Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies
Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are expla...
Saved in:
Published in | BMC bioinformatics Vol. 18; no. Suppl 10; pp. 402 - 50 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
13.09.2017
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-017-1788-4 |
Cover
Loading…
Abstract | Background
We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.
Results
Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an
in silico
imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.
Conclusion
A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of
in silico
neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.
AMS Subject Classification
Modelling and Simulation |
---|---|
AbstractList | We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.
Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.
A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.
Modelling and Simulation. Abstract Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.BACKGROUNDWe present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender.Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.RESULTSOur pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback.A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.CONCLUSIONA systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters.Modelling and Simulation.AMS SUBJECT CLASSIFICATIONModelling and Simulation. Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological skeletons of their digitally reconstructed neurons. The limitations of the existing approaches for creating those models are explained, and then, a multi-stage pipeline is discussed to overcome those limitations. Starting from the neuronal morphologies, we create smooth piecewise watertight polygonal models that can be efficiently utilized to synthesize continuous and plausible volumetric models of the neurons with solid voxelization. The somata of the neurons are reconstructed on a physically-plausible basis relying on the physics engine in Blender. Results Our pipeline is applied to create 55 exemplar neurons representing the various morphological types that are reconstructed from the somatsensory cortex of a juvenile rat. The pipeline is then used to reconstruct a volumetric slice of a cortical circuit model that contains ∼210,000 neurons. The applicability of our pipeline to create highly realistic volumetric models of neocortical circuits is demonstrated with an in silico imaging experiment that simulates tissue visualization with brightfield microscopy. The results were evaluated with a group of domain experts to address their demands and also to extend the workflow based on their feedback. Conclusion A systematic workflow is presented to create large scale synthetic tissue models of the neocortical circuitry. This workflow is fundamental to enlarge the scale of in silico neuroscientific optical experiments from several tens of cubic micrometers to a few cubic millimeters. AMS Subject Classification Modelling and Simulation |
ArticleNumber | 402 |
Audience | Academic |
Author | Markram, Henry Abdellah, Marwan Eilemann, Stefan Hernando, Juan Antille, Nicolas Schürmann, Felix |
Author_xml | – sequence: 1 givenname: Marwan surname: Abdellah fullname: Abdellah, Marwan organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Juan surname: Hernando fullname: Hernando, Juan organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Nicolas surname: Antille fullname: Antille, Nicolas organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Stefan surname: Eilemann fullname: Eilemann, Stefan organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Henry surname: Markram fullname: Markram, Henry organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Felix surname: Schürmann fullname: Schürmann, Felix email: felix.schuermann@epfl.ch organization: Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28929974$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNURH_gAdigSGxgkWIncWxvkKqKn5EqIRVYWx7bSV157MF2RgzPwENzM2lhpgLiRaLr75zY957T4sgHb4riOUbnGLPuTcI1I7xCmFaYMla1j4oT3FJc1RiRo73v4-I0pVsEIEPkSXFcM15zTtuT4ue1UcGnHEeVbfCl9Lrc2DRKZ3_IXSX0pZNxMFVS0plyE9y4MjlaVa6CNi5NgDdBhZgtEKWyUY02p7IPsVzfbNNUddtq7eSY7BIsrC-TdVaFMqxnTcqjtiY9LR730iXz7O59Vnx9_-7L5cfq6tOHxeXFVaW6huaK1xLhjrUdVR3XcCUtuZKUak0II8uuw7XimCiCtGl4U7cGG9hXuuas0bxtzorF7KuDvBXraFcybkWQVuwKIQ5CTrdxRvAlVwr1RPZN3zLWswZRSaXqW72Uimjwejt7rcflymhlfI7SHZge7nh7I4awEaRDXY0pGLy6M4jh22hSFiublHFOQlfHJDBvMeItPIC-fIDehjF6aNVEtZx3hDV_qAHmJazvA_xXTabigiCOOGO4A-r8LxQsbVYwGm96C_UDwesDATDZfM8DTDWJxefrQ_bFflN-d-M-dwDQGVAxpBRNL5TNu7zBKawTGIkp4WJOuIDgiinhYlLiB8p78_9p6lmTgPWDiXt9-6foFz_bD2k |
CitedBy_id | crossref_primary_10_3389_fninf_2022_953930 crossref_primary_10_1093_bioinformatics_btab280 crossref_primary_10_3389_fnins_2018_00664 crossref_primary_10_1093_cercor_bhy339 crossref_primary_10_1093_bib_bbae393 crossref_primary_10_1093_bioinformatics_bty231 |
Cites_doi | 10.1038/nprot.2014.123 10.1016/j.jsb.2006.10.023 10.1117/1.2815693 10.1007/978-3-319-12084-3_16 10.1016/j.neuron.2007.03.025 10.1038/nrn1848 10.1109/TVCG.2011.55 10.1073/pnas.1232232100 10.1117/1.JBO.19.7.075001 10.1016/j.procs.2011.12.015 10.1145/37401.37427 10.1038/nature05127 10.1016/j.cell.2015.09.029 10.3389/fnana.2013.00015 10.1147/rd.521.0043 10.1145/1111411.1111424 10.1016/j.neucom.2007.02.016 10.1111/j.1467-8659.2006.01000.x 10.1088/978-1-6270-5612-0 10.1016/S0097-8493(00)00038-8 10.1017/S143192760303040X 10.1145/2487228.2487237 10.1186/s12859-016-1444-4 10.1016/0097-8493(93)90006-U 10.1109/PCCGA.2004.1348333 10.3389/fncir.2015.00044 10.1109/BioVis.2012.6378589 10.1016/0895-6111(90)90105-K 10.1016/j.jphysparis.2009.11.009 10.1186/1471-2105-16-S11-S8 10.1109/99.660313 10.1007/s12021-015-9270-9 10.1007/s12021-009-9052-3 10.1038/nature08537 10.1109/38.626973 10.1007/s12021-008-9030-1 10.1038/nmeth.2450 10.1073/pnas.1017210108 10.1145/1882262.1866201 10.1002/cne.10118 10.1109/EMBC.2013.6610903 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-017-1788-4 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 50 |
ExternalDocumentID | oai_doaj_org_article_9b9cc0f5af3f488f8307a7acf4dbac5d PMC5606217 A509098816 28929974 10_1186_s12859_017_1788_4 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK AHSBF FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c637t-92a0168467c69d780da9ca77dd5585b6612c915c50de39324e1eca7cd2983d943 |
IEDL.DBID | C6C |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:29:42 EDT 2025 Thu Aug 21 18:16:03 EDT 2025 Fri Sep 05 10:15:02 EDT 2025 Fri Jul 25 19:22:23 EDT 2025 Tue Jun 17 21:29:54 EDT 2025 Tue Jun 10 20:35:59 EDT 2025 Fri Jun 27 05:02:21 EDT 2025 Mon Jul 21 05:26:57 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Tue Jul 01 03:38:24 EDT 2025 Sat Sep 06 07:27:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 10 |
Keywords | Polygonal and volumetric models Neocortical brain models Modeling and simulation In silico neuroscience |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-92a0168467c69d780da9ca77dd5585b6612c915c50de39324e1eca7cd2983d943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s12859-017-1788-4 |
PMID | 28929974 |
PQID | 1944996583 |
PQPubID | 44065 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b9cc0f5af3f488f8307a7acf4dbac5d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5606217 proquest_miscellaneous_1941094444 proquest_journals_1944996583 gale_infotracmisc_A509098816 gale_infotracacademiconefile_A509098816 gale_incontextgauss_ISR_A509098816 pubmed_primary_28929974 crossref_citationtrail_10_1186_s12859_017_1788_4 crossref_primary_10_1186_s12859_017_1788_4 springer_journals_10_1186_s12859_017_1788_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170913 |
PublicationDateYYYYMMDD | 2017-09-13 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170913 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | BMC series – open, inclusive and trusted |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2017 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | J Kozloski (1788_CR13) 2008; 52 S Lasserre (1788_CR14) 2012; 18 1788_CR52 I Llamas (1788_CR23) 2007 1788_CR55 H Markram (1788_CR4) 2006; 7 1788_CR15 S Fang (1788_CR47) 2000; 24 1788_CR17 B Di Ventura (1788_CR3) 2006; 443 E Eisemann (1788_CR48) 2008 B Torben-Nielsen (1788_CR38) 2008; 71 M Oberlaender (1788_CR34) 2007; 12 M Halavi (1788_CR36) 2008; 6 DE Donohue (1788_CR37) 2002 M Kazhdan (1788_CR42) 2013; 32 D Cohen-Or (1788_CR20) 1997; 17 RA Koene (1788_CR12) 2009; 7 M Abdellah (1788_CR29) 2017; 18 Amsterdam Blender Institute (1788_CR30) 2016 D Cai (1788_CR56) 2013; 10 S Chemla (1788_CR18) 2010; 104 X Zhu (1788_CR21) 2013; 56 P Gleeson (1788_CR26) 2007; 54 A Berndt (1788_CR33) 2011; 108 1788_CR22 H Markram (1788_CR10) 2015; 163 C Stosiek (1788_CR19) 2003; 100 BR Kent (1788_CR45) 2015 J Brito (1788_CR27) 2013; 7 H Peng (1788_CR11) 2015; 13 M Abdellah (1788_CR16) 2015 K Sanbonmatsu (1788_CR5) 2007; 157 P Cignoni (1788_CR53) 2008; 73 M Abdellah (1788_CR28) 2015; 16 1788_CR32 H Pawelzik (1788_CR41) 2002; 443 H Markram (1788_CR6) 2011; 7 M Wilson (1788_CR24) 1988 1788_CR39 M Pharr (1788_CR54) 2010 C Koch (1788_CR1) 1998 DH Geschwind (1788_CR2) 2009; 461 R Tomer (1788_CR31) 2014; 9 W He (1788_CR35) 2003; 9 S Burtsev (1788_CR50) 1993; 17 Blender Online Community (1788_CR46) 2016 JR Glaser (1788_CR25) 1990; 14 1788_CR40 1788_CR43 1788_CR44 1788_CR49 1788_CR7 1788_CR9 L Dagum (1788_CR51) 1998; 5 MB Moser (1788_CR8) 2014 |
References_xml | – volume: 9 start-page: 1682 issue: 7 year: 2014 ident: 1788_CR31 publication-title: Nat Protocols doi: 10.1038/nprot.2014.123 – volume: 157 start-page: 470 issue: 3 year: 2007 ident: 1788_CR5 publication-title: J Struct Biol doi: 10.1016/j.jsb.2006.10.023 – volume: 73 start-page: 6 issue: 45-46 year: 2008 ident: 1788_CR53 publication-title: Ercim News – volume: 12 start-page: 064029 issue: 6 year: 2007 ident: 1788_CR34 publication-title: J Biomed Opt doi: 10.1117/1.2815693 – volume-title: Physically Based Rendering, Second Edition: From Theory To Implementation year: 2010 ident: 1788_CR54 – ident: 1788_CR7 doi: 10.1007/978-3-319-12084-3_16 – volume: 54 start-page: 219 issue: 2 year: 2007 ident: 1788_CR26 publication-title: Neuron doi: 10.1016/j.neuron.2007.03.025 – volume: 7 start-page: 153 issue: 2 year: 2006 ident: 1788_CR4 publication-title: Nat Rev Neurosci doi: 10.1038/nrn1848 – volume-title: GENESIS: A system for simulating neural networks. in advances in neural network information processing systems year: 1988 ident: 1788_CR24 – volume: 18 start-page: 214 issue: 2 year: 2012 ident: 1788_CR14 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2011.55 – volume: 100 start-page: 7319 issue: 12 year: 2003 ident: 1788_CR19 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1232232100 – ident: 1788_CR32 doi: 10.1117/1.JBO.19.7.075001 – volume-title: Computational Neuroanatomy year: 2002 ident: 1788_CR37 – volume-title: Proceedings of Graphics Interface 2008 year: 2008 ident: 1788_CR48 – volume: 7 start-page: 39 year: 2011 ident: 1788_CR6 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2011.12.015 – ident: 1788_CR43 doi: 10.1145/37401.37427 – volume: 443 start-page: 527 issue: 7111 year: 2006 ident: 1788_CR3 publication-title: Nature doi: 10.1038/nature05127 – volume-title: The Future of the Brain: Essays by the World’s Leading Neuroscientists year: 2014 ident: 1788_CR8 – volume: 163 start-page: 456 issue: 2 year: 2015 ident: 1788_CR10 publication-title: Cell doi: 10.1016/j.cell.2015.09.029 – ident: 1788_CR40 doi: 10.3389/fnana.2013.00015 – volume: 52 start-page: 43 issue: 1.2 year: 2008 ident: 1788_CR13 publication-title: IBM J Res Dev doi: 10.1147/rd.521.0043 – ident: 1788_CR39 doi: 10.1145/1111411.1111424 – volume: 71 start-page: 963 issue: 4 year: 2008 ident: 1788_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.02.016 – ident: 1788_CR44 doi: 10.1111/j.1467-8659.2006.01000.x – volume-title: 3D Scientific Visualization with Blender year: 2015 ident: 1788_CR45 doi: 10.1088/978-1-6270-5612-0 – volume-title: Methods in Neuronal Modeling: from Ions to Networks year: 1998 ident: 1788_CR1 – volume: 7 start-page: 15 year: 2013 ident: 1788_CR27 publication-title: Front Neuroanat doi: 10.3389/fnana.2013.00015 – volume-title: Eurographics 2015 year: 2015 ident: 1788_CR16 – volume: 24 start-page: 433 issue: 3 year: 2000 ident: 1788_CR47 publication-title: Comput Graph doi: 10.1016/S0097-8493(00)00038-8 – volume: 9 start-page: 296 issue: 04 year: 2003 ident: 1788_CR35 publication-title: Microsc Microanal doi: 10.1017/S143192760303040X – volume: 32 start-page: 29 issue: 3 year: 2013 ident: 1788_CR42 publication-title: ACM Trans Graph doi: 10.1145/2487228.2487237 – volume: 18 start-page: 62 issue: 2 year: 2017 ident: 1788_CR29 publication-title: BMC Bioinforma doi: 10.1186/s12859-016-1444-4 – volume: 17 start-page: 549 issue: 5 year: 1993 ident: 1788_CR50 publication-title: Comput Graph doi: 10.1016/0097-8493(93)90006-U – ident: 1788_CR22 doi: 10.1109/PCCGA.2004.1348333 – volume-title: Mesh Primitives, Blender Reference Manual, Version 2.77 year: 2016 ident: 1788_CR46 – ident: 1788_CR9 doi: 10.3389/fncir.2015.00044 – ident: 1788_CR15 doi: 10.1109/BioVis.2012.6378589 – volume: 56 start-page: 1 issue: 3 year: 2013 ident: 1788_CR21 publication-title: Sci China Inf Sci – volume-title: Blender - 3D Modelling and Rendering Package year: 2016 ident: 1788_CR30 – volume: 14 start-page: 307 issue: 5 year: 1990 ident: 1788_CR25 publication-title: Comput Med Imaging Graph doi: 10.1016/0895-6111(90)90105-K – ident: 1788_CR55 – volume: 104 start-page: 40 issue: 1–2 year: 2010 ident: 1788_CR18 publication-title: J Physiol Paris doi: 10.1016/j.jphysparis.2009.11.009 – volume: 16 start-page: 8 issue: Suppl 11 year: 2015 ident: 1788_CR28 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-16-S11-S8 – ident: 1788_CR52 – volume: 5 start-page: 46 issue: 1 year: 1998 ident: 1788_CR51 publication-title: IEEE Comput Sci Eng doi: 10.1109/99.660313 – volume: 13 start-page: 259 issue: 3 year: 2015 ident: 1788_CR11 publication-title: Neuroinformatics doi: 10.1007/s12021-015-9270-9 – volume: 7 start-page: 195 issue: 3 year: 2009 ident: 1788_CR12 publication-title: Neuroinformatics doi: 10.1007/s12021-009-9052-3 – volume: 461 start-page: 908 issue: 7266 year: 2009 ident: 1788_CR2 publication-title: Nature doi: 10.1038/nature08537 – volume: 17 start-page: 80 issue: 6 year: 1997 ident: 1788_CR20 publication-title: IEEE Comput Graph Appl doi: 10.1109/38.626973 – volume: 6 start-page: 241 issue: 3 year: 2008 ident: 1788_CR36 publication-title: Neuroinformatics doi: 10.1007/s12021-008-9030-1 – volume-title: SIGGRAPH Sketches year: 2007 ident: 1788_CR23 – volume: 10 start-page: 540 issue: 6 year: 2013 ident: 1788_CR56 publication-title: Nat Methods doi: 10.1038/nmeth.2450 – volume: 108 start-page: 7595 issue: 18 year: 2011 ident: 1788_CR33 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1017210108 – ident: 1788_CR49 doi: 10.1145/1882262.1866201 – volume: 443 start-page: 346 issue: 4 year: 2002 ident: 1788_CR41 publication-title: J Comp Neurol doi: 10.1002/cne.10118 – ident: 1788_CR17 doi: 10.1109/EMBC.2013.6610903 |
SSID | ssj0017805 |
Score | 2.2974825 |
Snippet | Background
We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the... We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the morphological... Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits from the... Abstract Background We present a software workflow capable of building large scale, highly detailed and realistic volumetric models of neocortical circuits... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 402 |
SubjectTerms | 3-D graphics Algorithms Animal models Animals Bioinformatics Biomedical and Life Sciences Brain research Brain slice preparation Circuits Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer graphics Computer Simulation Cortex Experiments Feedback Image Processing, Computer-Assisted In silico neuroscience Life Sciences Light Microarrays Micrometers Microscopy Modeling and simulation Models, Neurological Morphology Neocortex Neocortex - physiology Neocortical brain models Nerve Net - physiology Neuroimaging Neurons Neurons - physiology Neurosciences Optical Phenomena Physiological aspects Physiology Polygonal and volumetric models Rats Scale (ratio) Technology application Visualization Volumetric analysis Workflow |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rbnKVEEQQm33TZt8niKx-mDD-rBvYU0abVQ2sXuCvc_-Ef7TZNdtyfqi_u07EyXduZLMtNMvmHsuVWukmWmhXUI33KptaistGIhMR0q571upgLZD8XZef7-Ql7stfqimrBADxwMd6wr7dyikbbJGoCtUQClLa1rcl9ZJz3NvljztslU3D8gpv64h5mq4nhMiadN0IwMkRL5bBWayPp_n5L31qSr9ZJXNk2ntej0FrsZg0h-Em7-NrtW93fY9dBW8vIu-0E55S9mWG57z7-3Ix2fDIcu-dDwjkrAxQgX1TxMUcTVz6fOOCMp9PWAzHR61c1d-81t2vXIEeLyVXRtdylWnd1gTOEv2p6PbQdY8WEVrhlDheI9dn769vObMxG7LghXZOVa6KVFGEhhiSu0hyG91c6WpfcSqUWF9XzpdCqdXPg6Q_SX12kNufNLrTKv8-w-O-iHvn7IeEkbxEXqqjTVeVUppXNPX5XPtELek7DF1gvGRUpy6ozRmSk1UYUJjjNwnCHHmTxhL3eXrAIfx9-UX5Nrd4pEpT39AICZCDDzL4Al7BkBwxBZRk_VOF9g2dG8-_TRnCDaWmil0iJhL6JSM-AJnI2HG2AH4teaaR7NNDGa3Vy8xZ-Js8loYDIkpogVs4Q93YnpSqqQAxw2k06KVB2fhD0IcN09N5JqRB0lJOUMyDPDzCV9-3XiGkdAXCBrTdirLeT3butPdj_8H3Z_xG4sacBSu47siB1g0NSPEQCuqyfTWP8JRPJajg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oHYIv4rfVKVEEQSlrb5s2eZJNNqYPQ6aDvYU0abdCaet6r7D_wT_ac9Lcbp24-1RuTkqT85HfSU7OAXivhSl4nshQG4RvKZcyLDTXYcTRHApjraxcgOxRdniSfjvlp37DbfBhlRub6Ay17Qztke-gs43gHNfL5HP_K6SqUXS66kto3IUtNMGCL2Brb__o-_F0jkAZ-_1ZZiyynYGIKD6IEiOiiKSz1cgl7f_XNF9bm27GTd44PHVr0sFDeODBJNsduf8I7pTtY7g3lpe8fAJ_yLe8yhDLdGvZ73qga5Tj5UvWVayhUPBwQFaVbDRVlLOfuQo5AxG0ZYceqtvyZqa-MOt6NTCEuqz3LG4uw77Ra9QtfEXdsqFuULxY1499hjFS8SmcHOz__HIY-uoLocmSfBXKpUY4SPDEZNLiRFotjc5zazm6GAWu60sjY254ZMsEUWBaxiW2G7uUIrEyTZ7Bou3a8gWwnA6Ks9gUMXKxKISQqaVHYRMp0P8JINpwQRmfmpwqZDTKuSgiUyPjFDJOEeNUGsDHqUs_5uW4jXiPWDsRUkpt90d3caa8hipZSGOiiusqqdCqVQKtn861qVJbaMNtAO9IMBQlzWgpKucMZ3ZQX38cq11EXZEUIs4C-OCJqg5HYLS_5IDzQHm2ZpTbM0rUajNv3sif8lZlUFc6EMDbqZl6UqQcisPa0cTosuMvgOejuE7jRuca0UeOLflMkGcTM29p63OXcxyBcYbeawCfNiJ_7bP-N-8vbx_EK7i_JFWkghzJNixQHcrXCPFWxRuvx38BGTJRiQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKVEEQanXbpM2eRA5xeMU9EFduLeQJu1ZKO263RX3f_CPdiZt967nKbhPy2aybOd7NpPfADw10uYiS1RoLKZvXCgV5kaYMBLoDqV1TpW-QfZTejTnH47F8Q6M460GBnYXlnY0T2q-rF_-_L55jQb_yhu8TPe7mFDYQvK3MVZ0Ib8ElzEwpaTkH_npoQLB9w8Hmxdum4Qmj-D_p58-E6jON1GeO0n1AerwOlwbMkt20KvCDdgpmptwpZ81ubkFv6jQPIWLZaZx7EfV0Z3K_iYma0tWU1942KHcCtb7LQLwZ35cTkcETdFiuer__2a2Wtp1teoY5r1sMci73oSL2qzR0PArqoZ1VY26xtpFv6fr2xZvw_zw3de3R-EwiiG0aZKtQjUzmBtSrmJT5ZCRzihrssw5gfVGjkF-ZlUsrIhckWBKyIu4wHXrZkomTvHkDuw2bVPcA5bRqXEa2zyOFc9zKRV39Fa6REkshgKIRiloO-CU07iMWvt6Raa6F5xGwWkSnOYBPN9uWfQgHf8ifkOi3RISvrb_oF2e6MFctcqVtVEpTJmU6OJKia7QZMaW3OXGChfAE1IMTQgaDbXonCBnO_3-y2d9gClYpKSM0wCeDURli09gzXDjAflAoFsTyr0JJZq4nS6P-qdHC9HIMqxWMYFMAni8Xaad1DaH6rD2NDHW7_gK4G6vrtvnxkobU5EMV7KJIk8YM11pqm8egByz5BRL2QBejCp_5mf9je_3_4v6AVydkWXSsI5kD3bROoqHmP6t8kfeqH8DvMBXLg priority: 102 providerName: Scholars Portal |
Title | Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies |
URI | https://link.springer.com/article/10.1186/s12859-017-1788-4 https://www.ncbi.nlm.nih.gov/pubmed/28929974 https://www.proquest.com/docview/1944996583 https://www.proquest.com/docview/1941094444 https://pubmed.ncbi.nlm.nih.gov/PMC5606217 https://doaj.org/article/9b9cc0f5af3f488f8307a7acf4dbac5d |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WlsFexr7nrQvaGAw2zOzYsqXHtDTrAiujXSFvQpbszmDsMCeD_g_7o3cnO17cfcDy4IToFOL70p3v9BPAay1MxtNI-tpg-BZzKf1Mc-0HHN2hMNbKwjXIniWnl_FiyZc9WDTthdmt34cied-GhLDmky8NMVvz4z044AQzRnXZ5HgoGBA0f1-0_OO00bLj0Pl_98E7i9DNBskbVVK3-Mzvwd0-amSzTsz34VZeP4Db3TmS1w_hByWRv6Bgma4t-162tF-y22XJmoJV1PPttyiTnHU-icD5mTsKpyWCOm8wFXXPtpkpv5lNuW4ZxrRs1cuyuvZXld6gEeFPlDVrywr1iDWrbk7btSQ-gsv5yZfjU78_ZsE3SZSufTnVGPdRHGISaZGRVkuj09RajrlEhgv41MiQGx7YPMJwL87DHMeNnUoRWRlHj2G_bur8KbCUKsJJaLIwlHGWCSFjSx-FjaTARMeDYCsFZXoMcjoKo1IuFxGJ6gSnUHCKBKdiD94OU1YdAMe_iI9ItAMhYWe7L1ClVG-KSmbSmKDguogKdF-FQDenU22K2GbacOvBK1IMRegYNbXfXCFnW_Xx4lzNMLwKpBBh4sGbnqho8A6M7nczIB8IUGtEeTiiRPM14-Gt_qnefbQKWYaZKAaHkQcvh2GaSS1xqA4bRxNibo4vD5506jrcN2bRGGakOJKOFHnEmPFIXX514OIYASeYpnrwbqvyO3_rb3x_9l_Uz-HOlCyTDuKIDmEfrSN_gaHdOpvAXrpM8SrmHyZwMJstLhb4fnRy9vl84gx-4h6a4PVTLH4C4UxPYw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJCqrSZyHfUCoPJZdWnqAVurNOHZSIq2SpdkF7X_gt_AbmXGSbVNEb72tMuNo7fk8j3g8Q8hzLUwWp1wybcB9i2IpWaZjzfwY1KEw1srCJcjuJeOD6NNhfLhG_vR3YTCtsteJTlHb2uA38i0ItsE5B3vJ38x-MOwahaerfQuNFhY7-fIXhGzN68l7kO-LMBx92H83Zl1XAWYSns6ZDDW4OWh2TSJtKnyrpdFpam0MrnMG9io0MohN7Nucg3cT5UEOdGNDKbiVEYf3XiKXI84l1uoXo4-rUwvsD9CdnAYi2WoCrA7H0A4ASbBoYPtci4B_DcEpS3g2S_PMUa2zgKMb5HrnutLtFms3yVpe3SJX2maWy9vkN0ayJ_Voqa4s_Vk2eGmzvepJ64JOMfGcNQCMnLaKETsEUNePp0GGKq8hHnYf2Kkpj82inDcUHGs66wA1XbLZVC9gJ8Mryoo25RTATOtZO6Zp8yLvkIMLkcpdsl7VVX6f0BSPpZPAZAFgJsuEkJHFn8JyKSDa8ojfS0GZrhA69uOYKhcQiUS1glMgOIWCU5FHXq2GzNoqIOcxv0XRrhixgLd7UB8fqU4fKJlJY_wi1gUvQIcWAnStTrUpIptpE1uPPENgKCzRUWEO0BGsbKMmX7-obfDxfClEkHjkZcdU1DADo7srFbAOWNVrwLkx4AQdYobkHn-q02GNOtlxHnm6IuNIzMsDOCwcT-ADXwSzvtfCdTVvCOXB10mBkg6APFiYIaUqv7sK5-CGJxAre2Szh_ypv_W_dX9w_iSekKvj_c-7aneyt_OQXAtxW2IrEL5B1mFr5I_AuZxnj92OpuTbRauQv353i-c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CTiBeEHcCAwxCQgJFS5qb_Vgu1VbQhBiT9mY5djIiRUm0tEj7D_xozomdsoyLRJ-q-rhqzs3fqY8_A7xUXOdJFglfaYRvcSKEn6tE-UGC6ZBrY0Q5NMgepvvH8eokOXH3nPZjt_u4JWnPNBBLU7Pe60xpQ5yne31IvGs-ZdgQazg_vgo7PEX0MIOdxWJ1tNpuJBBlv9vM_OPEyXI0sPb_npsvLE6XGycv7Z4Oi9LyFtx0aJItrPlvw5WiuQPX7P2S53fhBxWXvyhimWoM-171dI7Snr5kbclq6gX3e7RVwWyuItJ-NlyR05NAU7RYog7_eTNdnelNte4ZYl3WORvX535Xqw0GF35F1bC-qtG_WNvZOb1tVbwHx8sPX9_t--76BV-nUbb2xVwhHiR8olNhUJFGCa2yzJgEa4wcF_a5FmGik8AUEcLAuAgLHNdmLnhkRBzdh1nTNsVDYBntFKehzsNQxHnOuYgNveUmEhwLIA-C0QpSO25yuiKjlkONwlNpDSfRcJIMJ2MPXm-ndJaY41_Cb8m0W0Hi1B4-aM9OpQtRKXKhdVAmqoxKTGslx_SnMqXL2ORKJ8aDF-QYklgzGmrLOUXN9vLg6ItcIOwKBOdh6sErJ1S2-ARauVMOqAci2ppI7k4kMaz1dHj0P-nSSi9RZVihImiMPHi-HaaZ1CqH7rAZZEKs2fHlwQPrrtvnxuoa4UeGI9nEkSeKmY401beBdByRcYrlqwdvRpe_8LP-pvdH_yX9DK5_fr-Unw4OPz6GG3MKUrqrI9qFGQZK8QTR3zp_6iL8J8esVTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+and+visualization+of+large-scale+volumetric+models+of+neocortical+circuits+for+physically-plausible+in+silico+optical+studies&rft.jtitle=BMC+bioinformatics&rft.au=Abdellah%2C+Marwan&rft.au=Hernando%2C+Juan&rft.au=Antille%2C+Nicolas&rft.au=Eilemann%2C+Stefan&rft.date=2017-09-13&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=18&rft.issue=Suppl+10&rft_id=info:doi/10.1186%2Fs12859-017-1788-4&rft.externalDocID=10_1186_s12859_017_1788_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |