MaGIC: a machine learning tool set and web application for monoallelic gene inference from chromatin
Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of c...
Saved in:
Published in | BMC bioinformatics Vol. 20; no. 1; pp. 106 - 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
28.02.2019
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-019-2679-7 |
Cover
Loading…
Abstract | Background
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging.
Results
We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for
m
ono
a
llelic
g
ene
i
nference from
c
hromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at
https://github.com/gimelbrantlab/magic
.
Conclusion
The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. |
---|---|
AbstractList | Abstract Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging.BACKGROUNDA large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging.We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic .RESULTSWe previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic .The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks.CONCLUSIONThe pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for m ono a llelic g ene i nference from c hromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic . Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic. The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at https://github.com/gimelbrantlab/magic . The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by allele-specific gene expression that varies between clonal cell lineages. MAE is highly cell-type specific and mapping it in a large number of cell and tissue types can provide insight into its biological function. Its detection, however, remains challenging. Results We previously reported that a sequence-independent chromatin signature identifies, with high sensitivity and specificity, genes subject to MAE in multiple tissue types using readily available ChIP-seq data. Here we present an implementation of this method as a user-friendly, open-source software pipeline for monoallelic gene inference from chromatin (MaGIC). The source code for the MaGIC pipeline and the Shiny app is available at Conclusion The pipeline can be used by researchers to map monoallelic expression in a variety of cell types using existing models and to train new models with additional sets of chromatin marks. Keywords: Monoallelic expression, Chromatin, Chromatin signature, Software pipeline, Shiny app |
ArticleNumber | 106 |
Audience | Academic |
Author | Ward, Henry N. Gimelbrant, Alexander A. Vinogradova, Svetlana Saksena, Sachit D. Vigneau, Sébastien |
Author_xml | – sequence: 1 givenname: Svetlana orcidid: 0000-0002-5419-8812 surname: Vinogradova fullname: Vinogradova, Svetlana organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School – sequence: 2 givenname: Sachit D. surname: Saksena fullname: Saksena, Sachit D. organization: Computational and Systems Biology, Massachusetts Institute of Technology – sequence: 3 givenname: Henry N. surname: Ward fullname: Ward, Henry N. organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, University of Minnesota-Twin Cities, Bioinformatics and Computational Biology Program – sequence: 4 givenname: Sébastien surname: Vigneau fullname: Vigneau, Sébastien email: sebastien_vigneau@dfci.harvard.edu organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School – sequence: 5 givenname: Alexander A. surname: Gimelbrant fullname: Gimelbrant, Alexander A. email: gimelbrant@mail.dfci.harvard.edu organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30819107$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7tD-imCLppF04l2bKlLgIh9DGQUuhjLa7lK48GW5pKnj7-fTWZpMmEthhscfWdI-twjosDHzwWxVNGTxmTzavEuBSqpEyVvGlV2T4ojljdspIzKg7urA-L45RWlLJWUvGoOKyoZIrR9qjoP8C7xcVrAmQCs3QeyYgQvfMDmUMYScKZgO_JD-wIrNejMzC74IkNkUzBBxhHzEMyYJY6bzGiN0hsDBMxy_zOuH9cPLQwJnxy_T0pvr598-XifXn5MR9-flmapmrn0ki0nFqsK0O5sVR1QtC-QmE7KhgHhpxjZawA3nSGQg8tr1tjkYLgrBHVSbHY-fYBVnod3QTxlw7g9NUgxEFDnJ0ZUQMopSq0soGuNohSGtuBla2qm45xlb3Odl7rTTdhb9DPEcY90_0d75Z6CN91U6maViwbvLg2iOHbBtOsJ5cMjiN4DJukOZOt4KJRMqPP76GrsIk-R5UpVdVSVQ29pQbIF8hZh3yu2ZrqcyFZXdOmbjN1-hcqPz1OzuT-WJfne4KXe4LMzPhzHmCTkl58_rTPPrsbyp80bvqUgXYHmBhSimi1cfNVY_JfuFEzqrfN1bvm6txcvW2u3irZPeWN-f80fKdJmfUDxtvc_i36Dfbc_n4 |
CitedBy_id | crossref_primary_10_1038_s41467_021_26798_4 crossref_primary_10_1038_s41467_021_23544_8 crossref_primary_10_1136_bmj_o1154 crossref_primary_10_1016_j_gene_2024_149102 crossref_primary_10_1093_bioinformatics_btad254 crossref_primary_10_1038_s41586_024_08346_4 |
Cites_doi | 10.1038/ng.3493 10.1038/nature11247 10.1038/ncomms2627 10.2307/2529310 10.3389/fgene.2017.00191 10.1016/j.tig.2014.03.003 10.1093/bioinformatics/btu056 10.1534/g3.115.018853 10.1146/annurev-genet-120215-035120 10.1186/gb-2012-13-2-r10 10.1101/gr.137570.112 10.7554/eLife.01256 10.18637/jss.v028.i05 10.1016/j.gde.2013.09.001 10.1126/science.1148910 10.1093/bioinformatics/btq351 10.1038/mp.2017.13 |
ContentType | Journal Article |
Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: Copyright © 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-019-2679-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 5 |
ExternalDocumentID | oai_doaj_org_article_aa9993ef86ab4cee88cfbaf87946b129 PMC6394031 A581440647 30819107 10_1186_s12859_019_2679_7 |
Genre | Journal Article |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GrantInformation_xml | – fundername: National Institutes of Health grantid: GM114864 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health grantid: GM114864 – fundername: ; grantid: GM114864 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 M0N NPM PMFND 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c637t-c8ef20fe43c02cf09b550d3e5fb0512a1e22e3cf5a26bc0ada7247cfe0a521653 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 13:51:44 EDT 2025 Thu Sep 04 22:26:29 EDT 2025 Fri Jul 25 10:31:02 EDT 2025 Tue Jun 17 21:46:32 EDT 2025 Tue Jun 10 20:29:12 EDT 2025 Fri Jun 27 04:22:33 EDT 2025 Wed Feb 19 02:33:50 EST 2025 Tue Jul 01 03:38:27 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Sat Sep 06 07:27:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Chromatin Chromatin signature Software pipeline Monoallelic expression Shiny app |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-c8ef20fe43c02cf09b550d3e5fb0512a1e22e3cf5a26bc0ada7247cfe0a521653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5419-8812 |
OpenAccessLink | https://www.proquest.com/docview/2193489360?pq-origsite=%requestingapplication% |
PMID | 30819107 |
PQID | 2193489360 |
PQPubID | 44065 |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aa9993ef86ab4cee88cfbaf87946b129 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6394031 proquest_miscellaneous_2187525698 proquest_journals_2193489360 gale_infotracmisc_A581440647 gale_infotracacademiconefile_A581440647 gale_incontextgauss_ISR_A581440647 pubmed_primary_30819107 crossref_citationtrail_10_1186_s12859_019_2679_7 crossref_primary_10_1186_s12859_019_2679_7 springer_journals_10_1186_s12859_019_2679_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-28 |
PublicationDateYYYYMMDD | 2019-02-28 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2019 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | A Chess (2679_CR1) 2016; 50 A Gimelbrant (2679_CR4) 2007; 318 B Gui (2679_CR5) 2017; 8 2679_CR8 JR Landis (2679_CR9) 1977; 33 V Savova (2679_CR14) 2013; 23 ENCODE Project Consortium (2679_CR3) 2012; 489 WJ Kent (2679_CR7) 2010; 26 LM Zwemer (2679_CR17) 2012; 13 V Savova (2679_CR16) 2017; 22 A Nag (2679_CR11) 2015; 5 ES Polson (2679_CR13) 2013; 4 A Pohl (2679_CR12) 2014; 30 A Nag (2679_CR10) 2013; 2 V Savova (2679_CR15) 2016; 48 MA Eckersley-Maslin (2679_CR2) 2014; 30 G Ha (2679_CR6) 2012; 22 |
References_xml | – volume: 48 start-page: 231 year: 2016 ident: 2679_CR15 publication-title: Nat Genet doi: 10.1038/ng.3493 – volume: 489 start-page: 57 year: 2012 ident: 2679_CR3 publication-title: Nature doi: 10.1038/nature11247 – volume: 4 start-page: 1623 year: 2013 ident: 2679_CR13 publication-title: Nat Commun doi: 10.1038/ncomms2627 – volume: 33 start-page: 159 year: 1977 ident: 2679_CR9 publication-title: Biometrics doi: 10.2307/2529310 – volume: 8 start-page: 191 year: 2017 ident: 2679_CR5 publication-title: Front Genet doi: 10.3389/fgene.2017.00191 – volume: 30 start-page: 237 year: 2014 ident: 2679_CR2 publication-title: Trends Genet doi: 10.1016/j.tig.2014.03.003 – volume: 30 start-page: 1618 year: 2014 ident: 2679_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu056 – volume: 5 start-page: 1713 year: 2015 ident: 2679_CR11 publication-title: G3 doi: 10.1534/g3.115.018853 – volume: 50 start-page: 317 year: 2016 ident: 2679_CR1 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-120215-035120 – volume: 13 start-page: R10 year: 2012 ident: 2679_CR17 publication-title: Genome Biol doi: 10.1186/gb-2012-13-2-r10 – volume: 22 start-page: 1995 year: 2012 ident: 2679_CR6 publication-title: Genome Res doi: 10.1101/gr.137570.112 – volume: 2 year: 2013 ident: 2679_CR10 publication-title: Elife doi: 10.7554/eLife.01256 – ident: 2679_CR8 doi: 10.18637/jss.v028.i05 – volume: 23 start-page: 642 year: 2013 ident: 2679_CR14 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2013.09.001 – volume: 318 start-page: 1136 year: 2007 ident: 2679_CR4 publication-title: Science doi: 10.1126/science.1148910 – volume: 26 start-page: 2204 year: 2010 ident: 2679_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq351 – volume: 22 start-page: 1785 year: 2017 ident: 2679_CR16 publication-title: Mol Psychiatry doi: 10.1038/mp.2017.13 |
SSID | ssj0017805 |
Score | 2.3185353 |
Snippet | Background
A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by... A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by... Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism characterized by... Abstract Background A large fraction of human and mouse autosomal genes are subject to random monoallelic expression (MAE), an epigenetic mechanism... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106 |
SubjectTerms | Algorithms Alleles Animal models Applications programs Artificial intelligence Biochemistry Bioinformatics Biology Biomedical and Life Sciences Business metrics Cancer Cell culture Chromatin Chromatin signature Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data processing Datasets Epigenetic inheritance Epigenetics Gene expression Generalized linear models Genes Genetic research Genomes House mouse Inference Internet software Learning algorithms Life Sciences Machine learning Mammals Mapping Methods Microarrays Monoallelic expression Open source software Pipelines Shiny app Software Software pipeline Source code Transcriptome analysis Web services Web site management software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEF6kUPAi1p_RWlYRBCU0b3ezSXqrxdoK9aAWeltmN7ttoSbS5B38751JNq8vFfXi5RGyE14yOzvfDDv7DWOvba2l8qJKHaJ7qgqdp4BIQSeWbRaK4MfegCef9dGp-nSWn621-qKasJEeeFTcLgCGMNKHUoNV6NHL0gULoSRidItgRd4XMW9KpuL-ATH1xz3MRal3uwXxtGHaXKVCF1VazFBoIOv_3SWvYdLteslbm6YDFh3eZ_diEMn3x5ffYnd884Btjm0lfz5k9Ql8PD7Y48C_D6WSnsfeEOe8b9sr3vmeQ1Nz9KB8bQObY_zK0Spbaq-CNznalueX04lATidRuLvAXxRvHrHTww_fDo7S2E0hdVoWfepKH0QWvJIuEy5klcXkpJY-DxYXpoCFF8JLF3IQ2roMaiiEKlzwGSDE61w-ZhtN2_injFeVwzjSAyC0KQBpc0Q4yOtaaajxMmHZpF3jItU4dby4MkPKUWozTojBCTE0IaZI2NvVIz9Gno2_Cb-nKVsJEkX2cAMNx0TDMf8ynIS9ogk3RILRUJXNOSy7zhx__WL285L2vLXCf3oThUKLX-AgHlpAPRBv1kxyeyaJq9TNhye7MtFLdAbRQhL5j84S9nI1TE9S5Vvj2yXJYEaJcWmFWn0ymuHquyXFc5i_J6yYGehMMfOR5vJi4BDHwFShP0_Yu8mUb17rj3p_9j_0_pzdFbQQB1qAbbbRXy_9CwzserszrOFf1UFJpw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOgdgi_it3VTogiCUtYladr6ItvY3IQNmQ72Fk7T5G4w223tffDfe06b260T91IuzSm9Od_p-WLsQ1lpqZwoYovWPVaZTmNAS0EVy2XiM--G2YAHh3rvWH0_SU_CB7c2pFUudWKvqKvG0jfydZQsSY1SdPL14jKmqVEUXQ0jNO6zFVTBeTpjK1s7hz-OxjgCdewPscyNXK-3BET5QUUsdFbE2cQa9U37_1XNN2zT7bzJW8HT3ibtPmaPgjPJNwfqP2H3XP2UPRjGS_55xqoD-La__YUD_92nTDoeZkTMedc057x1HYe64qhJ-Y1ANkc_luN2Gxqzgjc58pjjZ8vKQE4VKdye4hXB6-fseHfn1_ZeHKYqxFbLrItt7rxIvFPSJsL6pCjxkFJJl_oSBVTAhhPCSetTELq0CVSQCZVZ7xJAU69T-YLN6qZ2rxgvCov-pANAE6cAZJmipYO0qpSGCn9GLFli19jQcpwmX5yb_uiRazMQxCBBDBHEZBH7ND5yMfTbuAt4i0g2AlKr7P5GczU3QfIMAPrA0vlcQ6nQJchz60vwOXXWL9Hbidh7IrihZhg1ZdvMYdG2Zv_nkdlMc4p9a4Vv-hiAfIM7sBCKFxAP1D9rArk2gURptdPlJV-ZoC1ac83bEXs3LtOTlAFXu2ZBMHiyRP-0QKy-HNhw3Lckvw7P8RHLJgw6Qcx0pT477XuJo4OqUK9H7POSla__1n_x_vruTayyh4JErC_8X2Oz7mrh3qDr1pVvg3z-BTCcQR4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0Ivgifje1yiqCoARzu5tN4ls9rK1QH9RC35bZzW5bqImY3EP_e2eSvXipH-DLcWRnuct87MwwO79h7IWttVReVKlD756qQucpoKegjmWbhSL4cTbg0Sd9cKw-nuQnESyaemE26_eLUr_pFoSwhglvlQpdVGlxnd3ICWaM6rJ6ORUMCJo_Fi3_uG3mdgZ0_t_P4A0ndPWC5JUq6eB89u-w2zFq5HujmO-ya765x26OcyQv77P6CD4cLt9y4N-Gu5Gex2EQp7xv2wve-Z5DU3M8MvlGxZpjwMpRDVuap4IPOSqT5-frFkBOrSfcneEnkjcP2PH--6_LgzSOT0idlkWfutIHkQWvpMuEC1llMRuppc-DRUsUsPBCeOlCDkJbl0ENhVCFCz4D9Ok6lw_ZVtM2fpvxqnIYOHoA9GUKQNocXRrkda001Pg1Ydmau8ZFbHEacXFhhhyj1GYUiEGBGBKIKRL2atryfQTW-BfxOxLZREiY2MMDVBUTTcwAYLArfSg1WIW-vyxdsBBKgtC3GNYk7DkJ3BDqRUPXak5h1XXm8Mtns5eXVOTWCn_pZSQKLb6Bg9ilgHwgoKwZ5e6MEs3SzZfXemXisdAZdA-S0H50lrBn0zLtpKtujW9XRIMpJAaiFXL10aiG03tLCuAwYU9YMVPQGWPmK8352QAajpGowgM8Ya_Xqvzrb_2V7zv_Rf2Y3RJkcUPD_y7b6n-s_BMM2Xr7dDDWn34rOFo priority: 102 providerName: Springer Nature |
Title | MaGIC: a machine learning tool set and web application for monoallelic gene inference from chromatin |
URI | https://link.springer.com/article/10.1186/s12859-019-2679-7 https://www.ncbi.nlm.nih.gov/pubmed/30819107 https://www.proquest.com/docview/2193489360 https://www.proquest.com/docview/2187525698 https://pubmed.ncbi.nlm.nih.gov/PMC6394031 https://doaj.org/article/aa9993ef86ab4cee88cfbaf87946b129 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELb2IiS-IN4JjMogJCRQIE0cO0FCqKvWbZU6oY1K_WY5jt1NKgm0qcT-PXdO0i1jIL6klX1pm_Od77nafo6QN1nOI2bC1NcQ3X0meOwriBR4YjkLrLCmrg04OeFHUzaexbMt0pa3ahS4ujW1w3pS0-Xiw6-fl1_A4T87h0_4x1UfWdggKU79kIvUF9tkFwITRyOfsKtFBaTvd4eNRN-HTCduFjlv_YhOmHJs_n_O2deC1s0NlTdWVV2wGt0n9xqUSQe1WTwgW6Z4SO7UdScvH5F8og6Ph5-oot_dXkpDm-IRc1qV5YKuTEVVkVOYYum1FW4KAJeC2ZZYfwUaKRifoRftkUGKR1WoPocriBePyXR08G145DflFnzNI1H5OjE2DKxhkQ5CbYM0g-wlj0xsM_DcUPVNGJpI21iFPNOBypUImdDWBAowAI-jJ2SnKAvzjNA01QA0jVIQ-5hSURZDCFRxnjOucnjrkaDVrtQNFzmWxFhIl5MkXNYDImFAJA6IFB55t7nlR03E8S_hfRyyjSByaLuGcjmXjUtKpQAcR8YmXGUMsEKSaJspmyDlfgYwyCOvccAlsmQUuA1nrtarlTw-O5WDOMFFcc7gm942QraEJ9CqOdUAekBirY7kXkcS3Fh3u1u7kq0XSAgnEbID8cAjrzbdeCdujStMuUYZSDkBuKag1ae1GW6eO0LABwm-R0THQDuK6fYUF-eOZByQK4MJ3yPvW1O--ll_1fvz_9bGC3I3RG9z5AB7ZKdars1LgHdV1iPbYibgmowOe2R3MBifjeF1_-Dk6ym0Dvmw5_446Tnn_g1oAU-A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviG8KAwwCIYGipbbjJEgIjY_SsnUPsEl7MxfH7iaNZCyt0P4p_kbu8tEtQ-xtL1UVX9rm7nx37tm_H2MvslxL5UQaWMzugYp1FABmCjqxnIU-9q7hBpxu6_Gu-roX7a2wP91ZGNpW2cXEOlDnpaX_yNdxZkkCStHh-6NfAbFGUXe1o9Bo3GLTnfzGJVv1bvIJ7ftSiNHnnY_joGUVCKyW8TywifMi9E5JGwrrwzTDIj2XLvIZOqiAoRPCSesjEDqzIeQQCxVb70LAVKeJJQJD_hUlZUpY_cnoy7JrQfwAbed0mOj1akjocLhYTwOh4zSIe7mvpgj4NxGcyYTnd2mea9XWGXB0k91oS1e-0fjaLbbiitvsakNmeXKH5VNABbzlwH_WGzQdbxkpZnxeloe8cnMORc4xbvMzbXOOVTNH5ZZE6oIXOXq04wfdOURO51-43cdXFC_ust1L0fY9tlqUhXvAeJparF4dACZUBSCzCPMqRHmuNOT4dsDCTrvGtgDnxLNxaOqFTqJNYxCDBjFkEBMP2OvlLUcNusdFwh_IZEtBAuauL5THM9POcwOAFbd0PtGQKSxAksT6DHxCOP4Z1lYD9pwMbgh6o6C9PTNYVJWZfP9mNqKEOu1a4Te9aoV8iU9goT0qgXogtK6e5FpPEmOD7Q93fmXa2FSZ05k0YM-Ww3Qn7bcrXLkgGVzHYjWcolbvN264fG5JVeQwxA-Pew7aU0x_pDjYr5HLsRxWmEUG7E3nyqc_6796f3jxQzxl18Y70y2zNdnefMSuC5puNeTAGludHy_cYywa59mTeqZy9uOyQ8NfPd99lA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gCMQL4nMUBgSEhASq1kvatOVtHBw7YBMCJu0tctLkNmm009p74L_H7hfr-JB4OZ0aR3eN7diW7Z8Ze24KJWMn8tCidQ_jVCUhoKWgjmUT-dS7bjbg3r7aPYg_HCaH_ZzTeqh2H1KSXU8DoTSVzfZp4TsVz9R2PSPcNQyD81CoNA_Ty-wKBiozAs-fq_mYRiDA_j6V-cdtE2PUYvb_fjOfM00XyyYv5E5bk7S4yW70viTf6Zh_i11y5W12tZsu-eMOK_bg_XL-mgP_3lZMOt6PiFjxpqpOeO0aDmXB8SLl5_LYHN1YjsJZ0ZQVfMhRxBw_HhoDOTWkcHuEn0he3mUHi3ff5rthP1QhtEqmTWgz50XkXSxtJKyPcoMxSiFd4g3qp4CZE8JJ6xMQytgICkhFnFrvIkBLrxJ5j22UVenuM57nFt1JB4AWLgaQJkFDB0lRxAoK_BqwaDhdbXvEcRp8caLbyCNTumOIRoZoYohOA_Zy3HLawW38i_gNsWwkJKTs9kF1ttK94mkAdIGl85kCE6NHkGXWG_AZAesbdHYC9owYrgkLo6RimxWs61ovv37RO0lGqW8V4y-96Il8hW9goe9dwHMg-KwJ5daEEpXVTpcHudL9ZVFrNBqSMIBUFLCn4zLtpAK40lVrosHAEt3THE91sxPD8b0luXUYxgcsnQjo5GCmK-XxUQsljv5pjNd6wF4Novzrb_313B_8F_UTdu3z24X-tNz_-JBdF6R8LSLAFttoztbuEfp0jXnc6u1Pc81Djg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaGIC%3A+a+machine+learning+tool+set+and+web+application+for+monoallelic+gene+inference+from+chromatin&rft.jtitle=BMC+bioinformatics&rft.au=Vinogradova%2C+Svetlana&rft.au=Saksena%2C+Sachit+D&rft.au=Ward%2C+Henry+N&rft.au=Vigneau%2C+S%C3%A9bastien&rft.date=2019-02-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-2679-7&rft.externalDocID=A581440647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |