MaGIC: a machine learning tool set and web application for monoallelic gene inference from chromatin

Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of c...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 20; no. 1; pp. 106 - 5
Main Authors Vinogradova, Svetlana, Saksena, Sachit D., Ward, Henry N., Vigneau, Sébastien, Gimelbrant, Alexander A.
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.02.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-019-2679-7

Cover

Loading…
Abstract Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for m ono a llelic g ene i nference from c hromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic . Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
AbstractList Abstract Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging.BACKGROUNDA large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging.We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic .RESULTSWe previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic .The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.CONCLUSIONThe pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for m ono a llelic g ene i nference from c hromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic . Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic . The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.
Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. Keywords: Monoallelic expression, Chromatin, Chromatin signature, Software pipeline, Shiny app
ArticleNumber 106
Audience Academic
Author Ward, Henry N.
Gimelbrant, Alexander A.
Vinogradova, Svetlana
Saksena, Sachit D.
Vigneau, Sébastien
Author_xml – sequence: 1
  givenname: Svetlana
  orcidid: 0000-0002-5419-8812
  surname: Vinogradova
  fullname: Vinogradova, Svetlana
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School
– sequence: 2
  givenname: Sachit D.
  surname: Saksena
  fullname: Saksena, Sachit D.
  organization: Computational and Systems Biology, Massachusetts Institute of Technology
– sequence: 3
  givenname: Henry N.
  surname: Ward
  fullname: Ward, Henry N.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Program
– sequence: 4
  givenname: Sébastien
  surname: Vigneau
  fullname: Vigneau, Sébastien
  email: sebastien_vigneau@dfci.harvard.edu
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School
– sequence: 5
  givenname: Alexander A.
  surname: Gimelbrant
  fullname: Gimelbrant, Alexander A.
  email: gimelbrant@mail.dfci.harvard.edu
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30819107$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tD-imCLppF04l2bKlLgIh9DGQUuhjLa7lK48GW5pKnj7-fTWZpMmEthhscfWdI-twjosDHzwWxVNGTxmTzavEuBSqpEyVvGlV2T4ojljdspIzKg7urA-L45RWlLJWUvGoOKyoZIrR9qjoP8C7xcVrAmQCs3QeyYgQvfMDmUMYScKZgO_JD-wIrNejMzC74IkNkUzBBxhHzEMyYJY6bzGiN0hsDBMxy_zOuH9cPLQwJnxy_T0pvr598-XifXn5MR9-flmapmrn0ki0nFqsK0O5sVR1QtC-QmE7KhgHhpxjZawA3nSGQg8tr1tjkYLgrBHVSbHY-fYBVnod3QTxlw7g9NUgxEFDnJ0ZUQMopSq0soGuNohSGtuBla2qm45xlb3Odl7rTTdhb9DPEcY90_0d75Z6CN91U6maViwbvLg2iOHbBtOsJ5cMjiN4DJukOZOt4KJRMqPP76GrsIk-R5UpVdVSVQ29pQbIF8hZh3yu2ZrqcyFZXdOmbjN1-hcqPz1OzuT-WJfne4KXe4LMzPhzHmCTkl58_rTPPrsbyp80bvqUgXYHmBhSimi1cfNVY_JfuFEzqrfN1bvm6txcvW2u3irZPeWN-f80fKdJmfUDxtvc_i36Dfbc_n4
CitedBy_id crossref_primary_10_1038_s41467_021_26798_4
crossref_primary_10_1038_s41467_021_23544_8
crossref_primary_10_1136_bmj_o1154
crossref_primary_10_1016_j_gene_2024_149102
crossref_primary_10_1093_bioinformatics_btad254
crossref_primary_10_1038_s41586_024_08346_4
Cites_doi 10.1038/ng.3493
10.1038/nature11247
10.1038/ncomms2627
10.2307/2529310
10.3389/fgene.2017.00191
10.1016/j.tig.2014.03.003
10.1093/bioinformatics/btu056
10.1534/g3.115.018853
10.1146/annurev-genet-120215-035120
10.1186/gb-2012-13-2-r10
10.1101/gr.137570.112
10.7554/eLife.01256
10.18637/jss.v028.i05
10.1016/j.gde.2013.09.001
10.1126/science.1148910
10.1093/bioinformatics/btq351
10.1038/mp.2017.13
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-019-2679-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database



PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 5
ExternalDocumentID oai_doaj_org_article_aa9993ef86ab4cee88cfbaf87946b129
PMC6394031
A581440647
30819107
10_1186_s12859_019_2679_7
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: National Institutes of Health
  grantid: GM114864
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health
  grantid: GM114864
– fundername: ;
  grantid: GM114864
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
M0N
NPM
PMFND
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-c8ef20fe43c02cf09b550d3e5fb0512a1e22e3cf5a26bc0ada7247cfe0a521653
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 13:51:44 EDT 2025
Thu Sep 04 22:26:29 EDT 2025
Fri Jul 25 10:31:02 EDT 2025
Tue Jun 17 21:46:32 EDT 2025
Tue Jun 10 20:29:12 EDT 2025
Fri Jun 27 04:22:33 EDT 2025
Wed Feb 19 02:33:50 EST 2025
Tue Jul 01 03:38:27 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chromatin
Chromatin signature
Software pipeline
Monoallelic expression
Shiny app
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-c8ef20fe43c02cf09b550d3e5fb0512a1e22e3cf5a26bc0ada7247cfe0a521653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5419-8812
OpenAccessLink https://www.proquest.com/docview/2193489360?pq-origsite=%requestingapplication%
PMID 30819107
PQID 2193489360
PQPubID 44065
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_aa9993ef86ab4cee88cfbaf87946b129
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394031
proquest_miscellaneous_2187525698
proquest_journals_2193489360
gale_infotracmisc_A581440647
gale_infotracacademiconefile_A581440647
gale_incontextgauss_ISR_A581440647
pubmed_primary_30819107
crossref_citationtrail_10_1186_s12859_019_2679_7
crossref_primary_10_1186_s12859_019_2679_7
springer_journals_10_1186_s12859_019_2679_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-28
PublicationDateYYYYMMDD 2019-02-28
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References A Chess (2679_CR1) 2016; 50
A Gimelbrant (2679_CR4) 2007; 318
B Gui (2679_CR5) 2017; 8
2679_CR8
JR Landis (2679_CR9) 1977; 33
V Savova (2679_CR14) 2013; 23
ENCODE Project Consortium (2679_CR3) 2012; 489
WJ Kent (2679_CR7) 2010; 26
LM Zwemer (2679_CR17) 2012; 13
V Savova (2679_CR16) 2017; 22
A Nag (2679_CR11) 2015; 5
ES Polson (2679_CR13) 2013; 4
A Pohl (2679_CR12) 2014; 30
A Nag (2679_CR10) 2013; 2
V Savova (2679_CR15) 2016; 48
MA Eckersley-Maslin (2679_CR2) 2014; 30
G Ha (2679_CR6) 2012; 22
References_xml – volume: 48
  start-page: 231
  year: 2016
  ident: 2679_CR15
  publication-title: Nat Genet
  doi: 10.1038/ng.3493
– volume: 489
  start-page: 57
  year: 2012
  ident: 2679_CR3
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 4
  start-page: 1623
  year: 2013
  ident: 2679_CR13
  publication-title: Nat Commun
  doi: 10.1038/ncomms2627
– volume: 33
  start-page: 159
  year: 1977
  ident: 2679_CR9
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 8
  start-page: 191
  year: 2017
  ident: 2679_CR5
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00191
– volume: 30
  start-page: 237
  year: 2014
  ident: 2679_CR2
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2014.03.003
– volume: 30
  start-page: 1618
  year: 2014
  ident: 2679_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu056
– volume: 5
  start-page: 1713
  year: 2015
  ident: 2679_CR11
  publication-title: G3
  doi: 10.1534/g3.115.018853
– volume: 50
  start-page: 317
  year: 2016
  ident: 2679_CR1
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-120215-035120
– volume: 13
  start-page: R10
  year: 2012
  ident: 2679_CR17
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-2-r10
– volume: 22
  start-page: 1995
  year: 2012
  ident: 2679_CR6
  publication-title: Genome Res
  doi: 10.1101/gr.137570.112
– volume: 2
  year: 2013
  ident: 2679_CR10
  publication-title: Elife
  doi: 10.7554/eLife.01256
– ident: 2679_CR8
  doi: 10.18637/jss.v028.i05
– volume: 23
  start-page: 642
  year: 2013
  ident: 2679_CR14
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2013.09.001
– volume: 318
  start-page: 1136
  year: 2007
  ident: 2679_CR4
  publication-title: Science
  doi: 10.1126/science.1148910
– volume: 26
  start-page: 2204
  year: 2010
  ident: 2679_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq351
– volume: 22
  start-page: 1785
  year: 2017
  ident: 2679_CR16
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.13
SSID ssj0017805
Score 2.3185353
Snippet Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by...
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by...
Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by...
Abstract Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106
SubjectTerms Algorithms
Alleles
Animal models
Applications programs
Artificial intelligence
Biochemistry
Bioinformatics
Biology
Biomedical and Life Sciences
Business metrics
Cancer
Cell culture
Chromatin
Chromatin signature
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data processing
Datasets
Epigenetic inheritance
Epigenetics
Gene expression
Generalized linear models
Genes
Genetic research
Genomes
House mouse
Inference
Internet software
Learning algorithms
Life Sciences
Machine learning
Mammals
Mapping
Methods
Microarrays
Monoallelic expression
Open source software
Pipelines
Shiny app
Software
Software pipeline
Source code
Transcriptome analysis
Web services
Web site management software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kUPAi1p_RWlYRBCU0b3ezSXqrxdoK9aAWeltmN7ttoSbS5B38751JNq8vFfXi5RGyE14yOzvfDDv7DWOvba2l8qJKHaJ7qgqdp4BIQSeWbRaK4MfegCef9dGp-nSWn621-qKasJEeeFTcLgCGMNKHUoNV6NHL0gULoSRidItgRd4XMW9KpuL-ATH1xz3MRal3uwXxtGHaXKVCF1VazFBoIOv_3SWvYdLteslbm6YDFh3eZ_diEMn3x5ffYnd884Btjm0lfz5k9Ql8PD7Y48C_D6WSnsfeEOe8b9sr3vmeQ1Nz9KB8bQObY_zK0Spbaq-CNznalueX04lATidRuLvAXxRvHrHTww_fDo7S2E0hdVoWfepKH0QWvJIuEy5klcXkpJY-DxYXpoCFF8JLF3IQ2roMaiiEKlzwGSDE61w-ZhtN2_injFeVwzjSAyC0KQBpc0Q4yOtaaajxMmHZpF3jItU4dby4MkPKUWozTojBCTE0IaZI2NvVIz9Gno2_Cb-nKVsJEkX2cAMNx0TDMf8ynIS9ogk3RILRUJXNOSy7zhx__WL285L2vLXCf3oThUKLX-AgHlpAPRBv1kxyeyaJq9TNhye7MtFLdAbRQhL5j84S9nI1TE9S5Vvj2yXJYEaJcWmFWn0ymuHquyXFc5i_J6yYGehMMfOR5vJi4BDHwFShP0_Yu8mUb17rj3p_9j_0_pzdFbQQB1qAbbbRXy_9CwzserszrOFf1UFJpw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOgdgi_it3VTogiCUtYladr6ItvY3IQNmQ72Fk7T5G4w223tffDfe06b260T91IuzSm9Od_p-WLsQ1lpqZwoYovWPVaZTmNAS0EVy2XiM--G2YAHh3rvWH0_SU_CB7c2pFUudWKvqKvG0jfydZQsSY1SdPL14jKmqVEUXQ0jNO6zFVTBeTpjK1s7hz-OxjgCdewPscyNXK-3BET5QUUsdFbE2cQa9U37_1XNN2zT7bzJW8HT3ibtPmaPgjPJNwfqP2H3XP2UPRjGS_55xqoD-La__YUD_92nTDoeZkTMedc057x1HYe64qhJ-Y1ANkc_luN2Gxqzgjc58pjjZ8vKQE4VKdye4hXB6-fseHfn1_ZeHKYqxFbLrItt7rxIvFPSJsL6pCjxkFJJl_oSBVTAhhPCSetTELq0CVSQCZVZ7xJAU69T-YLN6qZ2rxgvCov-pANAE6cAZJmipYO0qpSGCn9GLFli19jQcpwmX5yb_uiRazMQxCBBDBHEZBH7ND5yMfTbuAt4i0g2AlKr7P5GczU3QfIMAPrA0vlcQ6nQJchz60vwOXXWL9Hbidh7IrihZhg1ZdvMYdG2Zv_nkdlMc4p9a4Vv-hiAfIM7sBCKFxAP1D9rArk2gURptdPlJV-ZoC1ac83bEXs3LtOTlAFXu2ZBMHiyRP-0QKy-HNhw3Lckvw7P8RHLJgw6Qcx0pT477XuJo4OqUK9H7POSla__1n_x_vruTayyh4JErC_8X2Oz7mrh3qDr1pVvg3z-BTCcQR4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0Ivgifje1yiqCoARzu5tN4ls9rK1QH9RC35bZzW5bqImY3EP_e2eSvXipH-DLcWRnuct87MwwO79h7IWttVReVKlD756qQucpoKegjmWbhSL4cTbg0Sd9cKw-nuQnESyaemE26_eLUr_pFoSwhglvlQpdVGlxnd3ICWaM6rJ6ORUMCJo_Fi3_uG3mdgZ0_t_P4A0ndPWC5JUq6eB89u-w2zFq5HujmO-ya765x26OcyQv77P6CD4cLt9y4N-Gu5Gex2EQp7xv2wve-Z5DU3M8MvlGxZpjwMpRDVuap4IPOSqT5-frFkBOrSfcneEnkjcP2PH--6_LgzSOT0idlkWfutIHkQWvpMuEC1llMRuppc-DRUsUsPBCeOlCDkJbl0ENhVCFCz4D9Ok6lw_ZVtM2fpvxqnIYOHoA9GUKQNocXRrkda001Pg1Ydmau8ZFbHEacXFhhhyj1GYUiEGBGBKIKRL2atryfQTW-BfxOxLZREiY2MMDVBUTTcwAYLArfSg1WIW-vyxdsBBKgtC3GNYk7DkJ3BDqRUPXak5h1XXm8Mtns5eXVOTWCn_pZSQKLb6Bg9ilgHwgoKwZ5e6MEs3SzZfXemXisdAZdA-S0H50lrBn0zLtpKtujW9XRIMpJAaiFXL10aiG03tLCuAwYU9YMVPQGWPmK8352QAajpGowgM8Ya_Xqvzrb_2V7zv_Rf2Y3RJkcUPD_y7b6n-s_BMM2Xr7dDDWn34rOFo
  priority: 102
  providerName: Springer Nature
Title MaGIC: a machine learning tool set and web application for monoallelic gene inference from chromatin
URI https://link.springer.com/article/10.1186/s12859-019-2679-7
https://www.ncbi.nlm.nih.gov/pubmed/30819107
https://www.proquest.com/docview/2193489360
https://www.proquest.com/docview/2187525698
https://pubmed.ncbi.nlm.nih.gov/PMC6394031
https://doaj.org/article/aa9993ef86ab4cee88cfbaf87946b129
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELb2IiS-IN4JjMogJCRQIE0cO0FCqKvWbZU6oY1K_WY5jt1NKgm0qcT-PXdO0i1jIL6klX1pm_Od77nafo6QN1nOI2bC1NcQ3X0meOwriBR4YjkLrLCmrg04OeFHUzaexbMt0pa3ahS4ujW1w3pS0-Xiw6-fl1_A4T87h0_4x1UfWdggKU79kIvUF9tkFwITRyOfsKtFBaTvd4eNRN-HTCduFjlv_YhOmHJs_n_O2deC1s0NlTdWVV2wGt0n9xqUSQe1WTwgW6Z4SO7UdScvH5F8og6Ph5-oot_dXkpDm-IRc1qV5YKuTEVVkVOYYum1FW4KAJeC2ZZYfwUaKRifoRftkUGKR1WoPocriBePyXR08G145DflFnzNI1H5OjE2DKxhkQ5CbYM0g-wlj0xsM_DcUPVNGJpI21iFPNOBypUImdDWBAowAI-jJ2SnKAvzjNA01QA0jVIQ-5hSURZDCFRxnjOucnjrkaDVrtQNFzmWxFhIl5MkXNYDImFAJA6IFB55t7nlR03E8S_hfRyyjSByaLuGcjmXjUtKpQAcR8YmXGUMsEKSaJspmyDlfgYwyCOvccAlsmQUuA1nrtarlTw-O5WDOMFFcc7gm942QraEJ9CqOdUAekBirY7kXkcS3Fh3u1u7kq0XSAgnEbID8cAjrzbdeCdujStMuUYZSDkBuKag1ae1GW6eO0LABwm-R0THQDuK6fYUF-eOZByQK4MJ3yPvW1O--ll_1fvz_9bGC3I3RG9z5AB7ZKdars1LgHdV1iPbYibgmowOe2R3MBifjeF1_-Dk6ym0Dvmw5_446Tnn_g1oAU-A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviG8KAwwCIYGipbbjJEgIjY_SsnUPsEl7MxfH7iaNZCyt0P4p_kbu8tEtQ-xtL1UVX9rm7nx37tm_H2MvslxL5UQaWMzugYp1FABmCjqxnIU-9q7hBpxu6_Gu-roX7a2wP91ZGNpW2cXEOlDnpaX_yNdxZkkCStHh-6NfAbFGUXe1o9Bo3GLTnfzGJVv1bvIJ7ftSiNHnnY_joGUVCKyW8TywifMi9E5JGwrrwzTDIj2XLvIZOqiAoRPCSesjEDqzIeQQCxVb70LAVKeJJQJD_hUlZUpY_cnoy7JrQfwAbed0mOj1akjocLhYTwOh4zSIe7mvpgj4NxGcyYTnd2mea9XWGXB0k91oS1e-0fjaLbbiitvsakNmeXKH5VNABbzlwH_WGzQdbxkpZnxeloe8cnMORc4xbvMzbXOOVTNH5ZZE6oIXOXq04wfdOURO51-43cdXFC_ust1L0fY9tlqUhXvAeJparF4dACZUBSCzCPMqRHmuNOT4dsDCTrvGtgDnxLNxaOqFTqJNYxCDBjFkEBMP2OvlLUcNusdFwh_IZEtBAuauL5THM9POcwOAFbd0PtGQKSxAksT6DHxCOP4Z1lYD9pwMbgh6o6C9PTNYVJWZfP9mNqKEOu1a4Te9aoV8iU9goT0qgXogtK6e5FpPEmOD7Q93fmXa2FSZ05k0YM-Ww3Qn7bcrXLkgGVzHYjWcolbvN264fG5JVeQwxA-Pew7aU0x_pDjYr5HLsRxWmEUG7E3nyqc_6796f3jxQzxl18Y70y2zNdnefMSuC5puNeTAGludHy_cYywa59mTeqZy9uOyQ8NfPd99lA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCMQL4nMUBgSEhASq1kvatOVtHBw7YBMCJu0tctLkNmm009p74L_H7hfr-JB4OZ0aR3eN7diW7Z8Ze24KJWMn8tCidQ_jVCUhoKWgjmUT-dS7bjbg3r7aPYg_HCaH_ZzTeqh2H1KSXU8DoTSVzfZp4TsVz9R2PSPcNQyD81CoNA_Ty-wKBiozAs-fq_mYRiDA_j6V-cdtE2PUYvb_fjOfM00XyyYv5E5bk7S4yW70viTf6Zh_i11y5W12tZsu-eMOK_bg_XL-mgP_3lZMOt6PiFjxpqpOeO0aDmXB8SLl5_LYHN1YjsJZ0ZQVfMhRxBw_HhoDOTWkcHuEn0he3mUHi3ff5rthP1QhtEqmTWgz50XkXSxtJKyPcoMxSiFd4g3qp4CZE8JJ6xMQytgICkhFnFrvIkBLrxJ5j22UVenuM57nFt1JB4AWLgaQJkFDB0lRxAoK_BqwaDhdbXvEcRp8caLbyCNTumOIRoZoYohOA_Zy3HLawW38i_gNsWwkJKTs9kF1ttK94mkAdIGl85kCE6NHkGXWG_AZAesbdHYC9owYrgkLo6RimxWs61ovv37RO0lGqW8V4y-96Il8hW9goe9dwHMg-KwJ5daEEpXVTpcHudL9ZVFrNBqSMIBUFLCn4zLtpAK40lVrosHAEt3THE91sxPD8b0luXUYxgcsnQjo5GCmK-XxUQsljv5pjNd6wF4Novzrb_313B_8F_UTdu3z24X-tNz_-JBdF6R8LSLAFttoztbuEfp0jXnc6u1Pc81Djg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaGIC%3A+a+machine+learning+tool+set+and+web+application+for+monoallelic+gene+inference+from+chromatin&rft.jtitle=BMC+bioinformatics&rft.au=Vinogradova%2C+Svetlana&rft.au=Saksena%2C+Sachit+D&rft.au=Ward%2C+Henry+N&rft.au=Vigneau%2C+S%C3%A9bastien&rft.date=2019-02-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-2679-7&rft.externalDocID=A581440647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon