A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 12; p. e0295621
Main Authors Wang, Mingzhi, Ma, Zhiqiang, Wang, Yongjie, Liu, Jing, Guo, Jifeng
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.12.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.
AbstractList Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.
Audience Academic
Author Wang, Mingzhi
Ma, Zhiqiang
Wang, Yongjie
Liu, Jing
Guo, Jifeng
Author_xml – sequence: 1
  givenname: Mingzhi
  surname: Wang
  fullname: Wang, Mingzhi
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0009-0000-9941-2918
  surname: Ma
  fullname: Ma, Zhiqiang
– sequence: 3
  givenname: Yongjie
  surname: Wang
  fullname: Wang, Yongjie
– sequence: 4
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
– sequence: 5
  givenname: Jifeng
  surname: Guo
  fullname: Guo, Jifeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38064474$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L3CAUhkPZ0v1o_0FpA4XSXmRq1GjSu2Hpx8DCQr9uxSTHGaeJzqqZbf99zUym7CxLKV4ox-d9jx4958mJsQaS5HmOZjnh-bu1HZyR3WwTwzOEq4Lh_FFyllcEZwwjcnJnfZqce79GqCAlY0-SU1IiRimnZ8l2nvZDF3S21XCbNtZsbTcEbaNzamBwuyncWvcz7SGsbBuZvtZGm2UqQwAzsnGrWUmjfZ8q69JWy6WxfodErxj1G2iCG_q45a1rwT1NHivZeXg2zRfJ948fvl1-zq6uPy0u51dZwwgPWaWAFwqXvASFqryStaw5KTiDqlSVKou8RZRWHBFJpeJNkRNZEEU4tDWSlJGL5OXed9NZL6aSeUEQxxUuixJHYrEnWivXYuN0L91vYaUWu4B1SyFd0E0HghW8KFFTEyw5bQFJhAlmCuGaQsU4j15vpmzO3gzgg-i1b6DrpAE7eIGr3TvRnEb01T304cNN1FLG_NooG5xsRlMx57zghBE6es0eoOJoodfxSUHpGD8SvD0SRCbAr7CUg_di8fXL_7PXP47Z13fYFcgurPz0n_wx-GK6_VD30P4t--FfRuD9Hmic9d6BEo0OcvSJV9OdyJEYm-BQNDE2gZiaIIrpPfHB_5-yP7MUCyY
CitedBy_id crossref_primary_10_3390_math12111648
crossref_primary_10_1038_s41598_024_64299_8
crossref_primary_10_1109_ACCESS_2024_3403889
crossref_primary_10_1109_ACCESS_2024_3404407
crossref_primary_10_1109_ACCESS_2025_3532302
Cites_doi 10.1145/1390156.1390294
10.1155/2022/8709145
10.1038/s41572-019-0138-4
10.1002/aur.239
10.1093/cercor/bhac513
10.3389/fnins.2021.756868
10.3389/fninf.2019.00070
10.3390/brainsci10020099
10.1016/j.compbiomed.2022.105823
10.1109/JBHI.2022.3199505
10.1016/j.nicl.2017.08.017
10.1145/3292500.3330921
10.1155/2022/5297605
10.1016/j.cortex.2014.08.011
10.1016/j.compbiomed.2021.104949
10.1155/2022/1051388
10.1109/TCSVT.2021.3103753
10.1016/j.media.2018.06.001
10.1016/j.jneumeth.2019.108344
10.1016/j.compbiomed.2021.104963
10.1109/TMI.2021.3051604
10.1016/j.compbiomed.2020.104096
10.1038/s41598-017-06509-0
10.1007/s00521-020-05193-y
10.3389/fnins.2021.697870
10.1109/LSP.2021.3119208
10.1016/j.media.2021.102057
10.1007/978-3-319-67389-9_42
10.1007/s10489-021-02551-8
10.1016/j.neucom.2015.08.104
10.1016/j.compbiomed.2022.105239
10.1016/j.neucom.2020.06.152
10.1109/TMI.2020.2987817
10.1016/j.neuroimage.2016.10.045
10.3390/s20216001
10.3389/fninf.2020.575999
10.1016/j.media.2021.102059
10.3233/JAD-160092
ContentType Journal Article
Copyright Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOA
DOI 10.1371/journal.pone.0295621
DatabaseName CrossRef
PubMed
Gale in Context: Opposing Viewpoints
Gale in Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database



MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3072928582
oai_doaj_org_article_657580cb32a74de0a02326f02b4e9677
A775736344
38064474
10_1371_journal_pone_0295621
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c637t-9fe75f2878ef0919abab73576e98f9f851d0449703a4af7c513a53f37edb0a463
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:18:38 EDT 2025
Wed Aug 27 01:14:16 EDT 2025
Tue Aug 05 11:22:28 EDT 2025
Fri Jul 25 11:26:55 EDT 2025
Tue Jun 17 22:19:30 EDT 2025
Tue Jun 10 21:14:08 EDT 2025
Fri Jun 27 05:52:26 EDT 2025
Fri Jun 27 06:05:50 EDT 2025
Thu May 22 21:22:40 EDT 2025
Wed Feb 19 02:08:07 EST 2025
Thu Apr 24 22:56:32 EDT 2025
Tue Jul 01 01:02:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-9fe75f2878ef0919abab73576e98f9f851d0449703a4af7c513a53f37edb0a463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-9941-2918
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0295621
PMID 38064474
PQID 3072928582
PQPubID 1436336
PageCount e0295621
ParticipantIDs plos_journals_3072928582
doaj_primary_oai_doaj_org_article_657580cb32a74de0a02326f02b4e9677
proquest_miscellaneous_2902956414
proquest_journals_3072928582
gale_infotracmisc_A775736344
gale_infotracacademiconefile_A775736344
gale_incontextgauss_ISR_A775736344
gale_incontextgauss_IOV_A775736344
gale_healthsolutions_A775736344
pubmed_primary_38064474
crossref_citationtrail_10_1371_journal_pone_0295621
crossref_primary_10_1371_journal_pone_0295621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-08
PublicationDateYYYYMMDD 2023-12-08
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Vincent (pone.0295621.ref036) 2008
Z Pang (pone.0295621.ref023) 2021; 52
Z Rakhimberdina (pone.0295621.ref020) 2020; 20
S Yazdani (pone.0295621.ref003) 2020; 10
T. Iidaka (pone.0295621.ref005) 2015; 63
Z Wang (pone.0295621.ref025) 2023; 33
J Pan (pone.0295621.ref029) 2022; 148
Z Wang (pone.0295621.ref024) 2021; 15
K Yao (pone.0295621.ref026) 2022
Z Pang (pone.0295621.ref009) 2022; 32
M Liu (pone.0295621.ref031) 2021; 15
T Eslami (pone.0295621.ref041) 2019; 13
Y Yan (pone.0295621.ref042) 2019
H Jiang (pone.0295621.ref007) 2020; 127
A Abraham (pone.0295621.ref010) 2017; 147
O Graa (pone.0295621.ref027) 2019; 327
Y Wang (pone.0295621.ref013) 2022; 2022
Y Wang (pone.0295621.ref037) 2016; 184
R Liu (pone.0295621.ref046) 2023
T P Yang X (pone.0295621.ref034) 2020; 11
M Elsabbagh (pone.0295621.ref002) 2012; 5
MA Reiter (pone.0295621.ref011) 2021; 33
J Wang (pone.0295621.ref030) 2020; 39
S Parisot (pone.0295621.ref015) 2018; 48
FX Castellanos (pone.0295621.ref004) 2016; 1
X Yang (pone.0295621.ref033) 2022
M Khosla (pone.0295621.ref014)
C Yang (pone.0295621.ref018) 2021; 139
Z Pang (pone.0295621.ref012) 2021; 28
C Lord (pone.0295621.ref001) 2020; 6
NC Dvornek (pone.0295621.ref006) 2017; 10541
H Zhang (pone.0295621.ref040) 2016; 54
J Ji (pone.0295621.ref045) 2022; 26
M Burak Gurbuz (pone.0295621.ref028) 2021; 71
G Wen (pone.0295621.ref044) 2022; 142
M Khodatars (pone.0295621.ref032) 2021; 139
Y Wang (pone.0295621.ref017) 2022; 469
FW Alsaade (pone.0295621.ref022) 2022; 2022
H Lu (pone.0295621.ref016) 2020
TM Ghazal (pone.0295621.ref008) 2022; 2022
AS Heinsfeld (pone.0295621.ref019) 2018; 17
A. Laurens (pone.0295621.ref039) 2014; 15
T Eslami (pone.0295621.ref038) 2020; 14
J. Gan (pone.0295621.ref043) 2021; 71
D Yao (pone.0295621.ref021) 2021; 40
Y Zhang (pone.0295621.ref035) 2017; 7
References_xml – start-page: 1096
  year: 2008
  ident: pone.0295621.ref036
  article-title: Extracting and composing robust features with denoising autoencoders.
  publication-title: Proceedings of the 25th international conference on Machine learning—ICML ’08
  doi: 10.1145/1390156.1390294
– start-page: 137
  ident: pone.0295621.ref014
  article-title: 3D Convolutional Neural Networks for Classification of Functional Connectomes
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 2022
  start-page: 1
  year: 2022
  ident: pone.0295621.ref022
  article-title: Classification and Detection of Autism Spectrum Disorder Based on Deep Learning Algorithms.
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2022/8709145
– volume: 6
  start-page: 5
  issue: 1
  year: 2020
  ident: pone.0295621.ref001
  article-title: Autism spectrum disorder.
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-019-0138-4
– volume: 5
  start-page: 160
  issue: 3
  year: 2012
  ident: pone.0295621.ref002
  article-title: Global prevalence of autism and other pervasive developmental disorders.
  publication-title: Autism Res.
  doi: 10.1002/aur.239
– volume: 33
  start-page: 6407
  issue: 10
  year: 2023
  ident: pone.0295621.ref025
  article-title: Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhac513
– volume: 15
  start-page: 756868
  year: 2021
  ident: pone.0295621.ref024
  article-title: Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks.
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.756868
– volume: 13
  start-page: 70
  year: 2019
  ident: pone.0295621.ref041
  article-title: ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data.
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2019.00070
– volume: 10
  issue: 2
  year: 2020
  ident: pone.0295621.ref003
  article-title: Exclusion Criteria Used in Early Behavioral Intervention Studies for Young Children with Autism Spectrum Disorder
  publication-title: Brain Sci
  doi: 10.3390/brainsci10020099
– volume: 148
  start-page: 105823
  year: 2022
  ident: pone.0295621.ref029
  article-title: MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105823
– volume: 26
  start-page: 5608
  issue: 11
  year: 2022
  ident: pone.0295621.ref045
  article-title: Deep Forest With Multi-Channel Message Passing and Neighborhood Aggregation Mechanisms for Brain Network Classification
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3199505
– volume: 1
  start-page: 253
  issue: 3
  year: 2016
  ident: pone.0295621.ref004
  article-title: Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 17
  start-page: 16
  year: 2018
  ident: pone.0295621.ref019
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset.
  publication-title: NeuroImage: Clinical.
  doi: 10.1016/j.nicl.2017.08.017
– start-page: 772
  year: 2019
  ident: pone.0295621.ref042
  publication-title: GroupINN. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  doi: 10.1145/3292500.3330921
– volume: 2022
  start-page: 5297605
  year: 2022
  ident: pone.0295621.ref013
  article-title: Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4.
  publication-title: Computational Intelligence and Neuroscience.
  doi: 10.1155/2022/5297605
– volume: 63
  start-page: 55
  year: 2015
  ident: pone.0295621.ref005
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control.
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
– volume: 139
  start-page: 104949
  year: 2021
  ident: pone.0295621.ref032
  article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104949
– volume: 2022
  start-page: 1051388
  year: 2022
  ident: pone.0295621.ref008
  article-title: Supervised Machine Learning Empowered Multifactorial Genetic Inheritance Disorder Prediction.
  publication-title: Comput Intell Neurosci.
  doi: 10.1155/2022/1051388
– volume: 32
  start-page: 3164
  issue: 5
  year: 2022
  ident: pone.0295621.ref009
  article-title: Median Stable Clustering and Global Distance Classification for Cross-Domain Person Re-Identification
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2021.3103753
– volume: 48
  start-page: 117
  year: 2018
  ident: pone.0295621.ref015
  article-title: Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.06.001
– volume: 327
  start-page: 108344
  year: 2019
  ident: pone.0295621.ref027
  article-title: Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108344
– volume: 139
  start-page: 104963
  year: 2021
  ident: pone.0295621.ref018
  article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104963
– volume: 40
  start-page: 1279
  issue: 4
  year: 2021
  ident: pone.0295621.ref021
  article-title: A Mutual Multi-Scale Triplet Graph Convolutional Network for Classification of Brain Disorders Using Functional or Structural Connectivity
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3051604
– volume: 127
  start-page: 104096
  year: 2020
  ident: pone.0295621.ref007
  article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104096
– volume: 7
  start-page: 6530
  issue: 1
  year: 2017
  ident: pone.0295621.ref035
  article-title: Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-06509-0
– volume: 33
  start-page: 3299
  issue: 8
  year: 2021
  ident: pone.0295621.ref011
  article-title: Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05193-y
– volume: 15
  start-page: 697870
  year: 2021
  ident: pone.0295621.ref031
  article-title: Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review.
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2021.697870
– volume: 28
  start-page: 2142
  year: 2021
  ident: pone.0295621.ref012
  article-title: Biclustering Collaborative Learning for Cross-Domain Person Re-Identification
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2021.3119208
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: pone.0295621.ref039
  article-title: Accelerating t-SNE using tree-based algorithms
  publication-title: Journal of Machine Learning Research
– volume: 71
  start-page: 102057
  year: 2021
  ident: pone.0295621.ref043
  article-title: Brain functional connectivity analysis based on multi-graph fusion
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102057
– volume: 10541
  start-page: 362
  year: 2017
  ident: pone.0295621.ref006
  article-title: Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.
  publication-title: Mach Learn Med Imaging.
  doi: 10.1007/978-3-319-67389-9_42
– volume: 52
  start-page: 2987
  issue: 3
  year: 2021
  ident: pone.0295621.ref023
  article-title: Cross-domain person re-identification by hybrid supervised and unsupervised learning.
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02551-8
– volume: 184
  start-page: 232
  year: 2016
  ident: pone.0295621.ref037
  article-title: Auto-encoder based dimensionality reduction.
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2015.08.104
– volume: 142
  start-page: 105239
  year: 2022
  ident: pone.0295621.ref044
  article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105239
– volume: 469
  start-page: 346
  year: 2022
  ident: pone.0295621.ref017
  article-title: MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning.
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2020.06.152
– volume: 39
  start-page: 3137
  issue: 10
  year: 2020
  ident: pone.0295621.ref030
  article-title: Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2987817
– start-page: 8
  year: 2022
  ident: pone.0295621.ref033
  article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity
  publication-title: Machine Learning with Applications
– volume: 11
  issue: 4
  year: 2020
  ident: pone.0295621.ref034
  article-title: A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification.
  publication-title: International Journal of Advanced Computer Science and Applications.
– volume: 147
  start-page: 736
  year: 2017
  ident: pone.0295621.ref010
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example.
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2016.10.045
– year: 2023
  ident: pone.0295621.ref046
  article-title: Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 20
  issue: 21
  year: 2020
  ident: pone.0295621.ref020
  article-title: Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder.
  publication-title: Sensors (Basel).
  doi: 10.3390/s20216001
– volume: 14
  start-page: 575999
  year: 2020
  ident: pone.0295621.ref038
  article-title: Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey.
  publication-title: Front Neuroinform.
  doi: 10.3389/fninf.2020.575999
– volume: 71
  start-page: 102059
  year: 2021
  ident: pone.0295621.ref028
  article-title: MGN-Net: A multi-view graph normalizer for integrating heterogeneous biological network populations
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102059
– start-page: 159
  year: 2020
  ident: pone.0295621.ref016
  article-title: Multi-Kernel Fuzzy Clustering Based on Auto-Encoder for Fmri Functional Network
  publication-title: Expert Systems with Applications
– start-page: 307
  year: 2022
  ident: pone.0295621.ref026
  article-title: Multi-view graph convolutional networks with attention mechanism
  publication-title: Artificial Intelligence
– volume: 54
  start-page: 1095
  issue: 3
  year: 2016
  ident: pone.0295621.ref040
  article-title: Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160092
SSID ssj0053866
Score 2.4770973
Snippet Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast,...
SourceID plos
doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage e0295621
SubjectTerms Accuracy
Algorithms
Analysis
Artificial neural networks
Attention
Autism
Brain
Brain mapping
Care and treatment
Data integration
Datasets
Diagnosis
Diagnostic imaging
Diagnostic systems
Functional magnetic resonance imaging
Health aspects
Interpersonal communication in children
Learning
Machine learning
Magnetic resonance
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Methods
Neural networks
Neurodevelopmental disorders
Neuroimaging
Pervasive developmental disorders
Psychological aspects
Supervised learning
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9yT76I9aunrUYR1Idt95JsPh5PsVRBBbXSt5DdJCL09o5uz7_fmSS3uKDUB58Okkm4nY9kZnfmN4Q8l9oZD2FXpY3rKsEcr0xt6srVbQB15lGnVxcfPsrTM_H-vDn_rdUX5oRleODMuGP8MKDrruXMKeFD7eCSYTLWrBXBSJXqyOHO2wVT-QwGK5ayFMpxtTgucjnarPtwVDOICdhichElvP7xVJ5tLtbD313OdPWc3Ca3is9Il_m_7pEbob9D9opVDvRlgY5-dZf8XNKUIVjhC3-KGeVFs2A5Ilemn5T3TXPraKBZtalHBEWgzZT6CFNYDvxjWFHwaKnPyXiJBPaC0VSdebldUV-gO--Rs5O3X9-cVqWzQtVJrq4qE4NqIgRLOkRgnnGtaxWH0CMYHU0EL8zXQhg4DZxwUXXNgruGR66Cb2snJL9PZj3wcp9Q9DE8CyFEFUTnnXNS-E5p4ZXTPsg54Ts2267AjmP3iwubvqUpCD8yFy0KxxbhzEk1rtpk2I1r6F-jBEdaBM1OA6BKtqiSvU6V5uQJyt_mCtTR9O1SqUZxyYWYk2eJAoEzeszM-e62w2Dfffr2D0RfPk-IXhSiuAZ2dK5UQ8AzISDXhPJgQgnm302m91Fbd1wZLEcseKYbzWDlToP_PP10nMZNMduuD-vtYJlJbBUL2P1B1vyRs1yDEyuUePg_OP6I3GQwlNKD9AGZge6GQ3DyrtrHyZ5_AZxQT00
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXCgSEBBzSJrbjxwktiKUgARJQ1JvlxHaF1N1sm25_PzOOExSJ1ymSPbaUmfF4bM98Q8gzoax2cOzKlbZNzqlluS50kdui9qDOLKh4dfHxkzg84h-Oq-N04dalsMrBJkZD7doG78gPGEJcU1Up-mpzlmPVKHxdTSU0rpJrJew0GNKllu8GSwxrWYiULsdkeZCks79p136_oHAyoOVkO4qo_aNtnm1O2-7PjmfcgJY3yY3kOWaLXtQ75Ipf3yI7aW122YsEIP3yNrlcZDFOMMdfyjCuPOkXDEf8yviJ0d9ZX0AaaFZ1rBSRIdxmDICELkwK_tGtMvBrM9eH5EUSmAtaY47m-XaVuQTgeYccLd9-e3OYp_oKeSOYvMh18LIKcGRSPoDboG1ta8ngAOK1CjqAL-YKzjXYBMttkE1VMluxwKR3dWG5YHfJbA283CUZehqOeu-D9Lxx1lrBXSMVd9Iq58WcsIHNpkng41gD49TEFzUJh5CeiwaFY5Jw5iQfR2168I1_0L9GCY60CJ0dG9rzE5NWosGXJlU0NaNWcucLC14LFaGgNfdaSDknj1H-ps9DHQ2AWUhZSSYY53PyNFIgfMYa43NO7LbrzPvP3_-D6OuXCdHzRBRaYEdjU04E_BPCck0o9yaUYASaSfcuauvAlc78Wi4wctDg33c_GbtxUoy5W_t22xmqI1t5CbPf6zV_5CxT4Mpyye__ffIH5DoF9sbwH7VHZqCV_iE4cRf1o7hSfwLrH0fp
  priority: 102
  providerName: ProQuest
Title A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder
URI https://www.ncbi.nlm.nih.gov/pubmed/38064474
https://www.proquest.com/docview/3072928582
https://www.proquest.com/docview/2902956414
https://doaj.org/article/657580cb32a74de0a02326f02b4e9677
http://dx.doi.org/10.1371/journal.pone.0295621
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytMEpASMBDpjR2_PGAUDe1DKQNNCjqm-XE9jSpXzQrghf-du4cN1KlDXhxpPjOUs539jm--x0hL7k0ysKxK5XKVCnLDU1VprLUZKUDdaZehl8Xp2f8ZMw-TorJDtnUbI0CrK892mE9qfFqevjz-693YPBvQ9UG0d8wHS4Xc3eY5eDxY2b5LuxNAmsanLL2XgGsm_OYQHcT59YGFXD829W6s5wu6ptd0bAlje6SO9GXTAbN5O-RHTe_R_aitdbJ6wgp_eY--TFIQuRgihcBCUaaR40DdkS0DI8QD540JaWBZlaG2hEJAnCGkEjowjThy3qWgKeb2CZIL5DAWPA2ZG2u1rPERkjPB2Q8Gn49PkljxYW04lRcpco7UXg4REnnwZFQpjSloHAkcUp65cE7sxljClYJw4wXVdGnpqCeCmfLzDBOH5LOHGS5TxL0PWzunPPCscoaYzizlZDMCiOt411CN2LWVYQjx6oYUx3u2AQcSxopapwcHSenS9KWa9nAcfyD_ghnsKVFMO3wYrG60NE2Nd49yawqaW4Esy4z4Mfk3Gd5yZziQnTJM5x_3WSmtkuCHghRCMopY13yIlAgoMYcI3YuzLqu9YdP3_6D6Mv5FtGrSOQXII7KxCwJ-CYE6tqiPNiihGWh2ureR23dSKXWFDHic1nIHDg3Gnx99_O2GwfFKLy5W6xrnasgVtaH0R81mt9Klkpwbplgj_8--BNyOwfxhoAgeUA6oJXuKbh1V2WP3BITAa087mM7et8ju0fDs8_nvfCjpBcsGdvfwz-R4VQT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrLAS6I8urSQgMCAYe0WduJ7QNCy2PZpQ8kaFFvxomdqlJ3szRdED_FNzLjOEEr8br0FCkej5SZ8TzieRDyKJNGWQi7YqlMEXNqWKwSlcQmyR2IMyul_3Wxt5-ND_m7o_Rohfxoa2EwrbLViV5R26rAf-TbDFtcU5lK-mL-JcapUXi72o7QaMRix33_BiFb_XzyGvj7mNLRm4NX4zhMFYiLjInzWJVOpCUECtKVYCyVyU0uGLjdTslSleCB2IRzBSfBcFOKIh0wk7KSCWfzxPCMAd5L5DJnYMmxMn30ttX8oDuyLJTnMTHYDtKwNa9mbiuhEInQwZL581MCOlvQm59W9Z8dXW_wRtfJteCpRsNGtFbJipvdIKtBF9TR09Cw-tlN8nUY-bzEGEkYYR57kGfYjv0y_cNnm0fNwGqAmeZ-MkWE7T19wiUsYRHyST2NwI-ObJMC6EEAF7z1NaFni2lkQ8PQW-TwQih_m_RmQMs1EqFnY6lzrhSOF9YYk3FbCMmtMNK6rE9YS2ZdhGbnOHPjVPsbPAFBT0NFjczRgTl9Ene75k2zj3_Av0QOdrDYqtu_qM6OdTj5Gm-2ZFLkjBrBrUsMeEk0KxOac6cyIfpkE_mvm7rXTuHooRCpYBnjvE8eeghs1zHDfKBjs6hrPXn_6T-APn5YAnoSgMoKyFGYUIMB34RtwJYgN5YgQekUS8trKK0tVWr963jCzlaCf7_8oFtGpJjjN3PVotZUebLyAWC_00h-R1kmwXXmgt_9O_JNcmV8sLerdyf7O-vkKgVS-9QjuUF6IKHuHjiQ5_l9f2oj8vmi1cRPfxaEfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqLhLggyqtLCw0IBBzSzdpO7BwQWlpWXQoFQYt6M05sV5W6m6Xpgvg1vo4Zxwlaidelp0jxeKTMyzPxPAh5lEmdGwi7YpnrMuZUszhP8iTWSWFBnJmT_tfF2_1s95C_PkqPVsiPthYG0ypbm-gNtalK_Ec-YNjimspU0oELaRHvd8Yv5l9inCCFN63tOI1GRPbs928QvtXPJzvA68eUjl8dbO_GYcJAXGZMnMe5syJ1EDRI6-DgzHWhC8HABbe5dLkDb8QknOegFZprJ8p0yHTKHBPWFInmGQO8l8hlwYREHZPbXXoJ2JEsC6V6TAwHQTK25tXMbiUUohI6XDoK_cSA7lzozU-r-s9Orz_8xtfJteC1RqNGzFbJip3dIKvBLtTR09C8-tlN8nUU-RzFGMkZYU57kG3Yjr0z_cNnnkfN8GqAmRZ-SkWErT598iUsYUHyST2NwKeOTJMO6EEAF7z19aFni2lkQvPQW-TwQih_m_RmQMs1EqGXY6i11gnLS6O1zrgpheRGaGls1iesJbMqQ-NznL9xqvxtnoAAqKGiQuaowJw-ibtd86bxxz_gXyIHO1hs2-1fVGfHKlgBhbdcMikLRrXgxiYaPCaauYQW3OaZEH2yifxXTQ1sZ3zUSIhUsIxx3icPPQS27pihEhzrRV2rybtP_wH08cMS0JMA5CogR6lDPQZ8E7YEW4LcWIIEA1QuLa-htLZUqdUvVYWdrQT_fvlBt4xIMd9vZqtFrWjuycqHgP1OI_kdZZkEN5oLfvfvyDfJFTAQ6s1kf2-dXKVAaZ-FJDdIDwTU3gNf8ry475U2Ip8v2kr8BCIxiH4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-view+convolutional+neural+network+method+combining+attention+mechanism+for+diagnosing+autism+spectrum+disorder&rft.jtitle=PloS+one&rft.au=Wang%2C+Mingzhi&rft.au=Ma%2C+Zhiqiang&rft.au=Wang%2C+Yongjie&rft.au=Liu%2C+Jing&rft.date=2023-12-08&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=12&rft.spage=e0295621&rft_id=info:doi/10.1371%2Fjournal.pone.0295621&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon