Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type

We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and c...

Full description

Saved in:
Bibliographic Details
Published inNature neuroscience Vol. 21; no. 9; pp. 1185 - 1195
Main Authors Boldog, Eszter, Bakken, Trygve E., Hodge, Rebecca D., Novotny, Mark, Aevermann, Brian D., Baka, Judith, Bordé, Sándor, Close, Jennie L., Diez-Fuertes, Francisco, Ding, Song-Lin, Faragó, Nóra, Kocsis, Ágnes K., Kovács, Balázs, Maltzer, Zoe, McCorrison, Jamison M., Miller, Jeremy A., Molnár, Gábor, Oláh, Gáspár, Ozsvár, Attila, Rózsa, Márton, Shehata, Soraya I., Smith, Kimberly A., Sunkin, Susan M., Tran, Danny N., Venepally, Pratap, Wall, Abby, Puskás, László G., Barzó, Pál, Steemers, Frank J., Schork, Nicholas J., Scheuermann, Richard H., Lasken, Roger S., Lein, Ed S., Tamás, Gábor
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.09.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1 + CCK + , CNR1 – SST – CALB2 – PVALB – ) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species.
AbstractList We describe convergent evidence from transcriptomics, morphology and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a novel group of human interneurons with anatomical features never described in rodents having large, “rosehip”-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1/CCK-positive, CNR1/SST/CALB2/PVALB-negative) matching a single transcriptomically-defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1.sup.+CCK.sup.+, CNR1.sup.-SST.sup.-CALB2.sup.-PVALB.sup.-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1.sup.+CCK.sup.+, CNR1.sup.-SST.sup.-CALB2.sup.-PVALB.sup.-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1–SST–CALB2–PVALB–) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1 CCK , CNR1 SST CALB2 PVALB ) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large 'rosehip'-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1-SST-CALB2-PVALB-) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1 + CCK + , CNR1 – SST – CALB2 – PVALB – ) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons. The authors use single-nucleus RNA-seq to identify 10 GABAergic interneuron subtypes in human cortex layer 1. Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species.
Audience Academic
Author Novotny, Mark
Faragó, Nóra
Oláh, Gáspár
Schork, Nicholas J.
Boldog, Eszter
Hodge, Rebecca D.
Maltzer, Zoe
Wall, Abby
Ozsvár, Attila
Aevermann, Brian D.
Shehata, Soraya I.
Venepally, Pratap
Close, Jennie L.
Diez-Fuertes, Francisco
Ding, Song-Lin
Lein, Ed S.
Kovács, Balázs
Barzó, Pál
Molnár, Gábor
Tran, Danny N.
Tamás, Gábor
Steemers, Frank J.
Sunkin, Susan M.
Rózsa, Márton
Bakken, Trygve E.
Scheuermann, Richard H.
Puskás, László G.
McCorrison, Jamison M.
Bordé, Sándor
Lasken, Roger S.
Smith, Kimberly A.
Baka, Judith
Kocsis, Ágnes K.
Miller, Jeremy A.
AuthorAffiliation 1 MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52., Szeged, H-6726, Hungary
4 Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122 USA
7 Department of Pathology, 9500 Gilman Drive, University of California, San Diego, CA 92093 USA
2 Allen Institute for Brain Science, 615 Westlake Avenue North, Seattle, WA 98109, USA
3 J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
6 Department of Neurosurgery, University of Szeged, Hungary, Semmelweis u. 6., Szeged, H-6725 Hungary
5 Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
AuthorAffiliation_xml – name: 7 Department of Pathology, 9500 Gilman Drive, University of California, San Diego, CA 92093 USA
– name: 1 MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52., Szeged, H-6726, Hungary
– name: 2 Allen Institute for Brain Science, 615 Westlake Avenue North, Seattle, WA 98109, USA
– name: 6 Department of Neurosurgery, University of Szeged, Hungary, Semmelweis u. 6., Szeged, H-6725 Hungary
– name: 5 Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
– name: 4 Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122 USA
– name: 3 J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
Author_xml – sequence: 1
  givenname: Eszter
  surname: Boldog
  fullname: Boldog, Eszter
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 2
  givenname: Trygve E.
  surname: Bakken
  fullname: Bakken, Trygve E.
  organization: Allen Institute for Brain Science
– sequence: 3
  givenname: Rebecca D.
  surname: Hodge
  fullname: Hodge, Rebecca D.
  organization: Allen Institute for Brain Science
– sequence: 4
  givenname: Mark
  surname: Novotny
  fullname: Novotny, Mark
  organization: J. Craig Venter Institute
– sequence: 5
  givenname: Brian D.
  surname: Aevermann
  fullname: Aevermann, Brian D.
  organization: J. Craig Venter Institute
– sequence: 6
  givenname: Judith
  surname: Baka
  fullname: Baka, Judith
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 7
  givenname: Sándor
  surname: Bordé
  fullname: Bordé, Sándor
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 8
  givenname: Jennie L.
  surname: Close
  fullname: Close, Jennie L.
  organization: Allen Institute for Brain Science
– sequence: 9
  givenname: Francisco
  surname: Diez-Fuertes
  fullname: Diez-Fuertes, Francisco
  organization: J. Craig Venter Institute
– sequence: 10
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  organization: Allen Institute for Brain Science
– sequence: 11
  givenname: Nóra
  surname: Faragó
  fullname: Faragó, Nóra
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 12
  givenname: Ágnes K.
  surname: Kocsis
  fullname: Kocsis, Ágnes K.
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 13
  givenname: Balázs
  surname: Kovács
  fullname: Kovács, Balázs
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 14
  givenname: Zoe
  surname: Maltzer
  fullname: Maltzer, Zoe
  organization: Allen Institute for Brain Science
– sequence: 15
  givenname: Jamison M.
  surname: McCorrison
  fullname: McCorrison, Jamison M.
  organization: J. Craig Venter Institute
– sequence: 16
  givenname: Jeremy A.
  surname: Miller
  fullname: Miller, Jeremy A.
  organization: Allen Institute for Brain Science
– sequence: 17
  givenname: Gábor
  surname: Molnár
  fullname: Molnár, Gábor
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 18
  givenname: Gáspár
  surname: Oláh
  fullname: Oláh, Gáspár
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 19
  givenname: Attila
  surname: Ozsvár
  fullname: Ozsvár, Attila
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 20
  givenname: Márton
  surname: Rózsa
  fullname: Rózsa, Márton
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
– sequence: 21
  givenname: Soraya I.
  surname: Shehata
  fullname: Shehata, Soraya I.
  organization: Allen Institute for Brain Science
– sequence: 22
  givenname: Kimberly A.
  surname: Smith
  fullname: Smith, Kimberly A.
  organization: Allen Institute for Brain Science
– sequence: 23
  givenname: Susan M.
  surname: Sunkin
  fullname: Sunkin, Susan M.
  organization: Allen Institute for Brain Science
– sequence: 24
  givenname: Danny N.
  surname: Tran
  fullname: Tran, Danny N.
  organization: J. Craig Venter Institute
– sequence: 25
  givenname: Pratap
  surname: Venepally
  fullname: Venepally, Pratap
  organization: J. Craig Venter Institute
– sequence: 26
  givenname: Abby
  surname: Wall
  fullname: Wall, Abby
  organization: Allen Institute for Brain Science
– sequence: 27
  givenname: László G.
  surname: Puskás
  fullname: Puskás, László G.
  organization: Laboratory of Functional Genomics, Department of Genetics, Biological Research Center, Hungarian Academy of Sciences
– sequence: 28
  givenname: Pál
  surname: Barzó
  fullname: Barzó, Pál
  organization: Illumina, Inc
– sequence: 29
  givenname: Frank J.
  surname: Steemers
  fullname: Steemers, Frank J.
  organization: Department of Neurosurgery, University of Szeged
– sequence: 30
  givenname: Nicholas J.
  surname: Schork
  fullname: Schork, Nicholas J.
  organization: J. Craig Venter Institute
– sequence: 31
  givenname: Richard H.
  surname: Scheuermann
  fullname: Scheuermann, Richard H.
  organization: J. Craig Venter Institute, Department of Pathology, University of California
– sequence: 32
  givenname: Roger S.
  surname: Lasken
  fullname: Lasken, Roger S.
  organization: J. Craig Venter Institute
– sequence: 33
  givenname: Ed S.
  orcidid: 0000-0001-9012-6552
  surname: Lein
  fullname: Lein, Ed S.
  email: EdL@alleninstitute.org
  organization: Allen Institute for Brain Science
– sequence: 34
  givenname: Gábor
  orcidid: 0000-0002-7905-6001
  surname: Tamás
  fullname: Tamás, Gábor
  email: gtamas@bio.u-szeged.hu
  organization: MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30150662$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkWI740c2SEMFpVIlJChr68a5ybhK7GAnFcOvx2FKy1SAvLBlf-dc3etznB047zDLnlNySkmp3sQV5VVZEKoKwggv2KPsiPKVKKhk4iCdSSULwbg4zI5jvCaESK6qJ9lhSSgnQrCjrLkK4KIJdpz8YE0OrskHH8aNHzfbaH3vO2ugz_HGNugM5q0POeRxRGOhtz-wyTfzAC43Pky_yPP1uzWGpMoN9n0-bUd8mj1uoY_47HY_yb5-eH919rG4_HR-cba-LIwo5VTUtGlFUzFZt9Aa5K2QAhpTq6ZSwEApwypACsApZabkUBqGrTQoa8UBSXmSvd35jnM9YGPQTQF6PQY7QNhqD1bvvzi70Z2_0YKWRK2qZPDq1iD4bzPGSQ82Lm2AQz9HzUjFOVOCLbVePkCv_Rxcam-hJJcrQeg91UGP2rrWp7pmMdVrLpkqhSxFok7_QqXVYPqT9OetTfd7gtd7gsRM-H3qYI5RX3z5vM---HMod9P4nYEE0B1ggo8xYHuHUKKXnOldznTKmV5ypheNfKAxdoLJ-mWutv-vku2UMVVxHYb7uf1b9BMyAuby
CitedBy_id crossref_primary_10_14336_AD_2022_0412
crossref_primary_10_3389_fnsyn_2019_00015
crossref_primary_10_1126_science_abk2346
crossref_primary_10_1093_nsr_nwad281
crossref_primary_10_3389_fncel_2019_00559
crossref_primary_10_3389_fnana_2023_1108363
crossref_primary_10_3389_fnmol_2019_00115
crossref_primary_10_1016_j_neuron_2021_08_005
crossref_primary_10_3389_fncel_2023_1161608
crossref_primary_10_1101_gr_256958_119
crossref_primary_10_31887_DCNS_2019_21_3_mrossner
crossref_primary_10_1371_journal_pone_0275070
crossref_primary_10_1093_nc_niab036
crossref_primary_10_1016_j_schres_2022_02_023
crossref_primary_10_1523_JNEUROSCI_3598_17_2018
crossref_primary_10_1016_j_conb_2018_12_005
crossref_primary_10_1038_s41598_021_83342_6
crossref_primary_10_1007_s12264_022_00983_x
crossref_primary_10_1523_JNEUROSCI_1692_24_2025
crossref_primary_10_1016_j_tics_2022_08_012
crossref_primary_10_1038_s41593_021_00997_0
crossref_primary_10_1016_j_ajhg_2018_10_009
crossref_primary_10_1038_s41593_024_01812_2
crossref_primary_10_1177_1535759720949254
crossref_primary_10_1007_s00213_019_05220_4
crossref_primary_10_7554_eLife_48417
crossref_primary_10_3390_vision3010003
crossref_primary_10_1080_21541264_2023_2295044
crossref_primary_10_1073_pnas_1911413116
crossref_primary_10_1186_s12916_020_01896_0
crossref_primary_10_1016_j_devcel_2019_03_001
crossref_primary_10_1038_s41583_020_0262_x
crossref_primary_10_1016_j_nbd_2019_02_006
crossref_primary_10_1192_bji_2018_26
crossref_primary_10_1242_dev_204306
crossref_primary_10_1016_j_celrep_2018_12_107
crossref_primary_10_1254_fpj_153_210
crossref_primary_10_1126_science_adf0805
crossref_primary_10_1016_j_ceb_2019_07_003
crossref_primary_10_1016_j_celrep_2024_114212
crossref_primary_10_31636_pmjua_v3i4_1
crossref_primary_10_3390_ijms23010202
crossref_primary_10_1007_s12035_022_03053_5
crossref_primary_10_1186_s12987_024_00602_z
crossref_primary_10_1111_epi_17744
crossref_primary_10_1146_annurev_neuro_100520_012117
crossref_primary_10_1038_s41467_021_25725_x
crossref_primary_10_1038_s41593_021_00940_3
crossref_primary_10_1016_j_conb_2023_102699
crossref_primary_10_1038_s41467_020_14952_3
crossref_primary_10_1093_cercor_bhac195
crossref_primary_10_1073_pnas_2006515117
crossref_primary_10_1093_bib_bbaa339
crossref_primary_10_2478_sjecr_2020_0065
crossref_primary_10_1016_j_gde_2020_05_043
crossref_primary_10_15252_embj_2021108714
crossref_primary_10_1016_j_cell_2018_12_032
crossref_primary_10_1007_s00401_023_02599_5
crossref_primary_10_7554_eLife_59928
crossref_primary_10_1007_s00018_020_03714_5
crossref_primary_10_1002_stem_3252
crossref_primary_10_1016_j_cobeha_2019_01_011
crossref_primary_10_1038_s41586_019_1506_7
crossref_primary_10_1016_j_neuron_2023_09_041
crossref_primary_10_1159_000500317
crossref_primary_10_3389_fneur_2020_591690
crossref_primary_10_1126_sciadv_ade4511
crossref_primary_10_1007_s40473_019_00192_3
crossref_primary_10_1038_s41583_020_0301_7
crossref_primary_10_1038_s41598_022_10319_4
crossref_primary_10_1016_j_cortex_2020_08_015
crossref_primary_10_1126_science_abj6641
crossref_primary_10_1152_jn_00411_2019
crossref_primary_10_3389_fnana_2023_1210502
crossref_primary_10_1007_s00429_021_02230_x
crossref_primary_10_1016_j_tins_2022_11_001
crossref_primary_10_1093_cercor_bhac246
crossref_primary_10_3390_molecules25082000
crossref_primary_10_1016_j_neuron_2018_10_009
crossref_primary_10_1097_WNR_0000000000001309
crossref_primary_10_1038_s41467_021_22741_9
crossref_primary_10_1038_s41467_022_35322_1
crossref_primary_10_1016_j_crneur_2024_100129
crossref_primary_10_1093_cercor_bhab040
crossref_primary_10_1016_j_cell_2024_02_031
crossref_primary_10_1038_s41593_020_0692_9
crossref_primary_10_1186_s40478_019_0684_8
crossref_primary_10_1016_j_cell_2024_08_052
crossref_primary_10_1038_s41593_019_0417_0
crossref_primary_10_1038_s41598_022_14192_z
crossref_primary_10_7554_eLife_57571
crossref_primary_10_1113_JP283577
crossref_primary_10_1073_pnas_2006163117
crossref_primary_10_3389_fonc_2020_615976
crossref_primary_10_1016_j_biopsych_2018_09_014
crossref_primary_10_1016_j_conb_2018_11_007
crossref_primary_10_1111_ejn_16652
crossref_primary_10_1126_science_aax6239
crossref_primary_10_1016_j_nec_2023_08_006
crossref_primary_10_1186_s13059_019_1747_7
crossref_primary_10_1016_j_conb_2023_102703
crossref_primary_10_1016_j_neubiorev_2020_10_024
crossref_primary_10_1016_j_semcdb_2019_04_002
crossref_primary_10_1038_s41586_023_06686_1
crossref_primary_10_1073_pnas_1907982116
crossref_primary_10_1523_JNEUROSCI_0830_22_2023
crossref_primary_10_3390_ijms24098122
crossref_primary_10_7554_eLife_48178
crossref_primary_10_1038_s41593_020_0685_8
crossref_primary_10_3389_fncel_2023_1125785
crossref_primary_10_1126_sciadv_abl7263
crossref_primary_10_1016_j_ajhg_2022_08_012
crossref_primary_10_1371_journal_pone_0237426
crossref_primary_10_1093_hmg_ddaa038
crossref_primary_10_1016_j_jneumeth_2022_109490
crossref_primary_10_1016_j_xgen_2022_100107
crossref_primary_10_7554_eLife_85893
crossref_primary_10_1007_s12264_023_01160_4
crossref_primary_10_1016_j_celrep_2024_114531
crossref_primary_10_1038_s41583_023_00675_z
crossref_primary_10_1126_science_adg5136
crossref_primary_10_1016_j_nbd_2024_106629
crossref_primary_10_1523_ENEURO_0215_23_2023
crossref_primary_10_1093_icb_icaa109
crossref_primary_10_7554_eLife_51691
crossref_primary_10_7554_eLife_81863
crossref_primary_10_1016_j_celrep_2024_114508
crossref_primary_10_1007_s11427_023_2436_x
crossref_primary_10_1016_j_cell_2021_10_003
crossref_primary_10_1016_j_tins_2024_05_009
crossref_primary_10_3389_fnmol_2022_839366
crossref_primary_10_1038_s42003_021_02517_z
crossref_primary_10_3390_ijms222413211
crossref_primary_10_1126_science_adf6484
crossref_primary_10_1126_scitranslmed_aaq1818
crossref_primary_10_1016_j_jneumeth_2023_110055
crossref_primary_10_1016_j_neuron_2019_07_009
crossref_primary_10_1093_molbev_msaf020
crossref_primary_10_3389_fcell_2021_562908
crossref_primary_10_1177_09636897211017829
crossref_primary_10_1126_sciadv_adf3771
crossref_primary_10_3389_fpsyg_2022_970214
crossref_primary_10_1111_epi_17812
crossref_primary_10_1038_s41583_018_0064_6
crossref_primary_10_1126_science_abo0924
crossref_primary_10_1093_nar_gkaa312
crossref_primary_10_1186_s12929_021_00728_4
crossref_primary_10_1186_s12885_024_13187_5
crossref_primary_10_3390_genes12071062
crossref_primary_10_5041_RMMJ_10388
crossref_primary_10_3389_fnsys_2024_1413780
crossref_primary_10_1523_JNEUROSCI_0175_21_2021
crossref_primary_10_1146_annurev_neuro_070918_050421
crossref_primary_10_1016_j_stemcr_2021_08_006
crossref_primary_10_1126_sciadv_adh1914
crossref_primary_10_3389_fnsyn_2020_00005
crossref_primary_10_3389_fnins_2021_787753
crossref_primary_10_1038_s41380_024_02620_7
crossref_primary_10_1016_j_cell_2022_09_039
crossref_primary_10_1038_s41586_021_03465_8
crossref_primary_10_1371_journal_pcbi_1010229
crossref_primary_10_1016_j_bpsgos_2022_03_013
crossref_primary_10_1523_JNEUROSCI_2371_23_2024
Cites_doi 10.3389/neuro.04.004.2007
10.1093/bioinformatics/btp616
10.1126/science.1076521
10.1038/nprot.2014.006
10.1126/science.aac9462
10.1126/science.aaf1204
10.1371/journal.pcbi.1003118
10.7554/eLife.16553
10.1146/annurev-neuro-062111-150420
10.1113/jphysiol.2009.185975
10.1002/cne.903550106
10.1038/sj.ejhg.5201429
10.1093/nar/gkv007
10.1523/JNEUROSCI.3158-13.2013
10.1126/science.aaa1934
10.3389/fnana.2016.00028
10.1016/j.cell.2015.09.029
10.1073/pnas.1319700110
10.1093/bioinformatics/bts356
10.1016/0006-8993(77)90808-3
10.1038/nn.4216
10.1016/j.cell.2012.02.052
10.1093/cercor/bhv188
10.1126/science.1149381
10.1523/JNEUROSCI.1085-14.2014
10.1093/cercor/bhu020
10.1093/bioinformatics/btu170
10.1523/JNEUROSCI.20-18-j0002.2000
10.14573/altex.1310071
10.1093/brain/113.3.793
10.1038/nprot.2012.016
10.1113/jphysiol.1997.sp022054
10.1002/cne.902410202
10.1038/nature11405
10.1016/S0891-0618(97)10013-8
10.1016/j.celrep.2015.02.018
10.1093/bioinformatics/bts196
10.1198/016214508000000454
10.1038/nature08503
10.1016/j.conb.2015.12.008
10.1007/BF02970950
10.1038/nature05453
10.1371/journal.pbio.0060222
10.1038/nmeth.3734
10.1016/j.cell.2015.05.002
10.1101/229542
10.1016/j.neuron.2016.06.033
10.1038/nature13185
10.1523/JNEUROSCI.5667-03.2004
10.1186/1471-2105-12-323
10.1093/cercor/7.6.476
10.1038/nrn2402
10.1038/ncomms11022
10.1093/bioinformatics/btu638
10.1126/science.1217276
10.7554/eLife.18167
10.2144/000114029
10.1117/1.NPh.1.1.011013
10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
10.1371/journal.pbio.2000237
10.1093/cercor/bhv045
10.1038/nprot.2016.015
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Sep 2018
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1038/s41593-018-0205-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Central Basic
Toxicology Abstracts
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


ProQuest One Psychology
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1546-1726
EndPage 1195
ExternalDocumentID PMC6130849
A572836736
30150662
10_1038_s41593_018_0205_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: European Research Council
  grantid: 269065
– fundername: NIMH NIH HHS
  grantid: U01 MH114812
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
85S
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ISR
ITC
M1P
M2M
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
YNT
YQT
ZGI
~8M
AAYXX
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
ACSTC
ADXHL
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7XB
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c637t-b1df6d927bfafce5f676adcb8d98a2a88c29ae1aa5112c35a3c2ef7ce7b85ae03
IEDL.DBID 7X7
ISSN 1097-6256
1546-1726
IngestDate Thu Aug 21 13:56:15 EDT 2025
Fri Jul 11 15:54:29 EDT 2025
Sat Aug 23 13:08:06 EDT 2025
Tue Jun 17 21:38:24 EDT 2025
Tue Jun 10 20:42:06 EDT 2025
Fri Jun 27 05:08:35 EDT 2025
Mon Jul 21 06:08:04 EDT 2025
Tue Jul 01 03:21:46 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Fri Feb 21 02:39:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-b1df6d927bfafce5f676adcb8d98a2a88c29ae1aa5112c35a3c2ef7ce7b85ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7905-6001
0000-0001-9012-6552
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6130849
PMID 30150662
PQID 2097574601
PQPubID 44706
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130849
proquest_miscellaneous_2095528620
proquest_journals_2097574601
gale_infotracmisc_A572836736
gale_infotracacademiconefile_A572836736
gale_incontextgauss_ISR_A572836736
pubmed_primary_30150662
crossref_primary_10_1038_s41593_018_0205_2
crossref_citationtrail_10_1038_s41593_018_0205_2
springer_journals_10_1038_s41593_018_0205_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature neuroscience
PublicationTitleAbbrev Nat Neurosci
PublicationTitleAlternate Nat Neurosci
PublicationYear 2018
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170246954044103590
NimchinskyEAVogtBAMorrisonJHHofPRSpindle neurons of the human anterior cingulate cortexJ. Comp. Neurol.199535527371:STN:280:DyaK2Mzmt1yrtQ%3D%3D10.1002/cne.9035501067636011
TamásGBuhlEHSomogyiPFast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neuron in the cat visual cortexJ. Physiol. (Lond.)199750071573810.1113/jphysiol.1997.sp022054
TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242
LakeBBNeuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brainScience2016352158615901:CAS:528:DC%2BC28XhtVaitLzF10.1126/science.aaf1204273399895038589
KlausbergerTSomogyiPNeuronal diversity and temporal dynamics: the unity of hippocampal circuit operationsScience200832153571:CAS:528:DC%2BD1cXnvFektbw%3D10.1126/science.1149381185997664487503
ElstonGNPyramidal cells of the frontal lobe: all the more spinous to think withJ. Neurosci.200020RC951:STN:280:DC%2BD387osVGjtQ%3D%3D10.1523/JNEUROSCI.20-18-j0002.2000109740926772841
FanJCharacterizing transcriptional heterogeneity through pathway and gene set overdispersion analysisNat. Methods2016132412441:CAS:528:DC%2BC28Xps1Gjtw%3D%3D10.1038/nmeth.3734267800924772672
XuQCobosIDe La CruzERubensteinJLAndersonSAOrigins of cortical interneuron subtypesJ. Neurosci.200424261226221:CAS:528:DC%2BD2cXivF2gtLo%3D10.1523/JNEUROSCI.5667-03.2004150287536729522
DeLucaDSRNA-SeQC: RNA-seq metrics for quality control and process optimizationBioinformatics201228153015321:CAS:528:DC%2BC38Xns1Sltrk%3D10.1093/bioinformatics/bts196225396703356847
MarkramHReconstruction and simulation of neocortical microcircuitryCell20151634564921:CAS:528:DC%2BC2MXhs1yksbzN10.1016/j.cell.2015.09.02926451489
AevermannBProduction of a preliminary quality control pipeline for single nuclei RNA-seq and its application in the analysis of cell type diversity of post-mortem human brain neocortexPac. Symp. Biocomput.20172256457527897007
LiuYHayesDNNobelAMarronJSStatistical significance of clustering for high-dimension, low–sample size dataJ. Am. Stat. Assoc.2008103128112931:CAS:528:DC%2BD1cXht1Omu7jM10.1198/016214508000000454
Testa-SilvaGHuman synapses show a wide temporal window for spike-timing-dependent plasticityFront. Synaptic Neurosci.2010212214234983059666
ZemankovicsRKáliSPaulsenOFreundTFHájosNDifferences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristicsJ. Physiol. (Lond.)2010588210921321:CAS:528:DC%2BC3cXosFCgsr0%3D10.1113/jphysiol.2009.185975
RitchieMElimma powers differential expression analyses for RNA-sequencing and microarray studiesNucleic Acids Res.201543e4710.1093/nar/gkv0071:CAS:528:DC%2BC2MXhsFaiu7%2FN256057924402510
MolinariFTruncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardationScience2002298177917811:CAS:528:DC%2BD38XovFKms7o%3D10.1126/science.107652112459588
WangLWangSLiWRSeQC: quality control of RNA-seq experimentsBioinformatics201228218421851:CAS:528:DC%2BC38XhtF2rsrnJ10.1093/bioinformatics/bts35622743226
LiBDeweyCNRSEM: accurate transcript quantification from RNA-Seq data with or without a reference genomeBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFajtLvM10.1186/1471-2105-12-323218160403163565
LawrenceMSoftware for computing and annotating genomic rangesPLOS Comput. Biol.20139e10031181:CAS:528:DC%2BC3sXhsVensr%2FK10.1371/journal.pcbi.1003118239506963738458
EyalGUnique membrane properties and enhanced signal processing in human neocortical neuronseLife20165e1655310.7554/eLife.165531:CAS:528:DC%2BC1cXptVegt78%3D277107675100995
AndersSPylPTHuberWHTSeq--a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu63825260700
CavanaughSEPippinJJBarnardNDAnimal models of Alzheimer disease: historical pitfalls and a path forwardALTEX20143127930210.14573/altex.131007124793844
MakIWEvaniewNGhertMLost in translation: animal models and clinical trials in cancer treatmentAm. J. Transl. Res.20146114118244899903902221
GrindbergRVRNA-sequencing from single nucleiProc. Natl. Acad. Sci. USA201311019802198071:CAS:528:DC%2BC3sXhvFKms7zF10.1073/pnas.1319700110242483453856806
OláhSRegulation of cortical microcircuits by unitary GABA-mediated volume transmissionNature20094611278128110.1038/nature085031:CAS:528:DC%2BD1MXhtlOjt7vM198651712771344
BorgIDisruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndromeEur. J. Hum. Genet.2005139219271:CAS:528:DC%2BD2MXmsVyjsLw%3D10.1038/sj.ejhg.520142915870826
R Development Core Team.R: a Language and Environment for Statistical Computing2016Vienna, AustriaR Found. Stat. Comput.
ZengHLarge-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signaturesCell20121494834961:CAS:528:DC%2BC38Xls1entLo%3D10.1016/j.cell.2012.02.052225008093328777
TrapnellCDifferential gene and transcript expression analysis of RNA-seq experiments with TopHat and CufflinksNat. Protoc.201275625781:CAS:528:DC%2BC38Xjt1Cjsrc%3D10.1038/nprot.2012.016223830363334321
FaragóNDigital PCR to determine the number of transcripts from single neurons after patch-clamp recordingBiotechniques20135432733610.2144/0001140291:CAS:528:DC%2BC3sXhtFGlsb3I23750542
PaxinosGFranklinKThe Mouse Brain in Stereotaxic Coordinates2012Cambridge, MA, USAAcademic Press
MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D10.1016/j.cell.2015.05.002260004884481139
WangBA subtype of inhibitory interneuron with intrinsic persistent activity in human and monkey neocortexCell Rep.201510145014581:CAS:528:DC%2BC2MXjvFOht74%3D10.1016/j.celrep.2015.02.01825753411
KrishnaswamiSRUsing single nuclei for RNA-seq to capture the transcriptome of postmortem neuronsNat. Protoc.2016114995241:CAS:528:DC%2BC28XisVyru74%3D10.1038/nprot.2016.015268906794941947
KatonaIFreundTFMultiple functions of endocannabinoid signaling in the brainAnnu. Rev. Neurosci.2012355295581:CAS:528:DC%2BC38XhtFegsbjE10.1146/annurev-neuro-062111-150420225247854273654
FreundTFBuzsákiGInterneurons of the hippocampusHippocampus199663474701:STN:280:DyaK2s%2Fnt12htQ%3D%3D10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I8915675
MillerJATranscriptional landscape of the prenatal human brainNature20145081992061:CAS:528:DC%2BC2cXmtlWnsrY%3D10.1038/nature13185246952294105188
SzegediVPlasticity in single axon glutamatergic connection interneurons regulates complex events in the human neocortex to GABAergicPLoS Biol.201614e200023710.1371/journal.pbio.20002371:CAS:528:DC%2BC2sXot1Ciu7Y%3D278289575102409
KisvárdayZFSynapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortexBrain199011379381210.1093/brain/113.3.7932194628
Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Preprint at bioRxivhttps://doi.org/10.1101/229542 (2017).
MolnárGComplex events initiated by individual spikes in the human cerebral cortexPLoS Biol.20086e22210.1371/journal.pbio.00602221:CAS:528:DC%2BD1cXht1ChtLbE187679052528052
LeinESGenome-wide atlas of gene expression in the adult mouse brainNature20074451681761:CAS:528:DC%2BD2sXjtFKjtw%3D%3D10.1038/nature0545317151600
PicelliSFull-length RNA-seq from single cells using Smart-seq2Nat. Protoc.201491711811:CAS:528:DC%2BC2cXls1ejtrc%3D10.1038/nprot.2014.00624385147
GjorgjievaJDrionGMarderEComputational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performanceCurr. Opin. Neurobiol.20163744521:CAS:528:DC%2BC28XhvFCmtw%3D%3D10.1016/j.conb.2015.12.008267746944860045
KawaguchiYKubotaYGABAergic cell subtypes and their synaptic connections in rat frontal cortexCereb. Cortex199774764861:STN:280:DyaK2svit1SrtA%3D%3D10.1093/cercor/7.6.4769276173
Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJ. Mach. Learn. Res.2008925792605
JiangXPrinciples of connectivity among morphologically defined cell types in adult neocortexScience2015350aac946210.1126/science.aac94621:CAS:528:DC%2BC2MXhvFamtLrP266129574809866
VerhoogMBMechanisms underlying the rules for associative plasticity at adult human neocortical synapsesJ. Neurosci.20133317197172081:CAS:528:DC%2BC3sXhslSmsbzJ10.1523/JNEUROSCI.3158-13.2013241553246618441
MoralesJRandom positions of dendritic spines in human cerebral cortexJ. Neurosci.20143410078100841:CAS:528:DC%2BC2cXhs1amtLvM10.1523/JNEUROSCI.1085-14.2014250572094107399
RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308
VargaCTamasGBarzoPOlahSSomogyiPMolecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortexCereb. Cortex2015254430444910.1093/cercor/bhv045257878324768361
TremblayRLeeSRudyBGABAergic interneurons in the neocortex: from cellular properties to circuitsNeuron2016912602921:CAS:528:DC%2BC28Xht1ClurvL10.1016/j.neuron.2016.06.033274770174980915
DeFelipeJJonesEGCajal on the Cerebral Cortex1988Oxford, UKOxford University Press
PalmerLMThe cellular basis of GABA(B)-mediated interhemispheric inhibitionScience20123359899931:CAS:528:DC%2BC38XisFarsbo%3D10.1126/science.121727622363012
KerekesBPCombined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitroNeurophotonics2014101101310.1117/1.NPh.1.1.0110131:CAS:528:DC%2BC2MXlvFKmuw%3D%3D261579694478968
ZeiselABrain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience20153471138
J Morales (205_CR16) 2014; 34
B Aevermann (205_CR58) 2017; 22
BB Lake (205_CR22) 2016; 352
G Tamás (205_CR40) 1997; 500
IW Mak (205_CR49) 2014; 6
S Oláh (205_CR25) 2009; 461
BP Kerekes (205_CR29) 2014; 1
205_CR66
ZF Kisvárday (205_CR41) 1985; 241
Y Kawaguchi (205_CR21) 1997; 7
JA Miller (205_CR38) 2014; 508
G Paxinos (205_CR69) 2012
A Zeisel (205_CR5) 2015; 347
H Zeng (205_CR68) 2012; 149
J DeFelipe (205_CR1) 1988
L Wang (205_CR55) 2012; 28
MJ Hawrylycz (205_CR31) 2012; 489
B Tasic (205_CR4) 2016; 19
PLA Gabbott (205_CR37) 2016; 10
S Anders (205_CR57) 2015; 31
N Faragó (205_CR70) 2013; 54
SR Krishnaswami (205_CR51) 2016; 11
G Eyal (205_CR8) 2016; 5
V Szegedi (205_CR14) 2016; 14
M Lawrence (205_CR60) 2013; 9
MB Verhoog (205_CR13) 2013; 33
ME Ritchie (205_CR67) 2015; 43
X Jiang (205_CR7) 2015; 350
Y Liu (205_CR65) 2008; 103
S Oláh (205_CR23) 2007; 1
SE Cavanaugh (205_CR50) 2014; 31
M Ester (205_CR64) 1996; 2
LJP Maaten Van Der (205_CR63) 2008; 9
GA Ascoli (205_CR2) 2008; 9
T Klausberger (205_CR46) 2008; 321
LM Palmer (205_CR45) 2012; 335
ES Lein (205_CR32) 2007; 445
DS DeLuca (205_CR56) 2012; 28
R Zemankovics (205_CR27) 2010; 588
RV Grindberg (205_CR18) 2013; 110
ZF Kisvárday (205_CR24) 1990; 113
B Wang (205_CR9) 2015; 10
R Tremblay (205_CR43) 2016; 91
GN Elston (205_CR15) 2000; 20
G Molnár (205_CR10) 2008; 6
C Trapnell (205_CR54) 2012; 7
J Fan (205_CR62) 2016; 13
G Molnár (205_CR11) 2016; 5
J Gjorgjieva (205_CR44) 2016; 37
J DeFelipe (205_CR34) 1997; 14
F Molinari (205_CR48) 2002; 298
EA Nimchinsky (205_CR36) 1995; 355
H Markram (205_CR3) 2015; 163
TF Freund (205_CR30) 1996; 6
EZ Macosko (205_CR6) 2015; 161
P Somogyi (205_CR39) 1977; 136
C Varga (205_CR26) 2015; 25
MD Robinson (205_CR61) 2010; 26
H Mohan (205_CR17) 2015; 25
I Katona (205_CR28) 2012; 35
AJ Lee (205_CR42) 2015; 25
I Borg (205_CR47) 2005; 13
R Development Core Team. (205_CR59) 2016
G Testa-Silva (205_CR12) 2010; 2
B Li (205_CR53) 2011; 12
AM Bolger (205_CR52) 2014; 30
B Lacar (205_CR19) 2016; 7
Q Xu (205_CR33) 2004; 24
C Economo von (205_CR35) 1926; 100
S Picelli (205_CR20) 2014; 9
References_xml – reference: WangBA subtype of inhibitory interneuron with intrinsic persistent activity in human and monkey neocortexCell Rep.201510145014581:CAS:528:DC%2BC2MXjvFOht74%3D10.1016/j.celrep.2015.02.01825753411
– reference: WangLWangSLiWRSeQC: quality control of RNA-seq experimentsBioinformatics201228218421851:CAS:528:DC%2BC38XhtF2rsrnJ10.1093/bioinformatics/bts35622743226
– reference: AndersSPylPTHuberWHTSeq--a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL10.1093/bioinformatics/btu63825260700
– reference: KawaguchiYKubotaYGABAergic cell subtypes and their synaptic connections in rat frontal cortexCereb. Cortex199774764861:STN:280:DyaK2svit1SrtA%3D%3D10.1093/cercor/7.6.4769276173
– reference: LeeAJCanonical organization of layer 1 neuron-led cortical inhibitory and disinhibitory interneuronal circuitsCereb. Cortex2015252114212610.1093/cercor/bhu02024554728
– reference: EyalGUnique membrane properties and enhanced signal processing in human neocortical neuronseLife20165e1655310.7554/eLife.165531:CAS:528:DC%2BC1cXptVegt78%3D277107675100995
– reference: MarkramHReconstruction and simulation of neocortical microcircuitryCell20151634564921:CAS:528:DC%2BC2MXhs1yksbzN10.1016/j.cell.2015.09.02926451489
– reference: von EconomoCEine neue Art Spezialzellen des Lobus cinguli and Lobus insulaeZschr. ges Neurol. Psychiatry192610070671210.1007/BF02970950
– reference: KlausbergerTSomogyiPNeuronal diversity and temporal dynamics: the unity of hippocampal circuit operationsScience200832153571:CAS:528:DC%2BD1cXnvFektbw%3D10.1126/science.1149381185997664487503
– reference: TrapnellCDifferential gene and transcript expression analysis of RNA-seq experiments with TopHat and CufflinksNat. Protoc.201275625781:CAS:528:DC%2BC38Xjt1Cjsrc%3D10.1038/nprot.2012.016223830363334321
– reference: LeinESGenome-wide atlas of gene expression in the adult mouse brainNature20074451681761:CAS:528:DC%2BD2sXjtFKjtw%3D%3D10.1038/nature0545317151600
– reference: DeLucaDSRNA-SeQC: RNA-seq metrics for quality control and process optimizationBioinformatics201228153015321:CAS:528:DC%2BC38Xns1Sltrk%3D10.1093/bioinformatics/bts196225396703356847
– reference: ZemankovicsRKáliSPaulsenOFreundTFHájosNDifferences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristicsJ. Physiol. (Lond.)2010588210921321:CAS:528:DC%2BC3cXosFCgsr0%3D10.1113/jphysiol.2009.185975
– reference: AscoliGAPetilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortexNat. Rev. Neurosci.200895575681:CAS:528:DC%2BD1cXnsFChu7Y%3D10.1038/nrn240218568015
– reference: DeFelipeJTypes of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortexJ. Chem. Neuroanat.1997141191:CAS:528:DyaK1cXhsFChtbw%3D10.1016/S0891-0618(97)10013-89498163
– reference: MakIWEvaniewNGhertMLost in translation: animal models and clinical trials in cancer treatmentAm. J. Transl. Res.20146114118244899903902221
– reference: Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Preprint at bioRxivhttps://doi.org/10.1101/229542 (2017).
– reference: Van Der MaatenLJPHintonGEVisualizing high-dimensional data using t-SNEJ. Mach. Learn. Res.2008925792605
– reference: GjorgjievaJDrionGMarderEComputational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performanceCurr. Opin. Neurobiol.20163744521:CAS:528:DC%2BC28XhvFCmtw%3D%3D10.1016/j.conb.2015.12.008267746944860045
– reference: TamásGBuhlEHSomogyiPFast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neuron in the cat visual cortexJ. Physiol. (Lond.)199750071573810.1113/jphysiol.1997.sp022054
– reference: TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242
– reference: LacarBNuclear RNA-seq of single neurons reveals molecular signatures of activationNat. Commun.201671:CAS:528:DC%2BC28XmsFyhtrg%3D10.1038/ncomms11022270909464838832
– reference: NimchinskyEAVogtBAMorrisonJHHofPRSpindle neurons of the human anterior cingulate cortexJ. Comp. Neurol.199535527371:STN:280:DyaK2Mzmt1yrtQ%3D%3D10.1002/cne.9035501067636011
– reference: OláhSRegulation of cortical microcircuits by unitary GABA-mediated volume transmissionNature20094611278128110.1038/nature085031:CAS:528:DC%2BD1MXhtlOjt7vM198651712771344
– reference: VargaCTamasGBarzoPOlahSSomogyiPMolecular and electrophysiological characterization of GABAergic interneurons expressing the transcription factor COUP-TFII in the adult human temporal cortexCereb. Cortex2015254430444910.1093/cercor/bhv045257878324768361
– reference: MolinariFTruncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardationScience2002298177917811:CAS:528:DC%2BD38XovFKms7o%3D10.1126/science.107652112459588
– reference: ZengHLarge-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signaturesCell20121494834961:CAS:528:DC%2BC38Xls1entLo%3D10.1016/j.cell.2012.02.052225008093328777
– reference: RitchieMElimma powers differential expression analyses for RNA-sequencing and microarray studiesNucleic Acids Res.201543e4710.1093/nar/gkv0071:CAS:528:DC%2BC2MXhsFaiu7%2FN256057924402510
– reference: MolnárGComplex events initiated by individual spikes in the human cerebral cortexPLoS Biol.20086e22210.1371/journal.pbio.00602221:CAS:528:DC%2BD1cXht1ChtLbE187679052528052
– reference: PicelliSFull-length RNA-seq from single cells using Smart-seq2Nat. Protoc.201491711811:CAS:528:DC%2BC2cXls1ejtrc%3D10.1038/nprot.2014.00624385147
– reference: Testa-SilvaGHuman synapses show a wide temporal window for spike-timing-dependent plasticityFront. Synaptic Neurosci.2010212214234983059666
– reference: FaragóNDigital PCR to determine the number of transcripts from single neurons after patch-clamp recordingBiotechniques20135432733610.2144/0001140291:CAS:528:DC%2BC3sXhtFGlsb3I23750542
– reference: GrindbergRVRNA-sequencing from single nucleiProc. Natl. Acad. Sci. USA201311019802198071:CAS:528:DC%2BC3sXhvFKms7zF10.1073/pnas.1319700110242483453856806
– reference: XuQCobosIDe La CruzERubensteinJLAndersonSAOrigins of cortical interneuron subtypesJ. Neurosci.200424261226221:CAS:528:DC%2BD2cXivF2gtLo%3D10.1523/JNEUROSCI.5667-03.2004150287536729522
– reference: KatonaIFreundTFMultiple functions of endocannabinoid signaling in the brainAnnu. Rev. Neurosci.2012355295581:CAS:528:DC%2BC38XhtFegsbjE10.1146/annurev-neuro-062111-150420225247854273654
– reference: JiangXPrinciples of connectivity among morphologically defined cell types in adult neocortexScience2015350aac946210.1126/science.aac94621:CAS:528:DC%2BC2MXhvFamtLrP266129574809866
– reference: MohanHDendritic and axonal architecture of individual pyramidal neurons across layers of adult human neocortexCereb. Cortex2015254839485310.1093/cercor/bhv188263186614635923
– reference: GabbottPLASubpial Fan Cell” - a class of calretinin neuron in layer 1 of adult monkey prefrontal cortexFront. Neuroanat.2016102810.3389/fnana.2016.000281:CAS:528:DC%2BC1cXmsFeit7c%3D271479784829592
– reference: MolnárGHuman pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicleseLife20165e1816710.7554/eLife.18167275368764999310
– reference: KrishnaswamiSRUsing single nuclei for RNA-seq to capture the transcriptome of postmortem neuronsNat. Protoc.2016114995241:CAS:528:DC%2BC28XisVyru74%3D10.1038/nprot.2016.015268906794941947
– reference: TremblayRLeeSRudyBGABAergic interneurons in the neocortex: from cellular properties to circuitsNeuron2016912602921:CAS:528:DC%2BC28Xht1ClurvL10.1016/j.neuron.2016.06.033274770174980915
– reference: EsterMKriegelHPSanderJXuXA density-based algorithm for discovering clusters in large spatial databases with noiseKDD19962226231
– reference: LiBDeweyCNRSEM: accurate transcript quantification from RNA-Seq data with or without a reference genomeBMC Bioinformatics2011121:CAS:528:DC%2BC3MXhtFajtLvM10.1186/1471-2105-12-323218160403163565
– reference: PalmerLMThe cellular basis of GABA(B)-mediated interhemispheric inhibitionScience20123359899931:CAS:528:DC%2BC38XisFarsbo%3D10.1126/science.121727622363012
– reference: ElstonGNPyramidal cells of the frontal lobe: all the more spinous to think withJ. Neurosci.200020RC951:STN:280:DC%2BD387osVGjtQ%3D%3D10.1523/JNEUROSCI.20-18-j0002.2000109740926772841
– reference: LakeBBNeuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brainScience2016352158615901:CAS:528:DC%2BC28XhtVaitLzF10.1126/science.aaf1204273399895038589
– reference: KerekesBPCombined two-photon imaging, electrophysiological, and anatomical investigation of the human neocortex in vitroNeurophotonics2014101101310.1117/1.NPh.1.1.0110131:CAS:528:DC%2BC2MXlvFKmuw%3D%3D261579694478968
– reference: PaxinosGFranklinKThe Mouse Brain in Stereotaxic Coordinates2012Cambridge, MA, USAAcademic Press
– reference: HawrylyczMJAn anatomically comprehensive atlas of the adult human brain transcriptomeNature20124893913991:CAS:528:DC%2BC38Xhtlymu77N10.1038/nature11405229965534243026
– reference: MillerJATranscriptional landscape of the prenatal human brainNature20145081992061:CAS:528:DC%2BC2cXmtlWnsrY%3D10.1038/nature13185246952294105188
– reference: RobinsonMDMcCarthyDJSmythGKedgeR: a Bioconductor package for differential expression analysis of digital gene expression dataBioinformatics2010261391401:CAS:528:DC%2BD1MXhs1WlurvO10.1093/bioinformatics/btp61619910308
– reference: KisvárdayZFMartinKACWhitteridgeDSomogyiPSynaptic connections of intracellularly filled clutch cells: a type of small basket cell in the visual cortex of the catJ. Comp. Neurol.198524111113710.1002/cne.9024102024067011
– reference: SzegediVPlasticity in single axon glutamatergic connection interneurons regulates complex events in the human neocortex to GABAergicPLoS Biol.201614e200023710.1371/journal.pbio.20002371:CAS:528:DC%2BC2sXot1Ciu7Y%3D278289575102409
– reference: MoralesJRandom positions of dendritic spines in human cerebral cortexJ. Neurosci.20143410078100841:CAS:528:DC%2BC2cXhs1amtLvM10.1523/JNEUROSCI.1085-14.2014250572094107399
– reference: VerhoogMBMechanisms underlying the rules for associative plasticity at adult human neocortical synapsesJ. Neurosci.20133317197172081:CAS:528:DC%2BC3sXhslSmsbzJ10.1523/JNEUROSCI.3158-13.2013241553246618441
– reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D10.1016/j.cell.2015.05.002260004884481139
– reference: OláhSOutput of neurogliaform cells to various neuron types in the human and rat cerebral cortexFront. Neural Circuits20071410.3389/neuro.04.004.2007189465462526278
– reference: FreundTFBuzsákiGInterneurons of the hippocampusHippocampus199663474701:STN:280:DyaK2s%2Fnt12htQ%3D%3D10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I8915675
– reference: KisvárdayZFSynapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortexBrain199011379381210.1093/brain/113.3.7932194628
– reference: CavanaughSEPippinJJBarnardNDAnimal models of Alzheimer disease: historical pitfalls and a path forwardALTEX20143127930210.14573/altex.131007124793844
– reference: AevermannBProduction of a preliminary quality control pipeline for single nuclei RNA-seq and its application in the analysis of cell type diversity of post-mortem human brain neocortexPac. Symp. Biocomput.20172256457527897007
– reference: LiuYHayesDNNobelAMarronJSStatistical significance of clustering for high-dimension, low–sample size dataJ. Am. Stat. Assoc.2008103128112931:CAS:528:DC%2BD1cXht1Omu7jM10.1198/016214508000000454
– reference: SomogyiPA specific ‘axo-axonal’ interneuron in the visual cortex of the ratBrain Res.19771363453501:STN:280:DyaE1c%2FktFagsQ%3D%3D10.1016/0006-8993(77)90808-3922488
– reference: DeFelipeJJonesEGCajal on the Cerebral Cortex1988Oxford, UKOxford University Press
– reference: BolgerAMLohseMUsadelBTrimmomatic: a flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP10.1093/bioinformatics/btu170246954044103590
– reference: LawrenceMSoftware for computing and annotating genomic rangesPLOS Comput. Biol.20139e10031181:CAS:528:DC%2BC3sXhsVensr%2FK10.1371/journal.pcbi.1003118239506963738458
– reference: ZeiselABrain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience2015347113811421:CAS:528:DC%2BC2MXjsF2hsro%3D10.1126/science.aaa193425700174
– reference: R Development Core Team.R: a Language and Environment for Statistical Computing2016Vienna, AustriaR Found. Stat. Comput.
– reference: BorgIDisruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndromeEur. J. Hum. Genet.2005139219271:CAS:528:DC%2BD2MXmsVyjsLw%3D10.1038/sj.ejhg.520142915870826
– reference: FanJCharacterizing transcriptional heterogeneity through pathway and gene set overdispersion analysisNat. Methods2016132412441:CAS:528:DC%2BC28Xps1Gjtw%3D%3D10.1038/nmeth.3734267800924772672
– volume: 1
  start-page: 4
  year: 2007
  ident: 205_CR23
  publication-title: Front. Neural Circuits
  doi: 10.3389/neuro.04.004.2007
– volume: 26
  start-page: 139
  year: 2010
  ident: 205_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 298
  start-page: 1779
  year: 2002
  ident: 205_CR48
  publication-title: Science
  doi: 10.1126/science.1076521
– volume: 9
  start-page: 171
  year: 2014
  ident: 205_CR20
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.006
– volume: 350
  start-page: aac9462
  year: 2015
  ident: 205_CR7
  publication-title: Science
  doi: 10.1126/science.aac9462
– volume: 352
  start-page: 1586
  year: 2016
  ident: 205_CR22
  publication-title: Science
  doi: 10.1126/science.aaf1204
– volume: 9
  start-page: e1003118
  year: 2013
  ident: 205_CR60
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003118
– volume: 9
  start-page: 2579
  year: 2008
  ident: 205_CR63
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: e16553
  year: 2016
  ident: 205_CR8
  publication-title: eLife
  doi: 10.7554/eLife.16553
– volume-title: Cajal on the Cerebral Cortex
  year: 1988
  ident: 205_CR1
– volume: 35
  start-page: 529
  year: 2012
  ident: 205_CR28
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062111-150420
– volume: 588
  start-page: 2109
  year: 2010
  ident: 205_CR27
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2009.185975
– volume: 355
  start-page: 27
  year: 1995
  ident: 205_CR36
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903550106
– volume: 13
  start-page: 921
  year: 2005
  ident: 205_CR47
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/sj.ejhg.5201429
– volume: 2
  start-page: 12
  year: 2010
  ident: 205_CR12
  publication-title: Front. Synaptic Neurosci.
– volume: 2
  start-page: 226
  year: 1996
  ident: 205_CR64
  publication-title: KDD
– volume: 43
  start-page: e47
  year: 2015
  ident: 205_CR67
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 33
  start-page: 17197
  year: 2013
  ident: 205_CR13
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3158-13.2013
– volume: 6
  start-page: 114
  year: 2014
  ident: 205_CR49
  publication-title: Am. J. Transl. Res.
– volume: 347
  start-page: 1138
  year: 2015
  ident: 205_CR5
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 22
  start-page: 564
  year: 2017
  ident: 205_CR58
  publication-title: Pac. Symp. Biocomput.
– volume: 10
  start-page: 28
  year: 2016
  ident: 205_CR37
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2016.00028
– volume: 163
  start-page: 456
  year: 2015
  ident: 205_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– volume: 110
  start-page: 19802
  year: 2013
  ident: 205_CR18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1319700110
– volume: 28
  start-page: 2184
  year: 2012
  ident: 205_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 136
  start-page: 345
  year: 1977
  ident: 205_CR39
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(77)90808-3
– volume: 19
  start-page: 335
  year: 2016
  ident: 205_CR4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4216
– volume: 149
  start-page: 483
  year: 2012
  ident: 205_CR68
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.052
– volume: 25
  start-page: 4839
  year: 2015
  ident: 205_CR17
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv188
– volume: 321
  start-page: 53
  year: 2008
  ident: 205_CR46
  publication-title: Science
  doi: 10.1126/science.1149381
– volume: 34
  start-page: 10078
  year: 2014
  ident: 205_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1085-14.2014
– volume: 25
  start-page: 2114
  year: 2015
  ident: 205_CR42
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu020
– volume: 30
  start-page: 2114
  year: 2014
  ident: 205_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 20
  start-page: RC95
  year: 2000
  ident: 205_CR15
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-18-j0002.2000
– volume: 31
  start-page: 279
  year: 2014
  ident: 205_CR50
  publication-title: ALTEX
  doi: 10.14573/altex.1310071
– volume: 113
  start-page: 793
  year: 1990
  ident: 205_CR24
  publication-title: Brain
  doi: 10.1093/brain/113.3.793
– volume: 7
  start-page: 562
  year: 2012
  ident: 205_CR54
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.016
– volume: 500
  start-page: 715
  year: 1997
  ident: 205_CR40
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.1997.sp022054
– volume: 241
  start-page: 111
  year: 1985
  ident: 205_CR41
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902410202
– volume: 489
  start-page: 391
  year: 2012
  ident: 205_CR31
  publication-title: Nature
  doi: 10.1038/nature11405
– volume: 14
  start-page: 1
  year: 1997
  ident: 205_CR34
  publication-title: J. Chem. Neuroanat.
  doi: 10.1016/S0891-0618(97)10013-8
– volume: 10
  start-page: 1450
  year: 2015
  ident: 205_CR9
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.018
– volume: 28
  start-page: 1530
  year: 2012
  ident: 205_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts196
– volume: 103
  start-page: 1281
  year: 2008
  ident: 205_CR65
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000454
– volume: 461
  start-page: 1278
  year: 2009
  ident: 205_CR25
  publication-title: Nature
  doi: 10.1038/nature08503
– volume: 37
  start-page: 44
  year: 2016
  ident: 205_CR44
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.12.008
– volume: 100
  start-page: 706
  year: 1926
  ident: 205_CR35
  publication-title: Zschr. ges Neurol. Psychiatry
  doi: 10.1007/BF02970950
– volume: 445
  start-page: 168
  year: 2007
  ident: 205_CR32
  publication-title: Nature
  doi: 10.1038/nature05453
– volume: 6
  start-page: e222
  year: 2008
  ident: 205_CR10
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060222
– volume: 13
  start-page: 241
  year: 2016
  ident: 205_CR62
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3734
– volume: 161
  start-page: 1202
  year: 2015
  ident: 205_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume-title: R: a Language and Environment for Statistical Computing
  year: 2016
  ident: 205_CR59
– ident: 205_CR66
  doi: 10.1101/229542
– volume: 91
  start-page: 260
  year: 2016
  ident: 205_CR43
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.06.033
– volume: 508
  start-page: 199
  year: 2014
  ident: 205_CR38
  publication-title: Nature
  doi: 10.1038/nature13185
– volume: 24
  start-page: 2612
  year: 2004
  ident: 205_CR33
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5667-03.2004
– volume: 12
  year: 2011
  ident: 205_CR53
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 7
  start-page: 476
  year: 1997
  ident: 205_CR21
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.6.476
– volume-title: The Mouse Brain in Stereotaxic Coordinates
  year: 2012
  ident: 205_CR69
– volume: 9
  start-page: 557
  year: 2008
  ident: 205_CR2
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2402
– volume: 7
  year: 2016
  ident: 205_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11022
– volume: 31
  start-page: 166
  year: 2015
  ident: 205_CR57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 335
  start-page: 989
  year: 2012
  ident: 205_CR45
  publication-title: Science
  doi: 10.1126/science.1217276
– volume: 5
  start-page: e18167
  year: 2016
  ident: 205_CR11
  publication-title: eLife
  doi: 10.7554/eLife.18167
– volume: 54
  start-page: 327
  year: 2013
  ident: 205_CR70
  publication-title: Biotechniques
  doi: 10.2144/000114029
– volume: 1
  start-page: 011013
  year: 2014
  ident: 205_CR29
  publication-title: Neurophotonics
  doi: 10.1117/1.NPh.1.1.011013
– volume: 6
  start-page: 347
  year: 1996
  ident: 205_CR30
  publication-title: Hippocampus
  doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
– volume: 14
  start-page: e2000237
  year: 2016
  ident: 205_CR14
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2000237
– volume: 25
  start-page: 4430
  year: 2015
  ident: 205_CR26
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv045
– volume: 11
  start-page: 499
  year: 2016
  ident: 205_CR51
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.015
SSID ssj0007589
Score 2.6179693
Snippet We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased...
We describe convergent evidence from transcriptomics, morphology and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1185
SubjectTerms 631/378/3920
631/378/87
9/74
Adult
Aged
Animal Genetics and Genomics
Axons - ultrastructure
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain
Brain research
Cells (Biology)
Cerebral Cortex - metabolism
Cerebral Cortex - ultrastructure
Cholecystokinin
Combinatorial analysis
Cortex
Cytology
Dendritic Spines - metabolism
Dendritic Spines - ultrastructure
Dendritic structure
Excavation
GABA
GABAergic Neurons - metabolism
GABAergic Neurons - ultrastructure
Gap junctions
Gap Junctions - metabolism
Gap Junctions - ultrastructure
Gene expression
Gene Library
Gene sequencing
Genes
Genomics
Glutamate decarboxylase
Humans
Information processing
Interneurons
Male
Morphology
Neural circuitry
Neurobiology
Neurons
Neurosciences
Observations
Physiology
Polymerase Chain Reaction
Presynapse
Presynaptic Terminals - metabolism
Presynaptic Terminals - ultrastructure
Properties
Pyramidal cells
Pyramidal Cells - metabolism
Pyramidal Cells - ultrastructure
Quality control
Ribonucleic acid
RNA
RNA - analysis
RNA - genetics
RNA sequencing
Rodents
Sequence Analysis, RNA
Transcriptome
γ-Aminobutyric acid
Title Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type
URI https://link.springer.com/article/10.1038/s41593-018-0205-2
https://www.ncbi.nlm.nih.gov/pubmed/30150662
https://www.proquest.com/docview/2097574601
https://www.proquest.com/docview/2095528620
https://pubmed.ncbi.nlm.nih.gov/PMC6130849
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOj24otM50d1jiiioBTbpG3SJ-lkcwoOmQ7uW0jTRAeuvVvvfdBf7zlp2tkL7jkntMn5_sg5hLxMG5dxrXlcsETEmRM8lg74SqSmsKXhZaHxvfOXk-L4LPu8yBch4NaHsspRJnpB3XQGY-TgpJciFxn4D--XlzFOjcLsahihcZtsY-syLOkSi8nhAm3oR-BhkhX-JS_GrCaX73pQXFi5lsoYDKY8ZjO9tCmd_1FPm6WTG_lTr5aOdsjdYE_SaiCAe-SWbe-T3aoFX_riN31FfYWnD53vksYrJi8m8C0y1W1DLzq46G45QiHKqA2TRikYtFTTfhhRf_7HNtSP9KPgsfoQOP1YHVT2CnZRTABQjOc-IGdHh98_HMdhykJsCi5WcQ3oKpqSidppZ2zuCgH4MbVsSqmZltKwUttUazTNDM81N8w6YayoZa5twh-SrbZr7WNCHbPCykRjx6BMWA3GR5260pa1a5xNbUSS8Y6VCS3IcRLGL-VT4VyqAS0K0KIQLYpF5M20ZTn037gJ-AUiTmFfixYLZ37odd-rT99OVZULMKSwiC0irwOQ6-DjRod3CHAEbIU1g9ybQQLjmfnySB8qMH6vrsk0Is-nZdyJxWyt7dYeJs8ZuJJJRB4N5DSdjfuWjwUcRcwIbQLAduDzlfb8p28Ljp6gzMqIvB1J8vq3_ntlT24-xFNyh3kewaK6PbK1ulrbZ2CFrep9z2r7ZPvg8OTr6V9eJzFH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BrdA7wgYFwCAwziIoEiGjuJ7QeEOtho2UVobNLejOPYMIklZW2FxkfxjZzjJh2pxN727OPWzrn73Ah5lpQ-5cbwOGd9Eade8Fh64CuR2Nwpy1VusN55dy8fHqafjrKjFfKnrYXBtMpWJgZBXdYW38jBSVciEyn4D-_GP2OcGoXR1XaExpwstt3ZL3DZJm9HHwC_zxnb2jx4P4ybqQKxzbmYxgUcLy8VE4U33rrM5wLOYwtZKmmYkdIyZVxiDJoilmeGW-a8sE4UMjOuz-F3r5DVlMNRemR1Y3Pv8_5C9oP1rUJ8VQm4fZa3cVQu30xAVWKuXCJjMNGymHU04bI--EchLidrLkVsgyLcukGuNxYsHcxJ7iZZcdUtsjaowHs_OaMvaMgpDY_1a6QMqjAIJqx-pqYq6UkNqK3HLRQSCXXNbFMKJjQ1FMs_gS-Of7uShiGCFHzk8OhOPw42Bu4UdlEMOVB8Qb5NDi8FA3dIr6ord49Qz5xwsm-wR1EqnAFzp0i8cqrwpXeJi0i__cbaNk3PcfbGDx2C71zqOVo0oEUjWjSLyKvFlvG848dFwE8RcRo7aVSYqvPNzCYTPfqyrweZANMN0-Yi8rIB8jX8uTVN5QNcAZtvdSDXO5DA6ra73NKHbkTNRJ8zRkSeLJZxJ6bPVa6eBZgsY-C89iNyd05Oi7vx0GQyh6uIDqEtALABeXelOv4eGpGj7ylTFZHXLUmeH-u_n-z-xZd4TK4OD3Z39M5ob_sBucYCv2BK3zrpTU9n7iHYgNPiUcN4lHy9bF7_C5G7cRY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDQrwgYHwEBhjEhwSKlthx7DwgVBhlZTAh2KS-GcexYRJLytoKjZ_Gr-POTTpSib3t2efE9t357nxfhDxOK59xY3ics0TGmZc8Vh74SqY2d4XlRW4w3_njXr5zkL0fi_Ea-dPlwmBYZXcnhou6aiy-kYORXkghM7AftnwbFvFpe_hq8jPGDlLoae3aaSxIZNed_ALzbfpytA24fsLY8O3-m5247TAQ25zLWVzCUvOqYLL0xlsnfC5hbbZUVaEMM0pZVhiXGoNqieXCcMucl9bJUgnjEg7fvUAuSi5S5DE5Xhp7IIlD-z108MI5iLzzqHK1NQWhiVFzqYpBWRMx68nEVcnwj2hcDdtc8d0GkTi8Sq60uiwdLIjvGllz9XWyMajBjj86oU9piC4Nz_YbpApCMVxRmAdNTV3RowaQ3Ew6KCQX6toupxSUaWooJoIChxz-dhUN7QQpWMvh-Z2-G7weuGOYRdH5QPEt-QY5OJfzv0nW66Z2twn1zEmnEoPVijLpDCg-ZeoLV5S-8i51EUm6M9a2LX-OXTh-6OCG50ov0KIBLRrRollEni-nTBa1P84CfoSI01hTo0bq_Gbm06keffmsB0KCEocBdBF51gL5Bn5uTZsDAVvAMlw9yM0eJDC97Q939KHbS2eqT1kkIg-XwzgTA-lq18wDjBAMzNgkIrcW5LTcGw_lJnPYiuwR2hIAS5H3R-rD76EkOVqhKisi8qIjydNl_ffI7py9iQfkEnC4_jDa271LLrPALhjbt0nWZ8dzdw-UwVl5P3AdJV_Pm83_Anwzc-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+and+morphophysiological+evidence+for+a+specialized+human+cortical+GABAergic+cell+type&rft.jtitle=Nature+neuroscience&rft.au=Boldog%2C+Eszter&rft.au=Bakken%2C+Trygve+E&rft.au=Hodge%2C+Rebecca+D&rft.au=Novotny%2C+Mark&rft.date=2018-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1097-6256&rft.volume=21&rft.issue=9&rft.spage=1185&rft_id=info:doi/10.1038%2Fs41593-018-0205-2&rft.externalDocID=A572836736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon