S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality
The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address th...
Saved in:
Published in | PloS one Vol. 19; no. 5; p. e0301263 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
31.05.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%. |
---|---|
AbstractList | The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%. The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%. |
Audience | Academic |
Author | Jena, Ashutosh Moran, Kieran Vijayvargiya, Ankit Kumar, Rajesh Sinha, Aparna Gehlot, Naveen |
Author_xml | – sequence: 1 givenname: Ankit orcidid: 0000-0002-4655-2324 surname: Vijayvargiya fullname: Vijayvargiya, Ankit – sequence: 2 givenname: Aparna surname: Sinha fullname: Sinha, Aparna – sequence: 3 givenname: Naveen surname: Gehlot fullname: Gehlot, Naveen – sequence: 4 givenname: Ashutosh surname: Jena fullname: Jena, Ashutosh – sequence: 5 givenname: Rajesh surname: Kumar fullname: Kumar, Rajesh – sequence: 6 givenname: Kieran surname: Moran fullname: Moran, Kieran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38820390$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkmtr2zAUhs3oWC_bPxiboDC2D8l0cWy530KbdYGWwrrLR3F0caLUtjLJZsu_n9w4oyllDIMtH573vDqH9zg5aFxjkuQ1wWPCcvJx5TrfQDVex_IYM0xoxp4lR6RgdJRRzA4enA-T4xBWGE8Yz7IXySHjPFYLfJQsb0c_Lkaz2fXFGZqi5UZ6q1HpoTa_nL9DpfPI1hIqaJTRKMyuL1Gwi-iLIL42wQZkG6QtLBrX_7gSLbsaGnTXGINANs7XUNl28zJ5XkIVzKvhe5J8-zT7ev55dHVzOT-fXo1UxvJ2pHjGpc41lFxyySDVUlLNMCUA5YQCK1KDpTQkVyajKdWEpwyXqZGK5iWbsJPk7bbvunJBDEsKguGsoAVlOY_EfEtoByux9rYGvxEOrLgvOL8Q4FurKiNYxjlgrBhPi1SqlGuW5QUjmmaqyEnv9n5w8-5nZ0IrahuUqeK-jOvubVmaYUZIRE8foU9fbqAWEP1tU7rWg-qbimleTApMiyKP1PgJKj7a1FbFQJQ21vcEH_YEkWnN73YBXQhifvvl_9mb7_vsuwfs0kDVLoOruta6JuyDb4bpO1kb_XftuyRG4GwLKO9C8KYUyrbQ94mj2UoQLPrY75Ym-tiLIfZRnD4S7_r_U_YHFiADSw |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109651 |
Cites_doi | 10.3389/fnbot.2019.00031 10.1109/IC3.2015.7346648 10.1109/EMBC.2013.6610865 10.3390/electronics8080894 10.1152/jn.00009.2006 10.1016/j.chemolab.2022.104516 10.1109/ICASSP.2005.1416051 10.1007/s13534-022-00236-w 10.1016/B978-0-12-819361-7.00012-9 10.1109/ICMA.2009.5244866 10.2174/1570178615666180816101653 10.3390/s130912431 10.3390/diagnostics12092235 10.1145/2907070 10.1109/THMS.2023.3319356 10.1007/978-3-642-23166-7_12 10.1109/ACCESS.2019.2927266 10.1177/1947603516665444 10.1111/1467-9868.00071 10.1016/S0140-6736(19)30417-9 10.1098/rspa.1998.0193 10.1179/1743132810Y.0000000014 10.1109/10.204774 10.1007/978-981-10-8639-7_24 10.1142/S1793536909000047 10.1613/jair.953 10.1109/72.485678 10.1007/s10994-006-6226-1 10.1109/ICCPCT.2017.8074406 10.1016/j.proeng.2011.08.749 10.1097/BOR.0000000000000917 10.1016/j.ins.2013.09.038 10.1023/A:1010933404324 10.1016/j.proeng.2012.06.409 10.1109/ISSNIP.2007.4496914 10.3389/fgene.2020.539227 10.1109/ACCESS.2021.3062291 10.1109/ICONC345789.2020.9117456 10.1109/ICASSP.2011.5947265 10.1109/ACCESS.2016.2619181 10.1016/j.bspc.2021.102406 10.1109/ICCCA52192.2021.9666291 10.1016/j.berh.2016.09.007 10.1109/STSIVA.2013.6644943 10.1109/99.388960 10.2478/v10048-011-0009-y 10.1016/j.bspc.2020.102051 10.1109/ICICS49469.2020.239556 10.1016/j.jbiomech.2009.10.014 10.1007/s12652-021-03612-z 10.1109/ICIDeA59866.2023.10295245 10.1016/j.chaos.2020.110210 10.1109/51.982285 10.1016/0167-9473(96)00003-5 10.1007/BF00116251 10.1002/cyto.990080516 10.1109/JSEN.2021.3095594 10.1016/j.bspc.2020.101872 10.1007/s13246-021-01071-6 10.1016/j.bspc.2017.10.002 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0301263 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3069292378 oai_doaj_org_article_3688a00c38494bc48d367931d26c9715 A795902997 38820390 10_1371_journal_pone_0301263 |
Genre | Journal Article |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO ESTFP |
ID | FETCH-LOGICAL-c637t-c868bd7daf8b8b3a4dbb2d3021aaf52a394e0bbe17ce6242d18430f4ebc27f353 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Thu Nov 28 02:59:45 EST 2024 Wed Aug 27 01:31:58 EDT 2025 Tue Aug 05 11:16:29 EDT 2025 Fri Jul 25 10:28:22 EDT 2025 Tue Jun 17 22:09:34 EDT 2025 Tue Jun 10 21:09:24 EDT 2025 Fri Jun 27 05:33:11 EDT 2025 Fri Jun 27 05:49:46 EDT 2025 Thu May 22 21:24:21 EDT 2025 Wed Feb 19 02:07:28 EST 2025 Thu Apr 24 23:00:14 EDT 2025 Tue Jul 01 04:03:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-c868bd7daf8b8b3a4dbb2d3021aaf52a394e0bbe17ce6242d18430f4ebc27f353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4655-2324 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0301263 |
PMID | 38820390 |
PQID | 3069292378 |
PQPubID | 1436336 |
PageCount | e0301263 |
ParticipantIDs | plos_journals_3069292378 doaj_primary_oai_doaj_org_article_3688a00c38494bc48d367931d26c9715 proquest_miscellaneous_3063460311 proquest_journals_3069292378 gale_infotracmisc_A795902997 gale_infotracacademiconefile_A795902997 gale_incontextgauss_ISR_A795902997 gale_incontextgauss_IOV_A795902997 gale_healthsolutions_A795902997 pubmed_primary_38820390 crossref_citationtrail_10_1371_journal_pone_0301263 crossref_primary_10_1371_journal_pone_0301263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-31 |
PublicationDateYYYYMMDD | 2024-05-31 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Brandt (pone.0301263.ref058) 2021 A Vijayvargiya (pone.0301263.ref043) 2021; 66 pone.0301263.ref044 X Zhai (pone.0301263.ref065) 2016; 4 F Xiao (pone.0301263.ref046) 2011; 15 pone.0301263.ref049 S Cai (pone.0301263.ref021) 2019; 13 S Akbar (pone.0301263.ref042) 2019; 16 N Inayat (pone.0301263.ref055) 2021; 9 CS Pattichis (pone.0301263.ref013) 1996; 7 T Raeder (pone.0301263.ref068) 2012 F Khan (pone.0301263.ref054) 2020; 11 RH Chowdhury (pone.0301263.ref056) 2013; 13 T Tuncer (pone.0301263.ref020) 2020; 58 A Graps (pone.0301263.ref036) 1995; 2 pone.0301263.ref050 A Mathiessen (pone.0301263.ref004) 2016; 30 K Chen (pone.0301263.ref009) 2022; 12 A Vijayvargiya (pone.0301263.ref023) 2021; 44 pone.0301263.ref051 DJ Hunter (pone.0301263.ref002) 2019; 393 M Chalian (pone.0301263.ref005) 2023; 35 pone.0301263.ref012 O Sanchez (pone.0301263.ref045) 2014; 2 A Vijayvargiya (pone.0301263.ref031) 2022; 12 A Vijayvargiya (pone.0301263.ref034) 2021; 21 pone.0301263.ref015 J Chen (pone.0301263.ref026) 2018; 40 P Geurts (pone.0301263.ref066) 2006; 63 CJ De Luca (pone.0301263.ref011) 2006; 96 L Burkow-Heikkinen (pone.0301263.ref014) 2011; 33 A Vijayvargiya (pone.0301263.ref010) 2019 C Morbidoni (pone.0301263.ref030) 2019; 8 A Vijayvargiya (pone.0301263.ref025) 2023; 53 JR Quinlan (pone.0301263.ref059) 1986; 1 A Phinyomark (pone.0301263.ref052) 2011; 11 PM Jungmann (pone.0301263.ref003) 2017; 8 pone.0301263.ref060 Z Wu (pone.0301263.ref038) 2009; 1 L Mason (pone.0301263.ref062) 1999; 12 pone.0301263.ref069 GS Murley (pone.0301263.ref024) 2010; 43 IM Johnstone (pone.0301263.ref048) 1997; 59 pone.0301263.ref029 pone.0301263.ref028 CM Yeşilkanat (pone.0301263.ref061) 2020; 140 P Bonato (pone.0301263.ref027) 2001; 20 S Sudarsan (pone.0301263.ref019) 2012; 38 NV Chawla (pone.0301263.ref057) 2002; 16 Z Xuegong (pone.0301263.ref064) 2000; 26 L Breiman (pone.0301263.ref063) 2001; 45 B Hudgins (pone.0301263.ref016) 1993; 40 U Da Silva (pone.0301263.ref018) 2016; 103 S Makki (pone.0301263.ref040) 2019; 7 MY Shaheen (pone.0301263.ref006) 2021 Y Huang (pone.0301263.ref017) 2020; 62 Arthritis Foundation (pone.0301263.ref001) 2017; 15 P Branco (pone.0301263.ref041) 2016; 49 C. Prakash (pone.0301263.ref022) 2019 NE Huang (pone.0301263.ref037) 1998; 454 pone.0301263.ref032 pone.0301263.ref033 TG Myers (pone.0301263.ref007) 2020; 102 pone.0301263.ref035 pone.0301263.ref039 V Lopez (pone.0301263.ref067) 2014; 257 Y Kumar (pone.0301263.ref008) 2023; 14 F Abramovich (pone.0301263.ref047) 1996; 22 A Ahmad (pone.0301263.ref053) 2022; 222 |
References_xml | – volume: 13 start-page: 31 year: 2019 ident: pone.0301263.ref021 article-title: SVM-based classification of sEMG signals for upper-limb self-rehabilitation training publication-title: Frontiers in Neurorobotics doi: 10.3389/fnbot.2019.00031 – ident: pone.0301263.ref039 doi: 10.1109/IC3.2015.7346648 – ident: pone.0301263.ref029 doi: 10.1109/EMBC.2013.6610865 – volume: 8 start-page: 894 issue: 8 year: 2019 ident: pone.0301263.ref030 article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking publication-title: Electronics doi: 10.3390/electronics8080894 – volume: 96 start-page: 1646 issue: 3 year: 2006 ident: pone.0301263.ref011 article-title: Decomposition of surface EMG signals publication-title: Journal of Neurophysiology doi: 10.1152/jn.00009.2006 – volume: 222 start-page: 104516 year: 2022 ident: pone.0301263.ref053 article-title: iAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2022.104516 – volume: 26 start-page: 32 issue: 1 year: 2000 ident: pone.0301263.ref064 article-title: Introduction to statistical learning theory and support vector machines publication-title: Acta Automatica Sinica – ident: pone.0301263.ref049 doi: 10.1109/ICASSP.2005.1416051 – volume: 12 start-page: 343 issue: 4 year: 2022 ident: pone.0301263.ref031 article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview publication-title: Biomedical Engineering Letters doi: 10.1007/s13534-022-00236-w – start-page: 243 volume-title: Sensors for Health Monitoring year: 2019 ident: pone.0301263.ref010 doi: 10.1016/B978-0-12-819361-7.00012-9 – year: 2021 ident: pone.0301263.ref058 publication-title: A comparative review of SMOTE and ADASYN in imbalanced data classification – ident: pone.0301263.ref050 doi: 10.1109/ICMA.2009.5244866 – volume: 16 start-page: 294 issue: 4 year: 2019 ident: pone.0301263.ref042 article-title: iAFP-gap-SMOTE: an efficient feature extraction scheme gapped dipeptide composition is coupled with an oversampling technique for identification of antifreeze proteins publication-title: Letters in Organic Chemistry doi: 10.2174/1570178615666180816101653 – volume: 13 start-page: 12431 issue: 9 year: 2013 ident: pone.0301263.ref056 article-title: Surface electromyography signal processing and classification techniques publication-title: Sensors doi: 10.3390/s130912431 – volume: 12 start-page: 2235 issue: 9 year: 2022 ident: pone.0301263.ref009 article-title: Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review publication-title: Diagnostics doi: 10.3390/diagnostics12092235 – volume: 49 start-page: 1 issue: 2 year: 2016 ident: pone.0301263.ref041 article-title: A survey of predictive modeling on imbalanced domains publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/2907070 – volume: 2 year: 2014 ident: pone.0301263.ref045 article-title: Emg dataset in lower limb data set publication-title: UCI Machine Learning Repository – volume: 53 start-page: 945 issue: 6 year: 2023 ident: pone.0301263.ref025 article-title: PC-GNN: Pearson Correlation-Based Graph Neural Network for Recognition of Human Lower Limb Activity Using sEMG Signal publication-title: IEEE Transactions on Human-Machine Systems doi: 10.1109/THMS.2023.3319356 – start-page: 315 year: 2012 ident: pone.0301263.ref068 article-title: Learning from imbalanced data: Evaluation matters publication-title: Data Mining: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification doi: 10.1007/978-3-642-23166-7_12 – volume: 7 start-page: 93010 year: 2019 ident: pone.0301263.ref040 article-title: An experimental study with imbalanced classification approaches for credit card fraud detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927266 – volume: 102 start-page: 830 issue: 9 year: 2020 ident: pone.0301263.ref007 article-title: Artificial intelligence and orthopaedics: an introduction for clinicians publication-title: The Journal of Bone and Joint Surgery American – volume: 15 start-page: 1 year: 2017 ident: pone.0301263.ref001 article-title: Arthritis by the numbers publication-title: Arthritis Found – volume: 8 start-page: 272 issue: 3 year: 2017 ident: pone.0301263.ref003 article-title: Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity publication-title: Cartilage doi: 10.1177/1947603516665444 – volume: 59 start-page: 319 issue: 2 year: 1997 ident: pone.0301263.ref048 article-title: Wavelet threshold estimators for data with correlated noise publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00071 – year: 2021 ident: pone.0301263.ref006 article-title: Applications of Artificial Intelligence (AI) in healthcare: A review publication-title: ScienceOpen Preprints – volume: 393 start-page: 1745 issue: 10182 year: 2019 ident: pone.0301263.ref002 article-title: Osteoarthritis publication-title: The Lancet doi: 10.1016/S0140-6736(19)30417-9 – volume: 12 year: 1999 ident: pone.0301263.ref062 article-title: Boosting algorithms as gradient descent publication-title: Advances in Neural Information Processing Systems – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: pone.0301263.ref037 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.1998.0193 – volume: 33 start-page: 3 issue: 1 year: 2011 ident: pone.0301263.ref014 article-title: Non-invasive physiological monitoring of exercise and fitness publication-title: Neurological Research doi: 10.1179/1743132810Y.0000000014 – volume: 40 start-page: 82 issue: 1 year: 1993 ident: pone.0301263.ref016 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.204774 – start-page: 235 volume-title: Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI year: 2019 ident: pone.0301263.ref022 doi: 10.1007/978-981-10-8639-7_24 – volume: 1 start-page: 1 issue: 01 year: 2009 ident: pone.0301263.ref038 article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536909000047 – volume: 16 start-page: 321 year: 2002 ident: pone.0301263.ref057 article-title: SMOTE: synthetic minority oversampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 7 start-page: 427 issue: 2 year: 1996 ident: pone.0301263.ref013 article-title: Genetics-based machine learning for the assessment of certain neuromuscular disorders publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.485678 – volume: 63 start-page: 3 year: 2006 ident: pone.0301263.ref066 article-title: Extremely randomized trees publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 – ident: pone.0301263.ref028 doi: 10.1109/ICCPCT.2017.8074406 – volume: 15 start-page: 3998 year: 2011 ident: pone.0301263.ref046 article-title: A comparative study on thresholding methods in wavelet-based image denoising publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.08.749 – volume: 35 start-page: 44 issue: 1 year: 2023 ident: pone.0301263.ref005 article-title: Advances in osteoarthritis imaging publication-title: Current Opinion in Rheumatology doi: 10.1097/BOR.0000000000000917 – volume: 257 start-page: 1 year: 2014 ident: pone.0301263.ref067 article-title: On the importance of the validation technique for classificatioń with imbalanced datasets: Addressing covariate shift when data is skewed publication-title: Information Sciences doi: 10.1016/j.ins.2013.09.038 – volume: 45 start-page: 5 year: 2001 ident: pone.0301263.ref063 article-title: Random forests publication-title: Machine learning doi: 10.1023/A:1010933404324 – volume: 38 start-page: 3547 year: 2012 ident: pone.0301263.ref019 article-title: Design and development of EMG controlled prosthetics limb publication-title: Procedia Engineering doi: 10.1016/j.proeng.2012.06.409 – ident: pone.0301263.ref033 doi: 10.1109/ISSNIP.2007.4496914 – volume: 11 start-page: 539227 year: 2020 ident: pone.0301263.ref054 article-title: Prediction of recombination spots using novel hybrid feature extraction method via deep learning approach publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.539227 – volume: 9 start-page: 40783 year: 2021 ident: pone.0301263.ref055 article-title: iEnhancer-DHF: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062291 – ident: pone.0301263.ref015 doi: 10.1109/ICONC345789.2020.9117456 – ident: pone.0301263.ref051 doi: 10.1109/ICASSP.2011.5947265 – volume: 4 start-page: 8138 year: 2016 ident: pone.0301263.ref065 article-title: MLP neural network based gas classification system on Zynq SoC publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2619181 – volume: 66 start-page: 102406 year: 2021 ident: pone.0301263.ref043 article-title: Human knee abnormality detection from imbalanced sEMG data publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102406 – ident: pone.0301263.ref035 doi: 10.1109/ICCCA52192.2021.9666291 – volume: 30 start-page: 653 issue: 4 year: 2016 ident: pone.0301263.ref004 article-title: Imaging of osteoarthritis (OA): What is new? publication-title: Best Practice & Research Clinical Rheumatology doi: 10.1016/j.berh.2016.09.007 – ident: pone.0301263.ref032 doi: 10.1109/STSIVA.2013.6644943 – volume: 2 start-page: 50 issue: 2 year: 1995 ident: pone.0301263.ref036 article-title: An introduction to wavelets publication-title: IEEE computational science and engineering doi: 10.1109/99.388960 – volume: 11 start-page: 45 issue: 2 year: 2011 ident: pone.0301263.ref052 article-title: Application of wavelet analysis in EMG feature extraction for pattern classification publication-title: Measurement Science Review doi: 10.2478/v10048-011-0009-y – volume: 62 start-page: 102051 year: 2020 ident: pone.0301263.ref017 article-title: Joint torque estimation for the human arm from sEMG using backpropagation neural networks and autoencoders publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102051 – ident: pone.0301263.ref044 doi: 10.1109/ICICS49469.2020.239556 – volume: 43 start-page: 749 issue: 4 year: 2010 ident: pone.0301263.ref024 article-title: Reliability of lower limb electromyography during overground walking: a comparison of maximal-and sub-maximal normalisation techniques publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.10.014 – volume: 14 start-page: 8459 issue: 7 year: 2023 ident: pone.0301263.ref008 article-title: Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-021-03612-z – ident: pone.0301263.ref069 doi: 10.1109/ICIDeA59866.2023.10295245 – volume: 140 start-page: 110210 year: 2020 ident: pone.0301263.ref061 article-title: Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.110210 – volume: 20 start-page: 133 issue: 6 year: 2001 ident: pone.0301263.ref027 article-title: EMG-based measures of fatigue during a repetitive squat exercise publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.982285 – volume: 22 start-page: 351 issue: 4 year: 1996 ident: pone.0301263.ref047 article-title: Adaptive thresholding of wavelet coefficients publication-title: Computational Statistics & Data Analysis doi: 10.1016/0167-9473(96)00003-5 – volume: 103 start-page: 361 issue: 3 year: 2016 ident: pone.0301263.ref018 article-title: EMG activity of upper limb on spinal cord injury individuals during whole-body vibration publication-title: Physiology International (Acta Physiologica Hungarica) – volume: 1 start-page: 81 year: 1986 ident: pone.0301263.ref059 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – ident: pone.0301263.ref060 doi: 10.1002/cyto.990080516 – ident: pone.0301263.ref012 – volume: 21 start-page: 20431 issue: 18 year: 2021 ident: pone.0301263.ref034 article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2021.3095594 – volume: 58 start-page: 101872 year: 2020 ident: pone.0301263.ref020 article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition publication-title: Biomedical signal processing and control doi: 10.1016/j.bspc.2020.101872 – volume: 44 start-page: 1297 year: 2021 ident: pone.0301263.ref023 article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal publication-title: Physical and Engineering Sciences in Medicine doi: 10.1007/s13246-021-01071-6 – volume: 40 start-page: 335 year: 2018 ident: pone.0301263.ref026 article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.10.002 |
SSID | ssj0053866 |
Score | 2.454707 |
Snippet | The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | e0301263 |
SubjectTerms | Abnormalities Adult Algorithms Artificial intelligence Classifiers Data processing Decomposition Diagnosis Electromyography Electromyography - methods Female Humans Injuries Knee Knee - physiopathology Knee Joint - physiopathology Learning algorithms Machine Learning Male Medical diagnosis Muscles Neural networks Neuromuscular diseases Orthopedics Oversampling Range of motion Signal analysis Signal classification Signal processing Signal Processing, Computer-Assisted Support vector machines Wavelet Analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb5RAFJ-YPXkxtn4UW3U0JuqBFmaGGfC22q3VZDWxVnsj80XbWGEjuwf_e9-DgUiiqQdvwDwm8D54vxfeByHPZCKMsMbFJs1ULKxlsfaOx9YqURUy09phgfPygzw-Fe_PsrPfRn1hTljfHrhn3AGXea6TxPJcFMJYkTsuQadSx6QtVFdezsDnDcFU_w0GK5YyFMpxlR4EueyvmtrvYxDAJJ84oq5f__hVnq2umvbvkLNzPUe3ya2AGem8f9YtcsPX22QrWGVLX4TW0S_vkIuT-OthvFgsD1_ROb34ieVYtBryrygAVHr53WA2o_WOtovlW4oJHLC5Ds1J6GVNXZ9-BydNRbshfvRb7T3VpkaEi8D9Ljk9Wnx-cxyHWQqxlVytY5vL3DjldJWb3HAtnDHMcfDwWlcZ07wQPjHGp8p6LBlxOAcmqYQ3lqmKZ_wemdXAvR1CHWxoHUstQhFAJ8Zxxb3RcFjwrGIR4QNjSxsajeO8i6uy-3umIODo-VaiOMogjojE412rvtHGNfSvUWYjLbbJ7i6A8pRBecrrlCcij1HiZV9zOhp7OccJ7Al4ahWRpx0FtsqoMRfnXG_atnz38cs_EJ18mhA9D0RVA-ywOtQ_wDthC64J5d6EEgzeTpZ3UD8HrrQlRH0AchlXOdw56Oyfl5-My7gp5tfVvtl0NFzgwPE0Ivd7XR85yyEIS3iRPPgfHN8lNxnAwj7_Yo_M1j82_iHAurV51FnwL0OURt8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5uk9ixEy5ooVsK0oJEKewt8ittRUmWZvfAv2cmcYJW4nXLxl8s7YzH8zmZByFPZCyMsMYxk2SKCWtTpr3jzFolqkJmWjtMcJ6_l4fH4t0iW4QXbm0Iqxz2xG6jdo3Fd-R7QG3Bk6dc5S-X3xl2jcKvq6GFxmVyBUuXYUiXWowHLrBlKUO6HFfJXtDO7rKp_S4eBVLJN9xRV7V_3Jsny_Om_TPx7BzQwXVyLTBHOu1VvUUu-foG2Qq22dJnoYD085vk9Ih92Wez2Xz_BZ3S0x-YlEWrIQqLAk2lZ98MxjRa72g7m7-hGMYBk-tQooSe1dT1QXjwo6lo18qPfq29p9rUyHORvt8ixwezT68PWeiowKzkasVsLnPjlNNVbnLDtXDGpI6Dn9e6ylLNC-FjY3yirMfEEYfdYOJKeGNTVfGM3yaTGqS3TaiDCa1LE4uEBDiKcVxxbzRcFjyr0ojwQbClDeXGsevFedl9Q1Nw7OjlVqI6yqCOiLDxqWVfbuMf-FeosxGLxbK7G83FSRlsr-Qyz3UcW56LQhgrcsclbEuJS6UtVJJF5CFqvOwzT0eTL6fYhz0Gf60i8rhDYMGMGiNyTvS6bcu3Hz7_B-jo4wboaQBVDYjD6pAFAf8JC3FtIHc2kGD2dmN4G9fnIJW2_GUg8OSwZn8__Ggcxkkxyq72zbrDcIFtx5OI3OnX-ihZDkexmBfx3b9Pfo9cTYH29fEVO2Syulj7-0DbVuZBZ5s_AcM1QBw priority: 102 providerName: ProQuest |
Title | S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38820390 https://www.proquest.com/docview/3069292378 https://www.proquest.com/docview/3063460311 https://doaj.org/article/3688a00c38494bc48d367931d26c9715 http://dx.doi.org/10.1371/journal.pone.0301263 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRSDkICHTEnsxAkSQt2WbiB1oI2yvkX-yjZRktK0Envhb-cuX1KlTezFSuqzpZ599s_x3f0IeRO6XHGtjKO8QDhca9-R1jBHa8GzOAykNBjgPD4Jjyf8yzSYbpCWs7VRYHnj0Q75pCaL2d6f39efwOA_VqwNwmsb7c2L3O4hxPdDtkm2YG8SaKpj3t0rgHVXt5eIWpzQd1kTTHdbL2ubVZXTv1u5e_NZUd4OS6vtafSA3G9wJR3WE2GbbNj8IdluLLek75r00u8fkcsz5_zQSZLx4Qc6pJfXGLJFs9ZHiwKIpVe_FHo8amtomYyPKDp5QOeySWBCr3Jqahc9eCkyWhH90Z-5tVSqHFEwgvvHZDJKvh8cOw3fgqNDJpaOjsJIGWFkFqlIMcmNUr5hgAKkzAJfsphbVynrCW0xrMQgV4ybcau0LzIWsCekl4P2dgg10KE2vqcRrgCCUYYJZpWEx5gFmd8nrFVsqptk5MiJMUurGzYBh5JabykOR9oMR584Xat5nYzjP_L7OGadLKbSrn4oFhdpY5kpC6NIuq5mEY-50jwyLIRFyzN-qGPhBX3yEkc8reNSuwUhHSJLuwu7ueiT15UEptPI0V_nQq7KMv389ccdhM5O14TeNkJZAerQsomRgP-EabrWJHfXJGFR0GvVOzg_W62UKZwMAQj7TETQsp2zN1e_6qqxU_TBy22xqmQYR1Jyr0-e1nO90yyDg5rLYvfZXVTxnNzzARrWPhi7pLdcrOwLgHZLNSCbYiqgjA48LEdHA7K1n5x8Ox1UH0sGlTVj-Tf5B_RpUB4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V4QFeEOVqoNAFgYAHt_bu2usgIRRISkKbItGDvJm93FYUO9SJUP8Uv5EZXygS10vfHO94pczMzmHPzEfIk8gXWhhtPR2E0hPGME85yz1jpEh7UaiUxQbnyV40OhTvp-F0hfxoemGwrLKxiaWhtrnBd-RbENqCJ2dcxq9n3zxEjcKvqw2ERqUWO-7iO6RsxavxAOT7lLHt4cHbkVejCngm4nLumTiKtZVWpbGONVfCas0sB1-nVBoyxXvC-Vq7QBqHzRMWEVH8VDhtmExLlAgw-VfA8fp4ouS0TfDAdkRR3Z7HZbBVa8PmLM_cJqYeLOJL7q9ECWh9QWd2lhd_DnRLh7d9g1yvI1Xar1Rrlay47CZZrW1BQZ_XA6tf3CIn-96ngTccTgYvaZ-eXGATGE2bqi8KYTE9_aqxhtI4S4vh5B3FshHYXNUjUehpRm1V9Ac_8pSW0IH0S-YcVTrDuBrThdvk8FJ4fYd0MuDeGqEWNjSWBQYDIIiJtOWSO63gssfDlHUJbxibmHq8OaJsnCXlNzsJaU7FtwTFkdTi6BKvfWpWjff4B_0blFlLi8O5yxv5-XFSn_WER3GsfN_wWPSENiK2PAIzGFgWmZ4Mwi7ZQIknVadra2KSPuK--xAfyC55XFLggI4MK4CO1aIokvGHo_8g2v-4RPSsJkpzYIdRddcF_Ccc_LVEub5ECWbGLC2voX42XCmSXwcSnmx09vfLj9pl3BSr-jKXL0oaLhDmPOiSu5Wut5zlkPr5vOff-_vmG-Tq6GCym-yO93buk2sMQs6qtmOddObnC_cAQsa5flieU0o-X7Zh-AmvMH5x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOXVQKELAgEHN_au7XWQEAokoaGkIEohN7MvtxXFDnUi1L_Gr2PGXhtF4nXpzfGOV8rM7Mw39jwIeRD7oQq1Mp4KIuGFWjNPWsM9rUWY9eNISoMFztO9eOcgfD2LZmvkR1MLg2mVjU2sDLUpNL4j7wG0BU_OuEh6mUuLeDccP59_83CCFH5pbcZp1Cqya8--Q_hWPpsMQdYPGRuPPrzc8dyEAU_HXCw8ncSJMsLILFGJ4jI0SjHDwe9JmUVM8n5ofaVsILTFQgqD01H8LLRKM5FVEyPA_F8QPArwjIlZG-yBHYljV6rHRdBzmrE9L3K7jWEIi_mKK6wmBrR-oTM_Kco_g97K-Y2vkMsOtdJBrWbrZM3mV8m6swslfeyaVz-5Ro72vU9DbzSaDp_SAT06w4IwmjUZYBQgMj3-qjCfUltDy9H0FcUUEthcuvYo9Dinpk4AhB9FRqsxgvRLbi2VKkeMjaHDdXJwLry-QTo5cG-DUAMbasMCjWAI8JEyXHCrJFz2eZSxLuENY1PtWp3jxI2TtPp-JyDkqfmWojhSJ44u8dqn5nWrj3_Qv0CZtbTYqLu6UZwepu7cpzxOEun7midhP1Q6TAyPwSQGhsW6L4KoS7ZQ4mld9dqam3SAM-B9wAqiS-5XFNisI0e1P5TLskwnbz_-B9H--xWiR44oK4AdWroKDPhP2ARshXJzhRJMjl5Z3kD9bLhSpr8OJzzZ6Ozvl--1y7gpZvjltlhWNDzEkedBl9ysdb3lLIcw0Od9_9bfN98iF8EkpG8me7u3ySUG6LNO89gkncXp0t4B9LhQd6tjSsnn87YLPwGmgIKn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S-WD-EEMD%3A+A+hybrid+framework+for+imbalanced+sEMG+signal+analysis+in+diagnosis+of+human+knee+abnormality&rft.jtitle=PloS+one&rft.au=Vijayvargiya%2C+Ankit&rft.au=Sinha%2C+Aparna&rft.au=Gehlot%2C+Naveen&rft.au=Jena%2C+Ashutosh&rft.date=2024-05-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0301263&rft_id=info:doi/10.1371%2Fjournal.pone.0301263&rft.externalDBID=IOV&rft.externalDocID=A795902997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |