Automated parameterisation for multi-scale image segmentation on multiple layers

We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool d...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 88; no. 100; pp. 119 - 127
Main Authors Drăguţ, L., Csillik, O., Eisank, C., Tiede, D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2013.11.018

Cover

Loading…
Abstract We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.
AbstractList We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.
We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition registered software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.
We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the eCognition® software. This approach relies on the potential of the local variance (LV) to detect scale transitions in geospatial data. The tool detects the number of layers added to a project and segments them iteratively with a multiresolution segmentation algorithm in a bottom-up approach, where the scale factor in the segmentation, namely, the scale parameter (SP), increases with a constant increment. The average LV value of the objects in all of the layers is computed and serves as a condition for stopping the iterations: when a scale level records an LV value that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the previous level are retained. Three orders of magnitude of SP lags produce a corresponding number of scale levels. Tests on very high resolution imagery provided satisfactory results for generic applicability. The tool has a significant potential for enabling objectivity and automation of GEOBIA analysis.
Author Eisank, C.
Csillik, O.
Tiede, D.
Drăguţ, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Drăguţ
  fullname: Drăguţ, L.
  email: lucian.dragut@cbg.uvt.ro
  organization: Department of Geography, West University of Timişoara, V. Pârvan Blv. 4, 300223 Timişoara, Romania
– sequence: 2
  givenname: O.
  surname: Csillik
  fullname: Csillik, O.
  email: cskovi@yahoo.com
  organization: Department of Geography, West University of Timişoara, V. Pârvan Blv. 4, 300223 Timişoara, Romania
– sequence: 3
  givenname: C.
  surname: Eisank
  fullname: Eisank, C.
  email: clemens.eisank@sbg.ac.at
  organization: Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstraße 30, 5020 Salzburg, Austria
– sequence: 4
  givenname: D.
  surname: Tiede
  fullname: Tiede, D.
  email: dirk.tiede@sbg.ac.at
  organization: Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg, Schillerstraße 30, 5020 Salzburg, Austria
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28212883$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24748723$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URKeFvwDZILFJ8CN2nAVIo4qXVAkWsLZs53rwKImDnanUf1-HDMNjM0i2vLjfubo-516hizGMgNALgiuCiXi9r3yaYtrnW1FMWEVIhYl8hDZENrSUlPELtMEtrUvaEHGJrlLaY4wJF_IJuqR1U2eObdCX7WEOg56hKyYd9QAzRJ_07MNYuBCL4dDPvkxW91D4Qe-gSLAbYJxXJJ-fxJTLvb6HmJ6ix073CZ4d32v07f27rzcfy9vPHz7dbG9LK1gzl62opeGENsxxgx12xuiudaLFlmttMFBNpSU1N9w0sjNUGOOMlXXnnBUNZ9fo7dp3OpgBOptHirpXU8xTxnsVtFd_V0b_Xe3CnWJti2u-NHh1bBDDjwOkWQ0-Weh7PUI4JEWz0UywNtt0DiWSCt5m58l5lDOCMWMSZ_T5nz84jf4rnAy8PAJ6CcBFPVqffnOSEirlwjUrZ2NIKYI7IQSrZV3UXp3WRS3roghReV2y8s0_SuvXZLNlvv8P_XbVQ076zkNUyXoYLXQ-gp1VF_zZHg8W4eP-
CitedBy_id crossref_primary_10_3390_rs15041035
crossref_primary_10_1080_2150704X_2014_930563
crossref_primary_10_3390_app14135488
crossref_primary_10_3390_agronomy11040668
crossref_primary_10_3390_rs12182952
crossref_primary_10_1016_j_ocecoaman_2023_106834
crossref_primary_10_3390_rs14092093
crossref_primary_10_1016_j_fcr_2022_108708
crossref_primary_10_3390_rs9010080
crossref_primary_10_3390_rs16071217
crossref_primary_10_1016_j_jag_2021_102553
crossref_primary_10_1016_j_compag_2025_109897
crossref_primary_10_3390_s21237935
crossref_primary_10_1080_01431161_2018_1508922
crossref_primary_10_1016_j_jag_2016_01_011
crossref_primary_10_1016_j_jag_2019_101956
crossref_primary_10_1109_JSTARS_2019_2911525
crossref_primary_10_3390_rs8030173
crossref_primary_10_3389_feart_2021_633665
crossref_primary_10_1111_arcm_12663
crossref_primary_10_1016_j_isprsjprs_2019_01_007
crossref_primary_10_3390_f8120487
crossref_primary_10_3390_geomatics4020009
crossref_primary_10_1016_j_jclepro_2022_130404
crossref_primary_10_1080_22797254_2019_1699449
crossref_primary_10_1515_forj_2017_0002
crossref_primary_10_1155_2020_8855509
crossref_primary_10_4995_raet_2024_21700
crossref_primary_10_1016_j_isprsjprs_2014_07_002
crossref_primary_10_1109_JSTARS_2016_2536943
crossref_primary_10_3390_ijgi13060214
crossref_primary_10_1016_j_isprsjprs_2022_08_021
crossref_primary_10_1117_1_JRS_11_036011
crossref_primary_10_1016_j_jag_2021_102531
crossref_primary_10_1016_j_isprsjprs_2022_08_024
crossref_primary_10_3390_rs11131615
crossref_primary_10_1016_j_enggeo_2019_105264
crossref_primary_10_1016_j_isprsjprs_2015_09_007
crossref_primary_10_54975_isubuzfd_1150068
crossref_primary_10_1080_01431161_2024_2379515
crossref_primary_10_1007_s10661_021_09641_7
crossref_primary_10_1016_j_future_2023_04_001
crossref_primary_10_1016_j_scitotenv_2019_05_122
crossref_primary_10_1117_1_JRS_16_038504
crossref_primary_10_1080_01431161_2020_1734253
crossref_primary_10_3390_rs6099086
crossref_primary_10_1016_j_ecolind_2022_108989
crossref_primary_10_1051_e3sconf_202340602004
crossref_primary_10_3390_rs11020185
crossref_primary_10_1088_1755_1315_162_1_012039
crossref_primary_10_1007_s12524_017_0685_7
crossref_primary_10_1109_LGRS_2015_2393255
crossref_primary_10_1080_01431161_2018_1466077
crossref_primary_10_1111_nrm_12368
crossref_primary_10_3390_rs13142820
crossref_primary_10_1080_15230406_2014_902755
crossref_primary_10_1007_s12524_019_01081_8
crossref_primary_10_1109_JSTARS_2015_2424457
crossref_primary_10_3390_rs15020494
crossref_primary_10_1007_s11707_022_1033_y
crossref_primary_10_3390_rs11141713
crossref_primary_10_3390_rs11222649
crossref_primary_10_1080_10106049_2022_2071478
crossref_primary_10_1016_j_jenvman_2022_115723
crossref_primary_10_1080_15481603_2018_1495395
crossref_primary_10_3390_rs10091440
crossref_primary_10_3390_rs14246218
crossref_primary_10_3390_ijgi10100693
crossref_primary_10_1109_LGRS_2018_2831914
crossref_primary_10_3390_rs12203424
crossref_primary_10_1007_s10980_020_01189_0
crossref_primary_10_1080_10106049_2023_2256302
crossref_primary_10_3390_rs71215848
crossref_primary_10_1016_j_isprsjprs_2019_02_009
crossref_primary_10_1080_07038992_2020_1850248
crossref_primary_10_1109_JSTARS_2018_2872520
crossref_primary_10_1080_15481603_2016_1250328
crossref_primary_10_1016_j_jag_2019_06_005
crossref_primary_10_1016_j_jas_2020_105251
crossref_primary_10_1080_03736245_2020_1740104
crossref_primary_10_1364_AO_55_008089
crossref_primary_10_3390_rs12111772
crossref_primary_10_3390_rs11192284
crossref_primary_10_1080_01431161_2018_1500071
crossref_primary_10_3390_rs11222627
crossref_primary_10_3390_rs10101622
crossref_primary_10_1109_JSTARS_2020_3029460
crossref_primary_10_3390_su131810192
crossref_primary_10_1016_j_isprsjprs_2015_08_005
crossref_primary_10_1007_s11707_020_0861_x
crossref_primary_10_1117_1_JRS_12_025006
crossref_primary_10_3390_rs11101193
crossref_primary_10_1016_j_jag_2021_102605
crossref_primary_10_1007_s13157_020_01373_7
crossref_primary_10_1016_j_ecolind_2019_105551
crossref_primary_10_3390_app10051881
crossref_primary_10_3390_rs11141725
crossref_primary_10_3390_rs13234819
crossref_primary_10_3390_rs11151750
crossref_primary_10_1016_j_jsames_2022_104090
crossref_primary_10_3389_feart_2023_1301281
crossref_primary_10_1177_0309133314550670
crossref_primary_10_3390_rs14164107
crossref_primary_10_1016_j_enggeo_2021_106000
crossref_primary_10_1016_j_geomorph_2017_05_013
crossref_primary_10_1109_TGRS_2025_3543379
crossref_primary_10_3390_rs10020276
crossref_primary_10_3390_jimaging1010085
crossref_primary_10_1016_j_geomorph_2018_11_021
crossref_primary_10_1111_tgis_12847
crossref_primary_10_3389_feart_2022_790737
crossref_primary_10_1016_j_isprsjprs_2022_03_011
crossref_primary_10_3390_rs12122012
crossref_primary_10_1016_j_rsase_2023_101031
crossref_primary_10_30897_ijegeo_990875
crossref_primary_10_1016_j_jag_2024_104051
crossref_primary_10_1109_ACCESS_2020_3045740
crossref_primary_10_3390_rs70505077
crossref_primary_10_1016_j_isprsjprs_2023_05_024
crossref_primary_10_3390_rs9040333
crossref_primary_10_1007_s12524_022_01661_1
crossref_primary_10_1080_10106049_2023_2195832
crossref_primary_10_3390_rs13030368
crossref_primary_10_1007_s11554_021_01166_z
crossref_primary_10_1016_j_jag_2018_03_001
crossref_primary_10_1016_j_isci_2023_108586
crossref_primary_10_1016_j_ijplas_2023_103618
crossref_primary_10_1016_j_jasrep_2015_12_023
crossref_primary_10_1016_j_tree_2019_03_006
crossref_primary_10_1002_esp_5824
crossref_primary_10_1016_j_aej_2018_10_001
crossref_primary_10_1016_j_envsoft_2018_01_023
crossref_primary_10_1016_j_scitotenv_2020_139423
crossref_primary_10_1111_tgis_12842
crossref_primary_10_1016_j_agsy_2021_103167
crossref_primary_10_3390_fire7090304
crossref_primary_10_3390_rs11030280
crossref_primary_10_3390_rs14051169
crossref_primary_10_1117_1_JRS_12_025010
crossref_primary_10_3390_rs9090939
crossref_primary_10_1109_JSTARS_2022_3228261
crossref_primary_10_3390_rs12030487
crossref_primary_10_1016_j_ecoinf_2024_102594
crossref_primary_10_3390_rs9040358
crossref_primary_10_1016_j_jag_2019_05_002
crossref_primary_10_3390_rs12172725
crossref_primary_10_1016_j_jag_2019_05_004
crossref_primary_10_3390_rs9050486
crossref_primary_10_1016_j_asr_2022_02_051
crossref_primary_10_3390_rs12030485
crossref_primary_10_3390_ijgi4042292
crossref_primary_10_3390_fractalfract5030127
crossref_primary_10_3390_ijgi8020070
crossref_primary_10_1088_1755_1315_865_1_012050
crossref_primary_10_3390_drones8070297
crossref_primary_10_3390_rs13101868
crossref_primary_10_1109_JSTARS_2020_2983439
crossref_primary_10_1016_j_isprsjprs_2015_03_011
crossref_primary_10_1080_17538947_2016_1250828
crossref_primary_10_1007_s11069_023_06186_5
crossref_primary_10_1080_10106049_2018_1489424
crossref_primary_10_3390_rs9050495
crossref_primary_10_1016_j_isprsjprs_2017_06_002
crossref_primary_10_1016_j_isprsjprs_2017_06_001
crossref_primary_10_1016_j_rse_2018_05_006
crossref_primary_10_3390_rs10030438
crossref_primary_10_3390_su12052144
crossref_primary_10_3390_rs15215142
crossref_primary_10_1016_j_jag_2016_07_011
crossref_primary_10_1016_j_asr_2022_10_044
crossref_primary_10_3390_rs11020108
crossref_primary_10_3390_ijgi8010046
crossref_primary_10_1080_15481603_2019_1627062
crossref_primary_10_1016_j_rse_2018_06_043
crossref_primary_10_1016_j_scitotenv_2024_174356
crossref_primary_10_3390_rs11101257
crossref_primary_10_1080_15481603_2018_1426092
crossref_primary_10_1080_01431161_2024_2326800
crossref_primary_10_1080_15481603_2018_1426091
crossref_primary_10_3390_rs12142292
crossref_primary_10_1016_j_isprsjprs_2014_08_010
crossref_primary_10_1080_17538947_2022_2162136
crossref_primary_10_1002_ldr_3775
crossref_primary_10_1016_j_ecolind_2017_04_027
crossref_primary_10_1080_10106049_2019_1573853
crossref_primary_10_3390_rs14143297
crossref_primary_10_1016_j_rse_2018_06_031
crossref_primary_10_3390_rs12030478
crossref_primary_10_3390_rs10122012
crossref_primary_10_1016_j_ecolind_2021_107494
crossref_primary_10_1016_j_catena_2023_106924
crossref_primary_10_1016_j_geomorph_2018_04_011
crossref_primary_10_1016_j_isprsjprs_2016_10_008
crossref_primary_10_1016_j_enggeo_2018_10_004
crossref_primary_10_1080_17538947_2018_1485753
crossref_primary_10_5194_nhess_16_1035_2016
crossref_primary_10_1080_01431161_2023_2227318
crossref_primary_10_1007_s11356_021_12552_2
crossref_primary_10_1007_s11042_021_10824_0
crossref_primary_10_1016_S1002_0160_17_60377_1
crossref_primary_10_1109_JSTARS_2018_2875792
crossref_primary_10_1016_j_rse_2017_10_005
crossref_primary_10_3390_rs11030231
crossref_primary_10_1016_j_ecoinf_2024_102552
crossref_primary_10_1007_s41064_020_00127_8
crossref_primary_10_3390_rs11101238
crossref_primary_10_1080_15481603_2017_1287238
crossref_primary_10_1080_15481603_2018_1504413
crossref_primary_10_1016_j_isprsjprs_2017_11_014
crossref_primary_10_1016_j_isprsjprs_2016_03_014
crossref_primary_10_3390_land10101065
crossref_primary_10_1016_j_ecoinf_2023_102027
crossref_primary_10_1016_j_isprsjprs_2015_01_009
crossref_primary_10_1111_tgis_12795
crossref_primary_10_3390_rs16214106
crossref_primary_10_3390_rs15164062
crossref_primary_10_3390_rs12071081
crossref_primary_10_1080_10106049_2024_2382307
crossref_primary_10_1109_TCSVT_2016_2600261
crossref_primary_10_1007_s12145_020_00493_2
crossref_primary_10_1155_2018_3918954
crossref_primary_10_3390_rs12071088
crossref_primary_10_3390_rs9080805
crossref_primary_10_1007_s10661_022_10514_w
crossref_primary_10_3390_rs9090960
crossref_primary_10_1016_j_rse_2016_03_015
crossref_primary_10_3390_rs11161953
crossref_primary_10_3390_rs70506380
crossref_primary_10_1016_j_rse_2017_11_024
crossref_primary_10_1016_j_rse_2019_111354
crossref_primary_10_1016_j_rse_2019_111591
crossref_primary_10_3390_rs16132479
crossref_primary_10_1080_01431161_2018_1475779
crossref_primary_10_1080_22797254_2021_1879683
crossref_primary_10_3390_rs14112669
crossref_primary_10_3897_natureconservation_52_89639
crossref_primary_10_1080_07038992_2021_1872374
crossref_primary_10_1155_2021_8872947
crossref_primary_10_1016_j_compag_2020_105696
crossref_primary_10_1371_journal_pone_0238165
crossref_primary_10_1080_22797254_2021_1951623
crossref_primary_10_1080_14498596_2023_2217782
crossref_primary_10_3390_ijgi11080420
crossref_primary_10_2139_ssrn_4048201
crossref_primary_10_3390_s21010320
crossref_primary_10_1016_j_isprsjprs_2020_01_002
crossref_primary_10_1007_s12524_015_0532_7
crossref_primary_10_1111_area_12451
crossref_primary_10_1016_j_scitotenv_2025_178368
crossref_primary_10_1016_j_ecoinf_2023_102242
crossref_primary_10_3390_rs10010073
crossref_primary_10_1007_s12524_018_0803_1
crossref_primary_10_3390_rs9030243
crossref_primary_10_3390_app121910029
crossref_primary_10_1016_j_jag_2023_103638
crossref_primary_10_1007_s11001_017_9338_z
crossref_primary_10_3390_rs13132537
crossref_primary_10_1016_j_jag_2022_103137
crossref_primary_10_1109_JSTARS_2020_2996315
crossref_primary_10_3390_su12166458
crossref_primary_10_1109_JSTARS_2016_2538563
crossref_primary_10_3389_fpls_2017_00890
crossref_primary_10_1080_19475705_2020_1833990
crossref_primary_10_1109_JSTARS_2019_2950466
crossref_primary_10_3390_drones5030061
crossref_primary_10_1109_JSTARS_2021_3130038
crossref_primary_10_3390_ijgi5120238
crossref_primary_10_3390_rs9090899
crossref_primary_10_3390_rs15082001
crossref_primary_10_3390_rs13224666
crossref_primary_10_1080_01431161_2017_1325536
crossref_primary_10_3390_rs15143600
crossref_primary_10_1016_j_isprsjprs_2017_08_003
crossref_primary_10_1080_15481603_2018_1502399
crossref_primary_10_1002_arp_1752
crossref_primary_10_1080_07038992_2018_1540297
crossref_primary_10_1080_2150704X_2016_1174348
crossref_primary_10_3390_s19224893
crossref_primary_10_1088_1755_1315_540_1_012090
crossref_primary_10_1016_j_rse_2020_112033
crossref_primary_10_1016_j_jag_2019_03_001
crossref_primary_10_3390_ijgi7110424
crossref_primary_10_1016_j_geomorph_2020_107403
crossref_primary_10_3390_rs9080840
crossref_primary_10_1016_j_earscirev_2023_104631
crossref_primary_10_1080_01431161_2023_2221798
crossref_primary_10_1016_j_isprsjprs_2020_08_004
crossref_primary_10_1080_01431161_2019_1594435
crossref_primary_10_1007_s13204_021_01969_3
crossref_primary_10_3390_rs13040548
crossref_primary_10_1016_j_isprsjprs_2014_12_026
crossref_primary_10_1016_j_isprsjprs_2018_03_006
crossref_primary_10_3390_rs13132508
crossref_primary_10_1016_j_ecolind_2025_113113
crossref_primary_10_1080_19475705_2020_1736190
crossref_primary_10_3390_rs70708300
crossref_primary_10_1109_JSTARS_2023_3257548
crossref_primary_10_3390_ijgi8090398
crossref_primary_10_1016_j_jag_2018_10_009
crossref_primary_10_3390_rs14020326
crossref_primary_10_1016_j_rse_2016_09_013
crossref_primary_10_3390_rs10081193
crossref_primary_10_1109_JSTARS_2024_3373385
crossref_primary_10_3390_rs9030290
crossref_primary_10_3390_rs11242927
crossref_primary_10_1109_TGRS_2025_3544549
crossref_primary_10_3390_rs14081953
crossref_primary_10_1109_LGRS_2022_3140307
crossref_primary_10_3390_rs9121220
crossref_primary_10_1007_s41324_019_00240_w
crossref_primary_10_1080_15481603_2023_2190203
crossref_primary_10_5194_gmd_9_3975_2016
crossref_primary_10_15407_csc_2024_04_050
crossref_primary_10_3390_rs12172792
crossref_primary_10_1016_j_rsase_2022_100766
crossref_primary_10_3390_su14138068
crossref_primary_10_1016_j_isprsjprs_2017_08_011
crossref_primary_10_1080_01431161_2019_1701725
crossref_primary_10_1016_j_isprsjprs_2018_04_010
crossref_primary_10_1109_TGRS_2023_3247697
crossref_primary_10_3390_rs12233887
crossref_primary_10_1080_01431161_2018_1430398
crossref_primary_10_3390_rs10010015
crossref_primary_10_1109_JSTARS_2016_2615073
crossref_primary_10_1016_j_habitatint_2016_11_007
crossref_primary_10_1080_01431161_2017_1390273
crossref_primary_10_1093_forestry_cpz048
crossref_primary_10_1080_17538947_2020_1831087
crossref_primary_10_1016_j_asr_2023_06_033
crossref_primary_10_1016_j_jaridenv_2022_104721
crossref_primary_10_3390_s19051221
crossref_primary_10_1016_j_ecolind_2016_09_029
crossref_primary_10_1080_24699322_2017_1389397
crossref_primary_10_1080_15481603_2020_1819720
crossref_primary_10_1111_tgis_13005
crossref_primary_10_1016_j_rse_2016_11_013
crossref_primary_10_3390_rs10071015
crossref_primary_10_1038_s41598_020_73167_0
crossref_primary_10_3389_fenvs_2022_860365
crossref_primary_10_1088_1755_1315_671_1_012025
crossref_primary_10_1016_j_jag_2016_06_014
crossref_primary_10_3390_rs13071354
crossref_primary_10_1080_01431161_2017_1410297
crossref_primary_10_3390_rs10020285
crossref_primary_10_3390_s19143120
crossref_primary_10_1016_j_envpol_2019_01_024
crossref_primary_10_3390_geosciences11080305
crossref_primary_10_3390_rs10020281
crossref_primary_10_1007_s11045_019_00684_1
crossref_primary_10_1016_j_agwat_2023_108559
crossref_primary_10_1016_j_apgeog_2018_05_016
crossref_primary_10_1007_s11769_017_0874_x
crossref_primary_10_1016_j_ufug_2018_01_021
crossref_primary_10_1016_j_rse_2024_114024
crossref_primary_10_1080_01431161_2018_1500731
crossref_primary_10_1109_LGRS_2016_2586499
crossref_primary_10_1016_j_isprsjprs_2013_11_007
crossref_primary_10_1016_j_jag_2018_11_011
crossref_primary_10_1080_10095020_2024_2439380
crossref_primary_10_1080_01431161_2018_1506592
crossref_primary_10_1080_14498596_2019_1615011
crossref_primary_10_1109_TGRS_2014_2381632
crossref_primary_10_1080_01431161_2018_1528021
crossref_primary_10_3390_rs14195017
crossref_primary_10_1080_10095020_2017_1399674
crossref_primary_10_3390_f11121271
crossref_primary_10_3390_rs70302474
crossref_primary_10_1016_j_rse_2015_11_033
crossref_primary_10_1016_j_isprsjprs_2020_11_013
crossref_primary_10_1016_j_jag_2024_103897
crossref_primary_10_1109_JSTARS_2019_2904297
crossref_primary_10_3390_rs12183096
crossref_primary_10_1016_j_eja_2022_126640
crossref_primary_10_3390_ijgi11100521
crossref_primary_10_3390_rs14174201
crossref_primary_10_1080_01431161_2021_1973686
crossref_primary_10_3390_rs11121409
crossref_primary_10_1016_j_geomorph_2024_109539
crossref_primary_10_3390_ijgi10060420
crossref_primary_10_1016_j_rse_2015_10_001
crossref_primary_10_1080_13658816_2018_1431840
crossref_primary_10_1016_j_rse_2016_12_011
crossref_primary_10_1080_01431161_2021_1998716
crossref_primary_10_3390_land11040543
crossref_primary_10_3390_rs15204920
crossref_primary_10_3390_rs10091468
crossref_primary_10_1080_15481603_2016_1215769
crossref_primary_10_3390_rs8060513
crossref_primary_10_3390_rs11060713
crossref_primary_10_1016_j_jag_2018_06_014
crossref_primary_10_1016_j_ecoinf_2025_103075
crossref_primary_10_1016_j_jenvman_2021_114373
crossref_primary_10_3390_rs8070549
crossref_primary_10_1016_j_ecoinf_2021_101227
crossref_primary_10_1007_s11600_024_01527_9
crossref_primary_10_1007_s12517_019_4879_x
crossref_primary_10_1016_j_ecolind_2024_111838
crossref_primary_10_3389_fevo_2023_1093454
crossref_primary_10_1016_j_compag_2020_105500
crossref_primary_10_1080_22797254_2017_1409083
crossref_primary_10_1109_JSTARS_2016_2539239
crossref_primary_10_3390_rs10091457
crossref_primary_10_3390_rs8020088
crossref_primary_10_1016_j_enggeo_2022_106983
crossref_primary_10_1016_j_isprsjprs_2019_11_009
crossref_primary_10_1016_j_geomorph_2020_107124
crossref_primary_10_3390_app9245393
crossref_primary_10_3390_rs6075976
crossref_primary_10_1515_jogs_2020_0003
crossref_primary_10_1016_j_jag_2022_103163
crossref_primary_10_3390_rs9010040
crossref_primary_10_3390_rs12111711
crossref_primary_10_3390_rs11141678
crossref_primary_10_1109_LGRS_2019_2943406
crossref_primary_10_1016_j_biosystemseng_2018_08_009
crossref_primary_10_1007_s12518_022_00455_x
crossref_primary_10_3390_rs12060961
crossref_primary_10_1109_JSTARS_2018_2833102
crossref_primary_10_1109_JSTARS_2017_2650956
crossref_primary_10_3390_ijerph20054636
crossref_primary_10_3390_rs10111813
crossref_primary_10_3390_ijgi6060157
crossref_primary_10_3390_rs8060455
crossref_primary_10_1080_10106049_2023_2215722
crossref_primary_10_3390_rs8100845
crossref_primary_10_1016_j_jag_2016_04_005
crossref_primary_10_3390_rs11141662
crossref_primary_10_1016_j_jag_2022_103054
crossref_primary_10_14358_PERS_22_00123R2
crossref_primary_10_1016_j_ecoinf_2015_11_011
crossref_primary_10_3390_rs16010039
crossref_primary_10_1080_01431161_2016_1266105
crossref_primary_10_1016_j_scitotenv_2020_138096
crossref_primary_10_1016_j_jag_2023_103431
crossref_primary_10_3390_ijgi7110441
crossref_primary_10_3390_rs8010067
crossref_primary_10_3390_rs11212575
crossref_primary_10_3233_JIFS_179615
crossref_primary_10_3390_rs70809705
crossref_primary_10_1515_ohs_2018_0024
crossref_primary_10_3390_rs12091451
crossref_primary_10_1007_s12524_022_01513_y
crossref_primary_10_3390_rs11060629
crossref_primary_10_1016_j_geomorph_2024_109323
crossref_primary_10_1007_s12145_015_0217_3
crossref_primary_10_3390_rs11182082
crossref_primary_10_1007_s12524_019_01069_4
crossref_primary_10_1016_j_isprsjprs_2017_09_007
crossref_primary_10_3390_ijgi11120585
crossref_primary_10_1007_s00477_023_02648_1
crossref_primary_10_3389_fmars_2022_1096594
crossref_primary_10_3390_urbansci2010002
crossref_primary_10_5194_hess_20_3493_2016
crossref_primary_10_3390_rs12060982
crossref_primary_10_62051_ijcsit_v2n3_15
crossref_primary_10_3390_rs8100814
crossref_primary_10_3390_ijgi10050309
crossref_primary_10_1142_S0218001422540027
crossref_primary_10_3390_rs15010262
crossref_primary_10_3390_drones5020045
crossref_primary_10_1080_10106049_2019_1690056
crossref_primary_10_1117_1_JRS_11_035016
crossref_primary_10_1038_srep38596
crossref_primary_10_3389_fmars_2022_1031417
crossref_primary_10_3390_rs10111820
crossref_primary_10_5194_nhess_15_1087_2015
crossref_primary_10_1109_JSTARS_2021_3078483
crossref_primary_10_1080_01431161_2024_2326044
crossref_primary_10_1016_j_apgeog_2019_04_001
crossref_primary_10_1080_01431161_2015_1065357
crossref_primary_10_14358_PERS_87_7_503
crossref_primary_10_3389_fmars_2023_1126301
Cites_doi 10.1109/LGRS.2010.2101045
10.1016/0034-4257(87)90015-0
10.1080/01431161.2012.692829
10.1080/01431161.2012.747018
10.1109/TGRS.2011.2151866
10.14358/PERS.77.9.933
10.1080/13658810903174803
10.14358/PERS.76.2.193
10.1016/j.rse.2012.08.010
10.1016/j.geomorph.2009.10.004
10.1016/j.isprsjprs.2009.06.004
10.1080/01431161003777189
10.1080/01431160500057764
10.1016/j.rse.2011.11.020
10.1016/j.geomorph.2012.05.024
10.1080/01431160600617194
10.1016/j.cviu.2007.08.003
10.5194/nhess-11-2715-2011
10.1016/j.jag.2012.03.015
10.1016/j.jag.2011.06.005
10.1016/j.isprsjprs.2013.05.003
10.1016/j.isprsjprs.2003.10.002
10.3390/rs5020558
10.1016/j.isprsjprs.2011.09.012
10.1109/LGRS.2008.919622
10.1080/01431161003745608
10.2307/2389612
10.1016/j.rse.2011.05.013
10.1016/j.jag.2011.06.008
10.1080/01431169208904109
10.3390/rs4051310
10.1016/j.geomorph.2011.12.001
10.14358/PERS.76.3.289
10.3390/rs5094163
10.1016/j.geomorph.2011.07.003
10.1016/j.compmedimag.2005.12.001
10.1016/j.isprsjprs.2011.02.006
ContentType Journal Article
Copyright 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
2015 INIST-CNRS
2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
– notice: 2015 INIST-CNRS
– notice: 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved. 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
NPM
8FD
FR3
H8D
KR7
L7M
7X8
7S9
L.6
5PM
DOI 10.1016/j.isprsjprs.2013.11.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
PubMed
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Aerospace Database
MEDLINE - Academic
PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 127
ExternalDocumentID PMC3990455
24748723
28212883
10_1016_j_isprsjprs_2013_11_018
S0924271613002803
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
EFKBS
NPM
8FD
FR3
H8D
KR7
L7M
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c637t-9648b51273f5b0f0fbbad9f690c5aab0e2a28c145b5b78db26bbfbc84dffc6753
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Aug 21 18:14:53 EDT 2025
Fri Jul 11 12:08:20 EDT 2025
Fri Jul 11 07:40:17 EDT 2025
Thu Jul 10 22:33:27 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Wed Apr 02 07:27:33 EDT 2025
Tue Jul 01 03:46:33 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:28:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 100
Keywords GEOBIA
Automation
Object
Representation
Imagery
MRS
algorithms
projects
software
scale factor
Image
Bottom up control
automation
imagery
segmentation
high resolution
Language English
License http://creativecommons.org/licenses/by/4.0
CC BY 4.0
This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-9648b51273f5b0f0fbbad9f690c5aab0e2a28c145b5b78db26bbfbc84dffc6753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271613002803
PMID 24748723
PQID 1531003380
PQPubID 23500
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3990455
proquest_miscellaneous_2101363972
proquest_miscellaneous_1826591871
proquest_miscellaneous_1531003380
pubmed_primary_24748723
pascalfrancis_primary_28212883
crossref_primary_10_1016_j_isprsjprs_2013_11_018
crossref_citationtrail_10_1016_j_isprsjprs_2013_11_018
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2013_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationTitleAlternate ISPRS J Photogramm Remote Sens
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Eisank, Drăguţ, Blaschke (b0065) 2011
Hölbling, Füreder, Antolini, Cigna, Casagli, Lang (b0100) 2012; 4
Lahousse, Chang, Lin (b0130) 2011; 11
Hellesen, Matikainen (b0095) 2013; 5
Zhan, Molenaar, Tempfli, Shi (b0220) 2005; 26
Kim, Madden, Warner (b0115) 2008
Duro, Franklin, Dubé (b0060) 2012; 118
Drăguţ, Eisank (b0050) 2012; 141–142
Whiteside, Boggs, Maier (b0200) 2011; 13
Espindola, Camara, Reis, Bins, Monteiro (b0075) 2006; 27
Laben, Brower (b0230) 2000
O’Neill (b0155) 1986
Shruthi, Kerle, Jetten (b0160) 2011; 134
Beger, Gedrange, Hecht, Neubert (b0025) 2011
Woodcock, Harward (b0210) 1992; 13
Sun, Sun, Chen, Gong (b0170) 2012; 33
Esch, Thiel, Bock, Roth, Dech (b0070) 2008; 5
Van Den Eeckhaut, Kerle, Poesen, Hervás (b0190) 2012; 173–174
Ardila, Bijker, Tolpekin, Stein (b0010) 2012; 15
Zhang, Fritts, Goldman (b0225) 2008; 110
Aguilar, Saldaña, Aguilar (b0005) 2012; 34
Kim, Warner, Madden, Atkinson (b0120) 2011; 32
Martha, Kerle, van Westen, Jetten, Kumar (b0145) 2011; 49
Blaschke (b0035) 2010; 65
Hagenlocher, Lang, Tiede (b0085) 2012; 126
Johnson, Xie (b0110) 2011; 66
Verbeeck, Hermy, Van Orshoven (b0195) 2012; 18
Martha, Kerle, Jetten, van Westen, Kumar (b0140) 2010; 116
Drăguţ, Tiede, Levick (b0055) 2010; 24
Tiede, Lang, Albrecht, Hölbling (b0175) 2010; 76
Baatz, Schäpe (b0020) 2000
Hay, Marceau, Bouchard (b0090) 2002; 34
Benz, Hofmann, Willhauck, Lingenfelder, Heynen (b0030) 2004; 58
Lu, Stumpf, Kerle, Casagli (b0135) 2011; 8
Gao, Mas, Kerle, Navarrete Pacheco (b0080) 2011; 32
Neubert, Herold, Meinel (b0150) 2008
Jakubowski, Li, Guo, Kelly (b0105) 2013; 5
Udupa, Leblanc, Zhuge, Imielinska, Schmidt, Currie, Hirsch, Woodburn (b0185) 2006; 30
Tiede, Lang, Füreder, Hölbling, Hoffmann, Zeil (b0180) 2011; 77
Woodcock, Strahler (b0215) 1987; 21
Arvor, Durieux, Andrés, Laporte (b0015) 2013; 82
Wiens (b0205) 1989; 3
Castilla, Hay (b0040) 2008
Stumpf, Kerle (b0165) 2011; 115
Clinton, Holt, Scarborough, Yan, Gong (b0045) 2010; 76
Ardila (10.1016/j.isprsjprs.2013.11.018_b0010) 2012; 15
Castilla (10.1016/j.isprsjprs.2013.11.018_b0040) 2008
Kim (10.1016/j.isprsjprs.2013.11.018_b0115) 2008
Baatz (10.1016/j.isprsjprs.2013.11.018_b0020) 2000
Drăguţ (10.1016/j.isprsjprs.2013.11.018_b0055) 2010; 24
Wiens (10.1016/j.isprsjprs.2013.11.018_b0205) 1989; 3
Hay (10.1016/j.isprsjprs.2013.11.018_b0090) 2002; 34
Woodcock (10.1016/j.isprsjprs.2013.11.018_b0210) 1992; 13
Lu (10.1016/j.isprsjprs.2013.11.018_b0135) 2011; 8
Woodcock (10.1016/j.isprsjprs.2013.11.018_b0215) 1987; 21
Aguilar (10.1016/j.isprsjprs.2013.11.018_b0005) 2012; 34
Blaschke (10.1016/j.isprsjprs.2013.11.018_b0035) 2010; 65
Stumpf (10.1016/j.isprsjprs.2013.11.018_b0165) 2011; 115
Martha (10.1016/j.isprsjprs.2013.11.018_b0145) 2011; 49
Arvor (10.1016/j.isprsjprs.2013.11.018_b0015) 2013; 82
Jakubowski (10.1016/j.isprsjprs.2013.11.018_b0105) 2013; 5
Udupa (10.1016/j.isprsjprs.2013.11.018_b0185) 2006; 30
Whiteside (10.1016/j.isprsjprs.2013.11.018_b0200) 2011; 13
Benz (10.1016/j.isprsjprs.2013.11.018_b0030) 2004; 58
Laben (10.1016/j.isprsjprs.2013.11.018_b0230) 2000
Lahousse (10.1016/j.isprsjprs.2013.11.018_b0130) 2011; 11
Shruthi (10.1016/j.isprsjprs.2013.11.018_b0160) 2011; 134
Tiede (10.1016/j.isprsjprs.2013.11.018_b0175) 2010; 76
Beger (10.1016/j.isprsjprs.2013.11.018_b0025) 2011
Espindola (10.1016/j.isprsjprs.2013.11.018_b0075) 2006; 27
Hellesen (10.1016/j.isprsjprs.2013.11.018_b0095) 2013; 5
Zhang (10.1016/j.isprsjprs.2013.11.018_b0225) 2008; 110
Johnson (10.1016/j.isprsjprs.2013.11.018_b0110) 2011; 66
Drăguţ (10.1016/j.isprsjprs.2013.11.018_b0050) 2012; 141–142
Duro (10.1016/j.isprsjprs.2013.11.018_b0060) 2012; 118
Gao (10.1016/j.isprsjprs.2013.11.018_b0080) 2011; 32
Hagenlocher (10.1016/j.isprsjprs.2013.11.018_b0085) 2012; 126
Martha (10.1016/j.isprsjprs.2013.11.018_b0140) 2010; 116
Neubert (10.1016/j.isprsjprs.2013.11.018_b0150) 2008
Van Den Eeckhaut (10.1016/j.isprsjprs.2013.11.018_b0190) 2012; 173–174
Esch (10.1016/j.isprsjprs.2013.11.018_b0070) 2008; 5
Zhan (10.1016/j.isprsjprs.2013.11.018_b0220) 2005; 26
O’Neill (10.1016/j.isprsjprs.2013.11.018_b0155) 1986
Tiede (10.1016/j.isprsjprs.2013.11.018_b0180) 2011; 77
Hölbling (10.1016/j.isprsjprs.2013.11.018_b0100) 2012; 4
Sun (10.1016/j.isprsjprs.2013.11.018_b0170) 2012; 33
Kim (10.1016/j.isprsjprs.2013.11.018_b0120) 2011; 32
Verbeeck (10.1016/j.isprsjprs.2013.11.018_b0195) 2012; 18
Clinton (10.1016/j.isprsjprs.2013.11.018_b0045) 2010; 76
Eisank (10.1016/j.isprsjprs.2013.11.018_b0065) 2011
References_xml – volume: 27
  start-page: 3035
  year: 2006
  end-page: 3040
  ident: b0075
  article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
  publication-title: Int. J. Remote Sens.
– volume: 30
  start-page: 75
  year: 2006
  end-page: 87
  ident: b0185
  article-title: A framework for evaluating image segmentation algorithms
  publication-title: Comput. Med. Imaging Graph.
– start-page: 12
  year: 2000
  end-page: 23
  ident: b0020
  article-title: Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation
  publication-title: Angew. Geogr. Info. verarbeitung
– year: 2000
  ident: b0230
  article-title: Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: b0060
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
– volume: 126
  start-page: 27
  year: 2012
  end-page: 38
  ident: b0085
  article-title: Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery
  publication-title: Remote Sens. Environ.
– start-page: 769
  year: 2008
  end-page: 784
  ident: b0150
  article-title: Assessing image segmentation quality-concepts, methods and applications
  publication-title: Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sens. Applications
– start-page: 91
  year: 2008
  end-page: 110
  ident: b0040
  article-title: Image objects and geographic objects
  publication-title: Object-Based Image Analysis
– volume: 76
  start-page: 193
  year: 2010
  end-page: 202
  ident: b0175
  article-title: Object-based class modeling for cadastre-constrained delineation of Geo-objects
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 18
  start-page: 428
  year: 2012
  end-page: 435
  ident: b0195
  article-title: External geo-information in the segmentation of VHR imagery improves the detection of imperviousness in urban neighborhoods
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 65
  start-page: 2
  year: 2010
  end-page: 16
  ident: b0035
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sen.
– start-page: 291
  year: 2008
  end-page: 307
  ident: b0115
  article-title: Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery
  publication-title: Object-Based Image Analysis-Spatial concepts for knowledge driven remote Sensing applications
– volume: 110
  start-page: 260
  year: 2008
  end-page: 280
  ident: b0225
  article-title: Image segmentation evaluation: a survey of unsupervised methods
  publication-title: Comput. Vis. Image Underst.
– volume: 5
  start-page: 558
  year: 2013
  end-page: 583
  ident: b0095
  article-title: An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages
  publication-title: Remote Sens.
– year: 1986
  ident: b0155
  article-title: A Hierarchical Concept of Ecosystems
– volume: 32
  start-page: 2825
  year: 2011
  end-page: 2850
  ident: b0120
  article-title: Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects
  publication-title: Int. J. Remote Sens.
– volume: 21
  start-page: 311
  year: 1987
  end-page: 332
  ident: b0215
  article-title: The factor of scale in remote-Sens.
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 239
  year: 2004
  end-page: 258
  ident: b0030
  article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
  publication-title: ISPRS J. Photogramm. Remote Sen.
– volume: 32
  start-page: 3747
  year: 2011
  end-page: 3763
  ident: b0080
  article-title: Optimal region growing segmentation and its effect on classification accuracy
  publication-title: Int. J. Remote Sens.
– volume: 134
  start-page: 260
  year: 2011
  end-page: 268
  ident: b0160
  article-title: Object-based gully feature extraction using high spatial resolution imagery
  publication-title: Geomorphology
– volume: 82
  start-page: 125
  year: 2013
  end-page: 137
  ident: b0015
  article-title: Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective
  publication-title: ISPRS J. Photogramm. Remote Sen.
– volume: 76
  start-page: 289
  year: 2010
  end-page: 299
  ident: b0045
  article-title: Accuracy assessment measures for object-based image segmentation goodness
  publication-title: Photogramm. Eng. Remote Sen.
– volume: 34
  start-page: 532
  year: 2002
  end-page: 535
  ident: b0090
  article-title: Modeling multi-scale landscape structure within a hierarchical scale-space framework
  publication-title: Int Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 5
  start-page: 4163
  year: 2013
  end-page: 4186
  ident: b0105
  article-title: Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches
  publication-title: Remote Sens.
– volume: 15
  start-page: 57
  year: 2012
  end-page: 69
  ident: b0010
  article-title: Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 24
  start-page: 859
  year: 2010
  end-page: 871
  ident: b0055
  article-title: ESP: a tool to estimate scale parameters for multiresolution image segmentation of remotely sensed data
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 8
  start-page: 701
  year: 2011
  end-page: 705
  ident: b0135
  article-title: Object-oriented change detection for landslide rapid mapping
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 5
  start-page: 463
  year: 2008
  end-page: 467
  ident: b0070
  article-title: Improvement of image segmentation accuracy based on multiscale optimization procedure
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 116
  start-page: 24
  year: 2010
  end-page: 36
  ident: b0140
  article-title: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods
  publication-title: Geomorphology
– start-page: 125
  year: 2011
  end-page: 128
  ident: b0065
  article-title: A generic procedure for semantics-oriented landform classification using object-based image analysis
  publication-title: Geomorphometry 2011
– volume: 173–174
  start-page: 30
  year: 2012
  end-page: 42
  ident: b0190
  article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data
  publication-title: Geomorphology
– volume: 66
  start-page: 473
  year: 2011
  end-page: 483
  ident: b0110
  article-title: Unsupervised image segmentation evaluation and refinement using a multi-scale approach
  publication-title: ISPRS J. Photogramm. Remote Sen.
– volume: 49
  start-page: 4928
  year: 2011
  end-page: 4943
  ident: b0145
  article-title: Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 3
  start-page: 385
  year: 1989
  end-page: 397
  ident: b0205
  article-title: Spatial scaling in ecology
  publication-title: Funct. Ecol.
– volume: 4
  start-page: 1310
  year: 2012
  end-page: 1336
  ident: b0100
  article-title: A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories
  publication-title: Remote Sens.
– volume: 33
  start-page: 6854
  year: 2012
  end-page: 6875
  ident: b0170
  article-title: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
– volume: 13
  start-page: 884
  year: 2011
  end-page: 893
  ident: b0200
  article-title: Comparing object-based and pixel-based classifications for mapping Savannas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 26
  start-page: 2953
  year: 2005
  end-page: 2974
  ident: b0220
  article-title: Quality assessment for geo-spatial objects derived from remotely sensed data
  publication-title: Int. J. Remote Sens.
– start-page: S40
  year: 2011
  end-page: S51
  ident: b0025
  article-title: Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction
  publication-title: ISPRS J. Photogramm. Remote Sen. 66
– volume: 141–142
  start-page: 21
  year: 2012
  end-page: 33
  ident: b0050
  article-title: Automated object-based classification of topography from SRTM data
  publication-title: Geomorphology
– volume: 77
  start-page: 933
  year: 2011
  end-page: 942
  ident: b0180
  article-title: Automated damage indication for rapid geospatial reporting. An operational object-based approach to damage density mapping following the 2010 Haiti earthquake
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 13
  start-page: 3167
  year: 1992
  end-page: 3187
  ident: b0210
  article-title: Nested-hierarchical scene models and image segmentation
  publication-title: Int. J. Remote Sens.
– volume: 115
  start-page: 2564
  year: 2011
  end-page: 2577
  ident: b0165
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 2715
  year: 2011
  end-page: 2726
  ident: b0130
  article-title: Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed
  publication-title: Taiwan. Nat. Hazards Earth Sys. Sci.
– volume: 34
  start-page: 2583
  year: 2012
  end-page: 2606
  ident: b0005
  article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments
  publication-title: Int. J. Remote Sens.
– volume: 8
  start-page: 701
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0135
  article-title: Object-oriented change detection for landslide rapid mapping
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2101045
– volume: 21
  start-page: 311
  issue: 3
  year: 1987
  ident: 10.1016/j.isprsjprs.2013.11.018_b0215
  article-title: The factor of scale in remote-Sens.
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90015-0
– volume: 33
  start-page: 6854
  issue: 21
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0170
  article-title: Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.692829
– volume: 34
  start-page: 2583
  issue: 7
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0005
  article-title: GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.747018
– start-page: 769
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.11.018_b0150
  article-title: Assessing image segmentation quality-concepts, methods and applications
– volume: 49
  start-page: 4928
  issue: 12
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0145
  article-title: Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2151866
– volume: 77
  start-page: 933
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0180
  article-title: Automated damage indication for rapid geospatial reporting. An operational object-based approach to damage density mapping following the 2010 Haiti earthquake
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.77.9.933
– volume: 24
  start-page: 859
  issue: 6
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.11.018_b0055
  article-title: ESP: a tool to estimate scale parameters for multiresolution image segmentation of remotely sensed data
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810903174803
– volume: 76
  start-page: 193
  issue: 2
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.11.018_b0175
  article-title: Object-based class modeling for cadastre-constrained delineation of Geo-objects
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.76.2.193
– volume: 126
  start-page: 27
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0085
  article-title: Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.010
– year: 2000
  ident: 10.1016/j.isprsjprs.2013.11.018_b0230
– volume: 116
  start-page: 24
  issue: 1–2
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.11.018_b0140
  article-title: Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.10.004
– volume: 65
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.11.018_b0035
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sen.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 32
  start-page: 3747
  issue: 13
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0080
  article-title: Optimal region growing segmentation and its effect on classification accuracy
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161003777189
– volume: 26
  start-page: 2953
  issue: 14
  year: 2005
  ident: 10.1016/j.isprsjprs.2013.11.018_b0220
  article-title: Quality assessment for geo-spatial objects derived from remotely sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500057764
– volume: 118
  start-page: 259
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0060
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 173–174
  start-page: 30
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0190
  article-title: Object-oriented identification of forested landslides with derivatives of single pulse LiDAR data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.05.024
– volume: 27
  start-page: 3035
  issue: 14
  year: 2006
  ident: 10.1016/j.isprsjprs.2013.11.018_b0075
  article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600617194
– volume: 110
  start-page: 260
  issue: 2
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.11.018_b0225
  article-title: Image segmentation evaluation: a survey of unsupervised methods
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.08.003
– volume: 11
  start-page: 2715
  issue: 10
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0130
  article-title: Landslide mapping with multi-scale object-based image analysis – a case study in the Baichi watershed
  publication-title: Taiwan. Nat. Hazards Earth Sys. Sci.
  doi: 10.5194/nhess-11-2715-2011
– volume: 18
  start-page: 428
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0195
  article-title: External geo-information in the segmentation of VHR imagery improves the detection of imperviousness in urban neighborhoods
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2012.03.015
– volume: 15
  start-page: 57
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0010
  article-title: Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2011.06.005
– volume: 82
  start-page: 125
  year: 2013
  ident: 10.1016/j.isprsjprs.2013.11.018_b0015
  article-title: Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective
  publication-title: ISPRS J. Photogramm. Remote Sen.
  doi: 10.1016/j.isprsjprs.2013.05.003
– volume: 34
  start-page: 532
  issue: 4
  year: 2002
  ident: 10.1016/j.isprsjprs.2013.11.018_b0090
  article-title: Modeling multi-scale landscape structure within a hierarchical scale-space framework
  publication-title: Int Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 58
  start-page: 239
  issue: 3–4
  year: 2004
  ident: 10.1016/j.isprsjprs.2013.11.018_b0030
  article-title: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
  publication-title: ISPRS J. Photogramm. Remote Sen.
  doi: 10.1016/j.isprsjprs.2003.10.002
– volume: 5
  start-page: 558
  issue: 2
  year: 2013
  ident: 10.1016/j.isprsjprs.2013.11.018_b0095
  article-title: An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages
  publication-title: Remote Sens.
  doi: 10.3390/rs5020558
– start-page: 291
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.11.018_b0115
  article-title: Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery
– start-page: S40
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0025
  article-title: Data fusion of extremely high resolution aerial imagery and LiDAR data for automated railroad centre line reconstruction
  publication-title: ISPRS J. Photogramm. Remote Sen. 66
  doi: 10.1016/j.isprsjprs.2011.09.012
– volume: 5
  start-page: 463
  issue: 3
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.11.018_b0070
  article-title: Improvement of image segmentation accuracy based on multiscale optimization procedure
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.919622
– volume: 32
  start-page: 2825
  issue: 10
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0120
  article-title: Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161003745608
– volume: 3
  start-page: 385
  issue: 4
  year: 1989
  ident: 10.1016/j.isprsjprs.2013.11.018_b0205
  article-title: Spatial scaling in ecology
  publication-title: Funct. Ecol.
  doi: 10.2307/2389612
– volume: 115
  start-page: 2564
  issue: 10
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0165
  article-title: Object-oriented mapping of landslides using Random Forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.013
– volume: 13
  start-page: 884
  issue: 6
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0200
  article-title: Comparing object-based and pixel-based classifications for mapping Savannas
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2011.06.008
– volume: 13
  start-page: 3167
  issue: 16
  year: 1992
  ident: 10.1016/j.isprsjprs.2013.11.018_b0210
  article-title: Nested-hierarchical scene models and image segmentation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904109
– start-page: 125
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0065
  article-title: A generic procedure for semantics-oriented landform classification using object-based image analysis
– volume: 4
  start-page: 1310
  issue: 5
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0100
  article-title: A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories
  publication-title: Remote Sens.
  doi: 10.3390/rs4051310
– start-page: 91
  year: 2008
  ident: 10.1016/j.isprsjprs.2013.11.018_b0040
  article-title: Image objects and geographic objects
– start-page: 12
  year: 2000
  ident: 10.1016/j.isprsjprs.2013.11.018_b0020
  article-title: Multiresolution segmentation-an optimization approach for high quality multi-scale image segmentation
– volume: 141–142
  start-page: 21
  year: 2012
  ident: 10.1016/j.isprsjprs.2013.11.018_b0050
  article-title: Automated object-based classification of topography from SRTM data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.001
– volume: 76
  start-page: 289
  issue: 3
  year: 2010
  ident: 10.1016/j.isprsjprs.2013.11.018_b0045
  article-title: Accuracy assessment measures for object-based image segmentation goodness
  publication-title: Photogramm. Eng. Remote Sen.
  doi: 10.14358/PERS.76.3.289
– volume: 5
  start-page: 4163
  issue: 9
  year: 2013
  ident: 10.1016/j.isprsjprs.2013.11.018_b0105
  article-title: Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches
  publication-title: Remote Sens.
  doi: 10.3390/rs5094163
– volume: 134
  start-page: 260
  issue: 3–4
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0160
  article-title: Object-based gully feature extraction using high spatial resolution imagery
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.07.003
– volume: 30
  start-page: 75
  issue: 2
  year: 2006
  ident: 10.1016/j.isprsjprs.2013.11.018_b0185
  article-title: A framework for evaluating image segmentation algorithms
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.12.001
– volume: 66
  start-page: 473
  issue: 4
  year: 2011
  ident: 10.1016/j.isprsjprs.2013.11.018_b0110
  article-title: Unsupervised image segmentation evaluation and refinement using a multi-scale approach
  publication-title: ISPRS J. Photogramm. Remote Sen.
  doi: 10.1016/j.isprsjprs.2011.02.006
– year: 1986
  ident: 10.1016/j.isprsjprs.2013.11.018_b0155
SSID ssj0001568
Score 2.5877504
Snippet We introduce a new automated approach to parameterising multi-scale image segmentation of multiple layers, and we implemented it as a generic tool for the...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms algorithms
Animal, plant and microbial ecology
Applied geophysics
Automated
Automation
Biological and medical sciences
Computer programs
computer software
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
GEOBIA
Image segmentation
Imagery
Internal geophysics
Iterative methods
MRS
Object
Representation
Segmentation
Segments
Software
spatial data
Teledetection and vegetation maps
variance
Title Automated parameterisation for multi-scale image segmentation on multiple layers
URI https://dx.doi.org/10.1016/j.isprsjprs.2013.11.018
https://www.ncbi.nlm.nih.gov/pubmed/24748723
https://www.proquest.com/docview/1531003380
https://www.proquest.com/docview/1826591871
https://www.proquest.com/docview/2101363972
https://pubmed.ncbi.nlm.nih.gov/PMC3990455
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6axgHQhGD8KoPKSFyzJrEdJ9yqaVMBMSHBpN0i27FZpjWtlvawy_72vZcf3YIGOyA1hzbPiuvn-H1Pfv4-gE-u8NqSTGpsM5Iw8yrQkpsAobi2XHFlGpKk78fJ7ER8PZWnW3DQn4Whsspu7W_X9Ga17n6ZdKM5WZbl5GeIqUOMcJ82ZEhjiU6wC0WzfP_6tswjao_DkXFA1oMar7JeXtbneFGNF98nOk9S_7g_Qu0sdY3j5lvBi_sQ6Z-FlXci1dFzeNZBTDZt_8UL2HLVLjy9Qzy4C4877fOzq5fwY7peLRC3uoIRD_jcNezNjcMYIlrWlBwG1CfHyjkuP6x2v-fdkaWK4acvSmQXmgD8Kzg5Ovx1MAs6nYXAJlytgiwRqcHAr7iXJvShN0YXmce82UqtTehiHac2EtJIo9LCxIkx3thUFN5bTDj4a9iuFpV7CyzhXhRGZMa7VKTOp1a4RKpCOAReMoxGkPRjm9uOhJy0MC7yvtrsPN84JSenYIqSo1NGEG4aLlsejoebfO6dlw-mVI7R4uHG44G7Nw_FFDUiheYRfOz9n-MbSdssunKLdZ1jDIlIIi8N_2GDWZ3MIsxW_26DyXjEad81HsGbdl7d9kIozDRj7IUazLiNAbGGD-9U5VnDHo6IFGG8fPc_o7MHT_CbaKvX38P26nLtPiA4W5lx8_aN4dH0y7fZ8Q3Lhj8t
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aEghKC8lkcxEtewedh5cFtVVFvarpBopd4s27HbVN3sqtk98O-ZyYsGFXpA2lw2tuJ4nJlv5PH3AXyyuVOGZFJDk5GEmUs8JSLtIRRXJkqiRNckSSfzeHbGv52L8y3Y787CUFll6_sbn1576_afSTubk1VRTH74mDqECPdpQ4Y0lh7ANrFTiRFsTw-PZvPeIQfNiThq71GHQZlXUa1uqiu8qMwr-kyMniQAcneQerxSFU6dazQv7gKlf9ZW3gpWB0_hSYsy2bR5kWewZctdeHSLe3AXdlr588ufz-H7dLNeInS1OSMq8IWtCZxrmzEEtayuOvRoTJYVC_RArLIXi_bUUsnw19UlsmtFGP4FnB18Pd2fea3UgmfiKFl7WcxTjbE_iZzQvvOd1irPHKbORiilfRuqMDUBF1roJM11GGvttEl57pzBnCN6CaNyWdrXwOLI8VzzTDub8tS61HAbiyTnFrGX8IMxxN3cStPykJMcxrXsCs6uZG8USUbBLEWiUcbg9x1XDRXH_V2-dMaTg1UlMWDc33lvYO7-oZilBiTSPIaPnf0lfpS006JKu9xUEsNIQCp5qf-PNpjYiSzAhPXvbTAfDyLaeg3H8KpZV79HwRNMNkMcRTJYcX0DIg4f3imLy5pAHEEpInnx5n9m5wPszE5PjuXx4fzoLTzEO7wpZn8Ho_XNxr5HrLbWe-23-AuLNkHe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+parameterisation+for+multi-scale+image+segmentation+on+multiple+layers&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Dr%C4%83gu%C5%A3%2C+L&rft.au=Csillik%2C+O&rft.au=Eisank%2C+C&rft.au=Tiede%2C+D&rft.date=2014-02-01&rft.issn=0924-2716&rft.volume=88&rft.issue=100&rft.spage=119&rft_id=info:doi/10.1016%2Fj.isprsjprs.2013.11.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon