KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes

The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , whereas histone H3 lysine 4 (H3K4...

Full description

Saved in:
Bibliographic Details
Published inNature cell biology Vol. 22; no. 4; pp. 380 - 388
Main Authors Sankar, Aditya, Lerdrup, Mads, Manaf, Adeel, Johansen, Jens Vilstrup, Gonzalez, Javier Martin, Borup, Rehannah, Blanshard, Robert, Klungland, Arne, Hansen, Klaus, Andersen, Claus Yding, Dahl, John Arne, Helin, Kristian, Hoffmann, Eva R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters 6 . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) 1 , 2 . It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells 7 . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes.
AbstractList The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change , whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) . It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1–4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes.
The importance of germline-inherited posttranslational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , while histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters 6 . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) 1 , 2 . It remains unknown as to which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells 7 . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal preimplantation development and zygotic genome activation (ZGA) after fertilization. Loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and long terminal repeat initiated chimeric transcripts during ZGA. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and preimplantation development. Hence, KDM4A plays a crucial role in preserving maternal epigenome integrity required for proper ZGA and transfer of developmental control to the embryo.
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change.sup.5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters.sup.6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3).sup.1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells.sup.7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes.
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change.sup.5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters.sup.6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3).sup.1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells.sup.7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters 6 . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) 1 , 2 . It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells 7 . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes.
Audience Academic
Author Lerdrup, Mads
Johansen, Jens Vilstrup
Blanshard, Robert
Andersen, Claus Yding
Dahl, John Arne
Manaf, Adeel
Hansen, Klaus
Klungland, Arne
Sankar, Aditya
Helin, Kristian
Hoffmann, Eva R.
Gonzalez, Javier Martin
Borup, Rehannah
AuthorAffiliation 1 DNRF Centre for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
8 Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, USA
4 Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway
7 Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Denmark
6 Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
5 Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
2 Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
3 The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Denmark
AuthorAffiliation_xml – name: 6 Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
– name: 1 DNRF Centre for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
– name: 8 Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, USA
– name: 4 Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway
– name: 7 Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Denmark
– name: 3 The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Denmark
– name: 2 Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
– name: 5 Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway
Author_xml – sequence: 1
  givenname: Aditya
  orcidid: 0000-0002-1840-3356
  surname: Sankar
  fullname: Sankar, Aditya
  email: cnj376@ku.dk
  organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen
– sequence: 2
  givenname: Mads
  orcidid: 0000-0002-7730-8973
  surname: Lerdrup
  fullname: Lerdrup, Mads
  organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 3
  givenname: Adeel
  orcidid: 0000-0002-9958-8654
  surname: Manaf
  fullname: Manaf, Adeel
  organization: Department of Microbiology, Oslo University Hospital
– sequence: 4
  givenname: Jens Vilstrup
  surname: Johansen
  fullname: Johansen, Jens Vilstrup
  organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 5
  givenname: Javier Martin
  surname: Gonzalez
  fullname: Gonzalez, Javier Martin
  organization: Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 6
  givenname: Rehannah
  surname: Borup
  fullname: Borup, Rehannah
  organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 7
  givenname: Robert
  surname: Blanshard
  fullname: Blanshard, Robert
  organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 8
  givenname: Arne
  orcidid: 0000-0001-7274-3661
  surname: Klungland
  fullname: Klungland, Arne
  organization: Department of Microbiology, Oslo University Hospital, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo
– sequence: 9
  givenname: Klaus
  surname: Hansen
  fullname: Hansen, Klaus
  organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 10
  givenname: Claus Yding
  surname: Andersen
  fullname: Andersen, Claus Yding
  organization: Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen
– sequence: 11
  givenname: John Arne
  orcidid: 0000-0002-4375-2697
  surname: Dahl
  fullname: Dahl, John Arne
  email: j.a.dahl@medisin.uio.no
  organization: Department of Microbiology, Oslo University Hospital
– sequence: 12
  givenname: Kristian
  orcidid: 0000-0003-1975-6097
  surname: Helin
  fullname: Helin, Kristian
  email: kristian.helin@bric.ku.dk
  organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
– sequence: 13
  givenname: Eva R.
  orcidid: 0000-0002-2588-0652
  surname: Hoffmann
  fullname: Hoffmann, Eva R.
  email: eva@sund.ku.dk
  organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32231309$$D View this record in MEDLINE/PubMed
BookMark eNp9kltvFCEYhiemxh70B3hjSLzRi6mcGW5MNvXQpjUmHq4JwzJTmhlYganu_noZt9Vuo4YLyMfzvsDHe1jt-eBtVT1F8BhB0rxKFDHGa4hhDamk9eZBdYCo4DXlQu7Na85qQSTerw5TuoIQUQrFo2qfYEwQgfKg-n7-5gNdgGj7adDZJpAvLRjLKno91DnUm3UfsjMgR-2Tyy540K7BKoZsTXa-B20MeglOyTkdLQHLMGrnE-hiGOeinIvOX-s0K50HIZh1Oedx9bDTQ7JPbuaj6uu7t19OTuuLj-_PThYXteFE5JotpTAc8vI6LFvYdgJT3i2RxYg0AuJWkq7sttRihiVrG2yM7KhumbQQNogcVa-3vqupHe3SWF8eMqhVdKOOaxW0U7s73l2qPlwrgRGGhBeDFzcGMXybbMpqdMnYYdDehikpTBqGeSMZK-jze-hVmOY-_qJ4w6SQd6heD1Y534VyrplN1YIjyVkDsSjU8V-oMpZ2dKbEoHOlviN4uSMoTLY_cq-nlNTZ50-77LO7TfndjdtYFEBsARNDStF2yris588vt3CDQlDNAVTbAKoSQDUHUG2KEt1T3pr_T4O3mlRY39v4p2__Fv0E9IHq5w
CitedBy_id crossref_primary_10_3389_fcell_2021_682060
crossref_primary_10_1016_j_theriogenology_2021_07_025
crossref_primary_10_1266_ggs_21_00069
crossref_primary_10_1016_j_ydbio_2025_01_018
crossref_primary_10_1360_SSV_2023_0134
crossref_primary_10_1007_s13577_023_00937_z
crossref_primary_10_1016_j_aaf_2022_05_005
crossref_primary_10_1038_s41467_024_50727_w
crossref_primary_10_1016_j_theriogenology_2023_05_018
crossref_primary_10_1186_s13072_021_00413_8
crossref_primary_10_1093_molehr_gaaa059
crossref_primary_10_1155_2022_2197071
crossref_primary_10_3389_fcell_2021_654028
crossref_primary_10_1111_rda_14231
crossref_primary_10_3390_ijms23031691
crossref_primary_10_1038_s41556_020_0499_7
crossref_primary_10_1016_j_intimp_2024_111748
crossref_primary_10_1007_s00418_021_02036_2
crossref_primary_10_1016_j_molcel_2021_11_011
crossref_primary_10_1038_s44319_024_00188_5
crossref_primary_10_1016_j_celrep_2023_112102
crossref_primary_10_1371_journal_ppat_1009670
crossref_primary_10_1016_j_semcdb_2020_12_007
crossref_primary_10_3390_ijms241411377
crossref_primary_10_1360_SSV_2023_0164
crossref_primary_10_3389_fcell_2022_808859
crossref_primary_10_1038_s41586_023_05780_8
crossref_primary_10_1016_j_stemcr_2020_09_005
crossref_primary_10_1111_cpr_13534
crossref_primary_10_1016_j_gde_2021_01_008
crossref_primary_10_1186_s13058_022_01504_4
crossref_primary_10_3390_ijms25031459
crossref_primary_10_1371_journal_pbio_3001001
crossref_primary_10_1093_humupd_dmad026
crossref_primary_10_1016_j_jia_2024_02_007
crossref_primary_10_1093_molehr_gaab012
crossref_primary_10_15252_embr_202256530
crossref_primary_10_1159_000529336
crossref_primary_10_3389_fcell_2020_610773
crossref_primary_10_1002_mco2_331
crossref_primary_10_1002_bies_202100229
crossref_primary_10_1016_j_xhgg_2022_100098
crossref_primary_10_3390_genes14040891
crossref_primary_10_3389_fimmu_2024_1495221
crossref_primary_10_1038_s41586_021_03779_7
crossref_primary_10_14336_AD_2023_0527
crossref_primary_10_1038_s41419_022_04940_4
crossref_primary_10_1016_j_cell_2020_05_026
crossref_primary_10_3390_insects12110969
crossref_primary_10_1016_j_stem_2022_01_010
crossref_primary_10_1093_bib_bbaa215
crossref_primary_10_1002_mco2_326
crossref_primary_10_1016_j_tibs_2023_02_007
crossref_primary_10_1089_cell_2023_0122
crossref_primary_10_1016_j_bcp_2023_115799
crossref_primary_10_1093_biolre_ioac051
crossref_primary_10_1186_s13148_022_01411_7
crossref_primary_10_3390_biom14070747
crossref_primary_10_1360_TB_2024_0844
crossref_primary_10_1155_2022_1608806
crossref_primary_10_1101_cshperspect_a039677
crossref_primary_10_1002_advs_202301538
crossref_primary_10_3390_ijms24076837
crossref_primary_10_3390_ijms241713655
crossref_primary_10_1155_2021_8817581
crossref_primary_10_1038_s41467_023_40496_3
crossref_primary_10_1038_s44319_024_00223_5
crossref_primary_10_1002_jcp_31402
crossref_primary_10_1038_s41598_020_77545_6
crossref_primary_10_1186_s13059_021_02308_z
crossref_primary_10_1002_rmb2_12521
crossref_primary_10_1073_pnas_2407490121
crossref_primary_10_1111_nyas_15260
crossref_primary_10_1016_j_gendis_2022_12_020
crossref_primary_10_1111_cpr_13353
crossref_primary_10_1016_j_ecoenv_2022_114486
crossref_primary_10_1016_j_stemcr_2024_04_003
crossref_primary_10_1371_journal_pgen_1009908
crossref_primary_10_1038_s41588_021_00820_3
Cites_doi 10.1101/gr.216150.116
10.1016/j.molcel.2010.11.008
10.1016/j.stem.2015.10.001
10.1016/j.molcel.2015.10.025
10.1038/nprot.2008.68
10.15252/embj.201593317
10.1016/j.tig.2015.11.001
10.1016/0092-8674(94)90179-1
10.1038/s41594-017-0013-5
10.1093/hmg/ddp512
10.1016/j.cell.2013.10.043
10.1038/s41580-018-0008-z
10.1126/science.1125162
10.1095/biolreprod.111.090886
10.1101/gad.256354.114
10.1038/nrm3327
10.1101/gad.13.18.2375
10.1016/j.cell.2014.09.055
10.1371/journal.pgen.1004505
10.1038/ng.2491
10.1016/j.devcel.2004.09.004
10.1128/MCB.00864-13
10.1073/pnas.0914507107
10.1038/s41467-018-05841-x
10.1038/nsmb.3180
10.1038/nature15749
10.1038/nature19360
10.1038/nature19361
10.1101/gad.280495.116
10.1038/s41588-019-0398-7
10.1093/nar/gku1001
10.1126/science.1255023
10.1007/978-1-4939-1594-1_17
10.1242/dev.155473
10.1016/0092-8674(87)90458-2
10.1016/j.tig.2018.06.006
10.1242/bio.2011018
10.1101/gad.275073.115
10.1016/j.gene.2003.09.022
10.1038/nature11244
10.1016/j.molcel.2006.12.014
10.1016/j.ydbio.2008.04.011
10.1038/s41556-018-0093-4
10.21203/rs.2.21543/v1
10.21203/rs.2.21613/v1
10.21203/rs.2.21804/v1
10.21203/rs.2.18674/v1
10.21203/rs.2.21562/v1
10.21203/rs.2.21552/v1
10.21203/rs.2.21645/v1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41556-020-0494-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Central Student





Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-4679
EndPage 388
ExternalDocumentID PMC7212036
A619658027
32231309
10_1038_s41556_020_0494_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GrantInformation_xml – fundername: Novo Nordisk Fonden (Novo Nordisk Foundation)
  grantid: NNF17CC0027852; NNF15OC0016662
  funderid: https://doi.org/10.13039/501100009708
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 724718-ReCAP
  funderid: https://doi.org/10.13039/100010663
– fundername: Independent Research Fund Denmark (1111831001)
– fundername: South-Eastern Norway Regional Health Authority, Early Career Grant (2016058), The Norwegian Cancer Society and the Research Council of Norway, Young Research Talent Grant
– fundername: The Independent Research Foundation DFF 7016-00067
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: DNRF82; 6110-00344B
  funderid: https://doi.org/10.13039/501100001732
– fundername: Memorial Sloan-Kettering Cancer Center (MSKCC)
  grantid: NIH P30 CA008748
  funderid: https://doi.org/10.13039/100007052
– fundername: South-Eastern Norway Regional Health Authority
– fundername: European Research Council
  grantid: 724718
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABEFU
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
ADQMX
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
J5H
L-9
L7B
LK8
M0L
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SKT
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
Y6R
ZGI
~02
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c637t-5d97c60649429b0bf7246fd1e2138702b93f064b4e25295b82cc9f4ab59e00813
IEDL.DBID 7X7
ISSN 1465-7392
1476-4679
IngestDate Thu Aug 21 13:51:39 EDT 2025
Fri Jul 11 06:25:49 EDT 2025
Sat Aug 23 12:54:27 EDT 2025
Tue Jun 17 21:40:17 EDT 2025
Tue Jun 10 20:28:57 EDT 2025
Fri Jun 27 04:38:45 EDT 2025
Mon Jul 21 06:05:17 EDT 2025
Tue Jul 01 00:31:15 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Fri Feb 21 02:40:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-5d97c60649429b0bf7246fd1e2138702b93f064b4e25295b82cc9f4ab59e00813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
co-first authors
ORCID 0000-0002-2588-0652
0000-0002-7730-8973
0000-0002-1840-3356
0000-0001-7274-3661
0000-0002-4375-2697
0000-0002-9958-8654
0000-0003-1975-6097
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7212036
PMID 32231309
PQID 2386859795
PQPubID 45779
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7212036
proquest_miscellaneous_2385268955
proquest_journals_2386859795
gale_infotracmisc_A619658027
gale_infotracacademiconefile_A619658027
gale_incontextgauss_ISR_A619658027
pubmed_primary_32231309
crossref_citationtrail_10_1038_s41556_020_0494_z
crossref_primary_10_1038_s41556_020_0494_z
springer_journals_10_1038_s41556_020_0494_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature cell biology
PublicationTitleAbbrev Nat Cell Biol
PublicationTitleAlternate Nat Cell Biol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Brind’Amour (CR35) 2018; 9
Dahl, Collas (CR47) 2008; 3
Ruthenburg, Allis, Wysocka (CR6) 2007; 25
Pedersen (CR7) 2016; 35
Russell, Nurse (CR31) 1987; 49
Yamada (CR26) 2010; 19
Schulz, Zakian (CR30) 1994; 76
Xu (CR4) 2019; 51
Agger (CR16) 2016; 30
Hamdane (CR25) 2014; 10
Rugg-Gunn, Cox, Ralston, Rossant (CR18) 2010; 107
CR49
Dahl (CR1) 2016; 537
CR48
CR45
CR44
Prendergast (CR27) 2016; 30
CR43
CR42
Becker, Nicetto, Zaret (CR5) 2016; 32
CR41
Rodriguez-Terrones, Torres-Padilla (CR36) 2018; 34
Ma, Schultz (CR23) 2008; 319
Singer, Gurian-West, Clurman, Roberts (CR28) 1999; 13
Chung (CR12) 2015; 17
Dahl, Klungland (CR46) 2015; 1222
Macfarlan (CR20) 2012; 487
Eckersley-Maslin, Alda-Catalinas, Reik (CR8) 2018; 19
Black (CR40) 2010; 40
Sankar (CR11) 2017; 144
Toledo (CR32) 2013; 155
Zhang (CR2) 2016; 537
Cheloufi (CR14) 2015; 528
CR52
Wang (CR37) 2018; 20
CR51
Matoba (CR13) 2014; 159
Franke (CR34) 2017; 27
Alabert (CR39) 2015; 29
Huang, Chen, Chen, Tsai, Choo (CR22) 2004; 324
Pan, Schultz (CR24) 2011; 85
Hanna (CR3) 2018; 25
Peaston (CR33) 2004; 7
Moghe (CR29) 2012; 1
Matsumura (CR19) 2015; 60
Lerdrup, Johansen, Agrawal-Singh, Hansen (CR50) 2016; 23
Huang, Fang, Bedford, Zhang, Xu (CR9) 2006; 312
Pedersen (CR10) 2014; 34
Kooistra, Helin (CR17) 2012; 13
Chen (CR15) 2013; 45
Park, Shirahige, Ohsugi, Nakai (CR21) 2015; 43
Gaydos, Wang, Strome (CR38) 2014; 345
C Wang (494_CR37) 2018; 20
LJ Gaydos (494_CR38) 2014; 345
K Agger (494_CR16) 2016; 30
494_CR43
494_CR44
494_CR41
494_CR42
MA Eckersley-Maslin (494_CR8) 2018; 19
J Chen (494_CR15) 2013; 45
JC Black (494_CR40) 2010; 40
S Matoba (494_CR13) 2014; 159
JA Dahl (494_CR47) 2008; 3
D Rodriguez-Terrones (494_CR36) 2018; 34
C Alabert (494_CR39) 2015; 29
AE Peaston (494_CR33) 2004; 7
M Yamada (494_CR26) 2010; 19
LI Toledo (494_CR32) 2013; 155
AJ Ruthenburg (494_CR6) 2007; 25
VP Schulz (494_CR30) 1994; 76
SM Kooistra (494_CR17) 2012; 13
494_CR52
Y Huang (494_CR9) 2006; 312
494_CR51
494_CR49
494_CR48
494_CR45
L Prendergast (494_CR27) 2016; 30
M Lerdrup (494_CR50) 2016; 23
JD Singer (494_CR28) 1999; 13
S Cheloufi (494_CR14) 2015; 528
S Moghe (494_CR29) 2012; 1
N Hamdane (494_CR25) 2014; 10
MT Pedersen (494_CR7) 2016; 35
YG Chung (494_CR12) 2015; 17
P Russell (494_CR31) 1987; 49
SJ Park (494_CR21) 2015; 43
MT Pedersen (494_CR10) 2014; 34
H Pan (494_CR24) 2011; 85
JA Dahl (494_CR46) 2015; 1222
Y Matsumura (494_CR19) 2015; 60
PJ Rugg-Gunn (494_CR18) 2010; 107
J Brind’Amour (494_CR35) 2018; 9
A Sankar (494_CR11) 2017; 144
V Franke (494_CR34) 2017; 27
TS Macfarlan (494_CR20) 2012; 487
Q Xu (494_CR4) 2019; 51
CJ Huang (494_CR22) 2004; 324
CW Hanna (494_CR3) 2018; 25
B Zhang (494_CR2) 2016; 537
JS Becker (494_CR5) 2016; 32
P Ma (494_CR23) 2008; 319
JA Dahl (494_CR1) 2016; 537
32231308 - Nat Cell Biol. 2020 Apr;22(4):355-357. doi: 10.1038/s41556-020-0499-7.
References_xml – ident: CR45
– volume: 27
  start-page: 1384
  year: 2017
  end-page: 1394
  ident: CR34
  article-title: Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes
  publication-title: Genome Res.
  doi: 10.1101/gr.216150.116
– volume: 40
  start-page: 736
  year: 2010
  end-page: 748
  ident: CR40
  article-title: Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.008
– volume: 17
  start-page: 758
  year: 2015
  end-page: 766
  ident: CR12
  article-title: Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.10.001
– ident: CR49
– volume: 60
  start-page: 584
  year: 2015
  end-page: 596
  ident: CR19
  article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.025
– volume: 3
  start-page: 1032
  year: 2008
  end-page: 1045
  ident: CR47
  article-title: A rapid micro chromatin immunoprecipitation assay (microChIP)
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.68
– volume: 35
  start-page: 1550
  year: 2016
  end-page: 1564
  ident: CR7
  article-title: Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development
  publication-title: EMBO J.
  doi: 10.15252/embj.201593317
– volume: 32
  start-page: 29
  year: 2016
  end-page: 41
  ident: CR5
  article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.11.001
– ident: CR51
– volume: 76
  start-page: 145
  year: 1994
  end-page: 155
  ident: CR30
  article-title: The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90179-1
– volume: 25
  start-page: 73
  year: 2018
  end-page: 82
  ident: CR3
  article-title: MLL2 conveys transcription-independent H3K4 trimethylation in oocytes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0013-5
– volume: 19
  start-page: 480
  year: 2010
  end-page: 493
  ident: CR26
  article-title: Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp512
– volume: 155
  start-page: 1088
  year: 2013
  end-page: 1103
  ident: CR32
  article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 19
  start-page: 436
  year: 2018
  end-page: 450
  ident: CR8
  article-title: Dynamics of the epigenetic landscape during the maternal-to-zygotic transition
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0008-z
– volume: 312
  start-page: 748
  year: 2006
  end-page: 751
  ident: CR9
  article-title: Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A
  publication-title: Science
  doi: 10.1126/science.1125162
– volume: 85
  start-page: 409
  year: 2011
  end-page: 416
  ident: CR24
  article-title: Sox2 modulates reprogramming of gene expression in two-cell mouse embryos
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.111.090886
– volume: 29
  start-page: 585
  year: 2015
  end-page: 590
  ident: CR39
  article-title: Two distinct modes for propagation of histone PTMs across the cell cycle
  publication-title: Genes Dev.
  doi: 10.1101/gad.256354.114
– volume: 13
  start-page: 297
  year: 2012
  end-page: 311
  ident: CR17
  article-title: Molecular mechanisms and potential functions of histone demethylases
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3327
– ident: CR42
– volume: 13
  start-page: 2375
  year: 1999
  end-page: 2387
  ident: CR28
  article-title: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.18.2375
– volume: 159
  start-page: 884
  year: 2014
  end-page: 895
  ident: CR13
  article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.055
– volume: 10
  start-page: e1004505
  year: 2014
  ident: CR25
  article-title: Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004505
– volume: 45
  start-page: 34
  year: 2013
  end-page: 42
  ident: CR15
  article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2491
– volume: 7
  start-page: 597
  year: 2004
  end-page: 606
  ident: CR33
  article-title: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.09.004
– volume: 34
  start-page: 1031
  year: 2014
  end-page: 1045
  ident: CR10
  article-title: The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00864-13
– volume: 107
  start-page: 10783
  year: 2010
  end-page: 10790
  ident: CR18
  article-title: Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0914507107
– volume: 9
  year: 2018
  ident: CR35
  article-title: LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05841-x
– volume: 23
  start-page: 349
  year: 2016
  end-page: 357
  ident: CR50
  article-title: An interactive environment for agile analysis and visualization of ChIP-sequencing data
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3180
– ident: CR43
– volume: 528
  start-page: 218
  year: 2015
  end-page: 224
  ident: CR14
  article-title: The histone chaperone CAF-1 safeguards somatic cell identity
  publication-title: Nature
  doi: 10.1038/nature15749
– volume: 537
  start-page: 548
  year: 2016
  end-page: 552
  ident: CR1
  article-title: Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition
  publication-title: Nature
  doi: 10.1038/nature19360
– volume: 537
  start-page: 553
  year: 2016
  end-page: 557
  ident: CR2
  article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 30
  start-page: 1278
  year: 2016
  end-page: 1288
  ident: CR16
  article-title: Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.280495.116
– volume: 51
  start-page: 844
  year: 2019
  end-page: 856
  ident: CR4
  article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0398-7
– volume: 43
  start-page: D771
  year: 2015
  end-page: D776
  ident: CR21
  article-title: DBTMEE: a database of transcriptome in mouse early embryos
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1001
– volume: 345
  start-page: 1515
  year: 2014
  end-page: 1518
  ident: CR38
  article-title: Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development
  publication-title: Science
  doi: 10.1126/science.1255023
– volume: 1222
  start-page: 227
  year: 2015
  end-page: 245
  ident: CR46
  article-title: Micro chromatin immunoprecipitation (muChIP) from early mammalian embryos
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1594-1_17
– volume: 144
  start-page: 3264
  year: 2017
  end-page: 3277
  ident: CR11
  article-title: Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development
  publication-title: Development
  doi: 10.1242/dev.155473
– volume: 49
  start-page: 559
  year: 1987
  end-page: 567
  ident: CR31
  article-title: Negative regulation of mitosis by , a gene encoding a protein kinase homolog
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90458-2
– ident: CR44
– volume: 34
  start-page: 806
  year: 2018
  end-page: 820
  ident: CR36
  article-title: Nimble and ready to mingle: transposon outbursts of early development
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.06.006
– ident: CR48
– volume: 1
  start-page: 82
  year: 2012
  end-page: 91
  ident: CR29
  article-title: The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A
  publication-title: Biol. Open
  doi: 10.1242/bio.2011018
– volume: 30
  start-page: 1313
  year: 2016
  end-page: 1326
  ident: CR27
  article-title: The CENP-T/-W complex is a binding partner of the histone chaperone FACT
  publication-title: Genes Dev.
  doi: 10.1101/gad.275073.115
– ident: CR52
– volume: 324
  start-page: 117
  year: 2004
  end-page: 127
  ident: CR22
  article-title: TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains
  publication-title: Gene
  doi: 10.1016/j.gene.2003.09.022
– volume: 487
  start-page: 57
  year: 2012
  end-page: 63
  ident: CR20
  article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity
  publication-title: Nature
  doi: 10.1038/nature11244
– volume: 25
  start-page: 15
  year: 2007
  end-page: 30
  ident: CR6
  article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.12.014
– volume: 319
  start-page: 110
  year: 2008
  end-page: 120
  ident: CR23
  article-title: Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.04.011
– volume: 20
  start-page: 620
  year: 2018
  end-page: 631
  ident: CR37
  article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– ident: CR41
– volume: 19
  start-page: 436
  year: 2018
  ident: 494_CR8
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0008-z
– volume: 345
  start-page: 1515
  year: 2014
  ident: 494_CR38
  publication-title: Science
  doi: 10.1126/science.1255023
– volume: 27
  start-page: 1384
  year: 2017
  ident: 494_CR34
  publication-title: Genome Res.
  doi: 10.1101/gr.216150.116
– volume: 537
  start-page: 548
  year: 2016
  ident: 494_CR1
  publication-title: Nature
  doi: 10.1038/nature19360
– volume: 319
  start-page: 110
  year: 2008
  ident: 494_CR23
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2008.04.011
– ident: 494_CR44
  doi: 10.21203/rs.2.21543/v1
– ident: 494_CR43
  doi: 10.21203/rs.2.21613/v1
– volume: 20
  start-page: 620
  year: 2018
  ident: 494_CR37
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0093-4
– volume: 155
  start-page: 1088
  year: 2013
  ident: 494_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 7
  start-page: 597
  year: 2004
  ident: 494_CR33
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.09.004
– volume: 40
  start-page: 736
  year: 2010
  ident: 494_CR40
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.11.008
– volume: 487
  start-page: 57
  year: 2012
  ident: 494_CR20
  publication-title: Nature
  doi: 10.1038/nature11244
– ident: 494_CR49
  doi: 10.21203/rs.2.21804/v1
– volume: 25
  start-page: 15
  year: 2007
  ident: 494_CR6
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.12.014
– volume: 34
  start-page: 806
  year: 2018
  ident: 494_CR36
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.06.006
– volume: 17
  start-page: 758
  year: 2015
  ident: 494_CR12
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.10.001
– volume: 60
  start-page: 584
  year: 2015
  ident: 494_CR19
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.025
– volume: 30
  start-page: 1313
  year: 2016
  ident: 494_CR27
  publication-title: Genes Dev.
  doi: 10.1101/gad.275073.115
– ident: 494_CR51
– volume: 43
  start-page: D771
  year: 2015
  ident: 494_CR21
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1001
– ident: 494_CR52
– volume: 107
  start-page: 10783
  year: 2010
  ident: 494_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0914507107
– volume: 1
  start-page: 82
  year: 2012
  ident: 494_CR29
  publication-title: Biol. Open
  doi: 10.1242/bio.2011018
– ident: 494_CR45
  doi: 10.21203/rs.2.18674/v1
– volume: 23
  start-page: 349
  year: 2016
  ident: 494_CR50
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3180
– volume: 25
  start-page: 73
  year: 2018
  ident: 494_CR3
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-017-0013-5
– volume: 49
  start-page: 559
  year: 1987
  ident: 494_CR31
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90458-2
– volume: 45
  start-page: 34
  year: 2013
  ident: 494_CR15
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2491
– volume: 34
  start-page: 1031
  year: 2014
  ident: 494_CR10
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00864-13
– volume: 35
  start-page: 1550
  year: 2016
  ident: 494_CR7
  publication-title: EMBO J.
  doi: 10.15252/embj.201593317
– volume: 30
  start-page: 1278
  year: 2016
  ident: 494_CR16
  publication-title: Genes Dev.
  doi: 10.1101/gad.280495.116
– volume: 19
  start-page: 480
  year: 2010
  ident: 494_CR26
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp512
– volume: 51
  start-page: 844
  year: 2019
  ident: 494_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0398-7
– volume: 13
  start-page: 297
  year: 2012
  ident: 494_CR17
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3327
– volume: 312
  start-page: 748
  year: 2006
  ident: 494_CR9
  publication-title: Science
  doi: 10.1126/science.1125162
– volume: 85
  start-page: 409
  year: 2011
  ident: 494_CR24
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.111.090886
– volume: 528
  start-page: 218
  year: 2015
  ident: 494_CR14
  publication-title: Nature
  doi: 10.1038/nature15749
– volume: 13
  start-page: 2375
  year: 1999
  ident: 494_CR28
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.18.2375
– ident: 494_CR42
  doi: 10.21203/rs.2.21562/v1
– volume: 1222
  start-page: 227
  year: 2015
  ident: 494_CR46
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-1594-1_17
– volume: 10
  start-page: e1004505
  year: 2014
  ident: 494_CR25
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004505
– ident: 494_CR41
  doi: 10.21203/rs.2.21552/v1
– volume: 537
  start-page: 553
  year: 2016
  ident: 494_CR2
  publication-title: Nature
  doi: 10.1038/nature19361
– volume: 76
  start-page: 145
  year: 1994
  ident: 494_CR30
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90179-1
– volume: 3
  start-page: 1032
  year: 2008
  ident: 494_CR47
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.68
– ident: 494_CR48
  doi: 10.21203/rs.2.21645/v1
– volume: 144
  start-page: 3264
  year: 2017
  ident: 494_CR11
  publication-title: Development
  doi: 10.1242/dev.155473
– volume: 324
  start-page: 117
  year: 2004
  ident: 494_CR22
  publication-title: Gene
  doi: 10.1016/j.gene.2003.09.022
– volume: 159
  start-page: 884
  year: 2014
  ident: 494_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.055
– volume: 29
  start-page: 585
  year: 2015
  ident: 494_CR39
  publication-title: Genes Dev.
  doi: 10.1101/gad.256354.114
– volume: 32
  start-page: 29
  year: 2016
  ident: 494_CR5
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.11.001
– volume: 9
  year: 2018
  ident: 494_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05841-x
– reference: 32231308 - Nat Cell Biol. 2020 Apr;22(4):355-357. doi: 10.1038/s41556-020-0499-7.
SSID ssj0014407
Score 2.5781896
Snippet The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine...
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging . Histone H3 lysine 9...
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3...
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1–4. Histone H3 lysine 9...
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9...
The importance of germline-inherited posttranslational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 380
SubjectTerms 14/1
14/19
14/34
38/1
38/91
45/15
45/91
631/136/2086
631/337/176
64/110
Animals
Biomedical and Life Sciences
Cancer Research
Catalytic activity
Cell Biology
Demethylation
Developmental Biology
Domains
Embryo Implantation
Embryo, Mammalian
Embryonic development
Embryos
Enzymes
Epigenetic inheritance
Epigenetics
Female
Fertilization
Fertilization - genetics
Gametocytes
Genetic aspects
Genetic research
Genomes
Heterochromatin
Heterochromatin - chemistry
Heterochromatin - metabolism
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histone H3
Histones
Histones - genetics
Histones - metabolism
Hydrolases
Implantation
Letter
Life Sciences
Lysine
Male
Mammals
Metaphase
Methylation
Mice
Mice, Knockout
Oocytes
Oocytes - cytology
Oocytes - growth & development
Oocytes - metabolism
Post-translation
Post-translational modification
Priming
Promoter Regions, Genetic
Protein Processing, Post-Translational
Stem Cells
Transcription activation
Transcription, Genetic
Zygote - cytology
Zygote - growth & development
Zygote - metabolism
Zygotes
Title KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes
URI https://link.springer.com/article/10.1038/s41556-020-0494-z
https://www.ncbi.nlm.nih.gov/pubmed/32231309
https://www.proquest.com/docview/2386859795
https://www.proquest.com/docview/2385268955
https://pubmed.ncbi.nlm.nih.gov/PMC7212036
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CYzIICQlkrYmdDz-hFlYVplVoMKlvVuw4oxKLR5OC2r-eu3yNVGJPqeJzXNtn353v_DtC3kSJ8a2NfDBLopCJOA2ZDmzOQBkxqZ9EIrN4G_l0Hs3OxZdFuGgP3Mo2rLLbE-uNOnMGz8iPQLRECWi_Mvxw9Yth1ij0rrYpNG6TfYQuQ66OF73BhX7LuLldFLIYFIHOq8mToxIFKYbfYnCjFGw7kEu7u_M_4mk3dHLHf1qLpel9cq_VJ-m4YYAH5JYtHpI7TYbJzSPy5-TTqRjTVZNx3pYU9D0KSmqN_Mwqx7abCwdVaYUyqw7fonpDW_QGaJHqlUszOuMn4tJymrnLdFmUFG-l4EuJL5fF7xQP3eAHdc5soJ3H5Hx6_P3jjLW5FpiJeFyxMJOxAWMGxiKQeqTzOBBRnvk28Dks6UBLnkOpFjZA16BOAmNkLlIdSotqBX9C9gpX2GeEan-Uh9IkCVhKIsiF5Bw-ElmpuUilTD0y6kZamRaIHPNh_FS1Q5wnqpkcBZOjcHLU1iPv-ipXDQrHTcSvcfoUolsUGD5zka7LUn3-dqbGEQIoJmCKe-RtS5Q7aNyk7W0E6AICYg0oDwaUsPzMsLjjEtUu_1JdM6tHXvXFWBND2grr1jUNQu3IEGieNkzV9w12WQ7KhfRIPGC3ngBBwYclxfJHDQ4OFj36lj3yvmPM67_13yF7fnMnXpC7QbNS2Mg_IHvVam1fgi5W6cN6wR2S_fF0MpnDc3I8_3r2F4aZMQE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeBAQaBkEDWmtj58ANCFWNq6boH2KS-mdhxRiWWjKZlSv8o_kbu8jVSib3tLYrPcZw7-36XO98R8jqIjGtt4IJZEvhMhLHPtGdTBmDExG4UiMTiaeTpYTA6Fl9m_myL_GnPwmBYZbsnVht1khv8R74LqiWIAP1K_-PZL4ZVo9C72pbQqMViYstzMNmKD-M94O8bz9v_fPRpxJqqAswEPFwyP5GhAdguJGzFeqDT0BNBmrjWczkIr6clT6FVC-uhE0xHnjEyFbH2pUUFyuG518h1ULwDNPbCWWfgoZ80rE8z-SwE4NF6UXm0W6DixnBfDKaUgq17enBTG_yjDjdDNTf8tZUa3L9Dbjf4lQ5rgbtLtmx2j9yoK1qW98n5ZG8qhnRRV7i3BQV8SQEUV5mm2TJn6_Ikh650iTqyChejuqRNtggYkepFHid0xCfi1HKa5KfxPCsonoLBmxJvzrPfMf7kgwua56aEcR6Q4yvhwkOyneWZfUyodgepL00UgWUmvFRIzuEhgZWai1jK2CGD9ksr0yQ-x_obP1XlgOeRqpmjgDkKmaPWDnnXdTmrs35cRvwK2acwm0aG4Ton8aoo1PjbVzUMMGFjBKa_Q942RGkOg5u4Of0AU8AEXD3KnR4lLHfTb26lRDXbTaEuFodDXnbN2BND6DKbryoaTO0jfaB5VAtVNzfY1TmAGemQsCduHQEmIe-3ZPMfVTLyELAPoCCHvG8F8-K1_vvJnlw-iRfk5uhoeqAOxoeTp-SWV68aNnB3yPZysbLPAAcu9fNq8VHy_apX-18wUWjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CAwwCIYGsNrHz4QeECl21UlZNg0l7M7HjjEosGU3L1P5p_HXc5aMjldjb3qr4nNS5r59z5ztCXgWRca0NXNiWBD4TYewz7dmUARgxsRsFIrF4Gnl_Euwdic_H_vEW-dOchcG0ysYmloY6yQ1-I--CawkiQL_S76Z1WsTBYPjh7BfDDlIYaW3aaVQiMrbLc9i-Fe9HA-D1a88b7n77tMfqDgPMBDycMz-RoQEILySYZd3TaeiJIE1c67kcBNnTkqcwqoX1MCCmI88YmYpY-9KiM-Vw32tkO8RdUYdsf9ydHByuYxhClIe1wRT5LAQY0sRUedQt0I1j8i-mVkrBVi2vuOkb_nGOm4mbG9Hb0ikOb5NbNZql_Ur87pAtm90l16v-lst75Hw82Bd9Oqv63duCAtqkAJHLutNsnrPV8iSHqXSOHrNMHqN6SevaEfBEqmd5nNA9PhanltMkP42nWUHxTAxelHhxmv2O8ZMf_KB5bpbwnPvk6Er48IB0sjyzjwjVbi_1pYki2KcJLxWSc7hJYKXmIpYydkivedPK1GXQsRvHT1WG43mkKuYoYI5C5qiVQ96up5xVNUAuI36J7FNYWyNDKT2JF0WhRl8PVT_A8o1Rzwsd8qYmSnN4uInrsxCwBCzH1aLcaVGC8pv2cCMlqjY-hbpQFYe8WA_jTEyoy2y-KGmw0I_0geZhJVTrtYGN5wBtpEPClritCbAkeXskm_4oS5OHgIQAEznkXSOYF3_rv6_s8eWLeE5ugKarL6PJ-Am56VVKw3ruDunMZwv7FEDhXD-rtY-S71et8H8BoGBuWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KDM4A+regulates+the+maternal-to-zygotic+transition+by+protecting+broad+H3K4me3+domains+from+H3K9me3+invasion+in+oocytes&rft.jtitle=Nature+cell+biology&rft.au=Sankar%2C+Aditya&rft.au=Lerdrup%2C+Mads&rft.au=Manaf%2C+Adeel&rft.au=Johansen%2C+Jens+Vilstrup&rft.date=2020-04-01&rft.issn=1476-4679&rft.eissn=1476-4679&rft.volume=22&rft.issue=4&rft.spage=380&rft_id=info:doi/10.1038%2Fs41556-020-0494-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon