Automated parameterisation for multi-scale image segmentation on multiple layers
We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool d...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 88; no. 100; pp. 119 - 127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2013.11.018 |
Cover
Loading…
Abstract | We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. |
---|---|
AbstractList | We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition registered software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis. |
Author | Eisank, C. Csillik, O. Tiede, D. Drăguţ, L. |
Author_xml | – sequence: 1 givenname: L. surname: Drăguţ fullname: Drăguţ, L. email: lucian.dragut@cbg.uvt.ro organization: Department of Geography, West University of Timişoara, V. Pârvan Blv. 4, 300223 Timişoara, Romania – sequence: 2 givenname: O. surname: Csillik fullname: Csillik, O. email: cskovi@yahoo.com organization: Department of Geography, West University of Timişoara, V. Pârvan Blv. 4, 300223 Timişoara, Romania – sequence: 3 givenname: C. surname: Eisank fullname: Eisank, C. email: clemens.eisank@sbg.ac.at organization: Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstraße 30, 5020 Salzburg, Austria – sequence: 4 givenname: D. surname: Tiede fullname: Tiede, D. email: dirk.tiede@sbg.ac.at organization: Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstraße 30, 5020 Salzburg, Austria |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28212883$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24748723$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URKeFvwDZILFJ8CN2nAVIo4qXVAkWsLZs53rwKImDnanUf1-HDMNjM0i2vLjfubo-516hizGMgNALgiuCiXi9r3yaYtrnW1FMWEVIhYl8hDZENrSUlPELtMEtrUvaEHGJrlLaY4wJF_IJuqR1U2eObdCX7WEOg56hKyYd9QAzRJ_07MNYuBCL4dDPvkxW91D4Qe-gSLAbYJxXJJ-fxJTLvb6HmJ6ix073CZ4d32v07f27rzcfy9vPHz7dbG9LK1gzl62opeGENsxxgx12xuiudaLFlmttMFBNpSU1N9w0sjNUGOOMlXXnnBUNZ9fo7dp3OpgBOptHirpXU8xTxnsVtFd_V0b_Xe3CnWJti2u-NHh1bBDDjwOkWQ0-Weh7PUI4JEWz0UywNtt0DiWSCt5m58l5lDOCMWMSZ_T5nz84jf4rnAy8PAJ6CcBFPVqffnOSEirlwjUrZ2NIKYI7IQSrZV3UXp3WRS3roghReV2y8s0_SuvXZLNlvv8P_XbVQ076zkNUyXoYLXQ-gp1VF_zZHg8W4eP- |
CitedBy_id | crossref_primary_10_3390_rs15041035 crossref_primary_10_1080_2150704X_2014_930563 crossref_primary_10_3390_app14135488 crossref_primary_10_3390_agronomy11040668 crossref_primary_10_3390_rs12182952 crossref_primary_10_1016_j_ocecoaman_2023_106834 crossref_primary_10_3390_rs14092093 crossref_primary_10_1016_j_fcr_2022_108708 crossref_primary_10_3390_rs9010080 crossref_primary_10_3390_rs16071217 crossref_primary_10_1016_j_jag_2021_102553 crossref_primary_10_1016_j_compag_2025_109897 crossref_primary_10_3390_s21237935 crossref_primary_10_1080_01431161_2018_1508922 crossref_primary_10_1016_j_jag_2016_01_011 crossref_primary_10_1016_j_jag_2019_101956 crossref_primary_10_1109_JSTARS_2019_2911525 crossref_primary_10_3390_rs8030173 crossref_primary_10_3389_feart_2021_633665 crossref_primary_10_1111_arcm_12663 crossref_primary_10_1016_j_isprsjprs_2019_01_007 crossref_primary_10_3390_f8120487 crossref_primary_10_3390_geomatics4020009 crossref_primary_10_1016_j_jclepro_2022_130404 crossref_primary_10_1080_22797254_2019_1699449 crossref_primary_10_1515_forj_2017_0002 crossref_primary_10_1155_2020_8855509 crossref_primary_10_4995_raet_2024_21700 crossref_primary_10_1016_j_isprsjprs_2014_07_002 crossref_primary_10_1109_JSTARS_2016_2536943 crossref_primary_10_3390_ijgi13060214 crossref_primary_10_1016_j_isprsjprs_2022_08_021 crossref_primary_10_1117_1_JRS_11_036011 crossref_primary_10_1016_j_jag_2021_102531 crossref_primary_10_1016_j_isprsjprs_2022_08_024 crossref_primary_10_3390_rs11131615 crossref_primary_10_1016_j_enggeo_2019_105264 crossref_primary_10_1016_j_isprsjprs_2015_09_007 crossref_primary_10_54975_isubuzfd_1150068 crossref_primary_10_1080_01431161_2024_2379515 crossref_primary_10_1007_s10661_021_09641_7 crossref_primary_10_1016_j_future_2023_04_001 crossref_primary_10_1016_j_scitotenv_2019_05_122 crossref_primary_10_1117_1_JRS_16_038504 crossref_primary_10_1080_01431161_2020_1734253 crossref_primary_10_3390_rs6099086 crossref_primary_10_1016_j_ecolind_2022_108989 crossref_primary_10_1051_e3sconf_202340602004 crossref_primary_10_3390_rs11020185 crossref_primary_10_1088_1755_1315_162_1_012039 crossref_primary_10_1007_s12524_017_0685_7 crossref_primary_10_1109_LGRS_2015_2393255 crossref_primary_10_1080_01431161_2018_1466077 crossref_primary_10_1111_nrm_12368 crossref_primary_10_3390_rs13142820 crossref_primary_10_1080_15230406_2014_902755 crossref_primary_10_1007_s12524_019_01081_8 crossref_primary_10_1109_JSTARS_2015_2424457 crossref_primary_10_3390_rs15020494 crossref_primary_10_1007_s11707_022_1033_y crossref_primary_10_3390_rs11141713 crossref_primary_10_3390_rs11222649 crossref_primary_10_1080_10106049_2022_2071478 crossref_primary_10_1016_j_jenvman_2022_115723 crossref_primary_10_1080_15481603_2018_1495395 crossref_primary_10_3390_rs10091440 crossref_primary_10_3390_rs14246218 crossref_primary_10_3390_ijgi10100693 crossref_primary_10_1109_LGRS_2018_2831914 crossref_primary_10_3390_rs12203424 crossref_primary_10_1007_s10980_020_01189_0 crossref_primary_10_1080_10106049_2023_2256302 crossref_primary_10_3390_rs71215848 crossref_primary_10_1016_j_isprsjprs_2019_02_009 crossref_primary_10_1080_07038992_2020_1850248 crossref_primary_10_1109_JSTARS_2018_2872520 crossref_primary_10_1080_15481603_2016_1250328 crossref_primary_10_1016_j_jag_2019_06_005 crossref_primary_10_1016_j_jas_2020_105251 crossref_primary_10_1080_03736245_2020_1740104 crossref_primary_10_1364_AO_55_008089 crossref_primary_10_3390_rs12111772 crossref_primary_10_3390_rs11192284 crossref_primary_10_1080_01431161_2018_1500071 crossref_primary_10_3390_rs11222627 crossref_primary_10_3390_rs10101622 crossref_primary_10_1109_JSTARS_2020_3029460 crossref_primary_10_3390_su131810192 crossref_primary_10_1016_j_isprsjprs_2015_08_005 crossref_primary_10_1007_s11707_020_0861_x crossref_primary_10_1117_1_JRS_12_025006 crossref_primary_10_3390_rs11101193 crossref_primary_10_1016_j_jag_2021_102605 crossref_primary_10_1007_s13157_020_01373_7 crossref_primary_10_1016_j_ecolind_2019_105551 crossref_primary_10_3390_app10051881 crossref_primary_10_3390_rs11141725 crossref_primary_10_3390_rs13234819 crossref_primary_10_3390_rs11151750 crossref_primary_10_1016_j_jsames_2022_104090 crossref_primary_10_3389_feart_2023_1301281 crossref_primary_10_1177_0309133314550670 crossref_primary_10_3390_rs14164107 crossref_primary_10_1016_j_enggeo_2021_106000 crossref_primary_10_1016_j_geomorph_2017_05_013 crossref_primary_10_1109_TGRS_2025_3543379 crossref_primary_10_3390_rs10020276 crossref_primary_10_3390_jimaging1010085 crossref_primary_10_1016_j_geomorph_2018_11_021 crossref_primary_10_1111_tgis_12847 crossref_primary_10_3389_feart_2022_790737 crossref_primary_10_1016_j_isprsjprs_2022_03_011 crossref_primary_10_3390_rs12122012 crossref_primary_10_1016_j_rsase_2023_101031 crossref_primary_10_30897_ijegeo_990875 crossref_primary_10_1016_j_jag_2024_104051 crossref_primary_10_1109_ACCESS_2020_3045740 crossref_primary_10_3390_rs70505077 crossref_primary_10_1016_j_isprsjprs_2023_05_024 crossref_primary_10_3390_rs9040333 crossref_primary_10_1007_s12524_022_01661_1 crossref_primary_10_1080_10106049_2023_2195832 crossref_primary_10_3390_rs13030368 crossref_primary_10_1007_s11554_021_01166_z crossref_primary_10_1016_j_jag_2018_03_001 crossref_primary_10_1016_j_isci_2023_108586 crossref_primary_10_1016_j_ijplas_2023_103618 crossref_primary_10_1016_j_jasrep_2015_12_023 crossref_primary_10_1016_j_tree_2019_03_006 crossref_primary_10_1002_esp_5824 crossref_primary_10_1016_j_aej_2018_10_001 crossref_primary_10_1016_j_envsoft_2018_01_023 crossref_primary_10_1016_j_scitotenv_2020_139423 crossref_primary_10_1111_tgis_12842 crossref_primary_10_1016_j_agsy_2021_103167 crossref_primary_10_3390_fire7090304 crossref_primary_10_3390_rs11030280 crossref_primary_10_3390_rs14051169 crossref_primary_10_1117_1_JRS_12_025010 crossref_primary_10_3390_rs9090939 crossref_primary_10_1109_JSTARS_2022_3228261 crossref_primary_10_3390_rs12030487 crossref_primary_10_1016_j_ecoinf_2024_102594 crossref_primary_10_3390_rs9040358 crossref_primary_10_1016_j_jag_2019_05_002 crossref_primary_10_3390_rs12172725 crossref_primary_10_1016_j_jag_2019_05_004 crossref_primary_10_3390_rs9050486 crossref_primary_10_1016_j_asr_2022_02_051 crossref_primary_10_3390_rs12030485 crossref_primary_10_3390_ijgi4042292 crossref_primary_10_3390_fractalfract5030127 crossref_primary_10_3390_ijgi8020070 crossref_primary_10_1088_1755_1315_865_1_012050 crossref_primary_10_3390_drones8070297 crossref_primary_10_3390_rs13101868 crossref_primary_10_1109_JSTARS_2020_2983439 crossref_primary_10_1016_j_isprsjprs_2015_03_011 crossref_primary_10_1080_17538947_2016_1250828 crossref_primary_10_1007_s11069_023_06186_5 crossref_primary_10_1080_10106049_2018_1489424 crossref_primary_10_3390_rs9050495 crossref_primary_10_1016_j_isprsjprs_2017_06_002 crossref_primary_10_1016_j_isprsjprs_2017_06_001 crossref_primary_10_1016_j_rse_2018_05_006 crossref_primary_10_3390_rs10030438 crossref_primary_10_3390_su12052144 crossref_primary_10_3390_rs15215142 crossref_primary_10_1016_j_jag_2016_07_011 crossref_primary_10_1016_j_asr_2022_10_044 crossref_primary_10_3390_rs11020108 crossref_primary_10_3390_ijgi8010046 crossref_primary_10_1080_15481603_2019_1627062 crossref_primary_10_1016_j_rse_2018_06_043 crossref_primary_10_1016_j_scitotenv_2024_174356 crossref_primary_10_3390_rs11101257 crossref_primary_10_1080_15481603_2018_1426092 crossref_primary_10_1080_01431161_2024_2326800 crossref_primary_10_1080_15481603_2018_1426091 crossref_primary_10_3390_rs12142292 crossref_primary_10_1016_j_isprsjprs_2014_08_010 crossref_primary_10_1080_17538947_2022_2162136 crossref_primary_10_1002_ldr_3775 crossref_primary_10_1016_j_ecolind_2017_04_027 crossref_primary_10_1080_10106049_2019_1573853 crossref_primary_10_3390_rs14143297 crossref_primary_10_1016_j_rse_2018_06_031 crossref_primary_10_3390_rs12030478 crossref_primary_10_3390_rs10122012 crossref_primary_10_1016_j_ecolind_2021_107494 crossref_primary_10_1016_j_catena_2023_106924 crossref_primary_10_1016_j_geomorph_2018_04_011 crossref_primary_10_1016_j_isprsjprs_2016_10_008 crossref_primary_10_1016_j_enggeo_2018_10_004 crossref_primary_10_1080_17538947_2018_1485753 crossref_primary_10_5194_nhess_16_1035_2016 crossref_primary_10_1080_01431161_2023_2227318 crossref_primary_10_1007_s11356_021_12552_2 crossref_primary_10_1007_s11042_021_10824_0 crossref_primary_10_1016_S1002_0160_17_60377_1 crossref_primary_10_1109_JSTARS_2018_2875792 crossref_primary_10_1016_j_rse_2017_10_005 crossref_primary_10_3390_rs11030231 crossref_primary_10_1016_j_ecoinf_2024_102552 crossref_primary_10_1007_s41064_020_00127_8 crossref_primary_10_3390_rs11101238 crossref_primary_10_1080_15481603_2017_1287238 crossref_primary_10_1080_15481603_2018_1504413 crossref_primary_10_1016_j_isprsjprs_2017_11_014 crossref_primary_10_1016_j_isprsjprs_2016_03_014 crossref_primary_10_3390_land10101065 crossref_primary_10_1016_j_ecoinf_2023_102027 crossref_primary_10_1016_j_isprsjprs_2015_01_009 crossref_primary_10_1111_tgis_12795 crossref_primary_10_3390_rs16214106 crossref_primary_10_3390_rs15164062 crossref_primary_10_3390_rs12071081 crossref_primary_10_1080_10106049_2024_2382307 crossref_primary_10_1109_TCSVT_2016_2600261 crossref_primary_10_1007_s12145_020_00493_2 crossref_primary_10_1155_2018_3918954 crossref_primary_10_3390_rs12071088 crossref_primary_10_3390_rs9080805 crossref_primary_10_1007_s10661_022_10514_w crossref_primary_10_3390_rs9090960 crossref_primary_10_1016_j_rse_2016_03_015 crossref_primary_10_3390_rs11161953 crossref_primary_10_3390_rs70506380 crossref_primary_10_1016_j_rse_2017_11_024 crossref_primary_10_1016_j_rse_2019_111354 crossref_primary_10_1016_j_rse_2019_111591 crossref_primary_10_3390_rs16132479 crossref_primary_10_1080_01431161_2018_1475779 crossref_primary_10_1080_22797254_2021_1879683 crossref_primary_10_3390_rs14112669 crossref_primary_10_3897_natureconservation_52_89639 crossref_primary_10_1080_07038992_2021_1872374 crossref_primary_10_1155_2021_8872947 crossref_primary_10_1016_j_compag_2020_105696 crossref_primary_10_1371_journal_pone_0238165 crossref_primary_10_1080_22797254_2021_1951623 crossref_primary_10_1080_14498596_2023_2217782 crossref_primary_10_3390_ijgi11080420 crossref_primary_10_2139_ssrn_4048201 crossref_primary_10_3390_s21010320 crossref_primary_10_1016_j_isprsjprs_2020_01_002 crossref_primary_10_1007_s12524_015_0532_7 crossref_primary_10_1111_area_12451 crossref_primary_10_1016_j_scitotenv_2025_178368 crossref_primary_10_1016_j_ecoinf_2023_102242 crossref_primary_10_3390_rs10010073 crossref_primary_10_1007_s12524_018_0803_1 crossref_primary_10_3390_rs9030243 crossref_primary_10_3390_app121910029 crossref_primary_10_1016_j_jag_2023_103638 crossref_primary_10_1007_s11001_017_9338_z crossref_primary_10_3390_rs13132537 crossref_primary_10_1016_j_jag_2022_103137 crossref_primary_10_1109_JSTARS_2020_2996315 crossref_primary_10_3390_su12166458 crossref_primary_10_1109_JSTARS_2016_2538563 crossref_primary_10_3389_fpls_2017_00890 crossref_primary_10_1080_19475705_2020_1833990 crossref_primary_10_1109_JSTARS_2019_2950466 crossref_primary_10_3390_drones5030061 crossref_primary_10_1109_JSTARS_2021_3130038 crossref_primary_10_3390_ijgi5120238 crossref_primary_10_3390_rs9090899 crossref_primary_10_3390_rs15082001 crossref_primary_10_3390_rs13224666 crossref_primary_10_1080_01431161_2017_1325536 crossref_primary_10_3390_rs15143600 crossref_primary_10_1016_j_isprsjprs_2017_08_003 crossref_primary_10_1080_15481603_2018_1502399 crossref_primary_10_1002_arp_1752 crossref_primary_10_1080_07038992_2018_1540297 crossref_primary_10_1080_2150704X_2016_1174348 crossref_primary_10_3390_s19224893 crossref_primary_10_1088_1755_1315_540_1_012090 crossref_primary_10_1016_j_rse_2020_112033 crossref_primary_10_1016_j_jag_2019_03_001 crossref_primary_10_3390_ijgi7110424 crossref_primary_10_1016_j_geomorph_2020_107403 crossref_primary_10_3390_rs9080840 crossref_primary_10_1016_j_earscirev_2023_104631 crossref_primary_10_1080_01431161_2023_2221798 crossref_primary_10_1016_j_isprsjprs_2020_08_004 crossref_primary_10_1080_01431161_2019_1594435 crossref_primary_10_1007_s13204_021_01969_3 crossref_primary_10_3390_rs13040548 crossref_primary_10_1016_j_isprsjprs_2014_12_026 crossref_primary_10_1016_j_isprsjprs_2018_03_006 crossref_primary_10_3390_rs13132508 crossref_primary_10_1016_j_ecolind_2025_113113 crossref_primary_10_1080_19475705_2020_1736190 crossref_primary_10_3390_rs70708300 crossref_primary_10_1109_JSTARS_2023_3257548 crossref_primary_10_3390_ijgi8090398 crossref_primary_10_1016_j_jag_2018_10_009 crossref_primary_10_3390_rs14020326 crossref_primary_10_1016_j_rse_2016_09_013 crossref_primary_10_3390_rs10081193 crossref_primary_10_1109_JSTARS_2024_3373385 crossref_primary_10_3390_rs9030290 crossref_primary_10_3390_rs11242927 crossref_primary_10_1109_TGRS_2025_3544549 crossref_primary_10_3390_rs14081953 crossref_primary_10_1109_LGRS_2022_3140307 crossref_primary_10_3390_rs9121220 crossref_primary_10_1007_s41324_019_00240_w crossref_primary_10_1080_15481603_2023_2190203 crossref_primary_10_5194_gmd_9_3975_2016 crossref_primary_10_15407_csc_2024_04_050 crossref_primary_10_3390_rs12172792 crossref_primary_10_1016_j_rsase_2022_100766 crossref_primary_10_3390_su14138068 crossref_primary_10_1016_j_isprsjprs_2017_08_011 crossref_primary_10_1080_01431161_2019_1701725 crossref_primary_10_1016_j_isprsjprs_2018_04_010 crossref_primary_10_1109_TGRS_2023_3247697 crossref_primary_10_3390_rs12233887 crossref_primary_10_1080_01431161_2018_1430398 crossref_primary_10_3390_rs10010015 crossref_primary_10_1109_JSTARS_2016_2615073 crossref_primary_10_1016_j_habitatint_2016_11_007 crossref_primary_10_1080_01431161_2017_1390273 crossref_primary_10_1093_forestry_cpz048 crossref_primary_10_1080_17538947_2020_1831087 crossref_primary_10_1016_j_asr_2023_06_033 crossref_primary_10_1016_j_jaridenv_2022_104721 crossref_primary_10_3390_s19051221 crossref_primary_10_1016_j_ecolind_2016_09_029 crossref_primary_10_1080_24699322_2017_1389397 crossref_primary_10_1080_15481603_2020_1819720 crossref_primary_10_1111_tgis_13005 crossref_primary_10_1016_j_rse_2016_11_013 crossref_primary_10_3390_rs10071015 crossref_primary_10_1038_s41598_020_73167_0 crossref_primary_10_3389_fenvs_2022_860365 crossref_primary_10_1088_1755_1315_671_1_012025 crossref_primary_10_1016_j_jag_2016_06_014 crossref_primary_10_3390_rs13071354 crossref_primary_10_1080_01431161_2017_1410297 crossref_primary_10_3390_rs10020285 crossref_primary_10_3390_s19143120 crossref_primary_10_1016_j_envpol_2019_01_024 crossref_primary_10_3390_geosciences11080305 crossref_primary_10_3390_rs10020281 crossref_primary_10_1007_s11045_019_00684_1 crossref_primary_10_1016_j_agwat_2023_108559 crossref_primary_10_1016_j_apgeog_2018_05_016 crossref_primary_10_1007_s11769_017_0874_x crossref_primary_10_1016_j_ufug_2018_01_021 crossref_primary_10_1016_j_rse_2024_114024 crossref_primary_10_1080_01431161_2018_1500731 crossref_primary_10_1109_LGRS_2016_2586499 crossref_primary_10_1016_j_isprsjprs_2013_11_007 crossref_primary_10_1016_j_jag_2018_11_011 crossref_primary_10_1080_10095020_2024_2439380 crossref_primary_10_1080_01431161_2018_1506592 crossref_primary_10_1080_14498596_2019_1615011 crossref_primary_10_1109_TGRS_2014_2381632 crossref_primary_10_1080_01431161_2018_1528021 crossref_primary_10_3390_rs14195017 crossref_primary_10_1080_10095020_2017_1399674 crossref_primary_10_3390_f11121271 crossref_primary_10_3390_rs70302474 crossref_primary_10_1016_j_rse_2015_11_033 crossref_primary_10_1016_j_isprsjprs_2020_11_013 crossref_primary_10_1016_j_jag_2024_103897 crossref_primary_10_1109_JSTARS_2019_2904297 crossref_primary_10_3390_rs12183096 crossref_primary_10_1016_j_eja_2022_126640 crossref_primary_10_3390_ijgi11100521 crossref_primary_10_3390_rs14174201 crossref_primary_10_1080_01431161_2021_1973686 crossref_primary_10_3390_rs11121409 crossref_primary_10_1016_j_geomorph_2024_109539 crossref_primary_10_3390_ijgi10060420 crossref_primary_10_1016_j_rse_2015_10_001 crossref_primary_10_1080_13658816_2018_1431840 crossref_primary_10_1016_j_rse_2016_12_011 crossref_primary_10_1080_01431161_2021_1998716 crossref_primary_10_3390_land11040543 crossref_primary_10_3390_rs15204920 crossref_primary_10_3390_rs10091468 crossref_primary_10_1080_15481603_2016_1215769 crossref_primary_10_3390_rs8060513 crossref_primary_10_3390_rs11060713 crossref_primary_10_1016_j_jag_2018_06_014 crossref_primary_10_1016_j_ecoinf_2025_103075 crossref_primary_10_1016_j_jenvman_2021_114373 crossref_primary_10_3390_rs8070549 crossref_primary_10_1016_j_ecoinf_2021_101227 crossref_primary_10_1007_s11600_024_01527_9 crossref_primary_10_1007_s12517_019_4879_x crossref_primary_10_1016_j_ecolind_2024_111838 crossref_primary_10_3389_fevo_2023_1093454 crossref_primary_10_1016_j_compag_2020_105500 crossref_primary_10_1080_22797254_2017_1409083 crossref_primary_10_1109_JSTARS_2016_2539239 crossref_primary_10_3390_rs10091457 crossref_primary_10_3390_rs8020088 crossref_primary_10_1016_j_enggeo_2022_106983 crossref_primary_10_1016_j_isprsjprs_2019_11_009 crossref_primary_10_1016_j_geomorph_2020_107124 crossref_primary_10_3390_app9245393 crossref_primary_10_3390_rs6075976 crossref_primary_10_1515_jogs_2020_0003 crossref_primary_10_1016_j_jag_2022_103163 crossref_primary_10_3390_rs9010040 crossref_primary_10_3390_rs12111711 crossref_primary_10_3390_rs11141678 crossref_primary_10_1109_LGRS_2019_2943406 crossref_primary_10_1016_j_biosystemseng_2018_08_009 crossref_primary_10_1007_s12518_022_00455_x crossref_primary_10_3390_rs12060961 crossref_primary_10_1109_JSTARS_2018_2833102 crossref_primary_10_1109_JSTARS_2017_2650956 crossref_primary_10_3390_ijerph20054636 crossref_primary_10_3390_rs10111813 crossref_primary_10_3390_ijgi6060157 crossref_primary_10_3390_rs8060455 crossref_primary_10_1080_10106049_2023_2215722 crossref_primary_10_3390_rs8100845 crossref_primary_10_1016_j_jag_2016_04_005 crossref_primary_10_3390_rs11141662 crossref_primary_10_1016_j_jag_2022_103054 crossref_primary_10_14358_PERS_22_00123R2 crossref_primary_10_1016_j_ecoinf_2015_11_011 crossref_primary_10_3390_rs16010039 crossref_primary_10_1080_01431161_2016_1266105 crossref_primary_10_1016_j_scitotenv_2020_138096 crossref_primary_10_1016_j_jag_2023_103431 crossref_primary_10_3390_ijgi7110441 crossref_primary_10_3390_rs8010067 crossref_primary_10_3390_rs11212575 crossref_primary_10_3233_JIFS_179615 crossref_primary_10_3390_rs70809705 crossref_primary_10_1515_ohs_2018_0024 crossref_primary_10_3390_rs12091451 crossref_primary_10_1007_s12524_022_01513_y crossref_primary_10_3390_rs11060629 crossref_primary_10_1016_j_geomorph_2024_109323 crossref_primary_10_1007_s12145_015_0217_3 crossref_primary_10_3390_rs11182082 crossref_primary_10_1007_s12524_019_01069_4 crossref_primary_10_1016_j_isprsjprs_2017_09_007 crossref_primary_10_3390_ijgi11120585 crossref_primary_10_1007_s00477_023_02648_1 crossref_primary_10_3389_fmars_2022_1096594 crossref_primary_10_3390_urbansci2010002 crossref_primary_10_5194_hess_20_3493_2016 crossref_primary_10_3390_rs12060982 crossref_primary_10_62051_ijcsit_v2n3_15 crossref_primary_10_3390_rs8100814 crossref_primary_10_3390_ijgi10050309 crossref_primary_10_1142_S0218001422540027 crossref_primary_10_3390_rs15010262 crossref_primary_10_3390_drones5020045 crossref_primary_10_1080_10106049_2019_1690056 crossref_primary_10_1117_1_JRS_11_035016 crossref_primary_10_1038_srep38596 crossref_primary_10_3389_fmars_2022_1031417 crossref_primary_10_3390_rs10111820 crossref_primary_10_5194_nhess_15_1087_2015 crossref_primary_10_1109_JSTARS_2021_3078483 crossref_primary_10_1080_01431161_2024_2326044 crossref_primary_10_1016_j_apgeog_2019_04_001 crossref_primary_10_1080_01431161_2015_1065357 crossref_primary_10_14358_PERS_87_7_503 crossref_primary_10_3389_fmars_2023_1126301 |
Cites_doi | 10.1109/LGRS.2010.2101045 10.1016/0034-4257(87)90015-0 10.1080/01431161.2012.692829 10.1080/01431161.2012.747018 10.1109/TGRS.2011.2151866 10.14358/PERS.77.9.933 10.1080/13658810903174803 10.14358/PERS.76.2.193 10.1016/j.rse.2012.08.010 10.1016/j.geomorph.2009.10.004 10.1016/j.isprsjprs.2009.06.004 10.1080/01431161003777189 10.1080/01431160500057764 10.1016/j.rse.2011.11.020 10.1016/j.geomorph.2012.05.024 10.1080/01431160600617194 10.1016/j.cviu.2007.08.003 10.5194/nhess-11-2715-2011 10.1016/j.jag.2012.03.015 10.1016/j.jag.2011.06.005 10.1016/j.isprsjprs.2013.05.003 10.1016/j.isprsjprs.2003.10.002 10.3390/rs5020558 10.1016/j.isprsjprs.2011.09.012 10.1109/LGRS.2008.919622 10.1080/01431161003745608 10.2307/2389612 10.1016/j.rse.2011.05.013 10.1016/j.jag.2011.06.008 10.1080/01431169208904109 10.3390/rs4051310 10.1016/j.geomorph.2011.12.001 10.14358/PERS.76.3.289 10.3390/rs5094163 10.1016/j.geomorph.2011.07.003 10.1016/j.compmedimag.2005.12.001 10.1016/j.isprsjprs.2011.02.006 |
ContentType | Journal Article |
Copyright | 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) 2015 INIST-CNRS 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) – notice: 2015 INIST-CNRS – notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | 6I. AAFTH AAYXX CITATION IQODW NPM 8FD FR3 H8D KR7 L7M 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.isprsjprs.2013.11.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis PubMed Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 127 |
ExternalDocumentID | PMC3990455 24748723 28212883 10_1016_j_isprsjprs_2013_11_018 S0924271613002803 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW EFKBS NPM 8FD FR3 H8D KR7 L7M 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c637t-9648b51273f5b0f0fbbad9f690c5aab0e2a28c145b5b78db26bbfbc84dffc6753 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Aug 21 18:14:53 EDT 2025 Fri Jul 11 12:08:20 EDT 2025 Fri Jul 11 07:40:17 EDT 2025 Thu Jul 10 22:33:27 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 Wed Apr 02 07:27:33 EDT 2025 Tue Jul 01 03:46:33 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:28:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 100 |
Keywords | GEOBIA Automation Object Representation Imagery MRS algorithms projects software scale factor Image Bottom up control automation imagery segmentation high resolution |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 CC BY 4.0 This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-9648b51273f5b0f0fbbad9f690c5aab0e2a28c145b5b78db26bbfbc84dffc6753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271613002803 |
PMID | 24748723 |
PQID | 1531003380 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3990455 proquest_miscellaneous_2101363972 proquest_miscellaneous_1826591871 proquest_miscellaneous_1531003380 pubmed_primary_24748723 pascalfrancis_primary_28212883 crossref_primary_10_1016_j_isprsjprs_2013_11_018 crossref_citationtrail_10_1016_j_isprsjprs_2013_11_018 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2013_11_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationTitleAlternate | ISPRS J Photogramm Remote Sens |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Eisank, Drăguţ, Blaschke (b0065) 2011 Hölbling, Füreder, Antolini, Cigna, Casagli, Lang (b0100) 2012; 4 Lahousse, Chang, Lin (b0130) 2011; 11 Hellesen, Matikainen (b0095) 2013; 5 Zhan, Molenaar, Tempfli, Shi (b0220) 2005; 26 Kim, Madden, Warner (b0115) 2008 Duro, Franklin, Dubé (b0060) 2012; 118 Drăguţ, Eisank (b0050) 2012; 141–142 Whiteside, Boggs, Maier (b0200) 2011; 13 Espindola, Camara, Reis, Bins, Monteiro (b0075) 2006; 27 Laben, Brower (b0230) 2000 O’Neill (b0155) 1986 Shruthi, Kerle, Jetten (b0160) 2011; 134 Beger, Gedrange, Hecht, Neubert (b0025) 2011 Woodcock, Harward (b0210) 1992; 13 Sun, Sun, Chen, Gong (b0170) 2012; 33 Esch, Thiel, Bock, Roth, Dech (b0070) 2008; 5 Van Den Eeckhaut, Kerle, Poesen, Hervás (b0190) 2012; 173–174 Ardila, Bijker, Tolpekin, Stein (b0010) 2012; 15 Zhang, Fritts, Goldman (b0225) 2008; 110 Aguilar, Saldaña, Aguilar (b0005) 2012; 34 Kim, Warner, Madden, Atkinson (b0120) 2011; 32 Martha, Kerle, van Westen, Jetten, Kumar (b0145) 2011; 49 Blaschke (b0035) 2010; 65 Hagenlocher, Lang, Tiede (b0085) 2012; 126 Johnson, Xie (b0110) 2011; 66 Verbeeck, Hermy, Van Orshoven (b0195) 2012; 18 Martha, Kerle, Jetten, van Westen, Kumar (b0140) 2010; 116 Drăguţ, Tiede, Levick (b0055) 2010; 24 Tiede, Lang, Albrecht, Hölbling (b0175) 2010; 76 Baatz, Schäpe (b0020) 2000 Hay, Marceau, Bouchard (b0090) 2002; 34 Benz, Hofmann, Willhauck, Lingenfelder, Heynen (b0030) 2004; 58 Lu, Stumpf, Kerle, Casagli (b0135) 2011; 8 Gao, Mas, Kerle, Navarrete Pacheco (b0080) 2011; 32 Neubert, Herold, Meinel (b0150) 2008 Jakubowski, Li, Guo, Kelly (b0105) 2013; 5 Udupa, Leblanc, Zhuge, Imielinska, Schmidt, Currie, Hirsch, Woodburn (b0185) 2006; 30 Tiede, Lang, Füreder, Hölbling, Hoffmann, Zeil (b0180) 2011; 77 Woodcock, Strahler (b0215) 1987; 21 Arvor, Durieux, Andrés, Laporte (b0015) 2013; 82 Wiens (b0205) 1989; 3 Castilla, Hay (b0040) 2008 Stumpf, Kerle (b0165) 2011; 115 Clinton, Holt, Scarborough, Yan, Gong (b0045) 2010; 76 Ardila (10.1016/j.isprsjprs.2013.11.018_b0010) 2012; 15 Castilla (10.1016/j.isprsjprs.2013.11.018_b0040) 2008 Kim (10.1016/j.isprsjprs.2013.11.018_b0115) 2008 Baatz (10.1016/j.isprsjprs.2013.11.018_b0020) 2000 Drăguţ (10.1016/j.isprsjprs.2013.11.018_b0055) 2010; 24 Wiens (10.1016/j.isprsjprs.2013.11.018_b0205) 1989; 3 Hay (10.1016/j.isprsjprs.2013.11.018_b0090) 2002; 34 Woodcock (10.1016/j.isprsjprs.2013.11.018_b0210) 1992; 13 Lu (10.1016/j.isprsjprs.2013.11.018_b0135) 2011; 8 Woodcock (10.1016/j.isprsjprs.2013.11.018_b0215) 1987; 21 Aguilar (10.1016/j.isprsjprs.2013.11.018_b0005) 2012; 34 Blaschke (10.1016/j.isprsjprs.2013.11.018_b0035) 2010; 65 Stumpf (10.1016/j.isprsjprs.2013.11.018_b0165) 2011; 115 Martha (10.1016/j.isprsjprs.2013.11.018_b0145) 2011; 49 Arvor (10.1016/j.isprsjprs.2013.11.018_b0015) 2013; 82 Jakubowski (10.1016/j.isprsjprs.2013.11.018_b0105) 2013; 5 Udupa (10.1016/j.isprsjprs.2013.11.018_b0185) 2006; 30 Whiteside (10.1016/j.isprsjprs.2013.11.018_b0200) 2011; 13 Benz (10.1016/j.isprsjprs.2013.11.018_b0030) 2004; 58 Laben (10.1016/j.isprsjprs.2013.11.018_b0230) 2000 Lahousse (10.1016/j.isprsjprs.2013.11.018_b0130) 2011; 11 Shruthi (10.1016/j.isprsjprs.2013.11.018_b0160) 2011; 134 Tiede (10.1016/j.isprsjprs.2013.11.018_b0175) 2010; 76 Beger (10.1016/j.isprsjprs.2013.11.018_b0025) 2011 Espindola (10.1016/j.isprsjprs.2013.11.018_b0075) 2006; 27 Hellesen (10.1016/j.isprsjprs.2013.11.018_b0095) 2013; 5 Zhang (10.1016/j.isprsjprs.2013.11.018_b0225) 2008; 110 Johnson (10.1016/j.isprsjprs.2013.11.018_b0110) 2011; 66 Drăguţ (10.1016/j.isprsjprs.2013.11.018_b0050) 2012; 141–142 Duro (10.1016/j.isprsjprs.2013.11.018_b0060) 2012; 118 Gao (10.1016/j.isprsjprs.2013.11.018_b0080) 2011; 32 Hagenlocher (10.1016/j.isprsjprs.2013.11.018_b0085) 2012; 126 Martha (10.1016/j.isprsjprs.2013.11.018_b0140) 2010; 116 Neubert (10.1016/j.isprsjprs.2013.11.018_b0150) 2008 Van Den Eeckhaut (10.1016/j.isprsjprs.2013.11.018_b0190) 2012; 173–174 Esch (10.1016/j.isprsjprs.2013.11.018_b0070) 2008; 5 Zhan (10.1016/j.isprsjprs.2013.11.018_b0220) 2005; 26 O’Neill (10.1016/j.isprsjprs.2013.11.018_b0155) 1986 Tiede (10.1016/j.isprsjprs.2013.11.018_b0180) 2011; 77 Hölbling (10.1016/j.isprsjprs.2013.11.018_b0100) 2012; 4 Sun (10.1016/j.isprsjprs.2013.11.018_b0170) 2012; 33 Kim (10.1016/j.isprsjprs.2013.11.018_b0120) 2011; 32 Verbeeck (10.1016/j.isprsjprs.2013.11.018_b0195) 2012; 18 Clinton (10.1016/j.isprsjprs.2013.11.018_b0045) 2010; 76 Eisank (10.1016/j.isprsjprs.2013.11.018_b0065) 2011 |
References_xml | – volume: 27 start-page: 3035 year: 2006 end-page: 3040 ident: b0075 article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation publication-title: Int. J. Remote Sens. – volume: 30 start-page: 75 year: 2006 end-page: 87 ident: b0185 article-title: A framework for evaluating image segmentation algorithms publication-title: Comput. Med. Imaging Graph. – start-page: 12 year: 2000 end-page: 23 ident: b0020 article-title: Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation publication-title: Angew. Geogr. Info. verarbeitung – year: 2000 ident: b0230 article-title: Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening – volume: 118 start-page: 259 year: 2012 end-page: 272 ident: b0060 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. – volume: 126 start-page: 27 year: 2012 end-page: 38 ident: b0085 article-title: Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery publication-title: Remote Sens. Environ. – start-page: 769 year: 2008 end-page: 784 ident: b0150 article-title: Assessing image segmentation quality-concepts, methods and applications publication-title: Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sens. Applications – start-page: 91 year: 2008 end-page: 110 ident: b0040 article-title: Image objects and geographic objects publication-title: Object-Based Image Analysis – volume: 76 start-page: 193 year: 2010 end-page: 202 ident: b0175 article-title: Object-based class modeling for cadastre-constrained delineation of Geo-objects publication-title: Photogramm. Eng. Remote Sens. – volume: 18 start-page: 428 year: 2012 end-page: 435 ident: b0195 article-title: External geo-information in the segmentation of VHR imagery improves the detection of imperviousness in urban neighborhoods publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 65 start-page: 2 year: 2010 end-page: 16 ident: b0035 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sen. – start-page: 291 year: 2008 end-page: 307 ident: b0115 article-title: Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery publication-title: Object-Based Image Analysis-Spatial concepts for knowledge driven remote Sensing applications – volume: 110 start-page: 260 year: 2008 end-page: 280 ident: b0225 article-title: Image segmentation evaluation: a survey of unsupervised methods publication-title: Comput. Vis. Image Underst. – volume: 5 start-page: 558 year: 2013 end-page: 583 ident: b0095 article-title: An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages publication-title: Remote Sens. – year: 1986 ident: b0155 article-title: A Hierarchical Concept of Ecosystems – volume: 32 start-page: 2825 year: 2011 end-page: 2850 ident: b0120 article-title: Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects publication-title: Int. J. Remote Sens. – volume: 21 start-page: 311 year: 1987 end-page: 332 ident: b0215 article-title: The factor of scale in remote-Sens. publication-title: Remote Sens. Environ. – volume: 58 start-page: 239 year: 2004 end-page: 258 ident: b0030 article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information publication-title: ISPRS J. Photogramm. Remote Sen. – volume: 32 start-page: 3747 year: 2011 end-page: 3763 ident: b0080 article-title: Optimal region growing segmentation and its effect on classification accuracy publication-title: Int. J. Remote Sens. – volume: 134 start-page: 260 year: 2011 end-page: 268 ident: b0160 article-title: Object-based gully feature extraction using high spatial resolution imagery publication-title: Geomorphology – volume: 82 start-page: 125 year: 2013 end-page: 137 ident: b0015 article-title: Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective publication-title: ISPRS J. Photogramm. Remote Sen. – volume: 76 start-page: 289 year: 2010 end-page: 299 ident: b0045 article-title: Accuracy assessment measures for object-based image segmentation goodness publication-title: Photogramm. Eng. Remote Sen. – volume: 34 start-page: 532 year: 2002 end-page: 535 ident: b0090 article-title: Modeling multi-scale landscape structure within a hierarchical scale-space framework publication-title: Int Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – volume: 5 start-page: 4163 year: 2013 end-page: 4186 ident: b0105 article-title: Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches publication-title: Remote Sens. – volume: 15 start-page: 57 year: 2012 end-page: 69 ident: b0010 article-title: Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 24 start-page: 859 year: 2010 end-page: 871 ident: b0055 article-title: ESP: a tool to estimate scale parameters for multiresolution image segmentation of remotely sensed data publication-title: Int. J. Geogr. Inf. Sci. – volume: 8 start-page: 701 year: 2011 end-page: 705 ident: b0135 article-title: Object-oriented change detection for landslide rapid mapping publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 5 start-page: 463 year: 2008 end-page: 467 ident: b0070 article-title: Improvement of image segmentation accuracy based on multiscale optimization procedure publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 116 start-page: 24 year: 2010 end-page: 36 ident: b0140 article-title: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods publication-title: Geomorphology – start-page: 125 year: 2011 end-page: 128 ident: b0065 article-title: A generic procedure for semantics-oriented landform classification using object-based image analysis publication-title: Geomorphometry 2011 – volume: 173–174 start-page: 30 year: 2012 end-page: 42 ident: b0190 article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data publication-title: Geomorphology – volume: 66 start-page: 473 year: 2011 end-page: 483 ident: b0110 article-title: Unsupervised image segmentation evaluation and refinement using a multi-scale approach publication-title: ISPRS J. Photogramm. Remote Sen. – volume: 49 start-page: 4928 year: 2011 end-page: 4943 ident: b0145 article-title: Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 3 start-page: 385 year: 1989 end-page: 397 ident: b0205 article-title: Spatial scaling in ecology publication-title: Funct. Ecol. – volume: 4 start-page: 1310 year: 2012 end-page: 1336 ident: b0100 article-title: A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories publication-title: Remote Sens. – volume: 33 start-page: 6854 year: 2012 end-page: 6875 ident: b0170 article-title: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery publication-title: Int. J. Remote Sens. – volume: 13 start-page: 884 year: 2011 end-page: 893 ident: b0200 article-title: Comparing object-based and pixel-based classifications for mapping Savannas publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 26 start-page: 2953 year: 2005 end-page: 2974 ident: b0220 article-title: Quality assessment for geo-spatial objects derived from remotely sensed data publication-title: Int. J. Remote Sens. – start-page: S40 year: 2011 end-page: S51 ident: b0025 article-title: Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction publication-title: ISPRS J. Photogramm. Remote Sen. 66 – volume: 141–142 start-page: 21 year: 2012 end-page: 33 ident: b0050 article-title: Automated object-based classification of topography from SRTM data publication-title: Geomorphology – volume: 77 start-page: 933 year: 2011 end-page: 942 ident: b0180 article-title: Automated damage indication for rapid geospatial reporting. An operational object-based approach to damage density mapping following the 2010 Haiti earthquake publication-title: Photogramm. Eng. Remote Sens. – volume: 13 start-page: 3167 year: 1992 end-page: 3187 ident: b0210 article-title: Nested-hierarchical scene models and image segmentation publication-title: Int. J. Remote Sens. – volume: 115 start-page: 2564 year: 2011 end-page: 2577 ident: b0165 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sens. Environ. – volume: 11 start-page: 2715 year: 2011 end-page: 2726 ident: b0130 article-title: Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed publication-title: Taiwan. Nat. Hazards Earth Sys. Sci. – volume: 34 start-page: 2583 year: 2012 end-page: 2606 ident: b0005 article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments publication-title: Int. J. Remote Sens. – volume: 8 start-page: 701 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0135 article-title: Object-oriented change detection for landslide rapid mapping publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2101045 – volume: 21 start-page: 311 issue: 3 year: 1987 ident: 10.1016/j.isprsjprs.2013.11.018_b0215 article-title: The factor of scale in remote-Sens. publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90015-0 – volume: 33 start-page: 6854 issue: 21 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0170 article-title: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.692829 – volume: 34 start-page: 2583 issue: 7 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0005 article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.747018 – start-page: 769 year: 2008 ident: 10.1016/j.isprsjprs.2013.11.018_b0150 article-title: Assessing image segmentation quality-concepts, methods and applications – volume: 49 start-page: 4928 issue: 12 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0145 article-title: Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2151866 – volume: 77 start-page: 933 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0180 article-title: Automated damage indication for rapid geospatial reporting. An operational object-based approach to damage density mapping following the 2010 Haiti earthquake publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.77.9.933 – volume: 24 start-page: 859 issue: 6 year: 2010 ident: 10.1016/j.isprsjprs.2013.11.018_b0055 article-title: ESP: a tool to estimate scale parameters for multiresolution image segmentation of remotely sensed data publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810903174803 – volume: 76 start-page: 193 issue: 2 year: 2010 ident: 10.1016/j.isprsjprs.2013.11.018_b0175 article-title: Object-based class modeling for cadastre-constrained delineation of Geo-objects publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.76.2.193 – volume: 126 start-page: 27 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0085 article-title: Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.010 – year: 2000 ident: 10.1016/j.isprsjprs.2013.11.018_b0230 – volume: 116 start-page: 24 issue: 1–2 year: 2010 ident: 10.1016/j.isprsjprs.2013.11.018_b0140 article-title: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.10.004 – volume: 65 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.isprsjprs.2013.11.018_b0035 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sen. doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 32 start-page: 3747 issue: 13 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0080 article-title: Optimal region growing segmentation and its effect on classification accuracy publication-title: Int. J. Remote Sens. doi: 10.1080/01431161003777189 – volume: 26 start-page: 2953 issue: 14 year: 2005 ident: 10.1016/j.isprsjprs.2013.11.018_b0220 article-title: Quality assessment for geo-spatial objects derived from remotely sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500057764 – volume: 118 start-page: 259 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0060 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 173–174 start-page: 30 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0190 article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.05.024 – volume: 27 start-page: 3035 issue: 14 year: 2006 ident: 10.1016/j.isprsjprs.2013.11.018_b0075 article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600617194 – volume: 110 start-page: 260 issue: 2 year: 2008 ident: 10.1016/j.isprsjprs.2013.11.018_b0225 article-title: Image segmentation evaluation: a survey of unsupervised methods publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.08.003 – volume: 11 start-page: 2715 issue: 10 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0130 article-title: Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed publication-title: Taiwan. Nat. Hazards Earth Sys. Sci. doi: 10.5194/nhess-11-2715-2011 – volume: 18 start-page: 428 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0195 article-title: External geo-information in the segmentation of VHR imagery improves the detection of imperviousness in urban neighborhoods publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2012.03.015 – volume: 15 start-page: 57 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0010 article-title: Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2011.06.005 – volume: 82 start-page: 125 year: 2013 ident: 10.1016/j.isprsjprs.2013.11.018_b0015 article-title: Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective publication-title: ISPRS J. Photogramm. Remote Sen. doi: 10.1016/j.isprsjprs.2013.05.003 – volume: 34 start-page: 532 issue: 4 year: 2002 ident: 10.1016/j.isprsjprs.2013.11.018_b0090 article-title: Modeling multi-scale landscape structure within a hierarchical scale-space framework publication-title: Int Arch. Photogramm. Remote Sens. Spatial Inf. Sci. – volume: 58 start-page: 239 issue: 3–4 year: 2004 ident: 10.1016/j.isprsjprs.2013.11.018_b0030 article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information publication-title: ISPRS J. Photogramm. Remote Sen. doi: 10.1016/j.isprsjprs.2003.10.002 – volume: 5 start-page: 558 issue: 2 year: 2013 ident: 10.1016/j.isprsjprs.2013.11.018_b0095 article-title: An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages publication-title: Remote Sens. doi: 10.3390/rs5020558 – start-page: 291 year: 2008 ident: 10.1016/j.isprsjprs.2013.11.018_b0115 article-title: Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery – start-page: S40 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0025 article-title: Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction publication-title: ISPRS J. Photogramm. Remote Sen. 66 doi: 10.1016/j.isprsjprs.2011.09.012 – volume: 5 start-page: 463 issue: 3 year: 2008 ident: 10.1016/j.isprsjprs.2013.11.018_b0070 article-title: Improvement of image segmentation accuracy based on multiscale optimization procedure publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.919622 – volume: 32 start-page: 2825 issue: 10 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0120 article-title: Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects publication-title: Int. J. Remote Sens. doi: 10.1080/01431161003745608 – volume: 3 start-page: 385 issue: 4 year: 1989 ident: 10.1016/j.isprsjprs.2013.11.018_b0205 article-title: Spatial scaling in ecology publication-title: Funct. Ecol. doi: 10.2307/2389612 – volume: 115 start-page: 2564 issue: 10 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0165 article-title: Object-oriented mapping of landslides using Random Forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.013 – volume: 13 start-page: 884 issue: 6 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0200 article-title: Comparing object-based and pixel-based classifications for mapping Savannas publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2011.06.008 – volume: 13 start-page: 3167 issue: 16 year: 1992 ident: 10.1016/j.isprsjprs.2013.11.018_b0210 article-title: Nested-hierarchical scene models and image segmentation publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904109 – start-page: 125 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0065 article-title: A generic procedure for semantics-oriented landform classification using object-based image analysis – volume: 4 start-page: 1310 issue: 5 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0100 article-title: A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories publication-title: Remote Sens. doi: 10.3390/rs4051310 – start-page: 91 year: 2008 ident: 10.1016/j.isprsjprs.2013.11.018_b0040 article-title: Image objects and geographic objects – start-page: 12 year: 2000 ident: 10.1016/j.isprsjprs.2013.11.018_b0020 article-title: Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation – volume: 141–142 start-page: 21 year: 2012 ident: 10.1016/j.isprsjprs.2013.11.018_b0050 article-title: Automated object-based classification of topography from SRTM data publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.001 – volume: 76 start-page: 289 issue: 3 year: 2010 ident: 10.1016/j.isprsjprs.2013.11.018_b0045 article-title: Accuracy assessment measures for object-based image segmentation goodness publication-title: Photogramm. Eng. Remote Sen. doi: 10.14358/PERS.76.3.289 – volume: 5 start-page: 4163 issue: 9 year: 2013 ident: 10.1016/j.isprsjprs.2013.11.018_b0105 article-title: Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches publication-title: Remote Sens. doi: 10.3390/rs5094163 – volume: 134 start-page: 260 issue: 3–4 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0160 article-title: Object-based gully feature extraction using high spatial resolution imagery publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.07.003 – volume: 30 start-page: 75 issue: 2 year: 2006 ident: 10.1016/j.isprsjprs.2013.11.018_b0185 article-title: A framework for evaluating image segmentation algorithms publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2005.12.001 – volume: 66 start-page: 473 issue: 4 year: 2011 ident: 10.1016/j.isprsjprs.2013.11.018_b0110 article-title: Unsupervised image segmentation evaluation and refinement using a multi-scale approach publication-title: ISPRS J. Photogramm. Remote Sen. doi: 10.1016/j.isprsjprs.2011.02.006 – year: 1986 ident: 10.1016/j.isprsjprs.2013.11.018_b0155 |
SSID | ssj0001568 |
Score | 2.5877504 |
Snippet | We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | algorithms Animal, plant and microbial ecology Applied geophysics Automated Automation Biological and medical sciences Computer programs computer software Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques GEOBIA Image segmentation Imagery Internal geophysics Iterative methods MRS Object Representation Segmentation Segments Software spatial data Teledetection and vegetation maps variance |
Title | Automated parameterisation for multi-scale image segmentation on multiple layers |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2013.11.018 https://www.ncbi.nlm.nih.gov/pubmed/24748723 https://www.proquest.com/docview/1531003380 https://www.proquest.com/docview/1826591871 https://www.proquest.com/docview/2101363972 https://pubmed.ncbi.nlm.nih.gov/PMC3990455 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6axgHQhGD8KoPKSFyzJrEdJ9yqaVMBMSHBpN0i27FZpjWtlvawy_72vZcf3YIGOyA1hzbPiuvn-H1Pfv4-gE-u8NqSTGpsM5Iw8yrQkpsAobi2XHFlGpKk78fJ7ER8PZWnW3DQn4Whsspu7W_X9Ga17n6ZdKM5WZbl5GeIqUOMcJ82ZEhjiU6wC0WzfP_6tswjao_DkXFA1oMar7JeXtbneFGNF98nOk9S_7g_Qu0sdY3j5lvBi_sQ6Z-FlXci1dFzeNZBTDZt_8UL2HLVLjy9Qzy4C4877fOzq5fwY7peLRC3uoIRD_jcNezNjcMYIlrWlBwG1CfHyjkuP6x2v-fdkaWK4acvSmQXmgD8Kzg5Ovx1MAs6nYXAJlytgiwRqcHAr7iXJvShN0YXmce82UqtTehiHac2EtJIo9LCxIkx3thUFN5bTDj4a9iuFpV7CyzhXhRGZMa7VKTOp1a4RKpCOAReMoxGkPRjm9uOhJy0MC7yvtrsPN84JSenYIqSo1NGEG4aLlsejoebfO6dlw-mVI7R4uHG44G7Nw_FFDUiheYRfOz9n-MbSdssunKLdZ1jDIlIIi8N_2GDWZ3MIsxW_26DyXjEad81HsGbdl7d9kIozDRj7IUazLiNAbGGD-9U5VnDHo6IFGG8fPc_o7MHT_CbaKvX38P26nLtPiA4W5lx8_aN4dH0y7fZ8Q3Lhj8t |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aEghKC8lkcxEtewedh5cFtVVFvarpBopd4s27HbVN3sqtk98O-ZyYsGFXpA2lw2tuJ4nJlv5PH3AXyyuVOGZFJDk5GEmUs8JSLtIRRXJkqiRNckSSfzeHbGv52L8y3Y787CUFll6_sbn1576_afSTubk1VRTH74mDqECPdpQ4Y0lh7ANrFTiRFsTw-PZvPeIQfNiThq71GHQZlXUa1uqiu8qMwr-kyMniQAcneQerxSFU6dazQv7gKlf9ZW3gpWB0_hSYsy2bR5kWewZctdeHSLe3AXdlr588ufz-H7dLNeInS1OSMq8IWtCZxrmzEEtayuOvRoTJYVC_RArLIXi_bUUsnw19UlsmtFGP4FnB18Pd2fea3UgmfiKFl7WcxTjbE_iZzQvvOd1irPHKbORiilfRuqMDUBF1roJM11GGvttEl57pzBnCN6CaNyWdrXwOLI8VzzTDub8tS61HAbiyTnFrGX8IMxxN3cStPykJMcxrXsCs6uZG8USUbBLEWiUcbg9x1XDRXH_V2-dMaTg1UlMWDc33lvYO7-oZilBiTSPIaPnf0lfpS006JKu9xUEsNIQCp5qf-PNpjYiSzAhPXvbTAfDyLaeg3H8KpZV79HwRNMNkMcRTJYcX0DIg4f3imLy5pAHEEpInnx5n9m5wPszE5PjuXx4fzoLTzEO7wpZn8Ho_XNxr5HrLbWe-23-AuLNkHe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+parameterisation+for+multi-scale+image+segmentation+on+multiple+layers&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Dr%C4%83gu%C5%A3%2C+L&rft.au=Csillik%2C+O&rft.au=Eisank%2C+C&rft.au=Tiede%2C+D&rft.date=2014-02-01&rft.issn=0924-2716&rft.volume=88&rft.issue=100&rft.spage=119&rft_id=info:doi/10.1016%2Fj.isprsjprs.2013.11.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |