A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the...
Saved in:
Published in | PloS one Vol. 18; no. 12; p. e0295621 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
08.12.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD. |
---|---|
AbstractList | Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD. Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD. |
Audience | Academic |
Author | Wang, Mingzhi Ma, Zhiqiang Wang, Yongjie Liu, Jing Guo, Jifeng |
Author_xml | – sequence: 1 givenname: Mingzhi surname: Wang fullname: Wang, Mingzhi – sequence: 2 givenname: Zhiqiang orcidid: 0009-0000-9941-2918 surname: Ma fullname: Ma, Zhiqiang – sequence: 3 givenname: Yongjie surname: Wang fullname: Wang, Yongjie – sequence: 4 givenname: Jing surname: Liu fullname: Liu, Jing – sequence: 5 givenname: Jifeng surname: Guo fullname: Guo, Jifeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38064474$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L3CAUhkPZ0v1o_0FpA4XSXmRq1GjSu2Hpx8DCQr9uxSTHGaeJzqqZbf99zUym7CxLKV4ox-d9jx4958mJsQaS5HmOZjnh-bu1HZyR3WwTwzOEq4Lh_FFyllcEZwwjcnJnfZqce79GqCAlY0-SU1IiRimnZ8l2nvZDF3S21XCbNtZsbTcEbaNzamBwuyncWvcz7SGsbBuZvtZGm2UqQwAzsnGrWUmjfZ8q69JWy6WxfodErxj1G2iCG_q45a1rwT1NHivZeXg2zRfJ948fvl1-zq6uPy0u51dZwwgPWaWAFwqXvASFqryStaw5KTiDqlSVKou8RZRWHBFJpeJNkRNZEEU4tDWSlJGL5OXed9NZL6aSeUEQxxUuixJHYrEnWivXYuN0L91vYaUWu4B1SyFd0E0HghW8KFFTEyw5bQFJhAlmCuGaQsU4j15vpmzO3gzgg-i1b6DrpAE7eIGr3TvRnEb01T304cNN1FLG_NooG5xsRlMx57zghBE6es0eoOJoodfxSUHpGD8SvD0SRCbAr7CUg_di8fXL_7PXP47Z13fYFcgurPz0n_wx-GK6_VD30P4t--FfRuD9Hmic9d6BEo0OcvSJV9OdyJEYm-BQNDE2gZiaIIrpPfHB_5-yP7MUCyY |
CitedBy_id | crossref_primary_10_3390_math12111648 crossref_primary_10_1038_s41598_024_64299_8 crossref_primary_10_1109_ACCESS_2024_3403889 crossref_primary_10_1109_ACCESS_2024_3404407 crossref_primary_10_1109_ACCESS_2025_3532302 |
Cites_doi | 10.1145/1390156.1390294 10.1155/2022/8709145 10.1038/s41572-019-0138-4 10.1002/aur.239 10.1093/cercor/bhac513 10.3389/fnins.2021.756868 10.3389/fninf.2019.00070 10.3390/brainsci10020099 10.1016/j.compbiomed.2022.105823 10.1109/JBHI.2022.3199505 10.1016/j.nicl.2017.08.017 10.1145/3292500.3330921 10.1155/2022/5297605 10.1016/j.cortex.2014.08.011 10.1016/j.compbiomed.2021.104949 10.1155/2022/1051388 10.1109/TCSVT.2021.3103753 10.1016/j.media.2018.06.001 10.1016/j.jneumeth.2019.108344 10.1016/j.compbiomed.2021.104963 10.1109/TMI.2021.3051604 10.1016/j.compbiomed.2020.104096 10.1038/s41598-017-06509-0 10.1007/s00521-020-05193-y 10.3389/fnins.2021.697870 10.1109/LSP.2021.3119208 10.1016/j.media.2021.102057 10.1007/978-3-319-67389-9_42 10.1007/s10489-021-02551-8 10.1016/j.neucom.2015.08.104 10.1016/j.compbiomed.2022.105239 10.1016/j.neucom.2020.06.152 10.1109/TMI.2020.2987817 10.1016/j.neuroimage.2016.10.045 10.3390/s20216001 10.3389/fninf.2020.575999 10.1016/j.media.2021.102059 10.3233/JAD-160092 |
ContentType | Journal Article |
Copyright | Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 DOA |
DOI | 10.1371/journal.pone.0295621 |
DatabaseName | CrossRef PubMed Gale in Context: Opposing Viewpoints Gale in Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1932-6203 |
ExternalDocumentID | 3072928582 oai_doaj_org_article_657580cb32a74de0a02326f02b4e9677 A775736344 38064474 10_1371_journal_pone_0295621 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c637t-9fe75f2878ef0919abab73576e98f9f851d0449703a4af7c513a53f37edb0a463 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:18:38 EDT 2025 Wed Aug 27 01:14:16 EDT 2025 Tue Aug 05 11:22:28 EDT 2025 Fri Jul 25 11:26:55 EDT 2025 Tue Jun 17 22:19:30 EDT 2025 Tue Jun 10 21:14:08 EDT 2025 Fri Jun 27 05:52:26 EDT 2025 Fri Jun 27 06:05:50 EDT 2025 Thu May 22 21:22:40 EDT 2025 Wed Feb 19 02:08:07 EST 2025 Thu Apr 24 22:56:32 EDT 2025 Tue Jul 01 01:02:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Copyright: © 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-9fe75f2878ef0919abab73576e98f9f851d0449703a4af7c513a53f37edb0a463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0000-9941-2918 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0295621 |
PMID | 38064474 |
PQID | 3072928582 |
PQPubID | 1436336 |
PageCount | e0295621 |
ParticipantIDs | plos_journals_3072928582 doaj_primary_oai_doaj_org_article_657580cb32a74de0a02326f02b4e9677 proquest_miscellaneous_2902956414 proquest_journals_3072928582 gale_infotracmisc_A775736344 gale_infotracacademiconefile_A775736344 gale_incontextgauss_ISR_A775736344 gale_incontextgauss_IOV_A775736344 gale_healthsolutions_A775736344 pubmed_primary_38064474 crossref_citationtrail_10_1371_journal_pone_0295621 crossref_primary_10_1371_journal_pone_0295621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-08 |
PublicationDateYYYYMMDD | 2023-12-08 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | P Vincent (pone.0295621.ref036) 2008 Z Pang (pone.0295621.ref023) 2021; 52 Z Rakhimberdina (pone.0295621.ref020) 2020; 20 S Yazdani (pone.0295621.ref003) 2020; 10 T. Iidaka (pone.0295621.ref005) 2015; 63 Z Wang (pone.0295621.ref025) 2023; 33 J Pan (pone.0295621.ref029) 2022; 148 Z Wang (pone.0295621.ref024) 2021; 15 K Yao (pone.0295621.ref026) 2022 Z Pang (pone.0295621.ref009) 2022; 32 M Liu (pone.0295621.ref031) 2021; 15 T Eslami (pone.0295621.ref041) 2019; 13 Y Yan (pone.0295621.ref042) 2019 H Jiang (pone.0295621.ref007) 2020; 127 A Abraham (pone.0295621.ref010) 2017; 147 O Graa (pone.0295621.ref027) 2019; 327 Y Wang (pone.0295621.ref013) 2022; 2022 Y Wang (pone.0295621.ref037) 2016; 184 R Liu (pone.0295621.ref046) 2023 T P Yang X (pone.0295621.ref034) 2020; 11 M Elsabbagh (pone.0295621.ref002) 2012; 5 MA Reiter (pone.0295621.ref011) 2021; 33 J Wang (pone.0295621.ref030) 2020; 39 S Parisot (pone.0295621.ref015) 2018; 48 FX Castellanos (pone.0295621.ref004) 2016; 1 X Yang (pone.0295621.ref033) 2022 M Khosla (pone.0295621.ref014) C Yang (pone.0295621.ref018) 2021; 139 Z Pang (pone.0295621.ref012) 2021; 28 C Lord (pone.0295621.ref001) 2020; 6 NC Dvornek (pone.0295621.ref006) 2017; 10541 H Zhang (pone.0295621.ref040) 2016; 54 J Ji (pone.0295621.ref045) 2022; 26 M Burak Gurbuz (pone.0295621.ref028) 2021; 71 G Wen (pone.0295621.ref044) 2022; 142 M Khodatars (pone.0295621.ref032) 2021; 139 Y Wang (pone.0295621.ref017) 2022; 469 FW Alsaade (pone.0295621.ref022) 2022; 2022 H Lu (pone.0295621.ref016) 2020 TM Ghazal (pone.0295621.ref008) 2022; 2022 AS Heinsfeld (pone.0295621.ref019) 2018; 17 A. Laurens (pone.0295621.ref039) 2014; 15 T Eslami (pone.0295621.ref038) 2020; 14 J. Gan (pone.0295621.ref043) 2021; 71 D Yao (pone.0295621.ref021) 2021; 40 Y Zhang (pone.0295621.ref035) 2017; 7 |
References_xml | – start-page: 1096 year: 2008 ident: pone.0295621.ref036 article-title: Extracting and composing robust features with denoising autoencoders. publication-title: Proceedings of the 25th international conference on Machine learning—ICML ’08 doi: 10.1145/1390156.1390294 – start-page: 137 ident: pone.0295621.ref014 article-title: 3D Convolutional Neural Networks for Classification of Functional Connectomes publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 2022 start-page: 1 year: 2022 ident: pone.0295621.ref022 article-title: Classification and Detection of Autism Spectrum Disorder Based on Deep Learning Algorithms. publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/8709145 – volume: 6 start-page: 5 issue: 1 year: 2020 ident: pone.0295621.ref001 article-title: Autism spectrum disorder. publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-019-0138-4 – volume: 5 start-page: 160 issue: 3 year: 2012 ident: pone.0295621.ref002 article-title: Global prevalence of autism and other pervasive developmental disorders. publication-title: Autism Res. doi: 10.1002/aur.239 – volume: 33 start-page: 6407 issue: 10 year: 2023 ident: pone.0295621.ref025 article-title: Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression publication-title: Cereb Cortex doi: 10.1093/cercor/bhac513 – volume: 15 start-page: 756868 year: 2021 ident: pone.0295621.ref024 article-title: Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks. publication-title: Front Neurosci doi: 10.3389/fnins.2021.756868 – volume: 13 start-page: 70 year: 2019 ident: pone.0295621.ref041 article-title: ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data. publication-title: Front Neuroinform doi: 10.3389/fninf.2019.00070 – volume: 10 issue: 2 year: 2020 ident: pone.0295621.ref003 article-title: Exclusion Criteria Used in Early Behavioral Intervention Studies for Young Children with Autism Spectrum Disorder publication-title: Brain Sci doi: 10.3390/brainsci10020099 – volume: 148 start-page: 105823 year: 2022 ident: pone.0295621.ref029 article-title: MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105823 – volume: 26 start-page: 5608 issue: 11 year: 2022 ident: pone.0295621.ref045 article-title: Deep Forest With Multi-Channel Message Passing and Neighborhood Aggregation Mechanisms for Brain Network Classification publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3199505 – volume: 1 start-page: 253 issue: 3 year: 2016 ident: pone.0295621.ref004 article-title: Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 17 start-page: 16 year: 2018 ident: pone.0295621.ref019 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. publication-title: NeuroImage: Clinical. doi: 10.1016/j.nicl.2017.08.017 – start-page: 772 year: 2019 ident: pone.0295621.ref042 publication-title: GroupINN. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining doi: 10.1145/3292500.3330921 – volume: 2022 start-page: 5297605 year: 2022 ident: pone.0295621.ref013 article-title: Multiscale Traffic Sign Detection Method in Complex Environment Based on YOLOv4. publication-title: Computational Intelligence and Neuroscience. doi: 10.1155/2022/5297605 – volume: 63 start-page: 55 year: 2015 ident: pone.0295621.ref005 article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control. publication-title: Cortex doi: 10.1016/j.cortex.2014.08.011 – volume: 139 start-page: 104949 year: 2021 ident: pone.0295621.ref032 article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104949 – volume: 2022 start-page: 1051388 year: 2022 ident: pone.0295621.ref008 article-title: Supervised Machine Learning Empowered Multifactorial Genetic Inheritance Disorder Prediction. publication-title: Comput Intell Neurosci. doi: 10.1155/2022/1051388 – volume: 32 start-page: 3164 issue: 5 year: 2022 ident: pone.0295621.ref009 article-title: Median Stable Clustering and Global Distance Classification for Cross-Domain Person Re-Identification publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2021.3103753 – volume: 48 start-page: 117 year: 2018 ident: pone.0295621.ref015 article-title: Disease prediction using graph convolutional networks: Application to Autism Spectrum Disorder and Alzheimer’s disease publication-title: Med Image Anal doi: 10.1016/j.media.2018.06.001 – volume: 327 start-page: 108344 year: 2019 ident: pone.0295621.ref027 article-title: Multi-view learning-based data proliferator for boosting classification using highly imbalanced classes publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108344 – volume: 139 start-page: 104963 year: 2021 ident: pone.0295621.ref018 article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104963 – volume: 40 start-page: 1279 issue: 4 year: 2021 ident: pone.0295621.ref021 article-title: A Mutual Multi-Scale Triplet Graph Convolutional Network for Classification of Brain Disorders Using Functional or Structural Connectivity publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2021.3051604 – volume: 127 start-page: 104096 year: 2020 ident: pone.0295621.ref007 article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.104096 – volume: 7 start-page: 6530 issue: 1 year: 2017 ident: pone.0295621.ref035 article-title: Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis. publication-title: Sci Rep. doi: 10.1038/s41598-017-06509-0 – volume: 33 start-page: 3299 issue: 8 year: 2021 ident: pone.0295621.ref011 article-title: Performance of machine learning classification models of autism using resting-state fMRI is contingent on sample heterogeneity publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05193-y – volume: 15 start-page: 697870 year: 2021 ident: pone.0295621.ref031 article-title: Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. publication-title: Front Neurosci. doi: 10.3389/fnins.2021.697870 – volume: 28 start-page: 2142 year: 2021 ident: pone.0295621.ref012 article-title: Biclustering Collaborative Learning for Cross-Domain Person Re-Identification publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2021.3119208 – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: pone.0295621.ref039 article-title: Accelerating t-SNE using tree-based algorithms publication-title: Journal of Machine Learning Research – volume: 71 start-page: 102057 year: 2021 ident: pone.0295621.ref043 article-title: Brain functional connectivity analysis based on multi-graph fusion publication-title: Med Image Anal doi: 10.1016/j.media.2021.102057 – volume: 10541 start-page: 362 year: 2017 ident: pone.0295621.ref006 article-title: Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks. publication-title: Mach Learn Med Imaging. doi: 10.1007/978-3-319-67389-9_42 – volume: 52 start-page: 2987 issue: 3 year: 2021 ident: pone.0295621.ref023 article-title: Cross-domain person re-identification by hybrid supervised and unsupervised learning. publication-title: Applied Intelligence doi: 10.1007/s10489-021-02551-8 – volume: 184 start-page: 232 year: 2016 ident: pone.0295621.ref037 article-title: Auto-encoder based dimensionality reduction. publication-title: Neurocomputing. doi: 10.1016/j.neucom.2015.08.104 – volume: 142 start-page: 105239 year: 2022 ident: pone.0295621.ref044 article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105239 – volume: 469 start-page: 346 year: 2022 ident: pone.0295621.ref017 article-title: MAGE: Automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning. publication-title: Neurocomputing. doi: 10.1016/j.neucom.2020.06.152 – volume: 39 start-page: 3137 issue: 10 year: 2020 ident: pone.0295621.ref030 article-title: Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2987817 – start-page: 8 year: 2022 ident: pone.0295621.ref033 article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity publication-title: Machine Learning with Applications – volume: 11 issue: 4 year: 2020 ident: pone.0295621.ref034 article-title: A Deep Neural Network Study of the ABIDE Repository on Autism Spectrum Classification. publication-title: International Journal of Advanced Computer Science and Applications. – volume: 147 start-page: 736 year: 2017 ident: pone.0295621.ref010 article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2016.10.045 – year: 2023 ident: pone.0295621.ref046 article-title: Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data publication-title: IEEE Trans Neural Netw Learn Syst – volume: 20 issue: 21 year: 2020 ident: pone.0295621.ref020 article-title: Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder. publication-title: Sensors (Basel). doi: 10.3390/s20216001 – volume: 14 start-page: 575999 year: 2020 ident: pone.0295621.ref038 article-title: Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. publication-title: Front Neuroinform. doi: 10.3389/fninf.2020.575999 – volume: 71 start-page: 102059 year: 2021 ident: pone.0295621.ref028 article-title: MGN-Net: A multi-view graph normalizer for integrating heterogeneous biological network populations publication-title: Med Image Anal doi: 10.1016/j.media.2021.102059 – start-page: 159 year: 2020 ident: pone.0295621.ref016 article-title: Multi-Kernel Fuzzy Clustering Based on Auto-Encoder for Fmri Functional Network publication-title: Expert Systems with Applications – start-page: 307 year: 2022 ident: pone.0295621.ref026 article-title: Multi-view graph convolutional networks with attention mechanism publication-title: Artificial Intelligence – volume: 54 start-page: 1095 issue: 3 year: 2016 ident: pone.0295621.ref040 article-title: Topographical Information-Based High-Order Functional Connectivity and Its Application in Abnormality Detection for Mild Cognitive Impairment publication-title: J Alzheimers Dis doi: 10.3233/JAD-160092 |
SSID | ssj0053866 |
Score | 2.4770973 |
Snippet | Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast,... |
SourceID | plos doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | e0295621 |
SubjectTerms | Accuracy Algorithms Analysis Artificial neural networks Attention Autism Brain Brain mapping Care and treatment Data integration Datasets Diagnosis Diagnostic imaging Diagnostic systems Functional magnetic resonance imaging Health aspects Interpersonal communication in children Learning Machine learning Magnetic resonance Magnetic resonance imaging Medical diagnosis Medical imaging Methods Neural networks Neurodevelopmental disorders Neuroimaging Pervasive developmental disorders Psychological aspects Supervised learning Unsupervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9yT76I9aunrUYR1Idt95JsPh5PsVRBBbXSt5DdJCL09o5uz7_fmSS3uKDUB58Okkm4nY9kZnfmN4Q8l9oZD2FXpY3rKsEcr0xt6srVbQB15lGnVxcfPsrTM_H-vDn_rdUX5oRleODMuGP8MKDrruXMKeFD7eCSYTLWrBXBSJXqyOHO2wVT-QwGK5ayFMpxtTgucjnarPtwVDOICdhichElvP7xVJ5tLtbD313OdPWc3Ca3is9Il_m_7pEbob9D9opVDvRlgY5-dZf8XNKUIVjhC3-KGeVFs2A5Ilemn5T3TXPraKBZtalHBEWgzZT6CFNYDvxjWFHwaKnPyXiJBPaC0VSdebldUV-gO--Rs5O3X9-cVqWzQtVJrq4qE4NqIgRLOkRgnnGtaxWH0CMYHU0EL8zXQhg4DZxwUXXNgruGR66Cb2snJL9PZj3wcp9Q9DE8CyFEFUTnnXNS-E5p4ZXTPsg54Ts2267AjmP3iwubvqUpCD8yFy0KxxbhzEk1rtpk2I1r6F-jBEdaBM1OA6BKtqiSvU6V5uQJyt_mCtTR9O1SqUZxyYWYk2eJAoEzeszM-e62w2Dfffr2D0RfPk-IXhSiuAZ2dK5UQ8AzISDXhPJgQgnm302m91Fbd1wZLEcseKYbzWDlToP_PP10nMZNMduuD-vtYJlJbBUL2P1B1vyRs1yDEyuUePg_OP6I3GQwlNKD9AGZge6GQ3DyrtrHyZ5_AZxQT00 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlFcXCgSEBBzSJrbjxwktiKUgARJQ1JvlxHaF1N1sm25_PzOOExSJ1ymSPbaUmfF4bM98Q8gzoax2cOzKlbZNzqlluS50kdui9qDOLKh4dfHxkzg84h-Oq-N04dalsMrBJkZD7doG78gPGEJcU1Up-mpzlmPVKHxdTSU0rpJrJew0GNKllu8GSwxrWYiULsdkeZCks79p136_oHAyoOVkO4qo_aNtnm1O2-7PjmfcgJY3yY3kOWaLXtQ75Ipf3yI7aW122YsEIP3yNrlcZDFOMMdfyjCuPOkXDEf8yviJ0d9ZX0AaaFZ1rBSRIdxmDICELkwK_tGtMvBrM9eH5EUSmAtaY47m-XaVuQTgeYccLd9-e3OYp_oKeSOYvMh18LIKcGRSPoDboG1ta8ngAOK1CjqAL-YKzjXYBMttkE1VMluxwKR3dWG5YHfJbA283CUZehqOeu-D9Lxx1lrBXSMVd9Iq58WcsIHNpkng41gD49TEFzUJh5CeiwaFY5Jw5iQfR2168I1_0L9GCY60CJ0dG9rzE5NWosGXJlU0NaNWcucLC14LFaGgNfdaSDknj1H-ps9DHQ2AWUhZSSYY53PyNFIgfMYa43NO7LbrzPvP3_-D6OuXCdHzRBRaYEdjU04E_BPCck0o9yaUYASaSfcuauvAlc78Wi4wctDg33c_GbtxUoy5W_t22xmqI1t5CbPf6zV_5CxT4Mpyye__ffIH5DoF9sbwH7VHZqCV_iE4cRf1o7hSfwLrH0fp priority: 102 providerName: ProQuest |
Title | A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38064474 https://www.proquest.com/docview/3072928582 https://www.proquest.com/docview/2902956414 https://doaj.org/article/657580cb32a74de0a02326f02b4e9677 http://dx.doi.org/10.1371/journal.pone.0295621 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnytMEpASMBDpjR2_PGAUDe1DKQNNCjqm-XE9jSpXzQrghf-du4cN1KlDXhxpPjOUs539jm--x0hL7k0ysKxK5XKVCnLDU1VprLUZKUDdaZehl8Xp2f8ZMw-TorJDtnUbI0CrK892mE9qfFqevjz-693YPBvQ9UG0d8wHS4Xc3eY5eDxY2b5LuxNAmsanLL2XgGsm_OYQHcT59YGFXD829W6s5wu6ptd0bAlje6SO9GXTAbN5O-RHTe_R_aitdbJ6wgp_eY--TFIQuRgihcBCUaaR40DdkS0DI8QD540JaWBZlaG2hEJAnCGkEjowjThy3qWgKeb2CZIL5DAWPA2ZG2u1rPERkjPB2Q8Gn49PkljxYW04lRcpco7UXg4REnnwZFQpjSloHAkcUp65cE7sxljClYJw4wXVdGnpqCeCmfLzDBOH5LOHGS5TxL0PWzunPPCscoaYzizlZDMCiOt411CN2LWVYQjx6oYUx3u2AQcSxopapwcHSenS9KWa9nAcfyD_ghnsKVFMO3wYrG60NE2Nd49yawqaW4Esy4z4Mfk3Gd5yZziQnTJM5x_3WSmtkuCHghRCMopY13yIlAgoMYcI3YuzLqu9YdP3_6D6Mv5FtGrSOQXII7KxCwJ-CYE6tqiPNiihGWh2ureR23dSKXWFDHic1nIHDg3Gnx99_O2GwfFKLy5W6xrnasgVtaH0R81mt9Klkpwbplgj_8--BNyOwfxhoAgeUA6oJXuKbh1V2WP3BITAa087mM7et8ju0fDs8_nvfCjpBcsGdvfwz-R4VQT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrLAS6I8urSQgMCAYe0WduJ7QNCy2PZpQ8kaFFvxomdqlJ3szRdED_FNzLjOEEr8br0FCkej5SZ8TzieRDyKJNGWQi7YqlMEXNqWKwSlcQmyR2IMyul_3Wxt5-ND_m7o_Rohfxoa2EwrbLViV5R26rAf-TbDFtcU5lK-mL-JcapUXi72o7QaMRix33_BiFb_XzyGvj7mNLRm4NX4zhMFYiLjInzWJVOpCUECtKVYCyVyU0uGLjdTslSleCB2IRzBSfBcFOKIh0wk7KSCWfzxPCMAd5L5DJnYMmxMn30ttX8oDuyLJTnMTHYDtKwNa9mbiuhEInQwZL581MCOlvQm59W9Z8dXW_wRtfJteCpRsNGtFbJipvdIKtBF9TR09Cw-tlN8nUY-bzEGEkYYR57kGfYjv0y_cNnm0fNwGqAmeZ-MkWE7T19wiUsYRHyST2NwI-ObJMC6EEAF7z1NaFni2lkQ8PQW-TwQih_m_RmQMs1EqFnY6lzrhSOF9YYk3FbCMmtMNK6rE9YS2ZdhGbnOHPjVPsbPAFBT0NFjczRgTl9Ene75k2zj3_Av0QOdrDYqtu_qM6OdTj5Gm-2ZFLkjBrBrUsMeEk0KxOac6cyIfpkE_mvm7rXTuHooRCpYBnjvE8eeghs1zHDfKBjs6hrPXn_6T-APn5YAnoSgMoKyFGYUIMB34RtwJYgN5YgQekUS8trKK0tVWr963jCzlaCf7_8oFtGpJjjN3PVotZUebLyAWC_00h-R1kmwXXmgt_9O_JNcmV8sLerdyf7O-vkKgVS-9QjuUF6IKHuHjiQ5_l9f2oj8vmi1cRPfxaEfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqLhLggyqtLCw0IBBzSzdpO7BwQWlpWXQoFQYt6M05sV5W6m6Xpgvg1vo4Zxwlaidelp0jxeKTMyzPxPAh5lEmdGwi7YpnrMuZUszhP8iTWSWFBnJmT_tfF2_1s95C_PkqPVsiPthYG0ypbm-gNtalK_Ec-YNjimspU0oELaRHvd8Yv5l9inCCFN63tOI1GRPbs928QvtXPJzvA68eUjl8dbO_GYcJAXGZMnMe5syJ1EDRI6-DgzHWhC8HABbe5dLkDb8QknOegFZprJ8p0yHTKHBPWFInmGQO8l8hlwYREHZPbXXoJ2JEsC6V6TAwHQTK25tXMbiUUohI6XDoK_cSA7lzozU-r-s9Orz_8xtfJteC1RqNGzFbJip3dIKvBLtTR09C8-tlN8nUU-RzFGMkZYU57kG3Yjr0z_cNnnkfN8GqAmRZ-SkWErT598iUsYUHyST2NwKeOTJMO6EEAF7z19aFni2lkQvPQW-TwQih_m_RmQMs1EqGXY6i11gnLS6O1zrgpheRGaGls1iesJbMqQ-NznL9xqvxtnoAAqKGiQuaowJw-ibtd86bxxz_gXyIHO1hs2-1fVGfHKlgBhbdcMikLRrXgxiYaPCaauYQW3OaZEH2yifxXTQ1sZ3zUSIhUsIxx3icPPQS27pihEhzrRV2rybtP_wH08cMS0JMA5CogR6lDPQZ8E7YEW4LcWIIEA1QuLa-htLZUqdUvVYWdrQT_fvlBt4xIMd9vZqtFrWjuycqHgP1OI_kdZZkEN5oLfvfvyDfJFTAQ6s1kf2-dXKVAaZ-FJDdIDwTU3gNf8ry475U2Ip8v2kr8BCIxiH4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-view+convolutional+neural+network+method+combining+attention+mechanism+for+diagnosing+autism+spectrum+disorder&rft.jtitle=PloS+one&rft.au=Wang%2C+Mingzhi&rft.au=Ma%2C+Zhiqiang&rft.au=Wang%2C+Yongjie&rft.au=Liu%2C+Jing&rft.date=2023-12-08&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=12&rft.spage=e0295621&rft_id=info:doi/10.1371%2Fjournal.pone.0295621&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |