Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks
Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing....
Saved in:
Published in | PloS one Vol. 19; no. 6; p. e0306094 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
25.06.2024
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications. |
---|---|
AbstractList | Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications. Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications. |
Audience | Academic |
Author | Wang, Jiawei Chen, Zhen |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0001-5216-9789 surname: Wang fullname: Wang, Jiawei – sequence: 2 givenname: Zhen surname: Chen fullname: Chen, Zhen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38917175$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1r2zAUhs3oWD-2fzA2w2BsF8kky5Hl3oXSZoHSwr5uxYl0nKh1pFSS0-3fT2nc0pQyhsEWh-c9R-f1e5jtWWcxy95SMqSsol-uXOcttMNVKg8JI5zU5YvsgNasGPCCsL1H5_3sMIQrQkZMcP4q22eiphWtRgfZ_AxUdH4wGV8c56d2AVYZO89DdOo6X3mjML1RGxWNszlYnTd3gtzYNYa4RBvzWxMX-QQteohmjflYr9EH8Aba_ALjrfPX4XX2soE24Jv-e5T9PDv9cfJ1cH45mZ6MzweKsyoOgFWC1TPOR6JqSKMFlLRkpNQKWan5LK1ZzKAUlANXlaANTbqGlSg0AawLdpS93_ZdtS7I3qMgGamKouCU8kRMt4R2cCXTikvwf6QDI-8Kzs8l-GhUi7IEIoAKMUu3KZnGGhGgqBvOVY0caOr1qZ_m3U2X_JBLExS2LVh0XT-2Juk3JPTDE_T5y_XUHNJ8YxsXPahNUzmualETOmJVoobPUOnRuDQq5aExqb4j-LwjSEzE33EOXQhy-v3b_7OXv3bZj4_YBUIbF8G13SYsYRd812_fzZaoH2y_D2ICyi2gvAvBY_OAUCI3eb-3S27yLvu8J9nxE5kyETbjkyOm_bf4L5tWBGY |
CitedBy_id | crossref_primary_10_3390_app14177438 crossref_primary_10_1016_j_egyai_2024_100422 |
Cites_doi | 10.1016/j.irfa.2019.101376 10.1109/ACCESS.2020.3015966 10.1016/j.compbiomed.2020.104129 10.1016/j.neunet.2014.09.003 10.1109/ISCID.2010.70 10.1016/S1042-444X(01)00026-3 10.1007/s11831-019-09388-y 10.1109/IJCNN.2018.8489360 10.1016/j.jempfin.2005.12.001 10.1016/j.pacfin.2005.10.001 10.1109/ICACCI.2017.8126078 10.1016/j.irfa.2023.102555 10.2469/faj.v60.n6.2674 10.1093/rfs/hhaa062 10.1016/j.jfineco.2014.10.010 10.1038/nature14539 10.1016/j.jfineco.2013.08.003 10.1186/s40854-020-00220-2 10.1016/0304-405X(93)90023-5 10.1016/j.jjimei.2020.100004 10.1016/j.pacfin.2022.101886 10.1186/s40537-020-00392-9 10.1016/j.asoc.2014.05.028 10.1109/GCAT52182.2021.9587497 10.1007/s12626-021-00097-2 10.1109/BDICN55575.2022.00122 10.1017/S0022109017000928 10.1016/j.pacfin.2015.12.004 10.1007/s41870-022-00929-6 10.1111/j.1540-6261.1997.tb03808.x 10.1016/j.jfineco.2021.08.017 10.1016/j.knosys.2022.109024 10.1016/j.engappai.2022.105626 10.3390/app9245574 10.3390/math11143220 10.3390/ijfs5010004 10.1016/j.jfineco.2013.01.003 10.1109/ACCESS.2018.2859809 10.1109/IJCNN.2017.7966019 10.1093/rfs/hhab038 10.1109/MSP.2017.2765202 10.1587/transinf.2016IIP0016 10.1126/science.aaa8415 10.1016/j.procs.2019.01.256 10.3905/jfds.2021.1.069 10.1109/TNNLS.2020.2979670 10.1016/j.procs.2018.05.050 10.1016/j.pacfin.2007.04.004 10.1016/j.eswa.2023.121404 10.1016/j.jksuci.2021.07.001 10.1080/14697688.2019.1622287 10.1093/rfs/hhy030 10.1109/TITS.2019.2962338 10.1111/0022-1082.00134 10.1007/s11042-016-4159-7 10.1007/s00521-017-3039-z 10.1142/S0219091511002305 10.1093/rfs/hhaa009 10.1080/17516234.2018.1450624 10.1016/j.dss.2017.10.001 |
ContentType | Journal Article |
Copyright | Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X5 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K6~ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0306094 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Entrepreneurship Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection (Proquest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3072226116 oai_doaj_org_article_4a08a188b58743de9eeaa29f66c9e6a1 A798901537 38917175 10_1371_journal_pone_0306094 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7X5 7XB 8FD 8FK AZQEC BEZIV C1K COVID DWQXO FR3 GNUQQ H94 K6~ K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c637t-a37839b66587f0fd8a414304dce34d6b3062ba4816a6c781f1c63f34e8d0ae923 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:19:59 EDT 2025 Wed Aug 27 01:29:14 EDT 2025 Tue Aug 05 10:09:45 EDT 2025 Fri Jul 25 11:14:51 EDT 2025 Tue Jun 17 21:56:38 EDT 2025 Tue Jun 10 20:54:09 EDT 2025 Fri Jun 27 05:13:14 EDT 2025 Fri Jun 27 05:13:22 EDT 2025 Thu May 22 21:23:13 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 Tue Jul 01 03:36:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-a37839b66587f0fd8a414304dce34d6b3062ba4816a6c781f1c63f34e8d0ae923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5216-9789 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0306094 |
PMID | 38917175 |
PQID | 3072226116 |
PQPubID | 1436336 |
PageCount | e0306094 |
ParticipantIDs | plos_journals_3072226116 doaj_primary_oai_doaj_org_article_4a08a188b58743de9eeaa29f66c9e6a1 proquest_miscellaneous_3072290932 proquest_journals_3072226116 gale_infotracmisc_A798901537 gale_infotracacademiconefile_A798901537 gale_incontextgauss_ISR_A798901537 gale_incontextgauss_IOV_A798901537 gale_healthsolutions_A798901537 pubmed_primary_38917175 crossref_primary_10_1371_journal_pone_0306094 crossref_citationtrail_10_1371_journal_pone_0306094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-25 |
PublicationDateYYYYMMDD | 2024-06-25 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2024 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Salvi (pone.0306094.ref010) 2021; 128 MM Carhart (pone.0306094.ref027) 1997; 52 A Dezhkam (pone.0306094.ref050) 2023; 118 H Kim (pone.0306094.ref059) 2018; 11 Y Li (pone.0306094.ref045) 2021; 3 YC Wang (pone.0306094.ref064) 2017; 5 L Chen (pone.0306094.ref051) 2023 S Kuutti (pone.0306094.ref011) 2020; 22 SR Foerster (pone.0306094.ref065) 1999; 54 JT Linnainmaa (pone.0306094.ref002) 2018; 31 M Hiransha (pone.0306094.ref046) 2018; 132 C Shorten (pone.0306094.ref012) 2021; 8 F Wang (pone.0306094.ref024) 2004; 60 SR Polamuri (pone.0306094.ref035) 2022; 34 L Tan (pone.0306094.ref063) 2008; 16 Y LeCun (pone.0306094.ref006) 2015; 521 MI Jordan (pone.0306094.ref005) 2015; 349 pone.0306094.ref049 T Ma (pone.0306094.ref062) 2023; 87 pone.0306094.ref043 B He (pone.0306094.ref036) 2021; 15 pone.0306094.ref044 L Chen (pone.0306094.ref040) 2018; 6 I Goodfellow (pone.0306094.ref007) 2016 CA Li (pone.0306094.ref067) 2011; 14 K Zhang (pone.0306094.ref055) 2019; 147 G Aharoni (pone.0306094.ref028) 2013; 110 J Zheng (pone.0306094.ref042) 2019; 31 DW Otter (pone.0306094.ref009) 2020; 32 M Nabipour (pone.0306094.ref015) 2020; 8 R Novy-Marx (pone.0306094.ref029) 2013; 108 pone.0306094.ref053 M Sharma (pone.0306094.ref013) 2022; 250 pone.0306094.ref037 DC Yıldırım (pone.0306094.ref034) 2021; 7 H Yao (pone.0306094.ref001) 2022; 76 TG Bali (pone.0306094.ref061) 2017; 52 M Diqi (pone.0306094.ref052) 2022; 14 D Bianchi (pone.0306094.ref031) 2021; 34 L Ng (pone.0306094.ref068) 2006; 14 T Matsubara (pone.0306094.ref048) 2018; 101 H Alqahtani (pone.0306094.ref020) 2021; 28 M Leippold (pone.0306094.ref056) 2022; 145 J Wang (pone.0306094.ref057) 2023; 11 J Wang (pone.0306094.ref058) 2024 pone.0306094.ref041 S Gu (pone.0306094.ref038) 2020; 33 CN Babu (pone.0306094.ref047) 2014; 23 C Alzaman (pone.0306094.ref016) 2024; 237 pone.0306094.ref021 M Vuletić (pone.0306094.ref054) 2024 M Kraus (pone.0306094.ref039) 2017; 104 I Goldstein (pone.0306094.ref003) 2021; 34 A Aggarwal (pone.0306094.ref019) 2021; 1 S Chen (pone.0306094.ref033) 2019; 19 A Creswell (pone.0306094.ref018) 2018; 35 B Li (pone.0306094.ref032) 2019; 8 R Singh (pone.0306094.ref014) 2017; 76 EF Fama (pone.0306094.ref026) 1993; 33 J Schmidhuber (pone.0306094.ref008) 2015; 61 HW Kot (pone.0306094.ref066) 2016; 36 H Lin (pone.0306094.ref017) 2021 Z Wei (pone.0306094.ref060) 2002; 12 A Ang (pone.0306094.ref025) 2007; 14 F Wen (pone.0306094.ref023) 2019; 65 F Rundo (pone.0306094.ref004) 2019; 9 X Zhou (pone.0306094.ref022) 2018 EF Fama (pone.0306094.ref030) 2015; 116 |
References_xml | – volume: 65 start-page: 101376 year: 2019 ident: pone.0306094.ref023 article-title: Retail investor attention and stock price crash risk: evidence from China publication-title: International Review of Financial Analysis doi: 10.1016/j.irfa.2019.101376 – volume: 8 start-page: 150199 year: 2020 ident: pone.0306094.ref015 article-title: Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015966 – volume: 128 start-page: 104129 year: 2021 ident: pone.0306094.ref010 article-title: The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.104129 – volume: 61 start-page: 85 year: 2015 ident: pone.0306094.ref008 article-title: Deep learning in neural networks: An overview publication-title: Neural networks doi: 10.1016/j.neunet.2014.09.003 – ident: pone.0306094.ref037 doi: 10.1109/ISCID.2010.70 – volume: 12 start-page: 61 issue: 1 year: 2002 ident: pone.0306094.ref060 article-title: Ownership and performance in Chinese manufacturing industry publication-title: Journal of Multinational Financial Management doi: 10.1016/S1042-444X(01)00026-3 – volume: 28 start-page: 525 year: 2021 ident: pone.0306094.ref020 article-title: Applications of generative adversarial networks (gans): An updated review publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-019-09388-y – start-page: 1 year: 2024 ident: pone.0306094.ref054 article-title: Fin-gan: Forecasting and classifying financial time series via generative adversarial networks publication-title: Quantitative Finance – ident: pone.0306094.ref049 doi: 10.1109/IJCNN.2018.8489360 – year: 2024 ident: pone.0306094.ref058 article-title: SPCM: A Machine Learning Approach for Sentiment-Based Stock Recommendation System publication-title: IEEE Access – volume: 8 start-page: 61 year: 2019 ident: pone.0306094.ref032 article-title: Research on machine learning driven quantamental investing publication-title: China Industrial Economics – volume: 14 start-page: 1 issue: 1 year: 2007 ident: pone.0306094.ref025 article-title: CAPM over the long run: 1926–2001 publication-title: Journal of Empirical Finance doi: 10.1016/j.jempfin.2005.12.001 – start-page: 17 year: 2021 ident: pone.0306094.ref017 article-title: Stock price prediction using generative adversarial networks publication-title: J Comp Sci – volume: 14 start-page: 175 issue: 2 year: 2006 ident: pone.0306094.ref068 article-title: Revealed stock preferences of individual investors: Evidence from Chinese equity markets publication-title: Pacific-Basin Finance Journal doi: 10.1016/j.pacfin.2005.10.001 – ident: pone.0306094.ref044 doi: 10.1109/ICACCI.2017.8126078 – volume: 87 start-page: 102555 year: 2023 ident: pone.0306094.ref062 article-title: A latent factor model for the Chinese stock market publication-title: International Review of Financial Analysis doi: 10.1016/j.irfa.2023.102555 – volume: 60 start-page: 65 issue: 6 year: 2004 ident: pone.0306094.ref024 article-title: What determines Chinese stock returns? publication-title: Financial Analysts Journal doi: 10.2469/faj.v60.n6.2674 – volume: 34 start-page: 1046 issue: 2 year: 2021 ident: pone.0306094.ref031 article-title: Bond risk premiums with machine learning publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhaa062 – volume: 116 start-page: 1 issue: 1 year: 2015 ident: pone.0306094.ref030 article-title: A five-factor asset pricing model publication-title: Journal of financial economics doi: 10.1016/j.jfineco.2014.10.010 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: pone.0306094.ref006 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – volume: 110 start-page: 347 issue: 2 year: 2013 ident: pone.0306094.ref028 article-title: Stock returns and the Miller Modigliani valuation formula: Revisiting the Fama French analysis publication-title: Journal of financial economics doi: 10.1016/j.jfineco.2013.08.003 – volume: 7 start-page: 1 year: 2021 ident: pone.0306094.ref034 article-title: Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators publication-title: Financial Innovation doi: 10.1186/s40854-020-00220-2 – volume: 33 start-page: 3 issue: 1 year: 1993 ident: pone.0306094.ref026 article-title: Common risk factors in the returns on stocks and bonds publication-title: Journal of financial economics doi: 10.1016/0304-405X(93)90023-5 – volume: 1 start-page: 100004 issue: 1 year: 2021 ident: pone.0306094.ref019 article-title: Generative adversarial network: An overview of theory and applications publication-title: International Journal of Information Management Data Insights doi: 10.1016/j.jjimei.2020.100004 – volume: 76 start-page: 101886 year: 2022 ident: pone.0306094.ref001 article-title: Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market publication-title: Pacific-Basin Finance Journal doi: 10.1016/j.pacfin.2022.101886 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: pone.0306094.ref012 article-title: Deep Learning applications for COVID-19 publication-title: Journal of big Data doi: 10.1186/s40537-020-00392-9 – volume: 23 start-page: 27 year: 2014 ident: pone.0306094.ref047 article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.05.028 – ident: pone.0306094.ref021 doi: 10.1109/GCAT52182.2021.9587497 – volume: 15 start-page: 455 year: 2021 ident: pone.0306094.ref036 article-title: The Application of Sequential Generative Adversarial Networks for Stock Price Prediction publication-title: The Review of Socionetwork Strategies doi: 10.1007/s12626-021-00097-2 – ident: pone.0306094.ref053 doi: 10.1109/BDICN55575.2022.00122 – volume: 52 start-page: 2369 issue: 6 year: 2017 ident: pone.0306094.ref061 article-title: A lottery-demand-based explanation of the beta anomaly publication-title: Journal of Financial and Quantitative Analysis doi: 10.1017/S0022109017000928 – volume: 36 start-page: 31 year: 2016 ident: pone.0306094.ref066 article-title: Are stock price more informative after dual-listing in emerging markets? Evidence from Hong Kong-listed Chinese companies publication-title: Pacific-Basin Finance Journal doi: 10.1016/j.pacfin.2015.12.004 – volume: 14 start-page: 2309 issue: 5 year: 2022 ident: pone.0306094.ref052 article-title: StockGAN: robust stock price prediction using GAN algorithm publication-title: International Journal of Information Technology doi: 10.1007/s41870-022-00929-6 – volume: 52 start-page: 57 issue: 1 year: 1997 ident: pone.0306094.ref027 article-title: On persistence in mutual fund performance publication-title: The Journal of finance doi: 10.1111/j.1540-6261.1997.tb03808.x – volume: 145 start-page: 64 issue: 2 year: 2022 ident: pone.0306094.ref056 article-title: Machine learning in the Chinese stock market publication-title: Journal of Financial Economics doi: 10.1016/j.jfineco.2021.08.017 – volume: 250 start-page: 109024 year: 2022 ident: pone.0306094.ref013 article-title: Portfolio optimization and return prediction by integrating modified deep belief network and recurrent neural network publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.109024 – volume: 118 start-page: 105626 year: 2023 ident: pone.0306094.ref050 article-title: Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert–Huang transform publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2022.105626 – volume: 9 start-page: 5574 issue: 24 year: 2019 ident: pone.0306094.ref004 article-title: Machine learning for quantitative finance applications: A survey publication-title: Applied Sciences doi: 10.3390/app9245574 – volume-title: Deep learning year: 2016 ident: pone.0306094.ref007 – volume: 11 start-page: 3220 issue: 14 year: 2023 ident: pone.0306094.ref057 article-title: Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach publication-title: Mathematics doi: 10.3390/math11143220 – volume: 5 start-page: 4 issue: 1 year: 2017 ident: pone.0306094.ref064 article-title: Policy impact on the Chinese stock market: From the 1994 bailout policies to the 2015 Shanghai-Hong Kong stock connect publication-title: International Journal of Financial Studies doi: 10.3390/ijfs5010004 – volume: 108 start-page: 1 issue: 1 year: 2013 ident: pone.0306094.ref029 article-title: The other side of value: The gross profitability premium publication-title: Journal of financial economics doi: 10.1016/j.jfineco.2013.01.003 – ident: pone.0306094.ref041 – year: 2018 ident: pone.0306094.ref022 article-title: Stock market prediction on high-frequency data using generative adversarial nets publication-title: Mathematical Problems in Engineering – volume: 6 start-page: 48625 year: 2018 ident: pone.0306094.ref040 article-title: Which artificial intelligence algorithm better predicts the Chinese stock market? publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859809 – ident: pone.0306094.ref043 doi: 10.1109/IJCNN.2017.7966019 – volume: 34 start-page: 3213 issue: 7 year: 2021 ident: pone.0306094.ref003 article-title: Big data in finance publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhab038 – volume: 35 start-page: 53 issue: 1 year: 2018 ident: pone.0306094.ref018 article-title: Generative adversarial networks: An overview publication-title: IEEE signal processing magazine doi: 10.1109/MSP.2017.2765202 – volume: 101 start-page: 901 issue: 4 year: 2018 ident: pone.0306094.ref048 article-title: Stock price prediction by deep neural generative model of news articles publication-title: IEICE TRANSACTIONS on Information and Systems doi: 10.1587/transinf.2016IIP0016 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: pone.0306094.ref005 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 147 start-page: 400 year: 2019 ident: pone.0306094.ref055 article-title: Stock market prediction based on generative adversarial network publication-title: Procedia computer science doi: 10.1016/j.procs.2019.01.256 – volume: 3 start-page: 108 issue: 3 year: 2021 ident: pone.0306094.ref045 article-title: Stock Portfolio Selection with Deep RankNet publication-title: The Journal of Financial Data Science doi: 10.3905/jfds.2021.1.069 – volume: 32 start-page: 604 issue: 2 year: 2020 ident: pone.0306094.ref009 article-title: A survey of the usages of deep learning for natural language processing publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2020.2979670 – volume: 132 start-page: 1351 year: 2018 ident: pone.0306094.ref046 article-title: NSE stock market prediction using deep-learning models publication-title: Procedia computer science doi: 10.1016/j.procs.2018.05.050 – volume: 16 start-page: 61 issue: 1-2 year: 2008 ident: pone.0306094.ref063 article-title: Herding behavior in Chinese stock markets: An examination of A and B shares publication-title: Pacific-Basin finance journal doi: 10.1016/j.pacfin.2007.04.004 – volume: 237 start-page: 121404 year: 2024 ident: pone.0306094.ref016 article-title: Deep learning in stock portfolio selection and predictions publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121404 – volume: 34 start-page: 7433 issue: 9 year: 2022 ident: pone.0306094.ref035 article-title: Multi-model generative adversarial network hybrid prediction algorithm (MMGAN-HPA) for stock market prices prediction publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2021.07.001 – volume: 19 start-page: 1507 issue: 9 year: 2019 ident: pone.0306094.ref033 article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction publication-title: Quantitative Finance doi: 10.1080/14697688.2019.1622287 – volume: 31 start-page: 2606 issue: 7 year: 2018 ident: pone.0306094.ref002 article-title: The history of the cross-section of stock returns publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhy030 – volume: 22 start-page: 712 issue: 2 year: 2020 ident: pone.0306094.ref011 article-title: A survey of deep learning applications to autonomous vehicle control publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2962338 – volume: 54 start-page: 981 issue: 3 year: 1999 ident: pone.0306094.ref065 article-title: The effects of market segmentation and investor recognition on asset prices: Evidence from foreign stocks listing in the United States publication-title: The Journal of Finance doi: 10.1111/0022-1082.00134 – volume: 76 start-page: 18569 year: 2017 ident: pone.0306094.ref014 article-title: Stock prediction using deep learning publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4159-7 – volume: 31 start-page: 573 year: 2019 ident: pone.0306094.ref042 article-title: Research on exchange rate forecasting based on deep belief network publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-3039-z – year: 2023 ident: pone.0306094.ref051 article-title: Deep learning in asset pricing publication-title: Management Science – volume: 14 start-page: 429 issue: 03 year: 2011 ident: pone.0306094.ref067 article-title: Investor psychological and behavioral bias: do high sentiment and momentum exist in the china stock market? publication-title: Review of Pacific Basin Financial Markets and Policies doi: 10.1142/S0219091511002305 – volume: 33 start-page: 2223 issue: 5 year: 2020 ident: pone.0306094.ref038 article-title: Empirical asset pricing via machine learning publication-title: The Review of Financial Studies doi: 10.1093/rfs/hhaa009 – volume: 11 start-page: 206 issue: 2 year: 2018 ident: pone.0306094.ref059 article-title: Can state-owned holding (SOH) companies improve SOE performance in Asia? Evidence from Singapore, Malaysia and China publication-title: Journal of Asian Public Policy doi: 10.1080/17516234.2018.1450624 – volume: 104 start-page: 38 year: 2017 ident: pone.0306094.ref039 article-title: Decision support from financial disclosures with deep neural networks and transfer learning publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.10.001 |
SSID | ssj0053866 |
Score | 2.4685068 |
Snippet | Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities.... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | e0306094 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial Intelligence - economics Capital assets China Commerce - economics Computational linguistics Data processing Datasets Deep Learning Explainable artificial intelligence Forecasts and trends Foreign exchange markets Generative adversarial networks Government business enterprises Humans Indicators Investment analysis Investment policy Investment strategy Investments Investments - economics Language processing Liquidity Machine learning Macroeconomics Models, Economic Natural language interfaces Neural networks Neural Networks, Computer Prices and rates Pricing Rates of return Securities markets Stock exchanges Stock markets Stock prices Stocks Voice recognition Volatility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0ceL4wW1BXQoSiwQU9WbZjrMgquyK7P5_ZmJvRCRQOXDJIR5HyTzsb2L7G0KeSa6tKLyD-G5szlXb5FbZkDtdl3BbaFniaeQPS3F2zt9f1Be_lfrCPWGRHjgq7oTbQlmmlKsVTHZN0CFYW-pWCK-DsEPiA3PePpmKYzBEsRDpoFwl2Umyy_Fm3YVjRMmF5pOJaODrH0fl2eZy3f8dcg5Tz-ImuZEwI53Hdz0g10J3ixykqOzpi0Qd_fI2WS2G8jn52_nyFT3tviGZRreiAPD8D7pB_iC44tIMmoParqGx3g79PtBt4J9Cin9maXwkDoV0KNncW3RUuoybxvs75Hxx-uXNWZ5KKeReVHKb20oCEnIC8IZsi7ZRlgNQKnjjQ8Ub4UAlpbNcMWGFl4q1DPq1FQ-qKWwAEHiXzDpQ3iGhnjlXuxY6O80L20DCBilP7Rjz3EKnjFR7vRqfeMax3MWlGRbPJOQbUW0GrWGSNTKSj702kWfjCvnXaLJRFlmyhxvgOyb5jrnKdzLyGA1u4pHTMdbNXGqFOKmSGXk6SCBTRodbcVZ21_fm3cev_yD0-dNE6HkSategDm_T8Qf4JmTgmkgeTSQh3v2k-RDdc6-V3sAoDSBPMCag595l_9z8ZGzGh-L2ui6sd0lGF4DlM3IvuvqoWVzIhpy_vv8_NP6AXC8BFeJeu7I-IrPtz114CKhu6x4NAfwLrPBKCA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5p48TxgwtaULcFiUUCinqLbMfZVq2S0Oz-f2YSJ2glXpcc7BlLmYf92R7PEPJCcm1E4iz4d2lirqoyNsr42Oo8hWahZYqvkT8txfEJ_3ian4YDty6EVY5zYj9Rl43DM_IDsEVYygRj4m37I8aqUXi7GkpoXCc3GKw0GNKlFkfjTAy-LER4LpdJdhC0s982td9HrJxovrUc9Vn7p7l51l423Z-BZ78ALW6TWwE50vmg6h1yzdd3yE7wzY6-CgmkX98lq0VfRCc-mi_f0MP6DFNq1CsKMM9d0BazCMEXL2hQKdTUJR2q7tDzPukGnhdSPJ-lw5A4IdK-cHNn0Fzpcggd7-6Rk8Xht_fHcSioEDuRyXVsMgl4yApAHbJKqlIZDnAp4aXzGS-FBZGk1nDFhBFOKlYx4Ksy7lWZGA9Q8D6Z1SC8XUIdsza3FTBbzRNTwrYNNj65ZcxxA0wRyUa5Fi5kG8eiF5dFf4UmYdcxiK1AbRRBGxGJJ652yLbxD_p3qLKJFnNl9w3N1aoIrldwkyjDlLLw1zwrvfbemFRXQjjthWEReYoKL4aHp5PHF3OpFaKlTEbkeU-B-TJqDMhZmU3XFR8-f_8Poq9ftoheBqKqAXE4Ex5BwD9hHq4tyr0tSvB6t9W9i-Y5SqUrfvkHcI4m-_vuZ1M3DopBdrVvNoFGJ4DoI_JgMPVJsnidDTv__OHfB39EbqaA-jCWLs33yGx9tfGPAbWt7ZPeNX8CKJZA3A priority: 102 providerName: ProQuest |
Title | Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38917175 https://www.proquest.com/docview/3072226116 https://www.proquest.com/docview/3072290932 https://doaj.org/article/4a08a188b58743de9eeaa29f66c9e6a1 http://dx.doi.org/10.1371/journal.pone.0306094 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaxigGIQEPqeLEtR0khLqp3UBaQYOivkV24hRElZamleCFv507x41UaRPw4of4zlLuw_7ZZ98R8lzyVIsoN-DfhQ65KotQK21Dk_Zj-CxSGeNr5MuxuJjw99P-dI9sa7Z6AdbXbu2wntRkNe_9_PHrLTj8G1e1QbItU2-5qGwPMTBsWfbJAaxNEmsaXPI2rgDe7aKXiFpCEUeJf0x30yg7i5XL6d_O3J3lfFHfDEvd8jS6Q257XEkHjSEckj1b3SWH3nNr-tKnl351j8xGrsROeD4Yv6bD6ism3KhmFEBg_p0uMccQtBi-QZVRXRW0qclDv7mUHHiaSPH0ljZD4nRJXVnnWqMx03Fzsby-Tyaj4eezi9CXWwhzkch1qBMJaMkIwCSyjMpCaQ5gKuJFbhNeCAMiiY3migktcqlYyYCvTLhVRaQtAMUHpFOB8I4IzZkxfVMCs0l5pAvY1MG2qG8Yy7kGpoAkW7lmuc9FjiUx5pkLsEnYkzRiy1AbmddGQMKWa9nk4vgL_SmqrKXFTNruw2I1y7xjZlxHSjOlDPw1TwqbWqt1nJZC5KkVmgXkCSo8a56ltvNBNpCpQiyVyIA8cxSYTaPC6zozvanr7N2HL_9A9Olqh-iFJyoXII5c-ycS8E-YpWuH8mSHEuaEfKf7CM1zK5U6g5kcgKBgTADn1mSv737aduOgeAWvsouNp0kj8JyAPGxMvZUsBrslANHj_9TQI3IrBpCIV-_i_gnprFcb-xhA3tp0yb6cSmjVGcN2dN4lB6fD8cerrjs26Tq_xvb38A8QSFUy |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHl1oVCDQMAhbZx47QQJoQW63aXtIkFb9WZsx1kQVbI0u0L8KX4jM4kTtBKvSy852GNLGY9nPtvzIOSR5KkWoTWwvzMd8CTPAp1oF5h0EEGzSGWE0ciHUzE-5m9PB6dr5EcbC4Nula1OrBV1Vlq8I98BWQRTJhgTL-dfA6waha-rbQmNRiz23fdvcGSrXkzewPo-jqLR7tHrceCrCgRWxHIR6FgCKDACTK_MwzxLNAfMEPLMuphnwgCGjozmCRNaWJmwnMG4POYuyULtUkx0ACr_Eo_BkmNk-miv1fygO4Tw4XmxZDteGrbnZeG2EZuHKV8xf3WVgM4W9OZnZfVnoFsbvNE1ctUjVTpsRGudrLniOln3uqCiT33C6mc3yGxUF-0J9obT53S3-IQpPIoZBVhpv9A5Zi2CLz4IoRBQXWS0qfJDP9dJPvB-kuJ9MG2mRAVM60LRlcbtQaeNq3p1kxxfCKtvkV4BzNsg1DJjBiaHwSbloc7gmAgHrYFhzHINg_okbvmqrM9ujkU2zlT9ZCfhlNOwTeFqKL8afRJ0o-ZNdo9_0L_CJetoMTd33VCez5Tf6orrMNEsSQz8NY8zlzqndZTmQtjUCc36ZAsXXDWBrp2GUUOZJojOYtknD2sKzM9RoAPQTC-rSk3enfwH0Yf3K0RPPFFeAjus9kEX8E-Y92uFcnOFErSMXeneQPFsuVKpX_sRRrYi-_vuB103TopOfYUrl54mDeEE0Se3G1HvOIvP5xKg7Z2_T75FLo-PDg_UwWS6f5dciQBxoh9fNNgkvcX50t0DxLgw9-ttSsnHi9YLPwG2_nzS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrZYMZBAIessaJaydICJVtZWVQEDC0N2M7ToeYkrK0Qvxr_HXcJU5QJb5e9pIH-2wpd-fzz_Z9EHJf8lSL0BpY35kOeJJngU60C0w6jKBZpDLCaOTXU3FwxF8eD4_XyI82FgbdKlubWBvqrLR4Rz4AXYStTDAmBrl3i3i7N342_xpgBSl8aW3LaTQqcui-f4PjW_V0sgeyfhBF4_0PuweBrzAQWBHLRaBjCQDBCNiGZR7mWaI54IeQZ9bFPBMG8HRkNE-Y0MLKhOUMxuUxd0kWapdi0gMw_xckToNR6rudewnYESF8qF4s2cBrxs68LNwO4vQw5StbYV0xoNsXevPTsvoz6K03v_EVctmjVjpq1GydrLniKln3dqGij3zy6sfXyGxcF_AJXoymT-h-cYLpPIoZBYhpv9A5ZjCCLz4OoUJQXWS0qfhDP9cJP_CukuLdMG2mRGNM66LRlcalQqeN23p1nRydC6tvkF4BzNsg1DJjhiaHwSbloc7gyAiHrqFhzHINg_okbvmqrM90jgU3TlX9fCfhxNOwTaE0lJdGnwTdqHmT6eMf9M9RZB0t5umuG8qzmfLLXnEdJpoliYG_5nHmUue0jtJcCJs6oVmfbKPAVRP02lkbNZJpgkgtln1yr6bAXB0Fav1ML6tKTd58_A-i9-9WiB56orwEdljtAzDgnzAH2Arl1golWBy70r2B6tlypVK_1iaMbFX29913u26cFB38ClcuPU0awmmiT242qt5xFp_SJcDcW3-ffJtcBIugXk2mh5vkUgTgE136ouEW6S3Olu42gMeFuVOvUko-nbdZ-Akn4oDT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factor-GAN%3A+Enhancing+stock+price+prediction+and+factor+investment+with+Generative+Adversarial+Networks&rft.jtitle=PloS+one&rft.au=Wang%2C+Jiawei&rft.au=Chen%2C+Zhen&rft.date=2024-06-25&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0306094&rft_id=info:doi/10.1371%2Fjournal.pone.0306094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0306094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |