Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks

Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing....

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 6; p. e0306094
Main Authors Wang, Jiawei, Chen, Zhen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 25.06.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.
AbstractList Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.
Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities. This paper introduces Factor-GAN, an innovative framework that utilizes Generative Adversarial Networks (GAN) technology for factor investing. Leveraging a comprehensive factor database comprising 70 firm characteristics, Factor-GAN integrates deep learning techniques with the multi-factor pricing model, thereby elevating the precision and stability of investment strategies. To explain the economic mechanisms underlying deep learning, we conduct a subsample analysis of the Chinese stock market. The findings reveal that the deep learning-based pricing model significantly enhances return prediction accuracy and factor investment performance in comparison to linear models. Particularly noteworthy is the superior performance of the long-short portfolio under Factor-GAN, demonstrating an annualized return of 23.52% with a Sharpe ratio of 1.29. During the transition from state-owned enterprises (SOEs) to non-SOEs, our study discerns shifts in factor importance, with liquidity and volatility gaining significance while fundamental indicators diminish. Additionally, A-share listed companies display a heightened emphasis on momentum and growth indicators relative to their dual-listed counterparts. This research holds profound implications for the expansion of explainable artificial intelligence research and the exploration of financial technology applications.
Audience Academic
Author Wang, Jiawei
Chen, Zhen
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0001-5216-9789
  surname: Wang
  fullname: Wang, Jiawei
– sequence: 2
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38917175$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r2zAUhs3oWD-2fzA2w2BsF8kky5Hl3oXSZoHSwr5uxYl0nKh1pFSS0-3fT2nc0pQyhsEWh-c9R-f1e5jtWWcxy95SMqSsol-uXOcttMNVKg8JI5zU5YvsgNasGPCCsL1H5_3sMIQrQkZMcP4q22eiphWtRgfZ_AxUdH4wGV8c56d2AVYZO89DdOo6X3mjML1RGxWNszlYnTd3gtzYNYa4RBvzWxMX-QQteohmjflYr9EH8Aba_ALjrfPX4XX2soE24Jv-e5T9PDv9cfJ1cH45mZ6MzweKsyoOgFWC1TPOR6JqSKMFlLRkpNQKWan5LK1ZzKAUlANXlaANTbqGlSg0AawLdpS93_ZdtS7I3qMgGamKouCU8kRMt4R2cCXTikvwf6QDI-8Kzs8l-GhUi7IEIoAKMUu3KZnGGhGgqBvOVY0caOr1qZ_m3U2X_JBLExS2LVh0XT-2Juk3JPTDE_T5y_XUHNJ8YxsXPahNUzmualETOmJVoobPUOnRuDQq5aExqb4j-LwjSEzE33EOXQhy-v3b_7OXv3bZj4_YBUIbF8G13SYsYRd812_fzZaoH2y_D2ICyi2gvAvBY_OAUCI3eb-3S27yLvu8J9nxE5kyETbjkyOm_bf4L5tWBGY
CitedBy_id crossref_primary_10_3390_app14177438
crossref_primary_10_1016_j_egyai_2024_100422
Cites_doi 10.1016/j.irfa.2019.101376
10.1109/ACCESS.2020.3015966
10.1016/j.compbiomed.2020.104129
10.1016/j.neunet.2014.09.003
10.1109/ISCID.2010.70
10.1016/S1042-444X(01)00026-3
10.1007/s11831-019-09388-y
10.1109/IJCNN.2018.8489360
10.1016/j.jempfin.2005.12.001
10.1016/j.pacfin.2005.10.001
10.1109/ICACCI.2017.8126078
10.1016/j.irfa.2023.102555
10.2469/faj.v60.n6.2674
10.1093/rfs/hhaa062
10.1016/j.jfineco.2014.10.010
10.1038/nature14539
10.1016/j.jfineco.2013.08.003
10.1186/s40854-020-00220-2
10.1016/0304-405X(93)90023-5
10.1016/j.jjimei.2020.100004
10.1016/j.pacfin.2022.101886
10.1186/s40537-020-00392-9
10.1016/j.asoc.2014.05.028
10.1109/GCAT52182.2021.9587497
10.1007/s12626-021-00097-2
10.1109/BDICN55575.2022.00122
10.1017/S0022109017000928
10.1016/j.pacfin.2015.12.004
10.1007/s41870-022-00929-6
10.1111/j.1540-6261.1997.tb03808.x
10.1016/j.jfineco.2021.08.017
10.1016/j.knosys.2022.109024
10.1016/j.engappai.2022.105626
10.3390/app9245574
10.3390/math11143220
10.3390/ijfs5010004
10.1016/j.jfineco.2013.01.003
10.1109/ACCESS.2018.2859809
10.1109/IJCNN.2017.7966019
10.1093/rfs/hhab038
10.1109/MSP.2017.2765202
10.1587/transinf.2016IIP0016
10.1126/science.aaa8415
10.1016/j.procs.2019.01.256
10.3905/jfds.2021.1.069
10.1109/TNNLS.2020.2979670
10.1016/j.procs.2018.05.050
10.1016/j.pacfin.2007.04.004
10.1016/j.eswa.2023.121404
10.1016/j.jksuci.2021.07.001
10.1080/14697688.2019.1622287
10.1093/rfs/hhy030
10.1109/TITS.2019.2962338
10.1111/0022-1082.00134
10.1007/s11042-016-4159-7
10.1007/s00521-017-3039-z
10.1142/S0219091511002305
10.1093/rfs/hhaa009
10.1080/17516234.2018.1450624
10.1016/j.dss.2017.10.001
ContentType Journal Article
Copyright Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X5
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K6~
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0306094
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Entrepreneurship Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database ProQuest
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Agricultural Science Database
CrossRef




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3072226116
oai_doaj_org_article_4a08a188b58743de9eeaa29f66c9e6a1
A798901537
38917175
10_1371_journal_pone_0306094
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7X5
7XB
8FD
8FK
AZQEC
BEZIV
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K6~
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c637t-a37839b66587f0fd8a414304dce34d6b3062ba4816a6c781f1c63f34e8d0ae923
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:59 EDT 2025
Wed Aug 27 01:29:14 EDT 2025
Tue Aug 05 10:09:45 EDT 2025
Fri Jul 25 11:14:51 EDT 2025
Tue Jun 17 21:56:38 EDT 2025
Tue Jun 10 20:54:09 EDT 2025
Fri Jun 27 05:13:14 EDT 2025
Fri Jun 27 05:13:22 EDT 2025
Thu May 22 21:23:13 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
Tue Jul 01 03:36:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2024 Wang, Chen. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-a37839b66587f0fd8a414304dce34d6b3062ba4816a6c781f1c63f34e8d0ae923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5216-9789
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0306094
PMID 38917175
PQID 3072226116
PQPubID 1436336
PageCount e0306094
ParticipantIDs plos_journals_3072226116
doaj_primary_oai_doaj_org_article_4a08a188b58743de9eeaa29f66c9e6a1
proquest_miscellaneous_3072290932
proquest_journals_3072226116
gale_infotracmisc_A798901537
gale_infotracacademiconefile_A798901537
gale_incontextgauss_ISR_A798901537
gale_incontextgauss_IOV_A798901537
gale_healthsolutions_A798901537
pubmed_primary_38917175
crossref_primary_10_1371_journal_pone_0306094
crossref_citationtrail_10_1371_journal_pone_0306094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Salvi (pone.0306094.ref010) 2021; 128
MM Carhart (pone.0306094.ref027) 1997; 52
A Dezhkam (pone.0306094.ref050) 2023; 118
H Kim (pone.0306094.ref059) 2018; 11
Y Li (pone.0306094.ref045) 2021; 3
YC Wang (pone.0306094.ref064) 2017; 5
L Chen (pone.0306094.ref051) 2023
S Kuutti (pone.0306094.ref011) 2020; 22
SR Foerster (pone.0306094.ref065) 1999; 54
JT Linnainmaa (pone.0306094.ref002) 2018; 31
M Hiransha (pone.0306094.ref046) 2018; 132
C Shorten (pone.0306094.ref012) 2021; 8
F Wang (pone.0306094.ref024) 2004; 60
SR Polamuri (pone.0306094.ref035) 2022; 34
L Tan (pone.0306094.ref063) 2008; 16
Y LeCun (pone.0306094.ref006) 2015; 521
MI Jordan (pone.0306094.ref005) 2015; 349
pone.0306094.ref049
T Ma (pone.0306094.ref062) 2023; 87
pone.0306094.ref043
B He (pone.0306094.ref036) 2021; 15
pone.0306094.ref044
L Chen (pone.0306094.ref040) 2018; 6
I Goodfellow (pone.0306094.ref007) 2016
CA Li (pone.0306094.ref067) 2011; 14
K Zhang (pone.0306094.ref055) 2019; 147
G Aharoni (pone.0306094.ref028) 2013; 110
J Zheng (pone.0306094.ref042) 2019; 31
DW Otter (pone.0306094.ref009) 2020; 32
M Nabipour (pone.0306094.ref015) 2020; 8
R Novy-Marx (pone.0306094.ref029) 2013; 108
pone.0306094.ref053
M Sharma (pone.0306094.ref013) 2022; 250
pone.0306094.ref037
DC Yıldırım (pone.0306094.ref034) 2021; 7
H Yao (pone.0306094.ref001) 2022; 76
TG Bali (pone.0306094.ref061) 2017; 52
M Diqi (pone.0306094.ref052) 2022; 14
D Bianchi (pone.0306094.ref031) 2021; 34
L Ng (pone.0306094.ref068) 2006; 14
T Matsubara (pone.0306094.ref048) 2018; 101
H Alqahtani (pone.0306094.ref020) 2021; 28
M Leippold (pone.0306094.ref056) 2022; 145
J Wang (pone.0306094.ref057) 2023; 11
J Wang (pone.0306094.ref058) 2024
pone.0306094.ref041
S Gu (pone.0306094.ref038) 2020; 33
CN Babu (pone.0306094.ref047) 2014; 23
C Alzaman (pone.0306094.ref016) 2024; 237
pone.0306094.ref021
M Vuletić (pone.0306094.ref054) 2024
M Kraus (pone.0306094.ref039) 2017; 104
I Goldstein (pone.0306094.ref003) 2021; 34
A Aggarwal (pone.0306094.ref019) 2021; 1
S Chen (pone.0306094.ref033) 2019; 19
A Creswell (pone.0306094.ref018) 2018; 35
B Li (pone.0306094.ref032) 2019; 8
R Singh (pone.0306094.ref014) 2017; 76
EF Fama (pone.0306094.ref026) 1993; 33
J Schmidhuber (pone.0306094.ref008) 2015; 61
HW Kot (pone.0306094.ref066) 2016; 36
H Lin (pone.0306094.ref017) 2021
Z Wei (pone.0306094.ref060) 2002; 12
A Ang (pone.0306094.ref025) 2007; 14
F Wen (pone.0306094.ref023) 2019; 65
F Rundo (pone.0306094.ref004) 2019; 9
X Zhou (pone.0306094.ref022) 2018
EF Fama (pone.0306094.ref030) 2015; 116
References_xml – volume: 65
  start-page: 101376
  year: 2019
  ident: pone.0306094.ref023
  article-title: Retail investor attention and stock price crash risk: evidence from China
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2019.101376
– volume: 8
  start-page: 150199
  year: 2020
  ident: pone.0306094.ref015
  article-title: Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015966
– volume: 128
  start-page: 104129
  year: 2021
  ident: pone.0306094.ref010
  article-title: The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.104129
– volume: 61
  start-page: 85
  year: 2015
  ident: pone.0306094.ref008
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2014.09.003
– ident: pone.0306094.ref037
  doi: 10.1109/ISCID.2010.70
– volume: 12
  start-page: 61
  issue: 1
  year: 2002
  ident: pone.0306094.ref060
  article-title: Ownership and performance in Chinese manufacturing industry
  publication-title: Journal of Multinational Financial Management
  doi: 10.1016/S1042-444X(01)00026-3
– volume: 28
  start-page: 525
  year: 2021
  ident: pone.0306094.ref020
  article-title: Applications of generative adversarial networks (gans): An updated review
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-019-09388-y
– start-page: 1
  year: 2024
  ident: pone.0306094.ref054
  article-title: Fin-gan: Forecasting and classifying financial time series via generative adversarial networks
  publication-title: Quantitative Finance
– ident: pone.0306094.ref049
  doi: 10.1109/IJCNN.2018.8489360
– year: 2024
  ident: pone.0306094.ref058
  article-title: SPCM: A Machine Learning Approach for Sentiment-Based Stock Recommendation System
  publication-title: IEEE Access
– volume: 8
  start-page: 61
  year: 2019
  ident: pone.0306094.ref032
  article-title: Research on machine learning driven quantamental investing
  publication-title: China Industrial Economics
– volume: 14
  start-page: 1
  issue: 1
  year: 2007
  ident: pone.0306094.ref025
  article-title: CAPM over the long run: 1926–2001
  publication-title: Journal of Empirical Finance
  doi: 10.1016/j.jempfin.2005.12.001
– start-page: 17
  year: 2021
  ident: pone.0306094.ref017
  article-title: Stock price prediction using generative adversarial networks
  publication-title: J Comp Sci
– volume: 14
  start-page: 175
  issue: 2
  year: 2006
  ident: pone.0306094.ref068
  article-title: Revealed stock preferences of individual investors: Evidence from Chinese equity markets
  publication-title: Pacific-Basin Finance Journal
  doi: 10.1016/j.pacfin.2005.10.001
– ident: pone.0306094.ref044
  doi: 10.1109/ICACCI.2017.8126078
– volume: 87
  start-page: 102555
  year: 2023
  ident: pone.0306094.ref062
  article-title: A latent factor model for the Chinese stock market
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2023.102555
– volume: 60
  start-page: 65
  issue: 6
  year: 2004
  ident: pone.0306094.ref024
  article-title: What determines Chinese stock returns?
  publication-title: Financial Analysts Journal
  doi: 10.2469/faj.v60.n6.2674
– volume: 34
  start-page: 1046
  issue: 2
  year: 2021
  ident: pone.0306094.ref031
  article-title: Bond risk premiums with machine learning
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhaa062
– volume: 116
  start-page: 1
  issue: 1
  year: 2015
  ident: pone.0306094.ref030
  article-title: A five-factor asset pricing model
  publication-title: Journal of financial economics
  doi: 10.1016/j.jfineco.2014.10.010
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: pone.0306094.ref006
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– volume: 110
  start-page: 347
  issue: 2
  year: 2013
  ident: pone.0306094.ref028
  article-title: Stock returns and the Miller Modigliani valuation formula: Revisiting the Fama French analysis
  publication-title: Journal of financial economics
  doi: 10.1016/j.jfineco.2013.08.003
– volume: 7
  start-page: 1
  year: 2021
  ident: pone.0306094.ref034
  article-title: Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators
  publication-title: Financial Innovation
  doi: 10.1186/s40854-020-00220-2
– volume: 33
  start-page: 3
  issue: 1
  year: 1993
  ident: pone.0306094.ref026
  article-title: Common risk factors in the returns on stocks and bonds
  publication-title: Journal of financial economics
  doi: 10.1016/0304-405X(93)90023-5
– volume: 1
  start-page: 100004
  issue: 1
  year: 2021
  ident: pone.0306094.ref019
  article-title: Generative adversarial network: An overview of theory and applications
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2020.100004
– volume: 76
  start-page: 101886
  year: 2022
  ident: pone.0306094.ref001
  article-title: Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market
  publication-title: Pacific-Basin Finance Journal
  doi: 10.1016/j.pacfin.2022.101886
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: pone.0306094.ref012
  article-title: Deep Learning applications for COVID-19
  publication-title: Journal of big Data
  doi: 10.1186/s40537-020-00392-9
– volume: 23
  start-page: 27
  year: 2014
  ident: pone.0306094.ref047
  article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.05.028
– ident: pone.0306094.ref021
  doi: 10.1109/GCAT52182.2021.9587497
– volume: 15
  start-page: 455
  year: 2021
  ident: pone.0306094.ref036
  article-title: The Application of Sequential Generative Adversarial Networks for Stock Price Prediction
  publication-title: The Review of Socionetwork Strategies
  doi: 10.1007/s12626-021-00097-2
– ident: pone.0306094.ref053
  doi: 10.1109/BDICN55575.2022.00122
– volume: 52
  start-page: 2369
  issue: 6
  year: 2017
  ident: pone.0306094.ref061
  article-title: A lottery-demand-based explanation of the beta anomaly
  publication-title: Journal of Financial and Quantitative Analysis
  doi: 10.1017/S0022109017000928
– volume: 36
  start-page: 31
  year: 2016
  ident: pone.0306094.ref066
  article-title: Are stock price more informative after dual-listing in emerging markets? Evidence from Hong Kong-listed Chinese companies
  publication-title: Pacific-Basin Finance Journal
  doi: 10.1016/j.pacfin.2015.12.004
– volume: 14
  start-page: 2309
  issue: 5
  year: 2022
  ident: pone.0306094.ref052
  article-title: StockGAN: robust stock price prediction using GAN algorithm
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-022-00929-6
– volume: 52
  start-page: 57
  issue: 1
  year: 1997
  ident: pone.0306094.ref027
  article-title: On persistence in mutual fund performance
  publication-title: The Journal of finance
  doi: 10.1111/j.1540-6261.1997.tb03808.x
– volume: 145
  start-page: 64
  issue: 2
  year: 2022
  ident: pone.0306094.ref056
  article-title: Machine learning in the Chinese stock market
  publication-title: Journal of Financial Economics
  doi: 10.1016/j.jfineco.2021.08.017
– volume: 250
  start-page: 109024
  year: 2022
  ident: pone.0306094.ref013
  article-title: Portfolio optimization and return prediction by integrating modified deep belief network and recurrent neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109024
– volume: 118
  start-page: 105626
  year: 2023
  ident: pone.0306094.ref050
  article-title: Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert–Huang transform
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2022.105626
– volume: 9
  start-page: 5574
  issue: 24
  year: 2019
  ident: pone.0306094.ref004
  article-title: Machine learning for quantitative finance applications: A survey
  publication-title: Applied Sciences
  doi: 10.3390/app9245574
– volume-title: Deep learning
  year: 2016
  ident: pone.0306094.ref007
– volume: 11
  start-page: 3220
  issue: 14
  year: 2023
  ident: pone.0306094.ref057
  article-title: Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach
  publication-title: Mathematics
  doi: 10.3390/math11143220
– volume: 5
  start-page: 4
  issue: 1
  year: 2017
  ident: pone.0306094.ref064
  article-title: Policy impact on the Chinese stock market: From the 1994 bailout policies to the 2015 Shanghai-Hong Kong stock connect
  publication-title: International Journal of Financial Studies
  doi: 10.3390/ijfs5010004
– volume: 108
  start-page: 1
  issue: 1
  year: 2013
  ident: pone.0306094.ref029
  article-title: The other side of value: The gross profitability premium
  publication-title: Journal of financial economics
  doi: 10.1016/j.jfineco.2013.01.003
– ident: pone.0306094.ref041
– year: 2018
  ident: pone.0306094.ref022
  article-title: Stock market prediction on high-frequency data using generative adversarial nets
  publication-title: Mathematical Problems in Engineering
– volume: 6
  start-page: 48625
  year: 2018
  ident: pone.0306094.ref040
  article-title: Which artificial intelligence algorithm better predicts the Chinese stock market?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2859809
– ident: pone.0306094.ref043
  doi: 10.1109/IJCNN.2017.7966019
– volume: 34
  start-page: 3213
  issue: 7
  year: 2021
  ident: pone.0306094.ref003
  article-title: Big data in finance
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhab038
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: pone.0306094.ref018
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE signal processing magazine
  doi: 10.1109/MSP.2017.2765202
– volume: 101
  start-page: 901
  issue: 4
  year: 2018
  ident: pone.0306094.ref048
  article-title: Stock price prediction by deep neural generative model of news articles
  publication-title: IEICE TRANSACTIONS on Information and Systems
  doi: 10.1587/transinf.2016IIP0016
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: pone.0306094.ref005
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 147
  start-page: 400
  year: 2019
  ident: pone.0306094.ref055
  article-title: Stock market prediction based on generative adversarial network
  publication-title: Procedia computer science
  doi: 10.1016/j.procs.2019.01.256
– volume: 3
  start-page: 108
  issue: 3
  year: 2021
  ident: pone.0306094.ref045
  article-title: Stock Portfolio Selection with Deep RankNet
  publication-title: The Journal of Financial Data Science
  doi: 10.3905/jfds.2021.1.069
– volume: 32
  start-page: 604
  issue: 2
  year: 2020
  ident: pone.0306094.ref009
  article-title: A survey of the usages of deep learning for natural language processing
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2020.2979670
– volume: 132
  start-page: 1351
  year: 2018
  ident: pone.0306094.ref046
  article-title: NSE stock market prediction using deep-learning models
  publication-title: Procedia computer science
  doi: 10.1016/j.procs.2018.05.050
– volume: 16
  start-page: 61
  issue: 1-2
  year: 2008
  ident: pone.0306094.ref063
  article-title: Herding behavior in Chinese stock markets: An examination of A and B shares
  publication-title: Pacific-Basin finance journal
  doi: 10.1016/j.pacfin.2007.04.004
– volume: 237
  start-page: 121404
  year: 2024
  ident: pone.0306094.ref016
  article-title: Deep learning in stock portfolio selection and predictions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121404
– volume: 34
  start-page: 7433
  issue: 9
  year: 2022
  ident: pone.0306094.ref035
  article-title: Multi-model generative adversarial network hybrid prediction algorithm (MMGAN-HPA) for stock market prices prediction
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2021.07.001
– volume: 19
  start-page: 1507
  issue: 9
  year: 2019
  ident: pone.0306094.ref033
  article-title: Exploring the attention mechanism in LSTM-based Hong Kong stock price movement prediction
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2019.1622287
– volume: 31
  start-page: 2606
  issue: 7
  year: 2018
  ident: pone.0306094.ref002
  article-title: The history of the cross-section of stock returns
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhy030
– volume: 22
  start-page: 712
  issue: 2
  year: 2020
  ident: pone.0306094.ref011
  article-title: A survey of deep learning applications to autonomous vehicle control
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2019.2962338
– volume: 54
  start-page: 981
  issue: 3
  year: 1999
  ident: pone.0306094.ref065
  article-title: The effects of market segmentation and investor recognition on asset prices: Evidence from foreign stocks listing in the United States
  publication-title: The Journal of Finance
  doi: 10.1111/0022-1082.00134
– volume: 76
  start-page: 18569
  year: 2017
  ident: pone.0306094.ref014
  article-title: Stock prediction using deep learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4159-7
– volume: 31
  start-page: 573
  year: 2019
  ident: pone.0306094.ref042
  article-title: Research on exchange rate forecasting based on deep belief network
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-017-3039-z
– year: 2023
  ident: pone.0306094.ref051
  article-title: Deep learning in asset pricing
  publication-title: Management Science
– volume: 14
  start-page: 429
  issue: 03
  year: 2011
  ident: pone.0306094.ref067
  article-title: Investor psychological and behavioral bias: do high sentiment and momentum exist in the china stock market?
  publication-title: Review of Pacific Basin Financial Markets and Policies
  doi: 10.1142/S0219091511002305
– volume: 33
  start-page: 2223
  issue: 5
  year: 2020
  ident: pone.0306094.ref038
  article-title: Empirical asset pricing via machine learning
  publication-title: The Review of Financial Studies
  doi: 10.1093/rfs/hhaa009
– volume: 11
  start-page: 206
  issue: 2
  year: 2018
  ident: pone.0306094.ref059
  article-title: Can state-owned holding (SOH) companies improve SOE performance in Asia? Evidence from Singapore, Malaysia and China
  publication-title: Journal of Asian Public Policy
  doi: 10.1080/17516234.2018.1450624
– volume: 104
  start-page: 38
  year: 2017
  ident: pone.0306094.ref039
  article-title: Decision support from financial disclosures with deep neural networks and transfer learning
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2017.10.001
SSID ssj0053866
Score 2.4685068
Snippet Deep learning, a pivotal branch of artificial intelligence, has increasingly influenced the financial domain with its advanced data processing capabilities....
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e0306094
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial Intelligence - economics
Capital assets
China
Commerce - economics
Computational linguistics
Data processing
Datasets
Deep Learning
Explainable artificial intelligence
Forecasts and trends
Foreign exchange markets
Generative adversarial networks
Government business enterprises
Humans
Indicators
Investment analysis
Investment policy
Investment strategy
Investments
Investments - economics
Language processing
Liquidity
Machine learning
Macroeconomics
Models, Economic
Natural language interfaces
Neural networks
Neural Networks, Computer
Prices and rates
Pricing
Rates of return
Securities markets
Stock exchanges
Stock markets
Stock prices
Stocks
Voice recognition
Volatility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBAgYhAYe0ceL4wW1BXQoSiwQU9WbZjrMgquyK7P5_ZmJvRCRQOXDJIR5HyTzsb2L7G0KeSa6tKLyD-G5szlXb5FbZkDtdl3BbaFniaeQPS3F2zt9f1Be_lfrCPWGRHjgq7oTbQlmmlKsVTHZN0CFYW-pWCK-DsEPiA3PePpmKYzBEsRDpoFwl2Umyy_Fm3YVjRMmF5pOJaODrH0fl2eZy3f8dcg5Tz-ImuZEwI53Hdz0g10J3ixykqOzpi0Qd_fI2WS2G8jn52_nyFT3tviGZRreiAPD8D7pB_iC44tIMmoParqGx3g79PtBt4J9Cin9maXwkDoV0KNncW3RUuoybxvs75Hxx-uXNWZ5KKeReVHKb20oCEnIC8IZsi7ZRlgNQKnjjQ8Ub4UAlpbNcMWGFl4q1DPq1FQ-qKWwAEHiXzDpQ3iGhnjlXuxY6O80L20DCBilP7Rjz3EKnjFR7vRqfeMax3MWlGRbPJOQbUW0GrWGSNTKSj702kWfjCvnXaLJRFlmyhxvgOyb5jrnKdzLyGA1u4pHTMdbNXGqFOKmSGXk6SCBTRodbcVZ21_fm3cev_yD0-dNE6HkSategDm_T8Qf4JmTgmkgeTSQh3v2k-RDdc6-V3sAoDSBPMCag595l_9z8ZGzGh-L2ui6sd0lGF4DlM3IvuvqoWVzIhpy_vv8_NP6AXC8BFeJeu7I-IrPtz114CKhu6x4NAfwLrPBKCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcDBQxCAg5p48TxgwtaULcFiUUCinqLbMfZVq2S0Oz-f2YSJ2glXpcc7BlLmYf92R7PEPJCcm1E4iz4d2lirqoyNsr42Oo8hWahZYqvkT8txfEJ_3ian4YDty6EVY5zYj9Rl43DM_IDsEVYygRj4m37I8aqUXi7GkpoXCc3GKw0GNKlFkfjTAy-LER4LpdJdhC0s982td9HrJxovrUc9Vn7p7l51l423Z-BZ78ALW6TWwE50vmg6h1yzdd3yE7wzY6-CgmkX98lq0VfRCc-mi_f0MP6DFNq1CsKMM9d0BazCMEXL2hQKdTUJR2q7tDzPukGnhdSPJ-lw5A4IdK-cHNn0Fzpcggd7-6Rk8Xht_fHcSioEDuRyXVsMgl4yApAHbJKqlIZDnAp4aXzGS-FBZGk1nDFhBFOKlYx4Ksy7lWZGA9Q8D6Z1SC8XUIdsza3FTBbzRNTwrYNNj65ZcxxA0wRyUa5Fi5kG8eiF5dFf4UmYdcxiK1AbRRBGxGJJ652yLbxD_p3qLKJFnNl9w3N1aoIrldwkyjDlLLw1zwrvfbemFRXQjjthWEReYoKL4aHp5PHF3OpFaKlTEbkeU-B-TJqDMhZmU3XFR8-f_8Poq9ftoheBqKqAXE4Ex5BwD9hHq4tyr0tSvB6t9W9i-Y5SqUrfvkHcI4m-_vuZ1M3DopBdrVvNoFGJ4DoI_JgMPVJsnidDTv__OHfB39EbqaA-jCWLs33yGx9tfGPAbWt7ZPeNX8CKJZA3A
  priority: 102
  providerName: ProQuest
Title Factor-GAN: Enhancing stock price prediction and factor investment with Generative Adversarial Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/38917175
https://www.proquest.com/docview/3072226116
https://www.proquest.com/docview/3072290932
https://doaj.org/article/4a08a188b58743de9eeaa29f66c9e6a1
http://dx.doi.org/10.1371/journal.pone.0306094
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27oUXxPhaxigGIQEPqeLEtR0khLqp3UBaQYOivkV24hRElZamleCFv507x41UaRPw4of4zlLuw_7ZZ98R8lzyVIsoN-DfhQ65KotQK21Dk_Zj-CxSGeNr5MuxuJjw99P-dI9sa7Z6AdbXbu2wntRkNe_9_PHrLTj8G1e1QbItU2-5qGwPMTBsWfbJAaxNEmsaXPI2rgDe7aKXiFpCEUeJf0x30yg7i5XL6d_O3J3lfFHfDEvd8jS6Q257XEkHjSEckj1b3SWH3nNr-tKnl351j8xGrsROeD4Yv6bD6ism3KhmFEBg_p0uMccQtBi-QZVRXRW0qclDv7mUHHiaSPH0ljZD4nRJXVnnWqMx03Fzsby-Tyaj4eezi9CXWwhzkch1qBMJaMkIwCSyjMpCaQ5gKuJFbhNeCAMiiY3migktcqlYyYCvTLhVRaQtAMUHpFOB8I4IzZkxfVMCs0l5pAvY1MG2qG8Yy7kGpoAkW7lmuc9FjiUx5pkLsEnYkzRiy1AbmddGQMKWa9nk4vgL_SmqrKXFTNruw2I1y7xjZlxHSjOlDPw1TwqbWqt1nJZC5KkVmgXkCSo8a56ltvNBNpCpQiyVyIA8cxSYTaPC6zozvanr7N2HL_9A9Olqh-iFJyoXII5c-ycS8E-YpWuH8mSHEuaEfKf7CM1zK5U6g5kcgKBgTADn1mSv737aduOgeAWvsouNp0kj8JyAPGxMvZUsBrslANHj_9TQI3IrBpCIV-_i_gnprFcb-xhA3tp0yb6cSmjVGcN2dN4lB6fD8cerrjs26Tq_xvb38A8QSFUy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHl1oVCDQMAhbZx47QQJoQW63aXtIkFb9WZsx1kQVbI0u0L8KX4jM4kTtBKvSy852GNLGY9nPtvzIOSR5KkWoTWwvzMd8CTPAp1oF5h0EEGzSGWE0ciHUzE-5m9PB6dr5EcbC4Nula1OrBV1Vlq8I98BWQRTJhgTL-dfA6waha-rbQmNRiz23fdvcGSrXkzewPo-jqLR7tHrceCrCgRWxHIR6FgCKDACTK_MwzxLNAfMEPLMuphnwgCGjozmCRNaWJmwnMG4POYuyULtUkx0ACr_Eo_BkmNk-miv1fygO4Tw4XmxZDteGrbnZeG2EZuHKV8xf3WVgM4W9OZnZfVnoFsbvNE1ctUjVTpsRGudrLniOln3uqCiT33C6mc3yGxUF-0J9obT53S3-IQpPIoZBVhpv9A5Zi2CLz4IoRBQXWS0qfJDP9dJPvB-kuJ9MG2mRAVM60LRlcbtQaeNq3p1kxxfCKtvkV4BzNsg1DJjBiaHwSbloc7gmAgHrYFhzHINg_okbvmqrM9ujkU2zlT9ZCfhlNOwTeFqKL8afRJ0o-ZNdo9_0L_CJetoMTd33VCez5Tf6orrMNEsSQz8NY8zlzqndZTmQtjUCc36ZAsXXDWBrp2GUUOZJojOYtknD2sKzM9RoAPQTC-rSk3enfwH0Yf3K0RPPFFeAjus9kEX8E-Y92uFcnOFErSMXeneQPFsuVKpX_sRRrYi-_vuB103TopOfYUrl54mDeEE0Se3G1HvOIvP5xKg7Z2_T75FLo-PDg_UwWS6f5dciQBxoh9fNNgkvcX50t0DxLgw9-ttSsnHi9YLPwG2_nzS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiFeEONrZYMZBAIessaJaydICJVtZWVQEDC0N2M7ToeYkrK0Qvxr_HXcJU5QJb5e9pIH-2wpd-fzz_Z9EHJf8lSL0BpY35kOeJJngU60C0w6jKBZpDLCaOTXU3FwxF8eD4_XyI82FgbdKlubWBvqrLR4Rz4AXYStTDAmBrl3i3i7N342_xpgBSl8aW3LaTQqcui-f4PjW_V0sgeyfhBF4_0PuweBrzAQWBHLRaBjCQDBCNiGZR7mWaI54IeQZ9bFPBMG8HRkNE-Y0MLKhOUMxuUxd0kWapdi0gMw_xckToNR6rudewnYESF8qF4s2cBrxs68LNwO4vQw5StbYV0xoNsXevPTsvoz6K03v_EVctmjVjpq1GydrLniKln3dqGij3zy6sfXyGxcF_AJXoymT-h-cYLpPIoZBYhpv9A5ZjCCLz4OoUJQXWS0qfhDP9cJP_CukuLdMG2mRGNM66LRlcalQqeN23p1nRydC6tvkF4BzNsg1DJjhiaHwSbloc7gyAiHrqFhzHINg_okbvmqrM90jgU3TlX9fCfhxNOwTaE0lJdGnwTdqHmT6eMf9M9RZB0t5umuG8qzmfLLXnEdJpoliYG_5nHmUue0jtJcCJs6oVmfbKPAVRP02lkbNZJpgkgtln1yr6bAXB0Fav1ML6tKTd58_A-i9-9WiB56orwEdljtAzDgnzAH2Arl1golWBy70r2B6tlypVK_1iaMbFX29913u26cFB38ClcuPU0awmmiT242qt5xFp_SJcDcW3-ffJtcBIugXk2mh5vkUgTgE136ouEW6S3Olu42gMeFuVOvUko-nbdZ-Akn4oDT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factor-GAN%3A+Enhancing+stock+price+prediction+and+factor+investment+with+Generative+Adversarial+Networks&rft.jtitle=PloS+one&rft.au=Wang%2C+Jiawei&rft.au=Chen%2C+Zhen&rft.date=2024-06-25&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=6&rft.spage=e0306094&rft_id=info:doi/10.1371%2Fjournal.pone.0306094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0306094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon