S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality

The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address th...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 5; p. e0301263
Main Authors Vijayvargiya, Ankit, Sinha, Aparna, Gehlot, Naveen, Jena, Ashutosh, Kumar, Rajesh, Moran, Kieran
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.05.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.
AbstractList The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.
The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major problem due to the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and knee abnormal subjects. To address this challenge, a combination of wavelet decomposition (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is considered for the minimization of noises produced in the sEMG signal during the collection, while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance the data by increasing the minority class samples during the training of machine learning techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling technique enhances the efficacy of the examined classifiers when employed on the imbalanced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD signal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE oversampling technique, it is 95.1%.
Audience Academic
Author Jena, Ashutosh
Moran, Kieran
Vijayvargiya, Ankit
Kumar, Rajesh
Sinha, Aparna
Gehlot, Naveen
Author_xml – sequence: 1
  givenname: Ankit
  orcidid: 0000-0002-4655-2324
  surname: Vijayvargiya
  fullname: Vijayvargiya, Ankit
– sequence: 2
  givenname: Aparna
  surname: Sinha
  fullname: Sinha, Aparna
– sequence: 3
  givenname: Naveen
  surname: Gehlot
  fullname: Gehlot, Naveen
– sequence: 4
  givenname: Ashutosh
  surname: Jena
  fullname: Jena, Ashutosh
– sequence: 5
  givenname: Rajesh
  surname: Kumar
  fullname: Kumar, Rajesh
– sequence: 6
  givenname: Kieran
  surname: Moran
  fullname: Moran, Kieran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38820390$$D View this record in MEDLINE/PubMed
BookMark eNqNkmtr2zAUhs3oWC_bPxiboDC2D8l0cWy530KbdYGWwrrLR3F0caLUtjLJZsu_n9w4oyllDIMtH573vDqH9zg5aFxjkuQ1wWPCcvJx5TrfQDVex_IYM0xoxp4lR6RgdJRRzA4enA-T4xBWGE8Yz7IXySHjPFYLfJQsb0c_Lkaz2fXFGZqi5UZ6q1HpoTa_nL9DpfPI1hIqaJTRKMyuL1Gwi-iLIL42wQZkG6QtLBrX_7gSLbsaGnTXGINANs7XUNl28zJ5XkIVzKvhe5J8-zT7ev55dHVzOT-fXo1UxvJ2pHjGpc41lFxyySDVUlLNMCUA5YQCK1KDpTQkVyajKdWEpwyXqZGK5iWbsJPk7bbvunJBDEsKguGsoAVlOY_EfEtoByux9rYGvxEOrLgvOL8Q4FurKiNYxjlgrBhPi1SqlGuW5QUjmmaqyEnv9n5w8-5nZ0IrahuUqeK-jOvubVmaYUZIRE8foU9fbqAWEP1tU7rWg-qbimleTApMiyKP1PgJKj7a1FbFQJQ21vcEH_YEkWnN73YBXQhifvvl_9mb7_vsuwfs0kDVLoOruta6JuyDb4bpO1kb_XftuyRG4GwLKO9C8KYUyrbQ94mj2UoQLPrY75Ym-tiLIfZRnD4S7_r_U_YHFiADSw
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_109651
Cites_doi 10.3389/fnbot.2019.00031
10.1109/IC3.2015.7346648
10.1109/EMBC.2013.6610865
10.3390/electronics8080894
10.1152/jn.00009.2006
10.1016/j.chemolab.2022.104516
10.1109/ICASSP.2005.1416051
10.1007/s13534-022-00236-w
10.1016/B978-0-12-819361-7.00012-9
10.1109/ICMA.2009.5244866
10.2174/1570178615666180816101653
10.3390/s130912431
10.3390/diagnostics12092235
10.1145/2907070
10.1109/THMS.2023.3319356
10.1007/978-3-642-23166-7_12
10.1109/ACCESS.2019.2927266
10.1177/1947603516665444
10.1111/1467-9868.00071
10.1016/S0140-6736(19)30417-9
10.1098/rspa.1998.0193
10.1179/1743132810Y.0000000014
10.1109/10.204774
10.1007/978-981-10-8639-7_24
10.1142/S1793536909000047
10.1613/jair.953
10.1109/72.485678
10.1007/s10994-006-6226-1
10.1109/ICCPCT.2017.8074406
10.1016/j.proeng.2011.08.749
10.1097/BOR.0000000000000917
10.1016/j.ins.2013.09.038
10.1023/A:1010933404324
10.1016/j.proeng.2012.06.409
10.1109/ISSNIP.2007.4496914
10.3389/fgene.2020.539227
10.1109/ACCESS.2021.3062291
10.1109/ICONC345789.2020.9117456
10.1109/ICASSP.2011.5947265
10.1109/ACCESS.2016.2619181
10.1016/j.bspc.2021.102406
10.1109/ICCCA52192.2021.9666291
10.1016/j.berh.2016.09.007
10.1109/STSIVA.2013.6644943
10.1109/99.388960
10.2478/v10048-011-0009-y
10.1016/j.bspc.2020.102051
10.1109/ICICS49469.2020.239556
10.1016/j.jbiomech.2009.10.014
10.1007/s12652-021-03612-z
10.1109/ICIDeA59866.2023.10295245
10.1016/j.chaos.2020.110210
10.1109/51.982285
10.1016/0167-9473(96)00003-5
10.1007/BF00116251
10.1002/cyto.990080516
10.1109/JSEN.2021.3095594
10.1016/j.bspc.2020.101872
10.1007/s13246-021-01071-6
10.1016/j.bspc.2017.10.002
ContentType Journal Article
Copyright Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0301263
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef

Agricultural Science Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3069292378
oai_doaj_org_article_3688a00c38494bc48d367931d26c9715
A795902997
38820390
10_1371_journal_pone_0301263
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
ESTFP
ID FETCH-LOGICAL-c637t-c868bd7daf8b8b3a4dbb2d3021aaf52a394e0bbe17ce6242d18430f4ebc27f353
IEDL.DBID M48
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:45 EST 2024
Wed Aug 27 01:31:58 EDT 2025
Tue Aug 05 11:16:29 EDT 2025
Fri Jul 25 10:28:22 EDT 2025
Tue Jun 17 22:09:34 EDT 2025
Tue Jun 10 21:09:24 EDT 2025
Fri Jun 27 05:33:11 EDT 2025
Fri Jun 27 05:49:46 EDT 2025
Thu May 22 21:24:21 EDT 2025
Wed Feb 19 02:07:28 EST 2025
Thu Apr 24 23:00:14 EDT 2025
Tue Jul 01 04:03:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2024 Vijayvargiya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-c868bd7daf8b8b3a4dbb2d3021aaf52a394e0bbe17ce6242d18430f4ebc27f353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4655-2324
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0301263
PMID 38820390
PQID 3069292378
PQPubID 1436336
PageCount e0301263
ParticipantIDs plos_journals_3069292378
doaj_primary_oai_doaj_org_article_3688a00c38494bc48d367931d26c9715
proquest_miscellaneous_3063460311
proquest_journals_3069292378
gale_infotracmisc_A795902997
gale_infotracacademiconefile_A795902997
gale_incontextgauss_ISR_A795902997
gale_incontextgauss_IOV_A795902997
gale_healthsolutions_A795902997
pubmed_primary_38820390
crossref_citationtrail_10_1371_journal_pone_0301263
crossref_primary_10_1371_journal_pone_0301263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-31
PublicationDateYYYYMMDD 2024-05-31
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Brandt (pone.0301263.ref058) 2021
A Vijayvargiya (pone.0301263.ref043) 2021; 66
pone.0301263.ref044
X Zhai (pone.0301263.ref065) 2016; 4
F Xiao (pone.0301263.ref046) 2011; 15
pone.0301263.ref049
S Cai (pone.0301263.ref021) 2019; 13
S Akbar (pone.0301263.ref042) 2019; 16
N Inayat (pone.0301263.ref055) 2021; 9
CS Pattichis (pone.0301263.ref013) 1996; 7
T Raeder (pone.0301263.ref068) 2012
F Khan (pone.0301263.ref054) 2020; 11
RH Chowdhury (pone.0301263.ref056) 2013; 13
T Tuncer (pone.0301263.ref020) 2020; 58
A Graps (pone.0301263.ref036) 1995; 2
pone.0301263.ref050
A Mathiessen (pone.0301263.ref004) 2016; 30
K Chen (pone.0301263.ref009) 2022; 12
A Vijayvargiya (pone.0301263.ref023) 2021; 44
pone.0301263.ref051
DJ Hunter (pone.0301263.ref002) 2019; 393
M Chalian (pone.0301263.ref005) 2023; 35
pone.0301263.ref012
O Sanchez (pone.0301263.ref045) 2014; 2
A Vijayvargiya (pone.0301263.ref031) 2022; 12
A Vijayvargiya (pone.0301263.ref034) 2021; 21
pone.0301263.ref015
J Chen (pone.0301263.ref026) 2018; 40
P Geurts (pone.0301263.ref066) 2006; 63
CJ De Luca (pone.0301263.ref011) 2006; 96
L Burkow-Heikkinen (pone.0301263.ref014) 2011; 33
A Vijayvargiya (pone.0301263.ref010) 2019
C Morbidoni (pone.0301263.ref030) 2019; 8
A Vijayvargiya (pone.0301263.ref025) 2023; 53
JR Quinlan (pone.0301263.ref059) 1986; 1
A Phinyomark (pone.0301263.ref052) 2011; 11
PM Jungmann (pone.0301263.ref003) 2017; 8
pone.0301263.ref060
Z Wu (pone.0301263.ref038) 2009; 1
L Mason (pone.0301263.ref062) 1999; 12
pone.0301263.ref069
GS Murley (pone.0301263.ref024) 2010; 43
IM Johnstone (pone.0301263.ref048) 1997; 59
pone.0301263.ref029
pone.0301263.ref028
CM Yeşilkanat (pone.0301263.ref061) 2020; 140
P Bonato (pone.0301263.ref027) 2001; 20
S Sudarsan (pone.0301263.ref019) 2012; 38
NV Chawla (pone.0301263.ref057) 2002; 16
Z Xuegong (pone.0301263.ref064) 2000; 26
L Breiman (pone.0301263.ref063) 2001; 45
B Hudgins (pone.0301263.ref016) 1993; 40
U Da Silva (pone.0301263.ref018) 2016; 103
S Makki (pone.0301263.ref040) 2019; 7
MY Shaheen (pone.0301263.ref006) 2021
Y Huang (pone.0301263.ref017) 2020; 62
Arthritis Foundation (pone.0301263.ref001) 2017; 15
P Branco (pone.0301263.ref041) 2016; 49
C. Prakash (pone.0301263.ref022) 2019
NE Huang (pone.0301263.ref037) 1998; 454
pone.0301263.ref032
pone.0301263.ref033
TG Myers (pone.0301263.ref007) 2020; 102
pone.0301263.ref035
pone.0301263.ref039
V Lopez (pone.0301263.ref067) 2014; 257
Y Kumar (pone.0301263.ref008) 2023; 14
F Abramovich (pone.0301263.ref047) 1996; 22
A Ahmad (pone.0301263.ref053) 2022; 222
References_xml – volume: 13
  start-page: 31
  year: 2019
  ident: pone.0301263.ref021
  article-title: SVM-based classification of sEMG signals for upper-limb self-rehabilitation training
  publication-title: Frontiers in Neurorobotics
  doi: 10.3389/fnbot.2019.00031
– ident: pone.0301263.ref039
  doi: 10.1109/IC3.2015.7346648
– ident: pone.0301263.ref029
  doi: 10.1109/EMBC.2013.6610865
– volume: 8
  start-page: 894
  issue: 8
  year: 2019
  ident: pone.0301263.ref030
  article-title: A deep learning approach to EMG-based classification of gait phases during level ground walking
  publication-title: Electronics
  doi: 10.3390/electronics8080894
– volume: 96
  start-page: 1646
  issue: 3
  year: 2006
  ident: pone.0301263.ref011
  article-title: Decomposition of surface EMG signals
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00009.2006
– volume: 222
  start-page: 104516
  year: 2022
  ident: pone.0301263.ref053
  article-title: iAFPs-EnC-GA: identifying antifungal peptides using sequential and evolutionary descriptors based multi-information fusion and ensemble learning approach
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104516
– volume: 26
  start-page: 32
  issue: 1
  year: 2000
  ident: pone.0301263.ref064
  article-title: Introduction to statistical learning theory and support vector machines
  publication-title: Acta Automatica Sinica
– ident: pone.0301263.ref049
  doi: 10.1109/ICASSP.2005.1416051
– volume: 12
  start-page: 343
  issue: 4
  year: 2022
  ident: pone.0301263.ref031
  article-title: Human lower limb activity recognition techniques, databases, challenges and its applications using sEMG signal: an overview
  publication-title: Biomedical Engineering Letters
  doi: 10.1007/s13534-022-00236-w
– start-page: 243
  volume-title: Sensors for Health Monitoring
  year: 2019
  ident: pone.0301263.ref010
  doi: 10.1016/B978-0-12-819361-7.00012-9
– year: 2021
  ident: pone.0301263.ref058
  publication-title: A comparative review of SMOTE and ADASYN in imbalanced data classification
– ident: pone.0301263.ref050
  doi: 10.1109/ICMA.2009.5244866
– volume: 16
  start-page: 294
  issue: 4
  year: 2019
  ident: pone.0301263.ref042
  article-title: iAFP-gap-SMOTE: an efficient feature extraction scheme gapped dipeptide composition is coupled with an oversampling technique for identification of antifreeze proteins
  publication-title: Letters in Organic Chemistry
  doi: 10.2174/1570178615666180816101653
– volume: 13
  start-page: 12431
  issue: 9
  year: 2013
  ident: pone.0301263.ref056
  article-title: Surface electromyography signal processing and classification techniques
  publication-title: Sensors
  doi: 10.3390/s130912431
– volume: 12
  start-page: 2235
  issue: 9
  year: 2022
  ident: pone.0301263.ref009
  article-title: Artificial Intelligence in Orthopedic Radiography Analysis: A Narrative Review
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12092235
– volume: 49
  start-page: 1
  issue: 2
  year: 2016
  ident: pone.0301263.ref041
  article-title: A survey of predictive modeling on imbalanced domains
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2907070
– volume: 2
  year: 2014
  ident: pone.0301263.ref045
  article-title: Emg dataset in lower limb data set
  publication-title: UCI Machine Learning Repository
– volume: 53
  start-page: 945
  issue: 6
  year: 2023
  ident: pone.0301263.ref025
  article-title: PC-GNN: Pearson Correlation-Based Graph Neural Network for Recognition of Human Lower Limb Activity Using sEMG Signal
  publication-title: IEEE Transactions on Human-Machine Systems
  doi: 10.1109/THMS.2023.3319356
– start-page: 315
  year: 2012
  ident: pone.0301263.ref068
  article-title: Learning from imbalanced data: Evaluation matters
  publication-title: Data Mining: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification
  doi: 10.1007/978-3-642-23166-7_12
– volume: 7
  start-page: 93010
  year: 2019
  ident: pone.0301263.ref040
  article-title: An experimental study with imbalanced classification approaches for credit card fraud detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927266
– volume: 102
  start-page: 830
  issue: 9
  year: 2020
  ident: pone.0301263.ref007
  article-title: Artificial intelligence and orthopaedics: an introduction for clinicians
  publication-title: The Journal of Bone and Joint Surgery American
– volume: 15
  start-page: 1
  year: 2017
  ident: pone.0301263.ref001
  article-title: Arthritis by the numbers
  publication-title: Arthritis Found
– volume: 8
  start-page: 272
  issue: 3
  year: 2017
  ident: pone.0301263.ref003
  article-title: Magnetic resonance imaging score and classification system (AMADEUS) for assessment of preoperative cartilage defect severity
  publication-title: Cartilage
  doi: 10.1177/1947603516665444
– volume: 59
  start-page: 319
  issue: 2
  year: 1997
  ident: pone.0301263.ref048
  article-title: Wavelet threshold estimators for data with correlated noise
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00071
– year: 2021
  ident: pone.0301263.ref006
  article-title: Applications of Artificial Intelligence (AI) in healthcare: A review
  publication-title: ScienceOpen Preprints
– volume: 393
  start-page: 1745
  issue: 10182
  year: 2019
  ident: pone.0301263.ref002
  article-title: Osteoarthritis
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(19)30417-9
– volume: 12
  year: 1999
  ident: pone.0301263.ref062
  article-title: Boosting algorithms as gradient descent
  publication-title: Advances in Neural Information Processing Systems
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: pone.0301263.ref037
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 33
  start-page: 3
  issue: 1
  year: 2011
  ident: pone.0301263.ref014
  article-title: Non-invasive physiological monitoring of exercise and fitness
  publication-title: Neurological Research
  doi: 10.1179/1743132810Y.0000000014
– volume: 40
  start-page: 82
  issue: 1
  year: 1993
  ident: pone.0301263.ref016
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.204774
– start-page: 235
  volume-title: Recent Findings in Intelligent Computing Techniques: Proceedings of the 5th ICACNI
  year: 2019
  ident: pone.0301263.ref022
  doi: 10.1007/978-981-10-8639-7_24
– volume: 1
  start-page: 1
  issue: 01
  year: 2009
  ident: pone.0301263.ref038
  article-title: Ensemble empirical mode decomposition: a noise-assisted data analysis method
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536909000047
– volume: 16
  start-page: 321
  year: 2002
  ident: pone.0301263.ref057
  article-title: SMOTE: synthetic minority oversampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 7
  start-page: 427
  issue: 2
  year: 1996
  ident: pone.0301263.ref013
  article-title: Genetics-based machine learning for the assessment of certain neuromuscular disorders
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.485678
– volume: 63
  start-page: 3
  year: 2006
  ident: pone.0301263.ref066
  article-title: Extremely randomized trees
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
– ident: pone.0301263.ref028
  doi: 10.1109/ICCPCT.2017.8074406
– volume: 15
  start-page: 3998
  year: 2011
  ident: pone.0301263.ref046
  article-title: A comparative study on thresholding methods in wavelet-based image denoising
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.08.749
– volume: 35
  start-page: 44
  issue: 1
  year: 2023
  ident: pone.0301263.ref005
  article-title: Advances in osteoarthritis imaging
  publication-title: Current Opinion in Rheumatology
  doi: 10.1097/BOR.0000000000000917
– volume: 257
  start-page: 1
  year: 2014
  ident: pone.0301263.ref067
  article-title: On the importance of the validation technique for classificatioń with imbalanced datasets: Addressing covariate shift when data is skewed
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.09.038
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0301263.ref063
  article-title: Random forests
  publication-title: Machine learning
  doi: 10.1023/A:1010933404324
– volume: 38
  start-page: 3547
  year: 2012
  ident: pone.0301263.ref019
  article-title: Design and development of EMG controlled prosthetics limb
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2012.06.409
– ident: pone.0301263.ref033
  doi: 10.1109/ISSNIP.2007.4496914
– volume: 11
  start-page: 539227
  year: 2020
  ident: pone.0301263.ref054
  article-title: Prediction of recombination spots using novel hybrid feature extraction method via deep learning approach
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2020.539227
– volume: 9
  start-page: 40783
  year: 2021
  ident: pone.0301263.ref055
  article-title: iEnhancer-DHF: identification of enhancers and their strengths using optimize deep neural network with multiple features extraction methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062291
– ident: pone.0301263.ref015
  doi: 10.1109/ICONC345789.2020.9117456
– ident: pone.0301263.ref051
  doi: 10.1109/ICASSP.2011.5947265
– volume: 4
  start-page: 8138
  year: 2016
  ident: pone.0301263.ref065
  article-title: MLP neural network based gas classification system on Zynq SoC
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2619181
– volume: 66
  start-page: 102406
  year: 2021
  ident: pone.0301263.ref043
  article-title: Human knee abnormality detection from imbalanced sEMG data
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102406
– ident: pone.0301263.ref035
  doi: 10.1109/ICCCA52192.2021.9666291
– volume: 30
  start-page: 653
  issue: 4
  year: 2016
  ident: pone.0301263.ref004
  article-title: Imaging of osteoarthritis (OA): What is new?
  publication-title: Best Practice & Research Clinical Rheumatology
  doi: 10.1016/j.berh.2016.09.007
– ident: pone.0301263.ref032
  doi: 10.1109/STSIVA.2013.6644943
– volume: 2
  start-page: 50
  issue: 2
  year: 1995
  ident: pone.0301263.ref036
  article-title: An introduction to wavelets
  publication-title: IEEE computational science and engineering
  doi: 10.1109/99.388960
– volume: 11
  start-page: 45
  issue: 2
  year: 2011
  ident: pone.0301263.ref052
  article-title: Application of wavelet analysis in EMG feature extraction for pattern classification
  publication-title: Measurement Science Review
  doi: 10.2478/v10048-011-0009-y
– volume: 62
  start-page: 102051
  year: 2020
  ident: pone.0301263.ref017
  article-title: Joint torque estimation for the human arm from sEMG using backpropagation neural networks and autoencoders
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102051
– ident: pone.0301263.ref044
  doi: 10.1109/ICICS49469.2020.239556
– volume: 43
  start-page: 749
  issue: 4
  year: 2010
  ident: pone.0301263.ref024
  article-title: Reliability of lower limb electromyography during overground walking: a comparison of maximal-and sub-maximal normalisation techniques
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.10.014
– volume: 14
  start-page: 8459
  issue: 7
  year: 2023
  ident: pone.0301263.ref008
  article-title: Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-021-03612-z
– ident: pone.0301263.ref069
  doi: 10.1109/ICIDeA59866.2023.10295245
– volume: 140
  start-page: 110210
  year: 2020
  ident: pone.0301263.ref061
  article-title: Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.110210
– volume: 20
  start-page: 133
  issue: 6
  year: 2001
  ident: pone.0301263.ref027
  article-title: EMG-based measures of fatigue during a repetitive squat exercise
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.982285
– volume: 22
  start-page: 351
  issue: 4
  year: 1996
  ident: pone.0301263.ref047
  article-title: Adaptive thresholding of wavelet coefficients
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/0167-9473(96)00003-5
– volume: 103
  start-page: 361
  issue: 3
  year: 2016
  ident: pone.0301263.ref018
  article-title: EMG activity of upper limb on spinal cord injury individuals during whole-body vibration
  publication-title: Physiology International (Acta Physiologica Hungarica)
– volume: 1
  start-page: 81
  year: 1986
  ident: pone.0301263.ref059
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– ident: pone.0301263.ref060
  doi: 10.1002/cyto.990080516
– ident: pone.0301263.ref012
– volume: 21
  start-page: 20431
  issue: 18
  year: 2021
  ident: pone.0301263.ref034
  article-title: A hybrid WD-EEMD sEMG feature extraction technique for lower limb activity recognition
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3095594
– volume: 58
  start-page: 101872
  year: 2020
  ident: pone.0301263.ref020
  article-title: Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition
  publication-title: Biomedical signal processing and control
  doi: 10.1016/j.bspc.2020.101872
– volume: 44
  start-page: 1297
  year: 2021
  ident: pone.0301263.ref023
  article-title: Voting-based 1D CNN model for human lower limb activity recognition using sEMG signal
  publication-title: Physical and Engineering Sciences in Medicine
  doi: 10.1007/s13246-021-01071-6
– volume: 40
  start-page: 335
  year: 2018
  ident: pone.0301263.ref026
  article-title: Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.10.002
SSID ssj0053866
Score 2.454707
Snippet The diagnosis of human knee abnormalities using the surface electromyography (sEMG) signal obtained from lower limb muscles with machine learning is a major...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e0301263
SubjectTerms Abnormalities
Adult
Algorithms
Artificial intelligence
Classifiers
Data processing
Decomposition
Diagnosis
Electromyography
Electromyography - methods
Female
Humans
Injuries
Knee
Knee - physiopathology
Knee Joint - physiopathology
Learning algorithms
Machine Learning
Male
Medical diagnosis
Muscles
Neural networks
Neuromuscular diseases
Orthopedics
Oversampling
Range of motion
Signal analysis
Signal classification
Signal processing
Signal Processing, Computer-Assisted
Support vector machines
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb5RAFJ-YPXkxtn4UW3U0JuqBFmaGGfC22q3VZDWxVnsj80XbWGEjuwf_e9-DgUiiqQdvwDwm8D54vxfeByHPZCKMsMbFJs1ULKxlsfaOx9YqURUy09phgfPygzw-Fe_PsrPfRn1hTljfHrhn3AGXea6TxPJcFMJYkTsuQadSx6QtVFdezsDnDcFU_w0GK5YyFMpxlR4EueyvmtrvYxDAJJ84oq5f__hVnq2umvbvkLNzPUe3ya2AGem8f9YtcsPX22QrWGVLX4TW0S_vkIuT-OthvFgsD1_ROb34ieVYtBryrygAVHr53WA2o_WOtovlW4oJHLC5Ds1J6GVNXZ9-BydNRbshfvRb7T3VpkaEi8D9Ljk9Wnx-cxyHWQqxlVytY5vL3DjldJWb3HAtnDHMcfDwWlcZ07wQPjHGp8p6LBlxOAcmqYQ3lqmKZ_wemdXAvR1CHWxoHUstQhFAJ8Zxxb3RcFjwrGIR4QNjSxsajeO8i6uy-3umIODo-VaiOMogjojE412rvtHGNfSvUWYjLbbJ7i6A8pRBecrrlCcij1HiZV9zOhp7OccJ7Al4ahWRpx0FtsqoMRfnXG_atnz38cs_EJ18mhA9D0RVA-ywOtQ_wDthC64J5d6EEgzeTpZ3UD8HrrQlRH0AchlXOdw56Oyfl5-My7gp5tfVvtl0NFzgwPE0Ivd7XR85yyEIS3iRPPgfHN8lNxnAwj7_Yo_M1j82_iHAurV51FnwL0OURt8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5uk9ixEy5ooVsK0oJEKewt8ittRUmWZvfAv2cmcYJW4nXLxl8s7YzH8zmZByFPZCyMsMYxk2SKCWtTpr3jzFolqkJmWjtMcJ6_l4fH4t0iW4QXbm0Iqxz2xG6jdo3Fd-R7QG3Bk6dc5S-X3xl2jcKvq6GFxmVyBUuXYUiXWowHLrBlKUO6HFfJXtDO7rKp_S4eBVLJN9xRV7V_3Jsny_Om_TPx7BzQwXVyLTBHOu1VvUUu-foG2Qq22dJnoYD085vk9Ih92Wez2Xz_BZ3S0x-YlEWrIQqLAk2lZ98MxjRa72g7m7-hGMYBk-tQooSe1dT1QXjwo6lo18qPfq29p9rUyHORvt8ixwezT68PWeiowKzkasVsLnPjlNNVbnLDtXDGpI6Dn9e6ylLNC-FjY3yirMfEEYfdYOJKeGNTVfGM3yaTGqS3TaiDCa1LE4uEBDiKcVxxbzRcFjyr0ojwQbClDeXGsevFedl9Q1Nw7OjlVqI6yqCOiLDxqWVfbuMf-FeosxGLxbK7G83FSRlsr-Qyz3UcW56LQhgrcsclbEuJS6UtVJJF5CFqvOwzT0eTL6fYhz0Gf60i8rhDYMGMGiNyTvS6bcu3Hz7_B-jo4wboaQBVDYjD6pAFAf8JC3FtIHc2kGD2dmN4G9fnIJW2_GUg8OSwZn8__Ggcxkkxyq72zbrDcIFtx5OI3OnX-ihZDkexmBfx3b9Pfo9cTYH29fEVO2Syulj7-0DbVuZBZ5s_AcM1QBw
  priority: 102
  providerName: ProQuest
Title S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality
URI https://www.ncbi.nlm.nih.gov/pubmed/38820390
https://www.proquest.com/docview/3069292378
https://www.proquest.com/docview/3063460311
https://doaj.org/article/3688a00c38494bc48d367931d26c9715
http://dx.doi.org/10.1371/journal.pone.0301263
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaYRSDkICHTEnsxAkSQt2WbiB1oI2yvkX-yjZRktK0Envhb-cuX1KlTezFSuqzpZ599s_x3f0IeRO6XHGtjKO8QDhca9-R1jBHa8GzOAykNBjgPD4Jjyf8yzSYbpCWs7VRYHnj0Q75pCaL2d6f39efwOA_VqwNwmsb7c2L3O4hxPdDtkm2YG8SaKpj3t0rgHVXt5eIWpzQd1kTTHdbL2ubVZXTv1u5e_NZUd4OS6vtafSA3G9wJR3WE2GbbNj8IdluLLek75r00u8fkcsz5_zQSZLx4Qc6pJfXGLJFs9ZHiwKIpVe_FHo8amtomYyPKDp5QOeySWBCr3Jqahc9eCkyWhH90Z-5tVSqHFEwgvvHZDJKvh8cOw3fgqNDJpaOjsJIGWFkFqlIMcmNUr5hgAKkzAJfsphbVynrCW0xrMQgV4ybcau0LzIWsCekl4P2dgg10KE2vqcRrgCCUYYJZpWEx5gFmd8nrFVsqptk5MiJMUurGzYBh5JabykOR9oMR584Xat5nYzjP_L7OGadLKbSrn4oFhdpY5kpC6NIuq5mEY-50jwyLIRFyzN-qGPhBX3yEkc8reNSuwUhHSJLuwu7ueiT15UEptPI0V_nQq7KMv389ccdhM5O14TeNkJZAerQsomRgP-EabrWJHfXJGFR0GvVOzg_W62UKZwMAQj7TETQsp2zN1e_6qqxU_TBy22xqmQYR1Jyr0-e1nO90yyDg5rLYvfZXVTxnNzzARrWPhi7pLdcrOwLgHZLNSCbYiqgjA48LEdHA7K1n5x8Ox1UH0sGlTVj-Tf5B_RpUB4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V4QFeEOVqoNAFgYAHt_bu2usgIRRISkKbItGDvJm93FYUO9SJUP8Uv5EZXygS10vfHO94pczMzmHPzEfIk8gXWhhtPR2E0hPGME85yz1jpEh7UaiUxQbnyV40OhTvp-F0hfxoemGwrLKxiaWhtrnBd-RbENqCJ2dcxq9n3zxEjcKvqw2ERqUWO-7iO6RsxavxAOT7lLHt4cHbkVejCngm4nLumTiKtZVWpbGONVfCas0sB1-nVBoyxXvC-Vq7QBqHzRMWEVH8VDhtmExLlAgw-VfA8fp4ouS0TfDAdkRR3Z7HZbBVa8PmLM_cJqYeLOJL7q9ECWh9QWd2lhd_DnRLh7d9g1yvI1Xar1Rrlay47CZZrW1BQZ_XA6tf3CIn-96ngTccTgYvaZ-eXGATGE2bqi8KYTE9_aqxhtI4S4vh5B3FshHYXNUjUehpRm1V9Ac_8pSW0IH0S-YcVTrDuBrThdvk8FJ4fYd0MuDeGqEWNjSWBQYDIIiJtOWSO63gssfDlHUJbxibmHq8OaJsnCXlNzsJaU7FtwTFkdTi6BKvfWpWjff4B_0blFlLi8O5yxv5-XFSn_WER3GsfN_wWPSENiK2PAIzGFgWmZ4Mwi7ZQIknVadra2KSPuK--xAfyC55XFLggI4MK4CO1aIokvGHo_8g2v-4RPSsJkpzYIdRddcF_Ccc_LVEub5ECWbGLC2voX42XCmSXwcSnmx09vfLj9pl3BSr-jKXL0oaLhDmPOiSu5Wut5zlkPr5vOff-_vmG-Tq6GCym-yO93buk2sMQs6qtmOddObnC_cAQsa5flieU0o-X7Zh-AmvMH5x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VQUJcEOXVQKELAgEHN_au7XWQEAokoaGkIEohN7MvtxXFDnUi1L_Gr2PGXhtF4nXpzfGOV8rM7Mw39jwIeRD7oQq1Mp4KIuGFWjNPWsM9rUWY9eNISoMFztO9eOcgfD2LZmvkR1MLg2mVjU2sDLUpNL4j7wG0BU_OuEh6mUuLeDccP59_83CCFH5pbcZp1Cqya8--Q_hWPpsMQdYPGRuPPrzc8dyEAU_HXCw8ncSJMsLILFGJ4jI0SjHDwe9JmUVM8n5ofaVsILTFQgqD01H8LLRKM5FVEyPA_F8QPArwjIlZG-yBHYljV6rHRdBzmrE9L3K7jWEIi_mKK6wmBrR-oTM_Kco_g97K-Y2vkMsOtdJBrWbrZM3mV8m6swslfeyaVz-5Ro72vU9DbzSaDp_SAT06w4IwmjUZYBQgMj3-qjCfUltDy9H0FcUUEthcuvYo9Dinpk4AhB9FRqsxgvRLbi2VKkeMjaHDdXJwLry-QTo5cG-DUAMbasMCjWAI8JEyXHCrJFz2eZSxLuENY1PtWp3jxI2TtPp-JyDkqfmWojhSJ44u8dqn5nWrj3_Qv0CZtbTYqLu6UZwepu7cpzxOEun7midhP1Q6TAyPwSQGhsW6L4KoS7ZQ4mld9dqam3SAM-B9wAqiS-5XFNisI0e1P5TLskwnbz_-B9H--xWiR44oK4AdWroKDPhP2ARshXJzhRJMjl5Z3kD9bLhSpr8OJzzZ6Ozvl--1y7gpZvjltlhWNDzEkedBl9ysdb3lLIcw0Od9_9bfN98iF8EkpG8me7u3ySUG6LNO89gkncXp0t4B9LhQd6tjSsnn87YLPwGmgIKn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S-WD-EEMD%3A+A+hybrid+framework+for+imbalanced+sEMG+signal+analysis+in+diagnosis+of+human+knee+abnormality&rft.jtitle=PloS+one&rft.au=Vijayvargiya%2C+Ankit&rft.au=Sinha%2C+Aparna&rft.au=Gehlot%2C+Naveen&rft.au=Jena%2C+Ashutosh&rft.date=2024-05-31&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=5&rft.spage=e0301263&rft_id=info:doi/10.1371%2Fjournal.pone.0301263&rft.externalDBID=IOV&rft.externalDocID=A795902997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon