Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and c...
Saved in:
Published in | Nature neuroscience Vol. 21; no. 9; pp. 1185 - 1195 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.09.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1
+
CCK
+
, CNR1
–
SST
–
CALB2
–
PVALB
–
) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species. |
---|---|
AbstractList | We describe convergent evidence from transcriptomics, morphology and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a novel group of human interneurons with anatomical features never described in rodents having large, “rosehip”-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1/CCK-positive, CNR1/SST/CALB2/PVALB-negative) matching a single transcriptomically-defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1.sup.+CCK.sup.+, CNR1.sup.-SST.sup.-CALB2.sup.-PVALB.sup.-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1.sup.+CCK.sup.+, CNR1.sup.-SST.sup.-CALB2.sup.-PVALB.sup.-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1–SST–CALB2–PVALB–) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1 CCK , CNR1 SST CALB2 PVALB ) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1 + CCK + , CNR1 – SST – CALB2 – PVALB – ) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species. |
Audience | Academic |
Author | Novotny, Mark Faragó, Nóra Oláh, Gáspár Schork, Nicholas J. Boldog, Eszter Hodge, Rebecca D. Maltzer, Zoe Wall, Abby Ozsvár, Attila Aevermann, Brian D. Shehata, Soraya I. Venepally, Pratap Close, Jennie L. Diez-Fuertes, Francisco Ding, Song-Lin Lein, Ed S. Kovács, Balázs Barzó, Pál Molnár, Gábor Tran, Danny N. Tamás, Gábor Steemers, Frank J. Sunkin, Susan M. Rózsa, Márton Bakken, Trygve E. Scheuermann, Richard H. Puskás, László G. McCorrison, Jamison M. Bordé, Sándor Lasken, Roger S. Smith, Kimberly A. Baka, Judith Kocsis, Ágnes K. Miller, Jeremy A. |
AuthorAffiliation | 1 MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52., Szeged, H-6726, Hungary 4 Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122 USA 7 Department of Pathology, 9500 Gilman Drive, University of California, San Diego, CA 92093 USA 2 Allen Institute for Brain Science, 615 Westlake Avenue North, Seattle, WA 98109, USA 3 J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA 6 Department of Neurosurgery, University of Szeged, Hungary, Semmelweis u. 6., Szeged, H-6725 Hungary 5 Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary |
AuthorAffiliation_xml | – name: 7 Department of Pathology, 9500 Gilman Drive, University of California, San Diego, CA 92093 USA – name: 1 MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52., Szeged, H-6726, Hungary – name: 2 Allen Institute for Brain Science, 615 Westlake Avenue North, Seattle, WA 98109, USA – name: 6 Department of Neurosurgery, University of Szeged, Hungary, Semmelweis u. 6., Szeged, H-6725 Hungary – name: 5 Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary – name: 4 Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122 USA – name: 3 J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA |
Author_xml | – sequence: 1 givenname: Eszter surname: Boldog fullname: Boldog, Eszter organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 2 givenname: Trygve E. surname: Bakken fullname: Bakken, Trygve E. organization: Allen Institute for Brain Science – sequence: 3 givenname: Rebecca D. surname: Hodge fullname: Hodge, Rebecca D. organization: Allen Institute for Brain Science – sequence: 4 givenname: Mark surname: Novotny fullname: Novotny, Mark organization: J. Craig Venter Institute – sequence: 5 givenname: Brian D. surname: Aevermann fullname: Aevermann, Brian D. organization: J. Craig Venter Institute – sequence: 6 givenname: Judith surname: Baka fullname: Baka, Judith organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 7 givenname: Sándor surname: Bordé fullname: Bordé, Sándor organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 8 givenname: Jennie L. surname: Close fullname: Close, Jennie L. organization: Allen Institute for Brain Science – sequence: 9 givenname: Francisco surname: Diez-Fuertes fullname: Diez-Fuertes, Francisco organization: J. Craig Venter Institute – sequence: 10 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin organization: Allen Institute for Brain Science – sequence: 11 givenname: Nóra surname: Faragó fullname: Faragó, Nóra organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 12 givenname: Ágnes K. surname: Kocsis fullname: Kocsis, Ágnes K. organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 13 givenname: Balázs surname: Kovács fullname: Kovács, Balázs organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 14 givenname: Zoe surname: Maltzer fullname: Maltzer, Zoe organization: Allen Institute for Brain Science – sequence: 15 givenname: Jamison M. surname: McCorrison fullname: McCorrison, Jamison M. organization: J. Craig Venter Institute – sequence: 16 givenname: Jeremy A. surname: Miller fullname: Miller, Jeremy A. organization: Allen Institute for Brain Science – sequence: 17 givenname: Gábor surname: Molnár fullname: Molnár, Gábor organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 18 givenname: Gáspár surname: Oláh fullname: Oláh, Gáspár organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 19 givenname: Attila surname: Ozsvár fullname: Ozsvár, Attila organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 20 givenname: Márton surname: Rózsa fullname: Rózsa, Márton organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged – sequence: 21 givenname: Soraya I. surname: Shehata fullname: Shehata, Soraya I. organization: Allen Institute for Brain Science – sequence: 22 givenname: Kimberly A. surname: Smith fullname: Smith, Kimberly A. organization: Allen Institute for Brain Science – sequence: 23 givenname: Susan M. surname: Sunkin fullname: Sunkin, Susan M. organization: Allen Institute for Brain Science – sequence: 24 givenname: Danny N. surname: Tran fullname: Tran, Danny N. organization: J. Craig Venter Institute – sequence: 25 givenname: Pratap surname: Venepally fullname: Venepally, Pratap organization: J. Craig Venter Institute – sequence: 26 givenname: Abby surname: Wall fullname: Wall, Abby organization: Allen Institute for Brain Science – sequence: 27 givenname: László G. surname: Puskás fullname: Puskás, László G. organization: Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences – sequence: 28 givenname: Pál surname: Barzó fullname: Barzó, Pál organization: Illumina, Inc – sequence: 29 givenname: Frank J. surname: Steemers fullname: Steemers, Frank J. organization: Department of Neurosurgery, University of Szeged – sequence: 30 givenname: Nicholas J. surname: Schork fullname: Schork, Nicholas J. organization: J. Craig Venter Institute – sequence: 31 givenname: Richard H. surname: Scheuermann fullname: Scheuermann, Richard H. organization: J. Craig Venter Institute, Department of Pathology, University of California – sequence: 32 givenname: Roger S. surname: Lasken fullname: Lasken, Roger S. organization: J. Craig Venter Institute – sequence: 33 givenname: Ed S. orcidid: 0000-0001-9012-6552 surname: Lein fullname: Lein, Ed S. email: EdL@alleninstitute.org organization: Allen Institute for Brain Science – sequence: 34 givenname: Gábor orcidid: 0000-0002-7905-6001 surname: Tamás fullname: Tamás, Gábor email: gtamas@bio.u-szeged.hu organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30150662$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9igSGxgkWI740c2SEMFpVIlJChr68a5ybhK7GAnFcOvx2FKy1SAvLBlf-dc3etznB047zDLnlNySkmp3sQV5VVZEKoKwggv2KPsiPKVKKhk4iCdSSULwbg4zI5jvCaESK6qJ9lhSSgnQrCjrLkK4KIJdpz8YE0OrskHH8aNHzfbaH3vO2ugz_HGNugM5q0POeRxRGOhtz-wyTfzAC43Pky_yPP1uzWGpMoN9n0-bUd8mj1uoY_47HY_yb5-eH919rG4_HR-cba-LIwo5VTUtGlFUzFZt9Aa5K2QAhpTq6ZSwEApwypACsApZabkUBqGrTQoa8UBSXmSvd35jnM9YGPQTQF6PQY7QNhqD1bvvzi70Z2_0YKWRK2qZPDq1iD4bzPGSQ82Lm2AQz9HzUjFOVOCLbVePkCv_Rxcam-hJJcrQeg91UGP2rrWp7pmMdVrLpkqhSxFok7_QqXVYPqT9OetTfd7gtd7gsRM-H3qYI5RX3z5vM---HMod9P4nYEE0B1ggo8xYHuHUKKXnOldznTKmV5ypheNfKAxdoLJ-mWutv-vku2UMVVxHYb7uf1b9BMyAuby |
CitedBy_id | crossref_primary_10_14336_AD_2022_0412 crossref_primary_10_3389_fnsyn_2019_00015 crossref_primary_10_1126_science_abk2346 crossref_primary_10_1093_nsr_nwad281 crossref_primary_10_3389_fncel_2019_00559 crossref_primary_10_3389_fnana_2023_1108363 crossref_primary_10_3389_fnmol_2019_00115 crossref_primary_10_1016_j_neuron_2021_08_005 crossref_primary_10_3389_fncel_2023_1161608 crossref_primary_10_1101_gr_256958_119 crossref_primary_10_31887_DCNS_2019_21_3_mrossner crossref_primary_10_1371_journal_pone_0275070 crossref_primary_10_1093_nc_niab036 crossref_primary_10_1016_j_schres_2022_02_023 crossref_primary_10_1523_JNEUROSCI_3598_17_2018 crossref_primary_10_1016_j_conb_2018_12_005 crossref_primary_10_1038_s41598_021_83342_6 crossref_primary_10_1007_s12264_022_00983_x crossref_primary_10_1523_JNEUROSCI_1692_24_2025 crossref_primary_10_1016_j_tics_2022_08_012 crossref_primary_10_1038_s41593_021_00997_0 crossref_primary_10_1016_j_ajhg_2018_10_009 crossref_primary_10_1038_s41593_024_01812_2 crossref_primary_10_1177_1535759720949254 crossref_primary_10_1007_s00213_019_05220_4 crossref_primary_10_7554_eLife_48417 crossref_primary_10_3390_vision3010003 crossref_primary_10_1080_21541264_2023_2295044 crossref_primary_10_1073_pnas_1911413116 crossref_primary_10_1186_s12916_020_01896_0 crossref_primary_10_1016_j_devcel_2019_03_001 crossref_primary_10_1038_s41583_020_0262_x crossref_primary_10_1016_j_nbd_2019_02_006 crossref_primary_10_1192_bji_2018_26 crossref_primary_10_1242_dev_204306 crossref_primary_10_1016_j_celrep_2018_12_107 crossref_primary_10_1254_fpj_153_210 crossref_primary_10_1126_science_adf0805 crossref_primary_10_1016_j_ceb_2019_07_003 crossref_primary_10_1016_j_celrep_2024_114212 crossref_primary_10_31636_pmjua_v3i4_1 crossref_primary_10_3390_ijms23010202 crossref_primary_10_1007_s12035_022_03053_5 crossref_primary_10_1186_s12987_024_00602_z crossref_primary_10_1111_epi_17744 crossref_primary_10_1146_annurev_neuro_100520_012117 crossref_primary_10_1038_s41467_021_25725_x crossref_primary_10_1038_s41593_021_00940_3 crossref_primary_10_1016_j_conb_2023_102699 crossref_primary_10_1038_s41467_020_14952_3 crossref_primary_10_1093_cercor_bhac195 crossref_primary_10_1073_pnas_2006515117 crossref_primary_10_1093_bib_bbaa339 crossref_primary_10_2478_sjecr_2020_0065 crossref_primary_10_1016_j_gde_2020_05_043 crossref_primary_10_15252_embj_2021108714 crossref_primary_10_1016_j_cell_2018_12_032 crossref_primary_10_1007_s00401_023_02599_5 crossref_primary_10_7554_eLife_59928 crossref_primary_10_1007_s00018_020_03714_5 crossref_primary_10_1002_stem_3252 crossref_primary_10_1016_j_cobeha_2019_01_011 crossref_primary_10_1038_s41586_019_1506_7 crossref_primary_10_1016_j_neuron_2023_09_041 crossref_primary_10_1159_000500317 crossref_primary_10_3389_fneur_2020_591690 crossref_primary_10_1126_sciadv_ade4511 crossref_primary_10_1007_s40473_019_00192_3 crossref_primary_10_1038_s41583_020_0301_7 crossref_primary_10_1038_s41598_022_10319_4 crossref_primary_10_1016_j_cortex_2020_08_015 crossref_primary_10_1126_science_abj6641 crossref_primary_10_1152_jn_00411_2019 crossref_primary_10_3389_fnana_2023_1210502 crossref_primary_10_1007_s00429_021_02230_x crossref_primary_10_1016_j_tins_2022_11_001 crossref_primary_10_1093_cercor_bhac246 crossref_primary_10_3390_molecules25082000 crossref_primary_10_1016_j_neuron_2018_10_009 crossref_primary_10_1097_WNR_0000000000001309 crossref_primary_10_1038_s41467_021_22741_9 crossref_primary_10_1038_s41467_022_35322_1 crossref_primary_10_1016_j_crneur_2024_100129 crossref_primary_10_1093_cercor_bhab040 crossref_primary_10_1016_j_cell_2024_02_031 crossref_primary_10_1038_s41593_020_0692_9 crossref_primary_10_1186_s40478_019_0684_8 crossref_primary_10_1016_j_cell_2024_08_052 crossref_primary_10_1038_s41593_019_0417_0 crossref_primary_10_1038_s41598_022_14192_z crossref_primary_10_7554_eLife_57571 crossref_primary_10_1113_JP283577 crossref_primary_10_1073_pnas_2006163117 crossref_primary_10_3389_fonc_2020_615976 crossref_primary_10_1016_j_biopsych_2018_09_014 crossref_primary_10_1016_j_conb_2018_11_007 crossref_primary_10_1111_ejn_16652 crossref_primary_10_1126_science_aax6239 crossref_primary_10_1016_j_nec_2023_08_006 crossref_primary_10_1186_s13059_019_1747_7 crossref_primary_10_1016_j_conb_2023_102703 crossref_primary_10_1016_j_neubiorev_2020_10_024 crossref_primary_10_1016_j_semcdb_2019_04_002 crossref_primary_10_1038_s41586_023_06686_1 crossref_primary_10_1073_pnas_1907982116 crossref_primary_10_1523_JNEUROSCI_0830_22_2023 crossref_primary_10_3390_ijms24098122 crossref_primary_10_7554_eLife_48178 crossref_primary_10_1038_s41593_020_0685_8 crossref_primary_10_3389_fncel_2023_1125785 crossref_primary_10_1126_sciadv_abl7263 crossref_primary_10_1016_j_ajhg_2022_08_012 crossref_primary_10_1371_journal_pone_0237426 crossref_primary_10_1093_hmg_ddaa038 crossref_primary_10_1016_j_jneumeth_2022_109490 crossref_primary_10_1016_j_xgen_2022_100107 crossref_primary_10_7554_eLife_85893 crossref_primary_10_1007_s12264_023_01160_4 crossref_primary_10_1016_j_celrep_2024_114531 crossref_primary_10_1038_s41583_023_00675_z crossref_primary_10_1126_science_adg5136 crossref_primary_10_1016_j_nbd_2024_106629 crossref_primary_10_1523_ENEURO_0215_23_2023 crossref_primary_10_1093_icb_icaa109 crossref_primary_10_7554_eLife_51691 crossref_primary_10_7554_eLife_81863 crossref_primary_10_1016_j_celrep_2024_114508 crossref_primary_10_1007_s11427_023_2436_x crossref_primary_10_1016_j_cell_2021_10_003 crossref_primary_10_1016_j_tins_2024_05_009 crossref_primary_10_3389_fnmol_2022_839366 crossref_primary_10_1038_s42003_021_02517_z crossref_primary_10_3390_ijms222413211 crossref_primary_10_1126_science_adf6484 crossref_primary_10_1126_scitranslmed_aaq1818 crossref_primary_10_1016_j_jneumeth_2023_110055 crossref_primary_10_1016_j_neuron_2019_07_009 crossref_primary_10_1093_molbev_msaf020 crossref_primary_10_3389_fcell_2021_562908 crossref_primary_10_1177_09636897211017829 crossref_primary_10_1126_sciadv_adf3771 crossref_primary_10_3389_fpsyg_2022_970214 crossref_primary_10_1111_epi_17812 crossref_primary_10_1038_s41583_018_0064_6 crossref_primary_10_1126_science_abo0924 crossref_primary_10_1093_nar_gkaa312 crossref_primary_10_1186_s12929_021_00728_4 crossref_primary_10_1186_s12885_024_13187_5 crossref_primary_10_3390_genes12071062 crossref_primary_10_5041_RMMJ_10388 crossref_primary_10_3389_fnsys_2024_1413780 crossref_primary_10_1523_JNEUROSCI_0175_21_2021 crossref_primary_10_1146_annurev_neuro_070918_050421 crossref_primary_10_1016_j_stemcr_2021_08_006 crossref_primary_10_1126_sciadv_adh1914 crossref_primary_10_3389_fnsyn_2020_00005 crossref_primary_10_3389_fnins_2021_787753 crossref_primary_10_1038_s41380_024_02620_7 crossref_primary_10_1016_j_cell_2022_09_039 crossref_primary_10_1038_s41586_021_03465_8 crossref_primary_10_1371_journal_pcbi_1010229 crossref_primary_10_1016_j_bpsgos_2022_03_013 crossref_primary_10_1523_JNEUROSCI_2371_23_2024 |
Cites_doi | 10.3389/neuro.04.004.2007 10.1093/bioinformatics/btp616 10.1126/science.1076521 10.1038/nprot.2014.006 10.1126/science.aac9462 10.1126/science.aaf1204 10.1371/journal.pcbi.1003118 10.7554/eLife.16553 10.1146/annurev-neuro-062111-150420 10.1113/jphysiol.2009.185975 10.1002/cne.903550106 10.1038/sj.ejhg.5201429 10.1093/nar/gkv007 10.1523/JNEUROSCI.3158-13.2013 10.1126/science.aaa1934 10.3389/fnana.2016.00028 10.1016/j.cell.2015.09.029 10.1073/pnas.1319700110 10.1093/bioinformatics/bts356 10.1016/0006-8993(77)90808-3 10.1038/nn.4216 10.1016/j.cell.2012.02.052 10.1093/cercor/bhv188 10.1126/science.1149381 10.1523/JNEUROSCI.1085-14.2014 10.1093/cercor/bhu020 10.1093/bioinformatics/btu170 10.1523/JNEUROSCI.20-18-j0002.2000 10.14573/altex.1310071 10.1093/brain/113.3.793 10.1038/nprot.2012.016 10.1113/jphysiol.1997.sp022054 10.1002/cne.902410202 10.1038/nature11405 10.1016/S0891-0618(97)10013-8 10.1016/j.celrep.2015.02.018 10.1093/bioinformatics/bts196 10.1198/016214508000000454 10.1038/nature08503 10.1016/j.conb.2015.12.008 10.1007/BF02970950 10.1038/nature05453 10.1371/journal.pbio.0060222 10.1038/nmeth.3734 10.1016/j.cell.2015.05.002 10.1101/229542 10.1016/j.neuron.2016.06.033 10.1038/nature13185 10.1523/JNEUROSCI.5667-03.2004 10.1186/1471-2105-12-323 10.1093/cercor/7.6.476 10.1038/nrn2402 10.1038/ncomms11022 10.1093/bioinformatics/btu638 10.1126/science.1217276 10.7554/eLife.18167 10.2144/000114029 10.1117/1.NPh.1.1.011013 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I 10.1371/journal.pbio.2000237 10.1093/cercor/bhv045 10.1038/nprot.2016.015 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Sep 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1038/s41593-018-0205-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1546-1726 |
EndPage | 1195 |
ExternalDocumentID | PMC6130849 A572836736 30150662 10_1038_s41593_018_0205_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: European Research Council grantid: 269065 – fundername: NIMH NIH HHS grantid: U01 MH114812 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M AAYXX AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG ACSTC ADXHL AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7XB 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c637t-b1df6d927bfafce5f676adcb8d98a2a88c29ae1aa5112c35a3c2ef7ce7b85ae03 |
IEDL.DBID | 7X7 |
ISSN | 1097-6256 1546-1726 |
IngestDate | Thu Aug 21 13:56:15 EDT 2025 Fri Jul 11 15:54:29 EDT 2025 Sat Aug 23 13:08:06 EDT 2025 Tue Jun 17 21:38:24 EDT 2025 Tue Jun 10 20:42:06 EDT 2025 Fri Jun 27 05:08:35 EDT 2025 Mon Jul 21 06:08:04 EDT 2025 Tue Jul 01 03:21:46 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Fri Feb 21 02:39:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-b1df6d927bfafce5f676adcb8d98a2a88c29ae1aa5112c35a3c2ef7ce7b85ae03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7905-6001 0000-0001-9012-6552 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6130849 |
PMID | 30150662 |
PQID | 2097574601 |
PQPubID | 44706 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130849 proquest_miscellaneous_2095528620 proquest_journals_2097574601 gale_infotracmisc_A572836736 gale_infotracacademiconefile_A572836736 gale_incontextgauss_ISR_A572836736 pubmed_primary_30150662 crossref_primary_10_1038_s41593_018_0205_2 crossref_citationtrail_10_1038_s41593_018_0205_2 springer_journals_10_1038_s41593_018_0205_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature neuroscience |
PublicationTitleAbbrev | Nat Neurosci |
PublicationTitleAlternate | Nat Neurosci |
PublicationYear | 2018 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170246954044103590 NimchinskyEAVogtBAMorrisonJHHofPRSpindle neurons of the human anterior cingulate cortexJ. Comp. Neurol.199535527371:STN:280:DyaK2Mzmt1yrtQ%3D%3D10.1002/cne.9035501067636011 TamásGBuhlEHSomogyiPFast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neuron in the cat visual cortexJ. Physiol. (Lond.)199750071573810.1113/jphysiol.1997.sp022054 TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242 LakeBBNeuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brainScience2016352158615901:CAS:528:DC%2BC28XhtVaitLzF10.1126/science.aaf1204273399895038589 KlausbergerTSomogyiPNeuronal diversity and temporal dynamics: the unity of hippocampal circuit operationsScience200832153571:CAS:528:DC%2BD1cXnvFektbw%3D10.1126/science.1149381185997664487503 ElstonGNPyramidal cells of the frontal lobe: all the more spinous to think withJ. Neurosci.200020RC951:STN:280:DC%2BD387osVGjtQ%3D%3D10.1523/JNEUROSCI.20-18-j0002.2000109740926772841 FanJCharacterizing transcriptional heterogeneity through pathway and gene set overdispersion analysisNat. Methods2016132412441:CAS:528:DC%2BC28Xps1Gjtw%3D%3D10.1038/nmeth.3734267800924772672 XuQCobosIDe La CruzERubensteinJLAndersonSAOrigins of cortical interneuron subtypesJ. Neurosci.200424261226221:CAS:528:DC%2BD2cXivF2gtLo%3D10.1523/JNEUROSCI.5667-03.2004150287536729522 DeLucaDSRNA-SeQC: RNA-seq metrics for quality control and process optimizationBioinformatics201228153015321:CAS:528:DC%2BC38Xns1Sltrk%3D10.1093/bioinformatics/bts196225396703356847 MarkramHReconstruction and simulation of neocortical microcircuitryCell20151634564921:CAS:528:DC%2BC2MXhs1yksbzN10.1016/j.cell.2015.09.02926451489 AevermannBProduction of a preliminary quality control pipeline for single nuclei RNA-seq and its application in the analysis of cell type diversity of post-mortem human brain neocortexPac. Symp. Biocomput.20172256457527897007 LiuYHayesDNNobelAMarronJSStatistical significance of clustering for high-dimension, low–sample size dataJ. Am. Stat. Assoc.2008103128112931:CAS:528:DC%2BD1cXht1Omu7jM10.1198/016214508000000454 Testa-SilvaGHuman synapses show a wide temporal window for spike-timing-dependent plasticityFront. Synaptic Neurosci.2010212214234983059666 ZemankovicsRKáliSPaulsenOFreundTFHájosNDifferences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristicsJ. Physiol. (Lond.)2010588210921321:CAS:528:DC%2BC3cXosFCgsr0%3D10.1113/jphysiol.2009.185975 RitchieMElimma powers differential expression analyses for RNA-sequencing and microarray studiesNucleic Acids Res.201543e4710.1093/nar/gkv0071:CAS:528:DC%2BC2MXhsFaiu7%2FN256057924402510 MolinariFTruncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardationScience2002298177917811:CAS:528:DC%2BD38XovFKms7o%3D10.1126/science.107652112459588 WangLWangSLiWRSeQC: quality control of RNA-seq experimentsBioinformatics201228218421851:CAS:528:DC%2BC38XhtF2rsrnJ10.1093/bioinformatics/bts35622743226 LiBDeweyCNRSEM: accurate transcript quantification from RNA-Seq data with or without a reference genomeBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFajtLvM10.1186/1471-2105-12-323218160403163565 LawrenceMSoftware for computing and annotating genomic rangesPLOS Comput. Biol.20139e10031181:CAS:528:DC%2BC3sXhsVensr%2FK10.1371/journal.pcbi.1003118239506963738458 EyalGUnique membrane properties and enhanced signal processing in human neocortical neuronseLife20165e1655310.7554/eLife.165531:CAS:528:DC%2BC1cXptVegt78%3D277107675100995 AndersSPylPTHuberWHTSeq--a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu63825260700 CavanaughSEPippinJJBarnardNDAnimal models of Alzheimer disease: historical pitfalls and a path forwardALTEX20143127930210.14573/altex.131007124793844 MakIWEvaniewNGhertMLost in translation: animal models and clinical trials in cancer treatmentAm. J. Transl. Res.20146114118244899903902221 GrindbergRVRNA-sequencing from single nucleiProc. Natl. Acad. Sci. USA201311019802198071:CAS:528:DC%2BC3sXhvFKms7zF10.1073/pnas.1319700110242483453856806 OláhSRegulation of cortical microcircuits by unitary GABA-mediated volume transmissionNature20094611278128110.1038/nature085031:CAS:528:DC%2BD1MXhtlOjt7vM198651712771344 BorgIDisruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndromeEur. J. Hum. Genet.2005139219271:CAS:528:DC%2BD2MXmsVyjsLw%3D10.1038/sj.ejhg.520142915870826 R Development Core Team.R: a Language and Environment for Statistical Computing2016Vienna, AustriaR Found. Stat. Comput. ZengHLarge-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signaturesCell20121494834961:CAS:528:DC%2BC38Xls1entLo%3D10.1016/j.cell.2012.02.052225008093328777 TrapnellCDifferential gene and transcript expression analysis of RNA-seq experiments with TopHat and CufflinksNat. Protoc.201275625781:CAS:528:DC%2BC38Xjt1Cjsrc%3D10.1038/nprot.2012.016223830363334321 FaragóNDigital PCR to determine the number of transcripts from single neurons after patch-clamp recordingBiotechniques20135432733610.2144/0001140291:CAS:528:DC%2BC3sXhtFGlsb3I23750542 PaxinosGFranklinKThe Mouse Brain in Stereotaxic Coordinates2012Cambridge, MA, USAAcademic Press MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D10.1016/j.cell.2015.05.002260004884481139 WangBA subtype of inhibitory interneuron with intrinsic persistent activity in human and monkey neocortexCell Rep.201510145014581:CAS:528:DC%2BC2MXjvFOht74%3D10.1016/j.celrep.2015.02.01825753411 KrishnaswamiSRUsing single nuclei for RNA-seq to capture the transcriptome of postmortem neuronsNat. Protoc.2016114995241:CAS:528:DC%2BC28XisVyru74%3D10.1038/nprot.2016.015268906794941947 KatonaIFreundTFMultiple functions of endocannabinoid signaling in the brainAnnu. Rev. Neurosci.2012355295581:CAS:528:DC%2BC38XhtFegsbjE10.1146/annurev-neuro-062111-150420225247854273654 FreundTFBuzsákiGInterneurons of the hippocampusHippocampus199663474701:STN:280:DyaK2s%2Fnt12htQ%3D%3D10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I8915675 MillerJATranscriptional landscape of the prenatal human brainNature20145081992061:CAS:528:DC%2BC2cXmtlWnsrY%3D10.1038/nature13185246952294105188 SzegediVPlasticity in single axon glutamatergic connection interneurons regulates complex events in the human neocortex to GABAergicPLoS Biol.201614e200023710.1371/journal.pbio.20002371:CAS:528:DC%2BC2sXot1Ciu7Y%3D278289575102409 KisvárdayZFSynapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortexBrain199011379381210.1093/brain/113.3.7932194628 Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Preprint at bioRxivhttps://doi.org/10.1101/229542 (2017). MolnárGComplex events initiated by individual spikes in the human cerebral cortexPLoS Biol.20086e22210.1371/journal.pbio.00602221:CAS:528:DC%2BD1cXht1ChtLbE187679052528052 LeinESGenome-wide atlas of gene expression in the adult mouse brainNature20074451681761:CAS:528:DC%2BD2sXjtFKjtw%3D%3D10.1038/nature0545317151600 PicelliSFull-length RNA-seq from single cells using Smart-seq2Nat. Protoc.201491711811:CAS:528:DC%2BC2cXls1ejtrc%3D10.1038/nprot.2014.00624385147 GjorgjievaJDrionGMarderEComputational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performanceCurr. Opin. Neurobiol.20163744521:CAS:528:DC%2BC28XhvFCmtw%3D%3D10.1016/j.conb.2015.12.008267746944860045 KawaguchiYKubotaYGABAergic cell subtypes and their synaptic connections in rat frontal cortexCereb. Cortex199774764861:STN:280:DyaK2svit1SrtA%3D%3D10.1093/cercor/7.6.4769276173 Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJ. Mach. Learn. Res.2008925792605 JiangXPrinciples of connectivity among morphologically defined cell types in adult neocortexScience2015350aac946210.1126/science.aac94621:CAS:528:DC%2BC2MXhvFamtLrP266129574809866 VerhoogMBMechanisms underlying the rules for associative plasticity at adult human neocortical synapsesJ. Neurosci.20133317197172081:CAS:528:DC%2BC3sXhslSmsbzJ10.1523/JNEUROSCI.3158-13.2013241553246618441 MoralesJRandom positions of dendritic spines in human cerebral cortexJ. Neurosci.20143410078100841:CAS:528:DC%2BC2cXhs1amtLvM10.1523/JNEUROSCI.1085-14.2014250572094107399 RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308 VargaCTamasGBarzoPOlahSSomogyiPMolecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortexCereb. Cortex2015254430444910.1093/cercor/bhv045257878324768361 TremblayRLeeSRudyBGABAergic interneurons in the neocortex: from cellular properties to circuitsNeuron2016912602921:CAS:528:DC%2BC28Xht1ClurvL10.1016/j.neuron.2016.06.033274770174980915 DeFelipeJJonesEGCajal on the Cerebral Cortex1988Oxford, UKOxford University Press PalmerLMThe cellular basis of GABA(B)-mediated interhemispheric inhibitionScience20123359899931:CAS:528:DC%2BC38XisFarsbo%3D10.1126/science.121727622363012 KerekesBPCombined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitroNeurophotonics2014101101310.1117/1.NPh.1.1.0110131:CAS:528:DC%2BC2MXlvFKmuw%3D%3D261579694478968 ZeiselABrain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience20153471138 J Morales (205_CR16) 2014; 34 B Aevermann (205_CR58) 2017; 22 BB Lake (205_CR22) 2016; 352 G Tamás (205_CR40) 1997; 500 IW Mak (205_CR49) 2014; 6 S Oláh (205_CR25) 2009; 461 BP Kerekes (205_CR29) 2014; 1 205_CR66 ZF Kisvárday (205_CR41) 1985; 241 Y Kawaguchi (205_CR21) 1997; 7 JA Miller (205_CR38) 2014; 508 G Paxinos (205_CR69) 2012 A Zeisel (205_CR5) 2015; 347 H Zeng (205_CR68) 2012; 149 J DeFelipe (205_CR1) 1988 L Wang (205_CR55) 2012; 28 MJ Hawrylycz (205_CR31) 2012; 489 B Tasic (205_CR4) 2016; 19 PLA Gabbott (205_CR37) 2016; 10 S Anders (205_CR57) 2015; 31 N Faragó (205_CR70) 2013; 54 SR Krishnaswami (205_CR51) 2016; 11 G Eyal (205_CR8) 2016; 5 V Szegedi (205_CR14) 2016; 14 M Lawrence (205_CR60) 2013; 9 MB Verhoog (205_CR13) 2013; 33 ME Ritchie (205_CR67) 2015; 43 X Jiang (205_CR7) 2015; 350 Y Liu (205_CR65) 2008; 103 S Oláh (205_CR23) 2007; 1 SE Cavanaugh (205_CR50) 2014; 31 M Ester (205_CR64) 1996; 2 LJP Maaten Van Der (205_CR63) 2008; 9 GA Ascoli (205_CR2) 2008; 9 T Klausberger (205_CR46) 2008; 321 LM Palmer (205_CR45) 2012; 335 ES Lein (205_CR32) 2007; 445 DS DeLuca (205_CR56) 2012; 28 R Zemankovics (205_CR27) 2010; 588 RV Grindberg (205_CR18) 2013; 110 ZF Kisvárday (205_CR24) 1990; 113 B Wang (205_CR9) 2015; 10 R Tremblay (205_CR43) 2016; 91 GN Elston (205_CR15) 2000; 20 G Molnár (205_CR10) 2008; 6 C Trapnell (205_CR54) 2012; 7 J Fan (205_CR62) 2016; 13 G Molnár (205_CR11) 2016; 5 J Gjorgjieva (205_CR44) 2016; 37 J DeFelipe (205_CR34) 1997; 14 F Molinari (205_CR48) 2002; 298 EA Nimchinsky (205_CR36) 1995; 355 H Markram (205_CR3) 2015; 163 TF Freund (205_CR30) 1996; 6 EZ Macosko (205_CR6) 2015; 161 P Somogyi (205_CR39) 1977; 136 C Varga (205_CR26) 2015; 25 MD Robinson (205_CR61) 2010; 26 H Mohan (205_CR17) 2015; 25 I Katona (205_CR28) 2012; 35 AJ Lee (205_CR42) 2015; 25 I Borg (205_CR47) 2005; 13 R Development Core Team. (205_CR59) 2016 G Testa-Silva (205_CR12) 2010; 2 B Li (205_CR53) 2011; 12 AM Bolger (205_CR52) 2014; 30 B Lacar (205_CR19) 2016; 7 Q Xu (205_CR33) 2004; 24 C Economo von (205_CR35) 1926; 100 S Picelli (205_CR20) 2014; 9 |
References_xml | – reference: WangBA subtype of inhibitory interneuron with intrinsic persistent activity in human and monkey neocortexCell Rep.201510145014581:CAS:528:DC%2BC2MXjvFOht74%3D10.1016/j.celrep.2015.02.01825753411 – reference: WangLWangSLiWRSeQC: quality control of RNA-seq experimentsBioinformatics201228218421851:CAS:528:DC%2BC38XhtF2rsrnJ10.1093/bioinformatics/bts35622743226 – reference: AndersSPylPTHuberWHTSeq--a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu63825260700 – reference: KawaguchiYKubotaYGABAergic cell subtypes and their synaptic connections in rat frontal cortexCereb. Cortex199774764861:STN:280:DyaK2svit1SrtA%3D%3D10.1093/cercor/7.6.4769276173 – reference: LeeAJCanonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuitsCereb. Cortex2015252114212610.1093/cercor/bhu02024554728 – reference: EyalGUnique membrane properties and enhanced signal processing in human neocortical neuronseLife20165e1655310.7554/eLife.165531:CAS:528:DC%2BC1cXptVegt78%3D277107675100995 – reference: MarkramHReconstruction and simulation of neocortical microcircuitryCell20151634564921:CAS:528:DC%2BC2MXhs1yksbzN10.1016/j.cell.2015.09.02926451489 – reference: von EconomoCEine neue Art Spezialzellen des Lobus cinguli and Lobus insulaeZschr. ges Neurol. Psychiatry192610070671210.1007/BF02970950 – reference: KlausbergerTSomogyiPNeuronal diversity and temporal dynamics: the unity of hippocampal circuit operationsScience200832153571:CAS:528:DC%2BD1cXnvFektbw%3D10.1126/science.1149381185997664487503 – reference: TrapnellCDifferential gene and transcript expression analysis of RNA-seq experiments with TopHat and CufflinksNat. Protoc.201275625781:CAS:528:DC%2BC38Xjt1Cjsrc%3D10.1038/nprot.2012.016223830363334321 – reference: LeinESGenome-wide atlas of gene expression in the adult mouse brainNature20074451681761:CAS:528:DC%2BD2sXjtFKjtw%3D%3D10.1038/nature0545317151600 – reference: DeLucaDSRNA-SeQC: RNA-seq metrics for quality control and process optimizationBioinformatics201228153015321:CAS:528:DC%2BC38Xns1Sltrk%3D10.1093/bioinformatics/bts196225396703356847 – reference: ZemankovicsRKáliSPaulsenOFreundTFHájosNDifferences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristicsJ. Physiol. (Lond.)2010588210921321:CAS:528:DC%2BC3cXosFCgsr0%3D10.1113/jphysiol.2009.185975 – reference: AscoliGAPetilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortexNat. Rev. Neurosci.200895575681:CAS:528:DC%2BD1cXnsFChu7Y%3D10.1038/nrn240218568015 – reference: DeFelipeJTypes of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortexJ. Chem. Neuroanat.1997141191:CAS:528:DyaK1cXhsFChtbw%3D10.1016/S0891-0618(97)10013-89498163 – reference: MakIWEvaniewNGhertMLost in translation: animal models and clinical trials in cancer treatmentAm. J. Transl. Res.20146114118244899903902221 – reference: Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Preprint at bioRxivhttps://doi.org/10.1101/229542 (2017). – reference: Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJ. Mach. Learn. Res.2008925792605 – reference: GjorgjievaJDrionGMarderEComputational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performanceCurr. Opin. Neurobiol.20163744521:CAS:528:DC%2BC28XhvFCmtw%3D%3D10.1016/j.conb.2015.12.008267746944860045 – reference: TamásGBuhlEHSomogyiPFast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neuron in the cat visual cortexJ. Physiol. (Lond.)199750071573810.1113/jphysiol.1997.sp022054 – reference: TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242 – reference: LacarBNuclear RNA-seq of single neurons reveals molecular signatures of activationNat. Commun.201671:CAS:528:DC%2BC28XmsFyhtrg%3D10.1038/ncomms11022270909464838832 – reference: NimchinskyEAVogtBAMorrisonJHHofPRSpindle neurons of the human anterior cingulate cortexJ. Comp. Neurol.199535527371:STN:280:DyaK2Mzmt1yrtQ%3D%3D10.1002/cne.9035501067636011 – reference: OláhSRegulation of cortical microcircuits by unitary GABA-mediated volume transmissionNature20094611278128110.1038/nature085031:CAS:528:DC%2BD1MXhtlOjt7vM198651712771344 – reference: VargaCTamasGBarzoPOlahSSomogyiPMolecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortexCereb. Cortex2015254430444910.1093/cercor/bhv045257878324768361 – reference: MolinariFTruncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardationScience2002298177917811:CAS:528:DC%2BD38XovFKms7o%3D10.1126/science.107652112459588 – reference: ZengHLarge-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signaturesCell20121494834961:CAS:528:DC%2BC38Xls1entLo%3D10.1016/j.cell.2012.02.052225008093328777 – reference: RitchieMElimma powers differential expression analyses for RNA-sequencing and microarray studiesNucleic Acids Res.201543e4710.1093/nar/gkv0071:CAS:528:DC%2BC2MXhsFaiu7%2FN256057924402510 – reference: MolnárGComplex events initiated by individual spikes in the human cerebral cortexPLoS Biol.20086e22210.1371/journal.pbio.00602221:CAS:528:DC%2BD1cXht1ChtLbE187679052528052 – reference: PicelliSFull-length RNA-seq from single cells using Smart-seq2Nat. Protoc.201491711811:CAS:528:DC%2BC2cXls1ejtrc%3D10.1038/nprot.2014.00624385147 – reference: Testa-SilvaGHuman synapses show a wide temporal window for spike-timing-dependent plasticityFront. Synaptic Neurosci.2010212214234983059666 – reference: FaragóNDigital PCR to determine the number of transcripts from single neurons after patch-clamp recordingBiotechniques20135432733610.2144/0001140291:CAS:528:DC%2BC3sXhtFGlsb3I23750542 – reference: GrindbergRVRNA-sequencing from single nucleiProc. Natl. Acad. Sci. USA201311019802198071:CAS:528:DC%2BC3sXhvFKms7zF10.1073/pnas.1319700110242483453856806 – reference: XuQCobosIDe La CruzERubensteinJLAndersonSAOrigins of cortical interneuron subtypesJ. Neurosci.200424261226221:CAS:528:DC%2BD2cXivF2gtLo%3D10.1523/JNEUROSCI.5667-03.2004150287536729522 – reference: KatonaIFreundTFMultiple functions of endocannabinoid signaling in the brainAnnu. Rev. Neurosci.2012355295581:CAS:528:DC%2BC38XhtFegsbjE10.1146/annurev-neuro-062111-150420225247854273654 – reference: JiangXPrinciples of connectivity among morphologically defined cell types in adult neocortexScience2015350aac946210.1126/science.aac94621:CAS:528:DC%2BC2MXhvFamtLrP266129574809866 – reference: MohanHDendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortexCereb. Cortex2015254839485310.1093/cercor/bhv188263186614635923 – reference: GabbottPLASubpial Fan Cell” - a class of calretinin neuron in layer 1 of adult monkey prefrontal cortexFront. Neuroanat.2016102810.3389/fnana.2016.000281:CAS:528:DC%2BC1cXmsFeit7c%3D271479784829592 – reference: MolnárGHuman pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicleseLife20165e1816710.7554/eLife.18167275368764999310 – reference: KrishnaswamiSRUsing single nuclei for RNA-seq to capture the transcriptome of postmortem neuronsNat. Protoc.2016114995241:CAS:528:DC%2BC28XisVyru74%3D10.1038/nprot.2016.015268906794941947 – reference: TremblayRLeeSRudyBGABAergic interneurons in the neocortex: from cellular properties to circuitsNeuron2016912602921:CAS:528:DC%2BC28Xht1ClurvL10.1016/j.neuron.2016.06.033274770174980915 – reference: EsterMKriegelHPSanderJXuXA density-based algorithm for discovering clusters in large spatial databases with noiseKDD19962226231 – reference: LiBDeweyCNRSEM: accurate transcript quantification from RNA-Seq data with or without a reference genomeBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFajtLvM10.1186/1471-2105-12-323218160403163565 – reference: PalmerLMThe cellular basis of GABA(B)-mediated interhemispheric inhibitionScience20123359899931:CAS:528:DC%2BC38XisFarsbo%3D10.1126/science.121727622363012 – reference: ElstonGNPyramidal cells of the frontal lobe: all the more spinous to think withJ. Neurosci.200020RC951:STN:280:DC%2BD387osVGjtQ%3D%3D10.1523/JNEUROSCI.20-18-j0002.2000109740926772841 – reference: LakeBBNeuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brainScience2016352158615901:CAS:528:DC%2BC28XhtVaitLzF10.1126/science.aaf1204273399895038589 – reference: KerekesBPCombined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitroNeurophotonics2014101101310.1117/1.NPh.1.1.0110131:CAS:528:DC%2BC2MXlvFKmuw%3D%3D261579694478968 – reference: PaxinosGFranklinKThe Mouse Brain in Stereotaxic Coordinates2012Cambridge, MA, USAAcademic Press – reference: HawrylyczMJAn anatomically comprehensive atlas of the adult human brain transcriptomeNature20124893913991:CAS:528:DC%2BC38Xhtlymu77N10.1038/nature11405229965534243026 – reference: MillerJATranscriptional landscape of the prenatal human brainNature20145081992061:CAS:528:DC%2BC2cXmtlWnsrY%3D10.1038/nature13185246952294105188 – reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308 – reference: KisvárdayZFMartinKACWhitteridgeDSomogyiPSynaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the catJ. Comp. Neurol.198524111113710.1002/cne.9024102024067011 – reference: SzegediVPlasticity in single axon glutamatergic connection interneurons regulates complex events in the human neocortex to GABAergicPLoS Biol.201614e200023710.1371/journal.pbio.20002371:CAS:528:DC%2BC2sXot1Ciu7Y%3D278289575102409 – reference: MoralesJRandom positions of dendritic spines in human cerebral cortexJ. Neurosci.20143410078100841:CAS:528:DC%2BC2cXhs1amtLvM10.1523/JNEUROSCI.1085-14.2014250572094107399 – reference: VerhoogMBMechanisms underlying the rules for associative plasticity at adult human neocortical synapsesJ. Neurosci.20133317197172081:CAS:528:DC%2BC3sXhslSmsbzJ10.1523/JNEUROSCI.3158-13.2013241553246618441 – reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D10.1016/j.cell.2015.05.002260004884481139 – reference: OláhSOutput of neurogliaform cells to various neuron types in the human and rat cerebral cortexFront. Neural Circuits20071410.3389/neuro.04.004.2007189465462526278 – reference: FreundTFBuzsákiGInterneurons of the hippocampusHippocampus199663474701:STN:280:DyaK2s%2Fnt12htQ%3D%3D10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I8915675 – reference: KisvárdayZFSynapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortexBrain199011379381210.1093/brain/113.3.7932194628 – reference: CavanaughSEPippinJJBarnardNDAnimal models of Alzheimer disease: historical pitfalls and a path forwardALTEX20143127930210.14573/altex.131007124793844 – reference: AevermannBProduction of a preliminary quality control pipeline for single nuclei RNA-seq and its application in the analysis of cell type diversity of post-mortem human brain neocortexPac. Symp. Biocomput.20172256457527897007 – reference: LiuYHayesDNNobelAMarronJSStatistical significance of clustering for high-dimension, low–sample size dataJ. Am. Stat. Assoc.2008103128112931:CAS:528:DC%2BD1cXht1Omu7jM10.1198/016214508000000454 – reference: SomogyiPA specific ‘axo-axonal’ interneuron in the visual cortex of the ratBrain Res.19771363453501:STN:280:DyaE1c%2FktFagsQ%3D%3D10.1016/0006-8993(77)90808-3922488 – reference: DeFelipeJJonesEGCajal on the Cerebral Cortex1988Oxford, UKOxford University Press – reference: BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170246954044103590 – reference: LawrenceMSoftware for computing and annotating genomic rangesPLOS Comput. Biol.20139e10031181:CAS:528:DC%2BC3sXhsVensr%2FK10.1371/journal.pcbi.1003118239506963738458 – reference: ZeiselABrain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience2015347113811421:CAS:528:DC%2BC2MXjsF2hsro%3D10.1126/science.aaa193425700174 – reference: R Development Core Team.R: a Language and Environment for Statistical Computing2016Vienna, AustriaR Found. Stat. Comput. – reference: BorgIDisruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndromeEur. J. Hum. Genet.2005139219271:CAS:528:DC%2BD2MXmsVyjsLw%3D10.1038/sj.ejhg.520142915870826 – reference: FanJCharacterizing transcriptional heterogeneity through pathway and gene set overdispersion analysisNat. Methods2016132412441:CAS:528:DC%2BC28Xps1Gjtw%3D%3D10.1038/nmeth.3734267800924772672 – volume: 1 start-page: 4 year: 2007 ident: 205_CR23 publication-title: Front. Neural Circuits doi: 10.3389/neuro.04.004.2007 – volume: 26 start-page: 139 year: 2010 ident: 205_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 298 start-page: 1779 year: 2002 ident: 205_CR48 publication-title: Science doi: 10.1126/science.1076521 – volume: 9 start-page: 171 year: 2014 ident: 205_CR20 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.006 – volume: 350 start-page: aac9462 year: 2015 ident: 205_CR7 publication-title: Science doi: 10.1126/science.aac9462 – volume: 352 start-page: 1586 year: 2016 ident: 205_CR22 publication-title: Science doi: 10.1126/science.aaf1204 – volume: 9 start-page: e1003118 year: 2013 ident: 205_CR60 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1003118 – volume: 9 start-page: 2579 year: 2008 ident: 205_CR63 publication-title: J. Mach. Learn. Res. – volume: 5 start-page: e16553 year: 2016 ident: 205_CR8 publication-title: eLife doi: 10.7554/eLife.16553 – volume-title: Cajal on the Cerebral Cortex year: 1988 ident: 205_CR1 – volume: 35 start-page: 529 year: 2012 ident: 205_CR28 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062111-150420 – volume: 588 start-page: 2109 year: 2010 ident: 205_CR27 publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2009.185975 – volume: 355 start-page: 27 year: 1995 ident: 205_CR36 publication-title: J. Comp. Neurol. doi: 10.1002/cne.903550106 – volume: 13 start-page: 921 year: 2005 ident: 205_CR47 publication-title: Eur. J. Hum. Genet. doi: 10.1038/sj.ejhg.5201429 – volume: 2 start-page: 12 year: 2010 ident: 205_CR12 publication-title: Front. Synaptic Neurosci. – volume: 2 start-page: 226 year: 1996 ident: 205_CR64 publication-title: KDD – volume: 43 start-page: e47 year: 2015 ident: 205_CR67 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 33 start-page: 17197 year: 2013 ident: 205_CR13 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3158-13.2013 – volume: 6 start-page: 114 year: 2014 ident: 205_CR49 publication-title: Am. J. Transl. Res. – volume: 347 start-page: 1138 year: 2015 ident: 205_CR5 publication-title: Science doi: 10.1126/science.aaa1934 – volume: 22 start-page: 564 year: 2017 ident: 205_CR58 publication-title: Pac. Symp. Biocomput. – volume: 10 start-page: 28 year: 2016 ident: 205_CR37 publication-title: Front. Neuroanat. doi: 10.3389/fnana.2016.00028 – volume: 163 start-page: 456 year: 2015 ident: 205_CR3 publication-title: Cell doi: 10.1016/j.cell.2015.09.029 – volume: 110 start-page: 19802 year: 2013 ident: 205_CR18 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1319700110 – volume: 28 start-page: 2184 year: 2012 ident: 205_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts356 – volume: 136 start-page: 345 year: 1977 ident: 205_CR39 publication-title: Brain Res. doi: 10.1016/0006-8993(77)90808-3 – volume: 19 start-page: 335 year: 2016 ident: 205_CR4 publication-title: Nat. Neurosci. doi: 10.1038/nn.4216 – volume: 149 start-page: 483 year: 2012 ident: 205_CR68 publication-title: Cell doi: 10.1016/j.cell.2012.02.052 – volume: 25 start-page: 4839 year: 2015 ident: 205_CR17 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv188 – volume: 321 start-page: 53 year: 2008 ident: 205_CR46 publication-title: Science doi: 10.1126/science.1149381 – volume: 34 start-page: 10078 year: 2014 ident: 205_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1085-14.2014 – volume: 25 start-page: 2114 year: 2015 ident: 205_CR42 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu020 – volume: 30 start-page: 2114 year: 2014 ident: 205_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 20 start-page: RC95 year: 2000 ident: 205_CR15 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-18-j0002.2000 – volume: 31 start-page: 279 year: 2014 ident: 205_CR50 publication-title: ALTEX doi: 10.14573/altex.1310071 – volume: 113 start-page: 793 year: 1990 ident: 205_CR24 publication-title: Brain doi: 10.1093/brain/113.3.793 – volume: 7 start-page: 562 year: 2012 ident: 205_CR54 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.016 – volume: 500 start-page: 715 year: 1997 ident: 205_CR40 publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.1997.sp022054 – volume: 241 start-page: 111 year: 1985 ident: 205_CR41 publication-title: J. Comp. Neurol. doi: 10.1002/cne.902410202 – volume: 489 start-page: 391 year: 2012 ident: 205_CR31 publication-title: Nature doi: 10.1038/nature11405 – volume: 14 start-page: 1 year: 1997 ident: 205_CR34 publication-title: J. Chem. Neuroanat. doi: 10.1016/S0891-0618(97)10013-8 – volume: 10 start-page: 1450 year: 2015 ident: 205_CR9 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.018 – volume: 28 start-page: 1530 year: 2012 ident: 205_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts196 – volume: 103 start-page: 1281 year: 2008 ident: 205_CR65 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000454 – volume: 461 start-page: 1278 year: 2009 ident: 205_CR25 publication-title: Nature doi: 10.1038/nature08503 – volume: 37 start-page: 44 year: 2016 ident: 205_CR44 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.12.008 – volume: 100 start-page: 706 year: 1926 ident: 205_CR35 publication-title: Zschr. ges Neurol. Psychiatry doi: 10.1007/BF02970950 – volume: 445 start-page: 168 year: 2007 ident: 205_CR32 publication-title: Nature doi: 10.1038/nature05453 – volume: 6 start-page: e222 year: 2008 ident: 205_CR10 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060222 – volume: 13 start-page: 241 year: 2016 ident: 205_CR62 publication-title: Nat. Methods doi: 10.1038/nmeth.3734 – volume: 161 start-page: 1202 year: 2015 ident: 205_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume-title: R: a Language and Environment for Statistical Computing year: 2016 ident: 205_CR59 – ident: 205_CR66 doi: 10.1101/229542 – volume: 91 start-page: 260 year: 2016 ident: 205_CR43 publication-title: Neuron doi: 10.1016/j.neuron.2016.06.033 – volume: 508 start-page: 199 year: 2014 ident: 205_CR38 publication-title: Nature doi: 10.1038/nature13185 – volume: 24 start-page: 2612 year: 2004 ident: 205_CR33 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5667-03.2004 – volume: 12 year: 2011 ident: 205_CR53 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 7 start-page: 476 year: 1997 ident: 205_CR21 publication-title: Cereb. Cortex doi: 10.1093/cercor/7.6.476 – volume-title: The Mouse Brain in Stereotaxic Coordinates year: 2012 ident: 205_CR69 – volume: 9 start-page: 557 year: 2008 ident: 205_CR2 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2402 – volume: 7 year: 2016 ident: 205_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms11022 – volume: 31 start-page: 166 year: 2015 ident: 205_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 335 start-page: 989 year: 2012 ident: 205_CR45 publication-title: Science doi: 10.1126/science.1217276 – volume: 5 start-page: e18167 year: 2016 ident: 205_CR11 publication-title: eLife doi: 10.7554/eLife.18167 – volume: 54 start-page: 327 year: 2013 ident: 205_CR70 publication-title: Biotechniques doi: 10.2144/000114029 – volume: 1 start-page: 011013 year: 2014 ident: 205_CR29 publication-title: Neurophotonics doi: 10.1117/1.NPh.1.1.011013 – volume: 6 start-page: 347 year: 1996 ident: 205_CR30 publication-title: Hippocampus doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I – volume: 14 start-page: e2000237 year: 2016 ident: 205_CR14 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2000237 – volume: 25 start-page: 4430 year: 2015 ident: 205_CR26 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv045 – volume: 11 start-page: 499 year: 2016 ident: 205_CR51 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.015 |
SSID | ssj0007589 |
Score | 2.6179693 |
Snippet | We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased... We describe convergent evidence from transcriptomics, morphology and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1185 |
SubjectTerms | 631/378/3920 631/378/87 9/74 Adult Aged Animal Genetics and Genomics Axons - ultrastructure Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain Brain research Cells (Biology) Cerebral Cortex - metabolism Cerebral Cortex - ultrastructure Cholecystokinin Combinatorial analysis Cortex Cytology Dendritic Spines - metabolism Dendritic Spines - ultrastructure Dendritic structure Excavation GABA GABAergic Neurons - metabolism GABAergic Neurons - ultrastructure Gap junctions Gap Junctions - metabolism Gap Junctions - ultrastructure Gene expression Gene Library Gene sequencing Genes Genomics Glutamate decarboxylase Humans Information processing Interneurons Male Morphology Neural circuitry Neurobiology Neurons Neurosciences Observations Physiology Polymerase Chain Reaction Presynapse Presynaptic Terminals - metabolism Presynaptic Terminals - ultrastructure Properties Pyramidal cells Pyramidal Cells - metabolism Pyramidal Cells - ultrastructure Quality control Ribonucleic acid RNA RNA - analysis RNA - genetics RNA sequencing Rodents Sequence Analysis, RNA Transcriptome γ-Aminobutyric acid |
Title | Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type |
URI | https://link.springer.com/article/10.1038/s41593-018-0205-2 https://www.ncbi.nlm.nih.gov/pubmed/30150662 https://www.proquest.com/docview/2097574601 https://www.proquest.com/docview/2095528620 https://pubmed.ncbi.nlm.nih.gov/PMC6130849 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOj24otM50d1jiiioBTbpG3SJ-lkcwoOmQ7uW0jTRAeuvVvvfdBf7zlp2tkL7jkntMn5_sg5hLxMG5dxrXlcsETEmRM8lg74SqSmsKXhZaHxvfOXk-L4LPu8yBch4NaHsspRJnpB3XQGY-TgpJciFxn4D--XlzFOjcLsahihcZtsY-syLOkSi8nhAm3oR-BhkhX-JS_GrCaX73pQXFi5lsoYDKY8ZjO9tCmd_1FPm6WTG_lTr5aOdsjdYE_SaiCAe-SWbe-T3aoFX_riN31FfYWnD53vksYrJi8m8C0y1W1DLzq46G45QiHKqA2TRikYtFTTfhhRf_7HNtSP9KPgsfoQOP1YHVT2CnZRTABQjOc-IGdHh98_HMdhykJsCi5WcQ3oKpqSidppZ2zuCgH4MbVsSqmZltKwUttUazTNDM81N8w6YayoZa5twh-SrbZr7WNCHbPCykRjx6BMWA3GR5260pa1a5xNbUSS8Y6VCS3IcRLGL-VT4VyqAS0K0KIQLYpF5M20ZTn037gJ-AUiTmFfixYLZ37odd-rT99OVZULMKSwiC0irwOQ6-DjRod3CHAEbIU1g9ybQQLjmfnySB8qMH6vrsk0Is-nZdyJxWyt7dYeJs8ZuJJJRB4N5DSdjfuWjwUcRcwIbQLAduDzlfb8p28Ljp6gzMqIvB1J8vq3_ntlT24-xFNyh3kewaK6PbK1ulrbZ2CFrep9z2r7ZPvg8OTr6V9eJzFH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrdA7wgYFwCAwziIoEiGjuJ7QeEOtho2UVobNLejOPYMIklZW2FxkfxjZzjJh2pxN727OPWzrn73Ah5lpQ-5cbwOGd9Eade8Fh64CuR2Nwpy1VusN55dy8fHqafjrKjFfKnrYXBtMpWJgZBXdYW38jBSVciEyn4D-_GP2OcGoXR1XaExpwstt3ZL3DZJm9HHwC_zxnb2jx4P4ybqQKxzbmYxgUcLy8VE4U33rrM5wLOYwtZKmmYkdIyZVxiDJoilmeGW-a8sE4UMjOuz-F3r5DVlMNRemR1Y3Pv8_5C9oP1rUJ8VQm4fZa3cVQu30xAVWKuXCJjMNGymHU04bI--EchLidrLkVsgyLcukGuNxYsHcxJ7iZZcdUtsjaowHs_OaMvaMgpDY_1a6QMqjAIJqx-pqYq6UkNqK3HLRQSCXXNbFMKJjQ1FMs_gS-Of7uShiGCFHzk8OhOPw42Bu4UdlEMOVB8Qb5NDi8FA3dIr6ord49Qz5xwsm-wR1EqnAFzp0i8cqrwpXeJi0i__cbaNk3PcfbGDx2C71zqOVo0oEUjWjSLyKvFlvG848dFwE8RcRo7aVSYqvPNzCYTPfqyrweZANMN0-Yi8rIB8jX8uTVN5QNcAZtvdSDXO5DA6ra73NKHbkTNRJ8zRkSeLJZxJ6bPVa6eBZgsY-C89iNyd05Oi7vx0GQyh6uIDqEtALABeXelOv4eGpGj7ylTFZHXLUmeH-u_n-z-xZd4TK4OD3Z39M5ob_sBucYCv2BK3zrpTU9n7iHYgNPiUcN4lHy9bF7_C5G7cRY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDQrwgYHwEBhjEhwSKlthx7DwgVBhlZTAh2KS-GcexYRJLytoKjZ_Gr-POTTpSib3t2efE9t357nxfhDxOK59xY3ics0TGmZc8Vh74SqY2d4XlRW4w3_njXr5zkL0fi_Ea-dPlwmBYZXcnhou6aiy-kYORXkghM7AftnwbFvFpe_hq8jPGDlLoae3aaSxIZNed_ALzbfpytA24fsLY8O3-m5247TAQ25zLWVzCUvOqYLL0xlsnfC5hbbZUVaEMM0pZVhiXGoNqieXCcMucl9bJUgnjEg7fvUAuSi5S5DE5Xhp7IIlD-z108MI5iLzzqHK1NQWhiVFzqYpBWRMx68nEVcnwj2hcDdtc8d0GkTi8Sq60uiwdLIjvGllz9XWyMajBjj86oU9piC4Nz_YbpApCMVxRmAdNTV3RowaQ3Ew6KCQX6toupxSUaWooJoIChxz-dhUN7QQpWMvh-Z2-G7weuGOYRdH5QPEt-QY5OJfzv0nW66Z2twn1zEmnEoPVijLpDCg-ZeoLV5S-8i51EUm6M9a2LX-OXTh-6OCG50ov0KIBLRrRollEni-nTBa1P84CfoSI01hTo0bq_Gbm06keffmsB0KCEocBdBF51gL5Bn5uTZsDAVvAMlw9yM0eJDC97Q939KHbS2eqT1kkIg-XwzgTA-lq18wDjBAMzNgkIrcW5LTcGw_lJnPYiuwR2hIAS5H3R-rD76EkOVqhKisi8qIjydNl_ffI7py9iQfkEnC4_jDa271LLrPALhjbt0nWZ8dzdw-UwVl5P3AdJV_Pm83_Anwzc-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+and+morphophysiological+evidence+for+a+specialized+human+cortical+GABAergic+cell+type&rft.jtitle=Nature+neuroscience&rft.au=Boldog%2C+Eszter&rft.au=Bakken%2C+Trygve+E&rft.au=Hodge%2C+Rebecca+D&rft.au=Novotny%2C+Mark&rft.date=2018-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1097-6256&rft.volume=21&rft.issue=9&rft.spage=1185&rft_id=info:doi/10.1038%2Fs41593-018-0205-2&rft.externalDocID=A572836736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |