Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies

Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are expla...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 18; no. Suppl 10; pp. 402 - 50
Main Authors Abdellah, Marwan, Hernando, Juan, Antille, Nicolas, Eilemann, Stefan, Markram, Henry, Schürmann, Felix
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.09.2017
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-017-1788-4

Cover

Loading…
Abstract Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation
AbstractList We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. Modelling and Simulation.
Abstract Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation
Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation
We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.BACKGROUNDWe present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.RESULTSOur pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.CONCLUSIONA systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.Modelling and Simulation.AMS SUBJECT CLASSIFICATIONModelling and Simulation.
Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation
ArticleNumber 402
Audience Academic
Author Markram, Henry
Abdellah, Marwan
Eilemann, Stefan
Hernando, Juan
Antille, Nicolas
Schürmann, Felix
Author_xml – sequence: 1
  givenname: Marwan
  surname: Abdellah
  fullname: Abdellah, Marwan
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Juan
  surname: Hernando
  fullname: Hernando, Juan
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Nicolas
  surname: Antille
  fullname: Antille, Nicolas
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Stefan
  surname: Eilemann
  fullname: Eilemann, Stefan
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Henry
  surname: Markram
  fullname: Markram, Henry
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Felix
  surname: Schürmann
  fullname: Schürmann, Felix
  email: felix.schuermann@epfl.ch
  organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28929974$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNURH_gAdigSGxgkWIncWxvkKqKn5EqIRVYWx7bSV157MF2RgzPwENzM2lhpgLiRaLr75zY957T4sgHb4riOUbnGLPuTcI1I7xCmFaYMla1j4oT3FJc1RiRo73v4-I0pVsEIEPkSXFcM15zTtuT4ue1UcGnHEeVbfCl9Lrc2DRKZ3_IXSX0pZNxMFVS0plyE9y4MjlaVa6CNi5NgDdBhZgtEKWyUY02p7IPsVzfbNNUddtq7eSY7BIsrC-TdVaFMqxnTcqjtiY9LR730iXz7O59Vnx9_-7L5cfq6tOHxeXFVaW6huaK1xLhjrUdVR3XcCUtuZKUak0II8uuw7XimCiCtGl4U7cGG9hXuuas0bxtzorF7KuDvBXraFcybkWQVuwKIQ5CTrdxRvAlVwr1RPZN3zLWswZRSaXqW72Uimjwejt7rcflymhlfI7SHZge7nh7I4awEaRDXY0pGLy6M4jh22hSFiublHFOQlfHJDBvMeItPIC-fIDehjF6aNVEtZx3hDV_qAHmJazvA_xXTabigiCOOGO4A-r8LxQsbVYwGm96C_UDwesDATDZfM8DTDWJxefrQ_bFflN-d-M-dwDQGVAxpBRNL5TNu7zBKawTGIkp4WJOuIDgiinhYlLiB8p78_9p6lmTgPWDiXt9-6foFz_bD2k
CitedBy_id crossref_primary_10_3389_fninf_2022_953930
crossref_primary_10_1093_bioinformatics_btab280
crossref_primary_10_3389_fnins_2018_00664
crossref_primary_10_1093_cercor_bhy339
crossref_primary_10_1093_bib_bbae393
crossref_primary_10_1093_bioinformatics_bty231
Cites_doi 10.1038/nprot.2014.123
10.1016/j.jsb.2006.10.023
10.1117/1.2815693
10.1007/978-3-319-12084-3_16
10.1016/j.neuron.2007.03.025
10.1038/nrn1848
10.1109/TVCG.2011.55
10.1073/pnas.1232232100
10.1117/1.JBO.19.7.075001
10.1016/j.procs.2011.12.015
10.1145/37401.37427
10.1038/nature05127
10.1016/j.cell.2015.09.029
10.3389/fnana.2013.00015
10.1147/rd.521.0043
10.1145/1111411.1111424
10.1016/j.neucom.2007.02.016
10.1111/j.1467-8659.2006.01000.x
10.1088/978-1-6270-5612-0
10.1016/S0097-8493(00)00038-8
10.1017/S143192760303040X
10.1145/2487228.2487237
10.1186/s12859-016-1444-4
10.1016/0097-8493(93)90006-U
10.1109/PCCGA.2004.1348333
10.3389/fncir.2015.00044
10.1109/BioVis.2012.6378589
10.1016/0895-6111(90)90105-K
10.1016/j.jphysparis.2009.11.009
10.1186/1471-2105-16-S11-S8
10.1109/99.660313
10.1007/s12021-015-9270-9
10.1007/s12021-009-9052-3
10.1038/nature08537
10.1109/38.626973
10.1007/s12021-008-9030-1
10.1038/nmeth.2450
10.1073/pnas.1017210108
10.1145/1882262.1866201
10.1002/cne.10118
10.1109/EMBC.2013.6610903
ContentType Journal Article
Copyright The Author(s) 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s) 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-017-1788-4
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 50
ExternalDocumentID oai_doaj_org_article_9b9cc0f5af3f488f8307a7acf4dbac5d
PMC5606217
A509098816
28929974
10_1186_s12859_017_1788_4
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
AHSBF
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c637t-92a0168467c69d780da9ca77dd5585b6612c915c50de39324e1eca7cd2983d943
IEDL.DBID C6C
ISSN 1471-2105
IngestDate Wed Aug 27 01:29:42 EDT 2025
Thu Aug 21 18:16:03 EDT 2025
Fri Sep 05 10:15:02 EDT 2025
Fri Jul 25 19:22:23 EDT 2025
Tue Jun 17 21:29:54 EDT 2025
Tue Jun 10 20:35:59 EDT 2025
Fri Jun 27 05:02:21 EDT 2025
Mon Jul 21 05:26:57 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Tue Jul 01 03:38:24 EDT 2025
Sat Sep 06 07:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 10
Keywords Polygonal and volumetric models
Neocortical brain models
Modeling and simulation
In silico neuroscience
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-92a0168467c69d780da9ca77dd5585b6612c915c50de39324e1eca7cd2983d943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1186/s12859-017-1788-4
PMID 28929974
PQID 1944996583
PQPubID 44065
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_9b9cc0f5af3f488f8307a7acf4dbac5d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5606217
proquest_miscellaneous_1941094444
proquest_journals_1944996583
gale_infotracmisc_A509098816
gale_infotracacademiconefile_A509098816
gale_incontextgauss_ISR_A509098816
pubmed_primary_28929974
crossref_citationtrail_10_1186_s12859_017_1788_4
crossref_primary_10_1186_s12859_017_1788_4
springer_journals_10_1186_s12859_017_1788_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170913
PublicationDateYYYYMMDD 2017-09-13
PublicationDate_xml – month: 9
  year: 2017
  text: 20170913
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References J Kozloski (1788_CR13) 2008; 52
S Lasserre (1788_CR14) 2012; 18
1788_CR52
I Llamas (1788_CR23) 2007
1788_CR55
H Markram (1788_CR4) 2006; 7
1788_CR15
S Fang (1788_CR47) 2000; 24
1788_CR17
B Di Ventura (1788_CR3) 2006; 443
E Eisemann (1788_CR48) 2008
B Torben-Nielsen (1788_CR38) 2008; 71
M Oberlaender (1788_CR34) 2007; 12
M Halavi (1788_CR36) 2008; 6
DE Donohue (1788_CR37) 2002
M Kazhdan (1788_CR42) 2013; 32
D Cohen-Or (1788_CR20) 1997; 17
RA Koene (1788_CR12) 2009; 7
M Abdellah (1788_CR29) 2017; 18
Amsterdam Blender Institute (1788_CR30) 2016
D Cai (1788_CR56) 2013; 10
S Chemla (1788_CR18) 2010; 104
X Zhu (1788_CR21) 2013; 56
P Gleeson (1788_CR26) 2007; 54
A Berndt (1788_CR33) 2011; 108
1788_CR22
H Markram (1788_CR10) 2015; 163
C Stosiek (1788_CR19) 2003; 100
BR Kent (1788_CR45) 2015
J Brito (1788_CR27) 2013; 7
H Peng (1788_CR11) 2015; 13
M Abdellah (1788_CR16) 2015
K Sanbonmatsu (1788_CR5) 2007; 157
P Cignoni (1788_CR53) 2008; 73
M Abdellah (1788_CR28) 2015; 16
1788_CR32
H Pawelzik (1788_CR41) 2002; 443
H Markram (1788_CR6) 2011; 7
M Wilson (1788_CR24) 1988
1788_CR39
M Pharr (1788_CR54) 2010
C Koch (1788_CR1) 1998
DH Geschwind (1788_CR2) 2009; 461
R Tomer (1788_CR31) 2014; 9
W He (1788_CR35) 2003; 9
S Burtsev (1788_CR50) 1993; 17
Blender Online Community (1788_CR46) 2016
JR Glaser (1788_CR25) 1990; 14
1788_CR40
1788_CR43
1788_CR44
1788_CR49
1788_CR7
1788_CR9
L Dagum (1788_CR51) 1998; 5
MB Moser (1788_CR8) 2014
References_xml – volume: 9
  start-page: 1682
  issue: 7
  year: 2014
  ident: 1788_CR31
  publication-title: Nat Protocols
  doi: 10.1038/nprot.2014.123
– volume: 157
  start-page: 470
  issue: 3
  year: 2007
  ident: 1788_CR5
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.10.023
– volume: 73
  start-page: 6
  issue: 45-46
  year: 2008
  ident: 1788_CR53
  publication-title: Ercim News
– volume: 12
  start-page: 064029
  issue: 6
  year: 2007
  ident: 1788_CR34
  publication-title: J Biomed Opt
  doi: 10.1117/1.2815693
– volume-title: Physically Based Rendering, Second Edition: From Theory To Implementation
  year: 2010
  ident: 1788_CR54
– ident: 1788_CR7
  doi: 10.1007/978-3-319-12084-3_16
– volume: 54
  start-page: 219
  issue: 2
  year: 2007
  ident: 1788_CR26
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.025
– volume: 7
  start-page: 153
  issue: 2
  year: 2006
  ident: 1788_CR4
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1848
– volume-title: GENESIS: A system for simulating neural networks. in advances in neural network information processing systems
  year: 1988
  ident: 1788_CR24
– volume: 18
  start-page: 214
  issue: 2
  year: 2012
  ident: 1788_CR14
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2011.55
– volume: 100
  start-page: 7319
  issue: 12
  year: 2003
  ident: 1788_CR19
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1232232100
– ident: 1788_CR32
  doi: 10.1117/1.JBO.19.7.075001
– volume-title: Computational Neuroanatomy
  year: 2002
  ident: 1788_CR37
– volume-title: Proceedings of Graphics Interface 2008
  year: 2008
  ident: 1788_CR48
– volume: 7
  start-page: 39
  year: 2011
  ident: 1788_CR6
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2011.12.015
– ident: 1788_CR43
  doi: 10.1145/37401.37427
– volume: 443
  start-page: 527
  issue: 7111
  year: 2006
  ident: 1788_CR3
  publication-title: Nature
  doi: 10.1038/nature05127
– volume-title: The Future of the Brain: Essays by the World’s Leading Neuroscientists
  year: 2014
  ident: 1788_CR8
– volume: 163
  start-page: 456
  issue: 2
  year: 2015
  ident: 1788_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– ident: 1788_CR40
  doi: 10.3389/fnana.2013.00015
– volume: 52
  start-page: 43
  issue: 1.2
  year: 2008
  ident: 1788_CR13
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.521.0043
– ident: 1788_CR39
  doi: 10.1145/1111411.1111424
– volume: 71
  start-page: 963
  issue: 4
  year: 2008
  ident: 1788_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.02.016
– ident: 1788_CR44
  doi: 10.1111/j.1467-8659.2006.01000.x
– volume-title: 3D Scientific Visualization with Blender
  year: 2015
  ident: 1788_CR45
  doi: 10.1088/978-1-6270-5612-0
– volume-title: Methods in Neuronal Modeling: from Ions to Networks
  year: 1998
  ident: 1788_CR1
– volume: 7
  start-page: 15
  year: 2013
  ident: 1788_CR27
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2013.00015
– volume-title: Eurographics 2015
  year: 2015
  ident: 1788_CR16
– volume: 24
  start-page: 433
  issue: 3
  year: 2000
  ident: 1788_CR47
  publication-title: Comput Graph
  doi: 10.1016/S0097-8493(00)00038-8
– volume: 9
  start-page: 296
  issue: 04
  year: 2003
  ident: 1788_CR35
  publication-title: Microsc Microanal
  doi: 10.1017/S143192760303040X
– volume: 32
  start-page: 29
  issue: 3
  year: 2013
  ident: 1788_CR42
  publication-title: ACM Trans Graph
  doi: 10.1145/2487228.2487237
– volume: 18
  start-page: 62
  issue: 2
  year: 2017
  ident: 1788_CR29
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-016-1444-4
– volume: 17
  start-page: 549
  issue: 5
  year: 1993
  ident: 1788_CR50
  publication-title: Comput Graph
  doi: 10.1016/0097-8493(93)90006-U
– ident: 1788_CR22
  doi: 10.1109/PCCGA.2004.1348333
– volume-title: Mesh Primitives, Blender Reference Manual, Version 2.77
  year: 2016
  ident: 1788_CR46
– ident: 1788_CR9
  doi: 10.3389/fncir.2015.00044
– ident: 1788_CR15
  doi: 10.1109/BioVis.2012.6378589
– volume: 56
  start-page: 1
  issue: 3
  year: 2013
  ident: 1788_CR21
  publication-title: Sci China Inf Sci
– volume-title: Blender - 3D Modelling and Rendering Package
  year: 2016
  ident: 1788_CR30
– volume: 14
  start-page: 307
  issue: 5
  year: 1990
  ident: 1788_CR25
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/0895-6111(90)90105-K
– ident: 1788_CR55
– volume: 104
  start-page: 40
  issue: 1–2
  year: 2010
  ident: 1788_CR18
  publication-title: J Physiol Paris
  doi: 10.1016/j.jphysparis.2009.11.009
– volume: 16
  start-page: 8
  issue: Suppl 11
  year: 2015
  ident: 1788_CR28
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-16-S11-S8
– ident: 1788_CR52
– volume: 5
  start-page: 46
  issue: 1
  year: 1998
  ident: 1788_CR51
  publication-title: IEEE Comput Sci Eng
  doi: 10.1109/99.660313
– volume: 13
  start-page: 259
  issue: 3
  year: 2015
  ident: 1788_CR11
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9270-9
– volume: 7
  start-page: 195
  issue: 3
  year: 2009
  ident: 1788_CR12
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-009-9052-3
– volume: 461
  start-page: 908
  issue: 7266
  year: 2009
  ident: 1788_CR2
  publication-title: Nature
  doi: 10.1038/nature08537
– volume: 17
  start-page: 80
  issue: 6
  year: 1997
  ident: 1788_CR20
  publication-title: IEEE Comput Graph Appl
  doi: 10.1109/38.626973
– volume: 6
  start-page: 241
  issue: 3
  year: 2008
  ident: 1788_CR36
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9030-1
– volume-title: SIGGRAPH Sketches
  year: 2007
  ident: 1788_CR23
– volume: 10
  start-page: 540
  issue: 6
  year: 2013
  ident: 1788_CR56
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2450
– volume: 108
  start-page: 7595
  issue: 18
  year: 2011
  ident: 1788_CR33
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1017210108
– ident: 1788_CR49
  doi: 10.1145/1882262.1866201
– volume: 443
  start-page: 346
  issue: 4
  year: 2002
  ident: 1788_CR41
  publication-title: J Comp Neurol
  doi: 10.1002/cne.10118
– ident: 1788_CR17
  doi: 10.1109/EMBC.2013.6610903
SSID ssj0017805
Score 2.2974825
Snippet Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the...
We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological...
Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the...
Abstract Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 402
SubjectTerms 3-D graphics
Algorithms
Animal models
Animals
Bioinformatics
Biomedical and Life Sciences
Brain research
Brain slice preparation
Circuits
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer graphics
Computer Simulation
Cortex
Experiments
Feedback
Image Processing, Computer-Assisted
In silico neuroscience
Life Sciences
Light
Microarrays
Micrometers
Microscopy
Modeling and simulation
Models, Neurological
Morphology
Neocortex
Neocortex - physiology
Neocortical brain models
Nerve Net - physiology
Neuroimaging
Neurons
Neurons - physiology
Neurosciences
Optical Phenomena
Physiological aspects
Physiology
Polygonal and volumetric models
Rats
Scale (ratio)
Technology application
Visualization
Volumetric analysis
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rbnKVEEQQm33TZt8niKx-mDD-rBvYU0abVQ2sXuCvc_-Ef7TZNdtyfqi_u07EyXduZLMtNMvmHsuVWukmWmhXUI33KptaistGIhMR0q571upgLZD8XZef7-Ql7stfqimrBADxwMd6wr7dyikbbJGoCtUQClLa1rcl9ZJz3NvljztslU3D8gpv64h5mq4nhMiadN0IwMkRL5bBWayPp_n5L31qSr9ZJXNk2ntej0FrsZg0h-Em7-NrtW93fY9dBW8vIu-0E55S9mWG57z7-3Ix2fDIcu-dDwjkrAxQgX1TxMUcTVz6fOOCMp9PWAzHR61c1d-81t2vXIEeLyVXRtdylWnd1gTOEv2p6PbQdY8WEVrhlDheI9dn769vObMxG7LghXZOVa6KVFGEhhiSu0hyG91c6WpfcSqUWF9XzpdCqdXPg6Q_SX12kNufNLrTKv8-w-O-iHvn7IeEkbxEXqqjTVeVUppXNPX5XPtELek7DF1gvGRUpy6ozRmSk1UYUJjjNwnCHHmTxhL3eXrAIfx9-UX5Nrd4pEpT39AICZCDDzL4Al7BkBwxBZRk_VOF9g2dG8-_TRnCDaWmil0iJhL6JSM-AJnI2HG2AH4teaaR7NNDGa3Vy8xZ-Js8loYDIkpogVs4Q93YnpSqqQAxw2k06KVB2fhD0IcN09N5JqRB0lJOUMyDPDzCV9-3XiGkdAXCBrTdirLeT3butPdj_8H3Z_xG4sacBSu47siB1g0NSPEQCuqyfTWP8JRPJajg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oHYIv4rfVKVEEQSlrb5s2eZJNNqYPQ6aDvYU0abdCaet6r7D_wT_ac9Lcbp24-1RuTkqT85HfSU7OAXivhSl4nshQG4RvKZcyLDTXYcTRHApjraxcgOxRdniSfjvlp37DbfBhlRub6Ay17Qztke-gs43gHNfL5HP_K6SqUXS66kto3IUtNMGCL2Brb__o-_F0jkAZ-_1ZZiyynYGIKD6IEiOiiKSz1cgl7f_XNF9bm27GTd44PHVr0sFDeODBJNsduf8I7pTtY7g3lpe8fAJ_yLe8yhDLdGvZ73qga5Tj5UvWVayhUPBwQFaVbDRVlLOfuQo5AxG0ZYceqtvyZqa-MOt6NTCEuqz3LG4uw77Ra9QtfEXdsqFuULxY1499hjFS8SmcHOz__HIY-uoLocmSfBXKpUY4SPDEZNLiRFotjc5zazm6GAWu60sjY254ZMsEUWBaxiW2G7uUIrEyTZ7Bou3a8gWwnA6Ks9gUMXKxKISQqaVHYRMp0P8JINpwQRmfmpwqZDTKuSgiUyPjFDJOEeNUGsDHqUs_5uW4jXiPWDsRUkpt90d3caa8hipZSGOiiusqqdCqVQKtn861qVJbaMNtAO9IMBQlzWgpKucMZ3ZQX38cq11EXZEUIs4C-OCJqg5HYLS_5IDzQHm2ZpTbM0rUajNv3sif8lZlUFc6EMDbqZl6UqQcisPa0cTosuMvgOejuE7jRuca0UeOLflMkGcTM29p63OXcxyBcYbeawCfNiJ_7bP-N-8vbx_EK7i_JFWkghzJNixQHcrXCPFWxRuvx38BGTJRiQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKVEEQanXbpM2eRA5xeMU9EFduLeQJu1ZKO263RX3f_CPdiZt967nKbhPy2aybOd7NpPfADw10uYiS1RoLKZvXCgV5kaYMBLoDqV1TpW-QfZTejTnH47F8Q6M460GBnYXlnY0T2q-rF_-_L55jQb_yhu8TPe7mFDYQvK3MVZ0Ib8ElzEwpaTkH_npoQLB9w8Hmxdum4Qmj-D_p58-E6jON1GeO0n1AerwOlwbMkt20KvCDdgpmptwpZ81ubkFv6jQPIWLZaZx7EfV0Z3K_iYma0tWU1942KHcCtb7LQLwZ35cTkcETdFiuer__2a2Wtp1teoY5r1sMci73oSL2qzR0PArqoZ1VY26xtpFv6fr2xZvw_zw3de3R-EwiiG0aZKtQjUzmBtSrmJT5ZCRzihrssw5gfVGjkF-ZlUsrIhckWBKyIu4wHXrZkomTvHkDuw2bVPcA5bRqXEa2zyOFc9zKRV39Fa6REkshgKIRiloO-CU07iMWvt6Raa6F5xGwWkSnOYBPN9uWfQgHf8ifkOi3RISvrb_oF2e6MFctcqVtVEpTJmU6OJKia7QZMaW3OXGChfAE1IMTQgaDbXonCBnO_3-y2d9gClYpKSM0wCeDURli09gzXDjAflAoFsTyr0JJZq4nS6P-qdHC9HIMqxWMYFMAni8Xaad1DaH6rD2NDHW7_gK4G6vrtvnxkobU5EMV7KJIk8YM11pqm8egByz5BRL2QBejCp_5mf9je_3_4v6AVydkWXSsI5kD3bROoqHmP6t8kfeqH8DvMBXLg
  priority: 102
  providerName: Scholars Portal
Title Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies
URI https://link.springer.com/article/10.1186/s12859-017-1788-4
https://www.ncbi.nlm.nih.gov/pubmed/28929974
https://www.proquest.com/docview/1944996583
https://www.proquest.com/docview/1941094444
https://pubmed.ncbi.nlm.nih.gov/PMC5606217
https://doaj.org/article/9b9cc0f5af3f488f8307a7acf4dbac5d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WlsFexr7nrQvaGAw2zOzYsqXHtDTrAiujXSFvQpbszmDsMCeD_g_7o3cnO17cfcDy4IToFOL70p3v9BPAay1MxtNI-tpg-BZzKf1Mc-0HHN2hMNbKwjXIniWnl_FiyZc9WDTthdmt34cied-GhLDmky8NMVvz4z044AQzRnXZ5HgoGBA0f1-0_OO00bLj0Pl_98E7i9DNBskbVVK3-Mzvwd0-amSzTsz34VZeP4Db3TmS1w_hByWRv6Bgma4t-162tF-y22XJmoJV1PPttyiTnHU-icD5mTsKpyWCOm8wFXXPtpkpv5lNuW4ZxrRs1cuyuvZXld6gEeFPlDVrywr1iDWrbk7btSQ-gsv5yZfjU78_ZsE3SZSufTnVGPdRHGISaZGRVkuj09RajrlEhgv41MiQGx7YPMJwL87DHMeNnUoRWRlHj2G_bur8KbCUKsJJaLIwlHGWCSFjSx-FjaTARMeDYCsFZXoMcjoKo1IuFxGJ6gSnUHCKBKdiD94OU1YdAMe_iI9ItAMhYWe7L1ClVG-KSmbSmKDguogKdF-FQDenU22K2GbacOvBK1IMRegYNbXfXCFnW_Xx4lzNMLwKpBBh4sGbnqho8A6M7nczIB8IUGtEeTiiRPM14-Gt_qnefbQKWYaZKAaHkQcvh2GaSS1xqA4bRxNibo4vD5506jrcN2bRGGakOJKOFHnEmPFIXX514OIYASeYpnrwbqvyO3_rb3x_9l_Uz-HOlCyTDuKIDmEfrSN_gaHdOpvAXrpM8SrmHyZwMJstLhb4fnRy9vl84gx-4h6a4PVTLH4C4UxPYw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJCqrSZyHfUCoPJZdWnqAVurNOHZSIq2SpdkF7X_gt_AbmXGSbVNEb72tMuNo7fk8j3g8Q8hzLUwWp1wybcB9i2IpWaZjzfwY1KEw1srCJcjuJeOD6NNhfLhG_vR3YTCtsteJTlHb2uA38i0ItsE5B3vJ38x-MOwahaerfQuNFhY7-fIXhGzN68l7kO-LMBx92H83Zl1XAWYSns6ZDDW4OWh2TSJtKnyrpdFpam0MrnMG9io0MohN7Nucg3cT5UEOdGNDKbiVEYf3XiKXI84l1uoXo4-rUwvsD9CdnAYi2WoCrA7H0A4ASbBoYPtci4B_DcEpS3g2S_PMUa2zgKMb5HrnutLtFms3yVpe3SJX2maWy9vkN0ayJ_Voqa4s_Vk2eGmzvepJ64JOMfGcNQCMnLaKETsEUNePp0GGKq8hHnYf2Kkpj82inDcUHGs66wA1XbLZVC9gJ8Mryoo25RTATOtZO6Zp8yLvkIMLkcpdsl7VVX6f0BSPpZPAZAFgJsuEkJHFn8JyKSDa8ojfS0GZrhA69uOYKhcQiUS1glMgOIWCU5FHXq2GzNoqIOcxv0XRrhixgLd7UB8fqU4fKJlJY_wi1gUvQIcWAnStTrUpIptpE1uPPENgKCzRUWEO0BGsbKMmX7-obfDxfClEkHjkZcdU1DADo7srFbAOWNVrwLkx4AQdYobkHn-q02GNOtlxHnm6IuNIzMsDOCwcT-ADXwSzvtfCdTVvCOXB10mBkg6APFiYIaUqv7sK5-CGJxAre2Szh_ypv_W_dX9w_iSekKvj_c-7aneyt_OQXAtxW2IrEL5B1mFr5I_AuZxnj92OpuTbRauQv353i-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CTiBeEHcCAwxCQgJFS5qb_Vgu1VbQhBiT9mY5djIiRUm0tEj7D_xozomdsoyLRJ-q-rhqzs3fqY8_A7xUXOdJFglfaYRvcSKEn6tE-UGC6ZBrY0Q5NMgepvvH8eokOXH3nPZjt_u4JWnPNBBLU7Pe60xpQ5yne31IvGs-ZdgQazg_vgo7PEX0MIOdxWJ1tNpuJBBlv9vM_OPEyXI0sPb_npsvLE6XGycv7Z4Oi9LyFtx0aJItrPlvw5WiuQPX7P2S53fhBxWXvyhimWoM-171dI7Snr5kbclq6gX3e7RVwWyuItJ-NlyR05NAU7RYog7_eTNdnelNte4ZYl3WORvX535Xqw0GF35F1bC-qtG_WNvZOb1tVbwHx8sPX9_t--76BV-nUbb2xVwhHiR8olNhUJFGCa2yzJgEa4wcF_a5FmGik8AUEcLAuAgLHNdmLnhkRBzdh1nTNsVDYBntFKehzsNQxHnOuYgNveUmEhwLIA-C0QpSO25yuiKjlkONwlNpDSfRcJIMJ2MPXm-ndJaY41_Cb8m0W0Hi1B4-aM9OpQtRKXKhdVAmqoxKTGslx_SnMqXL2ORKJ8aDF-QYklgzGmrLOUXN9vLg6ItcIOwKBOdh6sErJ1S2-ARauVMOqAci2ppI7k4kMaz1dHj0P-nSSi9RZVihImiMPHi-HaaZ1CqH7rAZZEKs2fHlwQPrrtvnxuoa4UeGI9nEkSeKmY401beBdByRcYrlqwdvRpe_8LP-pvdH_yX9DK5_fr-Unw4OPz6GG3MKUrqrI9qFGQZK8QTR3zp_6iL8J8esVTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+and+visualization+of+large-scale+volumetric+models+of+neocortical+circuits+for+physically-plausible+in+silico+optical+studies&rft.jtitle=BMC+bioinformatics&rft.au=Abdellah%2C+Marwan&rft.au=Hernando%2C+Juan&rft.au=Antille%2C+Nicolas&rft.au=Eilemann%2C+Stefan&rft.date=2017-09-13&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=18&rft.issue=Suppl+10&rft_id=info:doi/10.1186%2Fs12859-017-1788-4&rft.externalDocID=10_1186_s12859_017_1788_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon