Nicol (2385_CR79) 2009; 25
S Liu (2385_CR69) 2015; 4
C Zhang (2385_CR8) 2016; 113
YZ Wan (2385_CR44) 2015; 16
JF Cheng (2385_CR55) 2018; 19
X Wang (2385_CR3) 2015; 161
L Zhou (2385_CR36) 2019; 20
H Fujii (2385_CR45) 2009; 462
H Huang (2385_CR71) 2018; 20
Y Benjamini (2385_CR82) 1995; 57
C Merchante (2385_CR50) 2015; 163
J Meng (2385_CR78) 2013
Q Bai (2385_CR48) 2021; 11
S Zhong (2385_CR52) 2008; 20
JM Fustin (2385_CR6) 2013; 155
C Gu (2385_CR10) 2020; 1
MC Castillo (2385_CR61) 2015; 8
AM Bolger (2385_CR74) 2014; 30
GB Seymour (2385_CR28) 2013; 64
T Furihata (2385_CR46) 2006; 103
Y Shang (2385_CR47) 2010; 22
D Tang (2385_CR35) 2020; 228
K Chen (2385_CR56) 2020; 62
Z Liang (2385_CR51) 2020; 13
H Li (2385_CR75) 2009; 25
T Umezawa (2385_CR64) 2013; 6
Z Cai (2385_CR65) 2014; 111
F Zhang (2385_CR24) 2019; 15
LH Wei (2385_CR22) 2018; 30
X Liao (2385_CR38) 2018; 115
Z Miao (2385_CR25) 2020; 182
S Lin (2385_CR7) 2016; 62
HC Duan (2385_CR21) 2017; 29
GB Bhaskara (2385_CR67) 2012; 160
R Lei (2385_CR91) 2014; 2
References_xml – ident: 2385_CR92
  doi: 10.1101/2021.03.04.433875
– volume: 74
  start-page: 640
  issue: 4
  year: 2019
  ident: 2385_CR4
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2019.04.025
– volume: 228
  start-page: 839
  issue: 3
  year: 2020
  ident: 2385_CR35
  publication-title: New Phytol.
  doi: 10.1111/nph.16724
– volume: 64
  start-page: 1677
  issue: 6
  year: 2013
  ident: 2385_CR58
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/ert028
– volume: 15
  start-page: e1008120
  issue: 5
  year: 2019
  ident: 2385_CR24
  publication-title: Plos Genet.
  doi: 10.1371/journal.pgen.1008120
– volume: 11
  start-page: 619953
  year: 2021
  ident: 2385_CR48
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2020.619953
– volume: 48
  start-page: 818
  issue: 5
  year: 2006
  ident: 2385_CR54
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02913.x
– volume: 41
  start-page: e121
  issue: 12
  year: 2013
  ident: 2385_CR85
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt263
– volume: 19
  start-page: 212
  issue: 1
  year: 2018
  ident: 2385_CR55
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1587-x
– volume: 6
  start-page: rs8
  year: 2013
  ident: 2385_CR64
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2003509
– volume: 3
  start-page: 1101
  issue: 6
  year: 2008
  ident: 2385_CR83
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 228
  start-page: 1219
  issue: 4
  year: 2020
  ident: 2385_CR32
  publication-title: New Phytol.
  doi: 10.1111/nph.16822
– volume: 63
  start-page: 306
  issue: 2
  year: 2016
  ident: 2385_CR12
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2016.05.041
– volume: 169
  start-page: 2380
  year: 2015
  ident: 2385_CR33
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00622
– volume: 2
  start-page: 24
  year: 2014
  ident: 2385_CR91
  publication-title: MethodsX.
  doi: 10.1016/j.mex.2014.11.004
– volume: 30
  start-page: 986
  issue: 5
  year: 2018
  ident: 2385_CR23
  publication-title: Plant Cell.
  doi: 10.1105/tpc.17.00854
– volume: 537
  start-page: 369
  issue: 7620
  year: 2016
  ident: 2385_CR15
  publication-title: Nature.
  doi: 10.1038/nature19342
– volume: 4
  start-page: 10
  issue: 1
  year: 2018
  ident: 2385_CR17
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0019-0
– volume: 28
  start-page: 2731
  issue: 10
  year: 2011
  ident: 2385_CR88
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/msr121
– volume: 555
  start-page: 256
  issue: 7695
  year: 2018
  ident: 2385_CR9
  publication-title: Nature.
  doi: 10.1038/nature25784
– volume: 68
  start-page: 61
  issue: 1
  year: 2017
  ident: 2385_CR26
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev-arplant-042916-040906
– volume: 69
  start-page: 1028
  issue: 6
  year: 2018
  ident: 2385_CR16
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2018.02.015
– volume: 20
  start-page: 1278
  issue: 5
  year: 2008
  ident: 2385_CR52
  publication-title: Plant Cell.
  doi: 10.1105/tpc.108.058883
– volume: 8
  start-page: ra89
  year: 2015
  ident: 2385_CR61
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aaa7981
– volume: 7
  start-page: 885
  issue: 12
  year: 2011
  ident: 2385_CR18
  publication-title: Nat Chem Biol.
  doi: 10.1038/nchembio.687
– volume: 49
  start-page: 18
  issue: 1
  year: 2013
  ident: 2385_CR19
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2012.10.015
– volume: 115
  start-page: E11542
  issue: 49
  year: 2018
  ident: 2385_CR38
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1812575115
– volume: 146
  start-page: 368
  year: 2008
  ident: 2385_CR90
  publication-title: Plant Physiol.
– volume: 13
  start-page: 14
  issue: 1
  year: 2020
  ident: 2385_CR51
  publication-title: Mol Plant.
  doi: 10.1016/j.molp.2019.12.007
– volume: 17
  start-page: 10
  issue: 1
  year: 2011
  ident: 2385_CR73
  publication-title: EMBnet J.
  doi: 10.14806/ej.17.1.200
– volume: 3
  start-page: 730
  issue: 1
  year: 2020
  ident: 2385_CR89
  publication-title: Commun Biol.
  doi: 10.1038/s42003-020-01474-3
– volume: 161
  start-page: 1388
  issue: 6
  year: 2015
  ident: 2385_CR3
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.05.014
– volume: 157
  start-page: 188
  issue: 1
  year: 2011
  ident: 2385_CR34
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.177311
– volume: 113
  start-page: E2047
  issue: 14
  year: 2016
  ident: 2385_CR8
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1602883113
– volume: 485
  start-page: 201
  issue: 7397
  year: 2012
  ident: 2385_CR39
  publication-title: Nature.
  doi: 10.1038/nature11112
– volume: 1
  start-page: 100066
  issue: 3
  year: 2020
  ident: 2385_CR10
  publication-title: The innovation.
  doi: 10.1016/j.xinn.2020.100066
– volume: 2
  start-page: 30
  issue: 1
  year: 2019
  ident: 2385_CR66
  publication-title: Commun Biol.
  doi: 10.1038/s42003-019-0281-1
– ident: 2385_CR80
  doi: 10.1093/nar/gkx382
– volume: 8
  start-page: 176
  issue: 1
  year: 2013
  ident: 2385_CR37
  publication-title: Nat Protoc.
  doi: 10.1038/nprot.2012.148
– volume: 20
  start-page: 285
  issue: 3
  year: 2018
  ident: 2385_CR71
  publication-title: Nat Cell Biol.
  doi: 10.1038/s41556-018-0045-z
– volume: 30
  start-page: 2114
  issue: 15
  year: 2014
  ident: 2385_CR74
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu170
– volume: 4
  start-page: e07295
  year: 2015
  ident: 2385_CR69
  publication-title: eLife.
  doi: 10.7554/eLife.07295
– volume: 24
  start-page: 1403
  issue: 12
  year: 2014
  ident: 2385_CR2
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.151
– volume: 60
  start-page: 3311
  issue: 12
  year: 2009
  ident: 2385_CR30
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/erp204
– volume: 111
  start-page: 9651
  issue: 26
  year: 2014
  ident: 2385_CR65
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1316717111
– volume: 27
  start-page: 1100
  issue: 9
  year: 2017
  ident: 2385_CR84
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.100
– volume: 155
  start-page: 793
  issue: 4
  year: 2013
  ident: 2385_CR6
  publication-title: Cell.
  doi: 10.1016/j.cell.2013.10.026
– volume: 38
  start-page: 186
  issue: 2
  year: 2016
  ident: 2385_CR20
  publication-title: Dev Cell.
  doi: 10.1016/j.devcel.2016.06.008
– volume: 163
  start-page: 684
  issue: 3
  year: 2015
  ident: 2385_CR50
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.09.036
– volume: 160
  start-page: 379
  issue: 1
  year: 2012
  ident: 2385_CR67
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.202408
– volume: 182
  start-page: 345
  issue: 1
  year: 2020
  ident: 2385_CR25
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00323
– volume: 30
  start-page: 815
  issue: 4
  year: 2018
  ident: 2385_CR60
  publication-title: Plant Cell.
  doi: 10.1105/tpc.17.00875
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: 2385_CR75
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp324
– volume: 23
  start-page: 2947
  issue: 21
  year: 2007
  ident: 2385_CR87
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btm404
– volume: 163
  start-page: 999
  issue: 4
  year: 2015
  ident: 2385_CR70
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.10.012
– volume: 26
  start-page: 712
  issue: 2
  year: 2014
  ident: 2385_CR62
  publication-title: Plant Cell.
  doi: 10.1105/tpc.113.122234
– volume: 62
  start-page: 25
  issue: 1
  year: 2020
  ident: 2385_CR56
  publication-title: J Integr Plant Biol.
  doi: 10.1111/jipb.12899
– volume: 505
  start-page: 117
  issue: 7481
  year: 2014
  ident: 2385_CR1
  publication-title: Nature.
  doi: 10.1038/nature12730
– volume: 30
  start-page: 968
  issue: 5
  year: 2018
  ident: 2385_CR22
  publication-title: Plant Cell.
  doi: 10.1105/tpc.17.00934
– volume: 38
  start-page: 576
  issue: 4
  year: 2010
  ident: 2385_CR42
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2010.05.004
– volume: 534
  start-page: 575
  issue: 7608
  year: 2016
  ident: 2385_CR13
  publication-title: Nature.
  doi: 10.1038/nature18298
– volume: 20
  start-page: 197
  issue: 2
  year: 2009
  ident: 2385_CR29
  publication-title: Curr Opin Biotechnol.
  doi: 10.1016/j.copbio.2009.02.015
– volume: 22
  start-page: 1909
  issue: 6
  year: 2010
  ident: 2385_CR47
  publication-title: Plant Cell.
  doi: 10.1105/tpc.110.073874
– volume: 462
  start-page: 660
  issue: 7273
  year: 2009
  ident: 2385_CR45
  publication-title: Nature.
  doi: 10.1038/nature08599
– volume: 14
  start-page: e10073363
  year: 2018
  ident: 2385_CR68
  publication-title: Plos Genet.
– volume: 177
  start-page: 339
  issue: 1
  year: 2018
  ident: 2385_CR72
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00245
– volume: 5
  start-page: 5630
  issue: 1
  year: 2014
  ident: 2385_CR41
  publication-title: Nat Commun.
  doi: 10.1038/ncomms6630
– volume: 57
  start-page: 15995
  issue: 49
  year: 2018
  ident: 2385_CR49
  publication-title: Angew Chem Int Ed Engl.
  doi: 10.1002/anie.201807942
– volume: 62
  start-page: 335
  issue: 3
  year: 2016
  ident: 2385_CR7
  publication-title: Mol Cell.
  doi: 10.1016/j.molcel.2016.03.021
– volume: 221
  start-page: 1724
  issue: 4
  year: 2019
  ident: 2385_CR31
  publication-title: New Phytol.
  doi: 10.1111/nph.15545
– volume: 16
  start-page: S170
  issue: suppl_1
  year: 2004
  ident: 2385_CR27
  publication-title: Plant Cell.
  doi: 10.1105/tpc.019158
– volume: 11
  start-page: 1180
  issue: 9
  year: 2014
  ident: 2385_CR40
  publication-title: RNA Biol.
  doi: 10.4161/rna.36281
– volume: 103
  start-page: 1988
  issue: 6
  year: 2006
  ident: 2385_CR46
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0505667103
– start-page: 139
  volume-title: 2013 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2013
  ident: 2385_CR78
  doi: 10.1109/BIBM.2013.6732477
– volume: 57
  start-page: 289
  year: 1995
  ident: 2385_CR82
  publication-title: J Roy Stat Soc B.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 62
  start-page: 5079
  issue: 14
  year: 2011
  ident: 2385_CR57
  publication-title: J Exp Bot.
  doi: 10.1093/jxb/err207
– volume: 11
  start-page: 415
  year: 2010
  ident: 2385_CR77
  publication-title: Bioinformatics.
– volume: 106
  start-page: 17588
  issue: 41
  year: 2009
  ident: 2385_CR63
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.0907095106
– volume: 9
  start-page: R137
  issue: 9
  year: 2008
  ident: 2385_CR76
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 29
  start-page: 2995
  issue: 12
  year: 2017
  ident: 2385_CR21
  publication-title: Plant Cell.
  doi: 10.1105/tpc.16.00912
– volume: 20
  start-page: 156
  issue: 1
  year: 2019
  ident: 2385_CR36
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1771-7
– volume: 149
  start-page: 1635
  issue: 7
  year: 2012
  ident: 2385_CR43
  publication-title: Cell.
  doi: 10.1016/j.cell.2012.05.003
– volume: 16
  start-page: 272
  issue: 1
  year: 2015
  ident: 2385_CR44
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0839-2
– volume: 167
  start-page: 915
  issue: 3
  year: 2015
  ident: 2385_CR59
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.251314
– volume: 15
  start-page: 707
  issue: 6
  year: 2014
  ident: 2385_CR5
  publication-title: Cell Stem Cell.
  doi: 10.1016/j.stem.2014.09.019
– volume: 25
  start-page: 2730
  issue: 20
  year: 2009
  ident: 2385_CR79
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp472
– volume: 28
  start-page: 511
  issue: 5
  year: 2010
  ident: 2385_CR81
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 10
  start-page: 93
  issue: 2
  year: 2014
  ident: 2385_CR11
  publication-title: Nat Chem Biol.
  doi: 10.1038/nchembio.1432
– volume: 215
  start-page: 157
  issue: 1
  year: 2017
  ident: 2385_CR53
  publication-title: New Phytol.
  doi: 10.1111/nph.14586
– volume: 24
  start-page: 177
  issue: 2
  year: 2014
  ident: 2385_CR14
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 64
  start-page: 219
  issue: 1
  year: 2013
  ident: 2385_CR28
  publication-title: Annu Rev Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120057
– volume: 43
  start-page: D222
  issue: D1
  year: 2015
  ident: 2385_CR86
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1221
SSID ssj0019426
ssj0017866
Score 2.6464405
Snippet Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it...
Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it remains unclear...
BACKGROUND: Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However, it...
Abstract Background Epigenetic mark such as DNA methylation plays pivotal roles in regulating ripening of both climacteric and non-climacteric fruits. However,...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 168
SubjectTerms 3' Untranslated regions
Abscisic acid
Biosynthesis
Cell growth
climacteric fruits
Codons
DNA methylation
Epigenetics
Fruits
Genes
Horticulture
m6A methylation
m6A methyltransferase
Mammals
methyltransferases
mRNA stability
N6-methyladenosine
non-climacteric fruits
Physiology
Proteins
Ripening
RNA
RNA modification
Signal transduction
Stem cells
stop codon
strawberries
Strawberry
tomatoes
Translation efficiency
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0PRB3aRFhd6KiGzLepzKpjSEQPdQGtib0LNdSOzU6yXsv4_Gj2192aOtMQjNQ9_Io_kQ-iwFC0xYSkzwkTDmJTEqAbnIq2iD8jxSuCj8Y8mvbtj1qlqNB26bsaxyiol9oPaNgzPyc7i0zVKyIMuv938JsEbB39WRQuMpegaty8CqxWqfcOVCAlYZHxQrhqtGUIBYKT7doJH8fJMCeaUIVCvAFlYROtul-mb-MwQ6r5_8b0O6fImORySJF4PqT9CTUL9Czwduyd1rZJecAD307tZ4aAie0CT-uVzgu8ZDdVCvENwOTPRhg-HE48GGtt3h2G7XHU7BJMCZCV7X2NR4cbEgE2Fuh-8MMHa9QTeX3399uyIjoQJxvBRdElNBSENNGU0eIs2jt5QZU0TqCm-Myn3y7zz3QjoafbQqGptSGh88lcGZ8i06qps6vENYCRe9SEPKBGZ5bhIQpAaSmYQJlC8zlE8LqN3YbRxIL251n3VIrodF12nRdb_ommboy_6b-6HXxkHpC9DLXhL6ZPcvmva3Ht1Oh1CkdLvyzLoqGWWanSsA81CrRKTRZehs0qoenXej_5lahj7th5Pbwb8UU4dmCzIllxDB6CEZgMcpIeUZEjOLmU16PlKv__RNvmUuyoSO3x-e4Cl6UfRmywktz9BR127Dh4SSOvuxd4VH6QQQRA
  priority: 102
  providerName: ProQuest
Title N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner
URI https://www.proquest.com/docview/2543492483
https://www.proquest.com/docview/2536800530
https://www.proquest.com/docview/2551937166
https://pubmed.ncbi.nlm.nih.gov/PMC8173835
https://doaj.org/article/ee21325d4bc54e4282c282010b97f0fc
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtSqGXkvRB3aRGhd6KiPalx9EuCSFQU0wDphchrSRqSNZhvab433dmHyZ7SS657GE1u0ijGc030miGkG9K5iGXjjMbfGR57hWzGoBcFEV0QXsROV4U_rkQVzf59apYPSj1hTFhXXrgjnHnIaTgMBU-d2UBvwUPoUzRanGnZeSxxNUXbN7gTPXnBxoMz3BFRonzLazUhWYYjoA2qmB8ZIbabP0jiDkOkHxgcS6PydseKtJZ18UT8iJU78jrrnjk_j1xC8Gw_vP-1nrM-A1wkS4XM3q38Rj-03Kc1l2p-bCluKXxz4W63tNY79YNhdUi4KYIXVfUVnQ2n7GhIm5D7yyW5PpAbi4vfv-4Yn3FBFaKTDZApoNUltss2iREnkTveG5tGnmZemt14kGBk8RLVfLoo9PROvBZfPBchdJmH8lRtanCJ0K1LKOX0KRtyJ1ILCA9btFbAaOvfTYhycBAU_bpxLGqxa1p3QolTMd0A0w3LdMNn5Dvh2_uu2Qaj1LPcV4OlJgIu30B4mF68TBPiceEnA2zanrt3BpMAJCD46lgFF8PzaBXeFhiq7DZIU0mFC5R_DEaxL_gcYoJkSOJGXV63FKt_7ZZvFUiM4C_n59jlKfkTdoKt2A8OyNHTb0LXwAsNW5KXsqVnJJX84vFr-W01RJ4Lud__gNZnBc0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkuFDASnJBV78uPA0IpUKW0zQG1Um7Gu7YhUrspm0RV_hS_kZl9BPaSW48bOytrPI9vvJ75CHmnZOYzWXBmvQssy5xiVgOQCyIPhddOBI6FwmcTMb7Ivk3z6Q7509fC4LXK3ic2jtrNSzwjP8Ci7QySBZV-uv7NkDUKv672FBqtWpz49Q2kbIuPx19gf98nydHX889j1rEKsFKkcsmc114qy20abOwDj4MreGZtEniZOGt17EDJ49hJVfLgQqGDLQDXO--48qVN4b13yF0IvByTPTndJHixVIiNugedJW1pE154zLXoK3aUOFhA4Mg1w9sRGDJzxgdRsSEPGCDe4X3N_wLg0SPysEOudNSq2mOy46sn5F7LZbl-SoqJYEhHvb60DhuQA3ql3ycjejV3eBupUQBat8z3fkHxhOWm8HW9pqFezZYUnJfHMxo6q6it6OhwxHqC3iW9ssgQ9oxc3Iqon5Pdal75PUK1LIOTMKStzwoRWwCe3GLyBBhEuzQicS9AU3bdzZFk49I0WY4SphW6AaGbRuiGR-TD5j_XbW-PrbMPcV82M7Evd_PDvP5pOjM33ieQ3ucuK8ocjABWVyaIsXihZeChjMh-v6umcxYL80-1I_J2Mwxmjt9ubOXnK5yTCoUek2-bg3AcEmARETnQmMGihyPV7FfTVFzFMgU0_mL7At-Q--Pzs1Nzejw5eUkeJI0KC8bTfbK7rFf-FSC0ZfG6MQtKfty2Hf4FbEdQyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N6-methyladenosine+RNA+modification+regulates+strawberry+fruit+ripening+in+an+ABA-dependent+manner&rft.jtitle=Genome+biology&rft.au=Zhou%2C+Leilei&rft.au=Tang%2C+Renkun&rft.au=Li%2C+Xiaojing&rft.au=Tian%2C+Shiping&rft.date=2021-06-03&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=22&rft.issue=1&rft.spage=168&rft_id=info:doi/10.1186%2Fs13059-021-02385-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon