KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes
The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , whereas histone H3 lysine 4 (H3K4...
Saved in:
Published in | Nature cell biology Vol. 22; no. 4; pp. 380 - 388 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging
1
–
4
. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change
5
, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters
6
. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)
1
,
2
. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells
7
. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.
Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes. |
---|---|
AbstractList | The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging
. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change
, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters
. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)
. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells
. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1–4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3)1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo.Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes. The importance of germline-inherited posttranslational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , while histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters 6 . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) 1 , 2 . It remains unknown as to which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells 7 . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal preimplantation development and zygotic genome activation (ZGA) after fertilization. Loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and long terminal repeat initiated chimeric transcripts during ZGA. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and preimplantation development. Hence, KDM4A plays a crucial role in preserving maternal epigenome integrity required for proper ZGA and transfer of developmental control to the embryo. The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change.sup.5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters.sup.6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3).sup.1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells.sup.7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes. The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change.sup.5, whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters.sup.6. Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3).sup.1,2. It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells.sup.7. Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine 9 (H3K9) trimethylation is associated with heterochromatin and gene repression during cell-fate change 5 , whereas histone H3 lysine 4 (H3K4) trimethylation marks active gene promoters 6 . Mature oocytes are transcriptionally quiescent and possess remarkably broad domains of H3K4me3 (bdH3K4me3) 1 , 2 . It is unknown which factors contribute to the maintenance of the bdH3K4me3 landscape. Lysine-specific demethylase 4A (KDM4A) demethylates H3K9me3 at promoters marked by H3K4me3 in actively transcribing somatic cells 7 . Here, we report that KDM4A-mediated H3K9me3 demethylation at bdH3K4me3 in oocytes is crucial for normal pre-implantation development and zygotic genome activation after fertilization. The loss of KDM4A in oocytes causes aberrant H3K9me3 spreading over bdH3K4me3, resulting in insufficient transcriptional activation of genes, endogenous retroviral elements and chimeric transcripts initiated from long terminal repeats during zygotic genome activation. The catalytic activity of KDM4A is essential for normal epigenetic reprogramming and pre-implantation development. Hence, KDM4A plays a crucial role in preserving the maternal epigenome integrity required for proper zygotic genome activation and transfer of developmental control to the embryo. Hoffmann and colleagues report that the mammalian maternal-to-zygotic transition requires KDM4A-mediated removal of H3K9me3 from the broad H3K4me3 domains in oocytes. |
Audience | Academic |
Author | Lerdrup, Mads Johansen, Jens Vilstrup Blanshard, Robert Andersen, Claus Yding Dahl, John Arne Manaf, Adeel Hansen, Klaus Klungland, Arne Sankar, Aditya Helin, Kristian Hoffmann, Eva R. Gonzalez, Javier Martin Borup, Rehannah |
AuthorAffiliation | 1 DNRF Centre for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark 8 Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, USA 4 Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway 7 Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Denmark 6 Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark 5 Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway 2 Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark 3 The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Denmark |
AuthorAffiliation_xml | – name: 6 Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark – name: 1 DNRF Centre for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark – name: 8 Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, USA – name: 4 Department of Microbiology, Oslo University Hospital, Rikshospitalet, Norway – name: 7 Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Denmark – name: 3 The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Denmark – name: 2 Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark – name: 5 Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317, Oslo, Norway |
Author_xml | – sequence: 1 givenname: Aditya orcidid: 0000-0002-1840-3356 surname: Sankar fullname: Sankar, Aditya email: cnj376@ku.dk organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen – sequence: 2 givenname: Mads orcidid: 0000-0002-7730-8973 surname: Lerdrup fullname: Lerdrup, Mads organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 3 givenname: Adeel orcidid: 0000-0002-9958-8654 surname: Manaf fullname: Manaf, Adeel organization: Department of Microbiology, Oslo University Hospital – sequence: 4 givenname: Jens Vilstrup surname: Johansen fullname: Johansen, Jens Vilstrup organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 5 givenname: Javier Martin surname: Gonzalez fullname: Gonzalez, Javier Martin organization: Transgenic Core Facility, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 6 givenname: Rehannah surname: Borup fullname: Borup, Rehannah organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 7 givenname: Robert surname: Blanshard fullname: Blanshard, Robert organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 8 givenname: Arne orcidid: 0000-0001-7274-3661 surname: Klungland fullname: Klungland, Arne organization: Department of Microbiology, Oslo University Hospital, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo – sequence: 9 givenname: Klaus surname: Hansen fullname: Hansen, Klaus organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 10 givenname: Claus Yding surname: Andersen fullname: Andersen, Claus Yding organization: Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen – sequence: 11 givenname: John Arne orcidid: 0000-0002-4375-2697 surname: Dahl fullname: Dahl, John Arne email: j.a.dahl@medisin.uio.no organization: Department of Microbiology, Oslo University Hospital – sequence: 12 givenname: Kristian orcidid: 0000-0003-1975-6097 surname: Helin fullname: Helin, Kristian email: kristian.helin@bric.ku.dk organization: Biotech Research Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center – sequence: 13 givenname: Eva R. orcidid: 0000-0002-2588-0652 surname: Hoffmann fullname: Hoffmann, Eva R. email: eva@sund.ku.dk organization: DNRF Center for Chromosome Stability (CCS), Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32231309$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kltvFCEYhiemxh70B3hjSLzRi6mcGW5MNvXQpjUmHq4JwzJTmhlYganu_noZt9Vuo4YLyMfzvsDHe1jt-eBtVT1F8BhB0rxKFDHGa4hhDamk9eZBdYCo4DXlQu7Na85qQSTerw5TuoIQUQrFo2qfYEwQgfKg-n7-5gNdgGj7adDZJpAvLRjLKno91DnUm3UfsjMgR-2Tyy540K7BKoZsTXa-B20MeglOyTkdLQHLMGrnE-hiGOeinIvOX-s0K50HIZh1Oedx9bDTQ7JPbuaj6uu7t19OTuuLj-_PThYXteFE5JotpTAc8vI6LFvYdgJT3i2RxYg0AuJWkq7sttRihiVrG2yM7KhumbQQNogcVa-3vqupHe3SWF8eMqhVdKOOaxW0U7s73l2qPlwrgRGGhBeDFzcGMXybbMpqdMnYYdDehikpTBqGeSMZK-jze-hVmOY-_qJ4w6SQd6heD1Y534VyrplN1YIjyVkDsSjU8V-oMpZ2dKbEoHOlviN4uSMoTLY_cq-nlNTZ50-77LO7TfndjdtYFEBsARNDStF2yris588vt3CDQlDNAVTbAKoSQDUHUG2KEt1T3pr_T4O3mlRY39v4p2__Fv0E9IHq5w |
CitedBy_id | crossref_primary_10_3389_fcell_2021_682060 crossref_primary_10_1016_j_theriogenology_2021_07_025 crossref_primary_10_1266_ggs_21_00069 crossref_primary_10_1016_j_ydbio_2025_01_018 crossref_primary_10_1360_SSV_2023_0134 crossref_primary_10_1007_s13577_023_00937_z crossref_primary_10_1016_j_aaf_2022_05_005 crossref_primary_10_1038_s41467_024_50727_w crossref_primary_10_1016_j_theriogenology_2023_05_018 crossref_primary_10_1186_s13072_021_00413_8 crossref_primary_10_1093_molehr_gaaa059 crossref_primary_10_1155_2022_2197071 crossref_primary_10_3389_fcell_2021_654028 crossref_primary_10_1111_rda_14231 crossref_primary_10_3390_ijms23031691 crossref_primary_10_1038_s41556_020_0499_7 crossref_primary_10_1016_j_intimp_2024_111748 crossref_primary_10_1007_s00418_021_02036_2 crossref_primary_10_1016_j_molcel_2021_11_011 crossref_primary_10_1038_s44319_024_00188_5 crossref_primary_10_1016_j_celrep_2023_112102 crossref_primary_10_1371_journal_ppat_1009670 crossref_primary_10_1016_j_semcdb_2020_12_007 crossref_primary_10_3390_ijms241411377 crossref_primary_10_1360_SSV_2023_0164 crossref_primary_10_3389_fcell_2022_808859 crossref_primary_10_1038_s41586_023_05780_8 crossref_primary_10_1016_j_stemcr_2020_09_005 crossref_primary_10_1111_cpr_13534 crossref_primary_10_1016_j_gde_2021_01_008 crossref_primary_10_1186_s13058_022_01504_4 crossref_primary_10_3390_ijms25031459 crossref_primary_10_1371_journal_pbio_3001001 crossref_primary_10_1093_humupd_dmad026 crossref_primary_10_1016_j_jia_2024_02_007 crossref_primary_10_1093_molehr_gaab012 crossref_primary_10_15252_embr_202256530 crossref_primary_10_1159_000529336 crossref_primary_10_3389_fcell_2020_610773 crossref_primary_10_1002_mco2_331 crossref_primary_10_1002_bies_202100229 crossref_primary_10_1016_j_xhgg_2022_100098 crossref_primary_10_3390_genes14040891 crossref_primary_10_3389_fimmu_2024_1495221 crossref_primary_10_1038_s41586_021_03779_7 crossref_primary_10_14336_AD_2023_0527 crossref_primary_10_1038_s41419_022_04940_4 crossref_primary_10_1016_j_cell_2020_05_026 crossref_primary_10_3390_insects12110969 crossref_primary_10_1016_j_stem_2022_01_010 crossref_primary_10_1093_bib_bbaa215 crossref_primary_10_1002_mco2_326 crossref_primary_10_1016_j_tibs_2023_02_007 crossref_primary_10_1089_cell_2023_0122 crossref_primary_10_1016_j_bcp_2023_115799 crossref_primary_10_1093_biolre_ioac051 crossref_primary_10_1186_s13148_022_01411_7 crossref_primary_10_3390_biom14070747 crossref_primary_10_1360_TB_2024_0844 crossref_primary_10_1155_2022_1608806 crossref_primary_10_1101_cshperspect_a039677 crossref_primary_10_1002_advs_202301538 crossref_primary_10_3390_ijms24076837 crossref_primary_10_3390_ijms241713655 crossref_primary_10_1155_2021_8817581 crossref_primary_10_1038_s41467_023_40496_3 crossref_primary_10_1038_s44319_024_00223_5 crossref_primary_10_1002_jcp_31402 crossref_primary_10_1038_s41598_020_77545_6 crossref_primary_10_1186_s13059_021_02308_z crossref_primary_10_1002_rmb2_12521 crossref_primary_10_1073_pnas_2407490121 crossref_primary_10_1111_nyas_15260 crossref_primary_10_1016_j_gendis_2022_12_020 crossref_primary_10_1111_cpr_13353 crossref_primary_10_1016_j_ecoenv_2022_114486 crossref_primary_10_1016_j_stemcr_2024_04_003 crossref_primary_10_1371_journal_pgen_1009908 crossref_primary_10_1038_s41588_021_00820_3 |
Cites_doi | 10.1101/gr.216150.116 10.1016/j.molcel.2010.11.008 10.1016/j.stem.2015.10.001 10.1016/j.molcel.2015.10.025 10.1038/nprot.2008.68 10.15252/embj.201593317 10.1016/j.tig.2015.11.001 10.1016/0092-8674(94)90179-1 10.1038/s41594-017-0013-5 10.1093/hmg/ddp512 10.1016/j.cell.2013.10.043 10.1038/s41580-018-0008-z 10.1126/science.1125162 10.1095/biolreprod.111.090886 10.1101/gad.256354.114 10.1038/nrm3327 10.1101/gad.13.18.2375 10.1016/j.cell.2014.09.055 10.1371/journal.pgen.1004505 10.1038/ng.2491 10.1016/j.devcel.2004.09.004 10.1128/MCB.00864-13 10.1073/pnas.0914507107 10.1038/s41467-018-05841-x 10.1038/nsmb.3180 10.1038/nature15749 10.1038/nature19360 10.1038/nature19361 10.1101/gad.280495.116 10.1038/s41588-019-0398-7 10.1093/nar/gku1001 10.1126/science.1255023 10.1007/978-1-4939-1594-1_17 10.1242/dev.155473 10.1016/0092-8674(87)90458-2 10.1016/j.tig.2018.06.006 10.1242/bio.2011018 10.1101/gad.275073.115 10.1016/j.gene.2003.09.022 10.1038/nature11244 10.1016/j.molcel.2006.12.014 10.1016/j.ydbio.2008.04.011 10.1038/s41556-018-0093-4 10.21203/rs.2.21543/v1 10.21203/rs.2.21613/v1 10.21203/rs.2.21804/v1 10.21203/rs.2.18674/v1 10.21203/rs.2.21562/v1 10.21203/rs.2.21552/v1 10.21203/rs.2.21645/v1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41556-020-0494-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Proquest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 388 |
ExternalDocumentID | PMC7212036 A619658027 32231309 10_1038_s41556_020_0494_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GrantInformation_xml | – fundername: Novo Nordisk Fonden (Novo Nordisk Foundation) grantid: NNF17CC0027852; NNF15OC0016662 funderid: https://doi.org/10.13039/501100009708 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 724718-ReCAP funderid: https://doi.org/10.13039/100010663 – fundername: Independent Research Fund Denmark (1111831001) – fundername: South-Eastern Norway Regional Health Authority, Early Career Grant (2016058), The Norwegian Cancer Society and the Research Council of Norway, Young Research Talent Grant – fundername: The Independent Research Foundation DFF 7016-00067 – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation) grantid: DNRF82; 6110-00344B funderid: https://doi.org/10.13039/501100001732 – fundername: Memorial Sloan-Kettering Cancer Center (MSKCC) grantid: NIH P30 CA008748 funderid: https://doi.org/10.13039/100007052 – fundername: South-Eastern Norway Regional Health Authority – fundername: European Research Council grantid: 724718 – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c637t-5d97c60649429b0bf7246fd1e2138702b93f064b4e25295b82cc9f4ab59e00813 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Thu Aug 21 13:51:39 EDT 2025 Fri Jul 11 06:25:49 EDT 2025 Sat Aug 23 12:54:27 EDT 2025 Tue Jun 17 21:40:17 EDT 2025 Tue Jun 10 20:28:57 EDT 2025 Fri Jun 27 04:38:45 EDT 2025 Mon Jul 21 06:05:17 EDT 2025 Tue Jul 01 00:31:15 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-5d97c60649429b0bf7246fd1e2138702b93f064b4e25295b82cc9f4ab59e00813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 co-first authors |
ORCID | 0000-0002-2588-0652 0000-0002-7730-8973 0000-0002-1840-3356 0000-0001-7274-3661 0000-0002-4375-2697 0000-0002-9958-8654 0000-0003-1975-6097 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7212036 |
PMID | 32231309 |
PQID | 2386859795 |
PQPubID | 45779 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7212036 proquest_miscellaneous_2385268955 proquest_journals_2386859795 gale_infotracmisc_A619658027 gale_infotracacademiconefile_A619658027 gale_incontextgauss_ISR_A619658027 pubmed_primary_32231309 crossref_citationtrail_10_1038_s41556_020_0494_z crossref_primary_10_1038_s41556_020_0494_z springer_journals_10_1038_s41556_020_0494_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Brind’Amour (CR35) 2018; 9 Dahl, Collas (CR47) 2008; 3 Ruthenburg, Allis, Wysocka (CR6) 2007; 25 Pedersen (CR7) 2016; 35 Russell, Nurse (CR31) 1987; 49 Yamada (CR26) 2010; 19 Schulz, Zakian (CR30) 1994; 76 Xu (CR4) 2019; 51 Agger (CR16) 2016; 30 Hamdane (CR25) 2014; 10 Rugg-Gunn, Cox, Ralston, Rossant (CR18) 2010; 107 CR49 Dahl (CR1) 2016; 537 CR48 CR45 CR44 Prendergast (CR27) 2016; 30 CR43 CR42 Becker, Nicetto, Zaret (CR5) 2016; 32 CR41 Rodriguez-Terrones, Torres-Padilla (CR36) 2018; 34 Ma, Schultz (CR23) 2008; 319 Singer, Gurian-West, Clurman, Roberts (CR28) 1999; 13 Chung (CR12) 2015; 17 Dahl, Klungland (CR46) 2015; 1222 Macfarlan (CR20) 2012; 487 Eckersley-Maslin, Alda-Catalinas, Reik (CR8) 2018; 19 Black (CR40) 2010; 40 Sankar (CR11) 2017; 144 Toledo (CR32) 2013; 155 Zhang (CR2) 2016; 537 Cheloufi (CR14) 2015; 528 CR52 Wang (CR37) 2018; 20 CR51 Matoba (CR13) 2014; 159 Franke (CR34) 2017; 27 Alabert (CR39) 2015; 29 Huang, Chen, Chen, Tsai, Choo (CR22) 2004; 324 Pan, Schultz (CR24) 2011; 85 Hanna (CR3) 2018; 25 Peaston (CR33) 2004; 7 Moghe (CR29) 2012; 1 Matsumura (CR19) 2015; 60 Lerdrup, Johansen, Agrawal-Singh, Hansen (CR50) 2016; 23 Huang, Fang, Bedford, Zhang, Xu (CR9) 2006; 312 Pedersen (CR10) 2014; 34 Kooistra, Helin (CR17) 2012; 13 Chen (CR15) 2013; 45 Park, Shirahige, Ohsugi, Nakai (CR21) 2015; 43 Gaydos, Wang, Strome (CR38) 2014; 345 C Wang (494_CR37) 2018; 20 LJ Gaydos (494_CR38) 2014; 345 K Agger (494_CR16) 2016; 30 494_CR43 494_CR44 494_CR41 494_CR42 MA Eckersley-Maslin (494_CR8) 2018; 19 J Chen (494_CR15) 2013; 45 JC Black (494_CR40) 2010; 40 S Matoba (494_CR13) 2014; 159 JA Dahl (494_CR47) 2008; 3 D Rodriguez-Terrones (494_CR36) 2018; 34 C Alabert (494_CR39) 2015; 29 AE Peaston (494_CR33) 2004; 7 M Yamada (494_CR26) 2010; 19 LI Toledo (494_CR32) 2013; 155 AJ Ruthenburg (494_CR6) 2007; 25 VP Schulz (494_CR30) 1994; 76 SM Kooistra (494_CR17) 2012; 13 494_CR52 Y Huang (494_CR9) 2006; 312 494_CR51 494_CR49 494_CR48 494_CR45 L Prendergast (494_CR27) 2016; 30 M Lerdrup (494_CR50) 2016; 23 JD Singer (494_CR28) 1999; 13 S Cheloufi (494_CR14) 2015; 528 S Moghe (494_CR29) 2012; 1 N Hamdane (494_CR25) 2014; 10 MT Pedersen (494_CR7) 2016; 35 YG Chung (494_CR12) 2015; 17 P Russell (494_CR31) 1987; 49 SJ Park (494_CR21) 2015; 43 MT Pedersen (494_CR10) 2014; 34 H Pan (494_CR24) 2011; 85 JA Dahl (494_CR46) 2015; 1222 Y Matsumura (494_CR19) 2015; 60 PJ Rugg-Gunn (494_CR18) 2010; 107 J Brind’Amour (494_CR35) 2018; 9 A Sankar (494_CR11) 2017; 144 V Franke (494_CR34) 2017; 27 TS Macfarlan (494_CR20) 2012; 487 Q Xu (494_CR4) 2019; 51 CJ Huang (494_CR22) 2004; 324 CW Hanna (494_CR3) 2018; 25 B Zhang (494_CR2) 2016; 537 JS Becker (494_CR5) 2016; 32 P Ma (494_CR23) 2008; 319 JA Dahl (494_CR1) 2016; 537 32231308 - Nat Cell Biol. 2020 Apr;22(4):355-357. doi: 10.1038/s41556-020-0499-7. |
References_xml | – ident: CR45 – volume: 27 start-page: 1384 year: 2017 end-page: 1394 ident: CR34 article-title: Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes publication-title: Genome Res. doi: 10.1101/gr.216150.116 – volume: 40 start-page: 736 year: 2010 end-page: 748 ident: CR40 article-title: Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.008 – volume: 17 start-page: 758 year: 2015 end-page: 766 ident: CR12 article-title: Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.10.001 – ident: CR49 – volume: 60 start-page: 584 year: 2015 end-page: 596 ident: CR19 article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.025 – volume: 3 start-page: 1032 year: 2008 end-page: 1045 ident: CR47 article-title: A rapid micro chromatin immunoprecipitation assay (microChIP) publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.68 – volume: 35 start-page: 1550 year: 2016 end-page: 1564 ident: CR7 article-title: Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development publication-title: EMBO J. doi: 10.15252/embj.201593317 – volume: 32 start-page: 29 year: 2016 end-page: 41 ident: CR5 article-title: H3K9me3-dependent heterochromatin: barrier to cell fate changes publication-title: Trends Genet. doi: 10.1016/j.tig.2015.11.001 – ident: CR51 – volume: 76 start-page: 145 year: 1994 end-page: 155 ident: CR30 article-title: The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation publication-title: Cell doi: 10.1016/0092-8674(94)90179-1 – volume: 25 start-page: 73 year: 2018 end-page: 82 ident: CR3 article-title: MLL2 conveys transcription-independent H3K4 trimethylation in oocytes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0013-5 – volume: 19 start-page: 480 year: 2010 end-page: 493 ident: CR26 article-title: Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp512 – volume: 155 start-page: 1088 year: 2013 end-page: 1103 ident: CR32 article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA publication-title: Cell doi: 10.1016/j.cell.2013.10.043 – volume: 19 start-page: 436 year: 2018 end-page: 450 ident: CR8 article-title: Dynamics of the epigenetic landscape during the maternal-to-zygotic transition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0008-z – volume: 312 start-page: 748 year: 2006 end-page: 751 ident: CR9 article-title: Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A publication-title: Science doi: 10.1126/science.1125162 – volume: 85 start-page: 409 year: 2011 end-page: 416 ident: CR24 article-title: Sox2 modulates reprogramming of gene expression in two-cell mouse embryos publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.090886 – volume: 29 start-page: 585 year: 2015 end-page: 590 ident: CR39 article-title: Two distinct modes for propagation of histone PTMs across the cell cycle publication-title: Genes Dev. doi: 10.1101/gad.256354.114 – volume: 13 start-page: 297 year: 2012 end-page: 311 ident: CR17 article-title: Molecular mechanisms and potential functions of histone demethylases publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3327 – ident: CR42 – volume: 13 start-page: 2375 year: 1999 end-page: 2387 ident: CR28 article-title: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells publication-title: Genes Dev. doi: 10.1101/gad.13.18.2375 – volume: 159 start-page: 884 year: 2014 end-page: 895 ident: CR13 article-title: Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation publication-title: Cell doi: 10.1016/j.cell.2014.09.055 – volume: 10 start-page: e1004505 year: 2014 ident: CR25 article-title: Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004505 – volume: 45 start-page: 34 year: 2013 end-page: 42 ident: CR15 article-title: H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs publication-title: Nat. Genet. doi: 10.1038/ng.2491 – volume: 7 start-page: 597 year: 2004 end-page: 606 ident: CR33 article-title: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.09.004 – volume: 34 start-page: 1031 year: 2014 end-page: 1045 ident: CR10 article-title: The demethylase JMJD2C localizes to H3K4me3-positive transcription start sites and is dispensable for embryonic development publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00864-13 – volume: 107 start-page: 10783 year: 2010 end-page: 10790 ident: CR18 article-title: Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0914507107 – volume: 9 year: 2018 ident: CR35 article-title: LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05841-x – volume: 23 start-page: 349 year: 2016 end-page: 357 ident: CR50 article-title: An interactive environment for agile analysis and visualization of ChIP-sequencing data publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3180 – ident: CR43 – volume: 528 start-page: 218 year: 2015 end-page: 224 ident: CR14 article-title: The histone chaperone CAF-1 safeguards somatic cell identity publication-title: Nature doi: 10.1038/nature15749 – volume: 537 start-page: 548 year: 2016 end-page: 552 ident: CR1 article-title: Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition publication-title: Nature doi: 10.1038/nature19360 – volume: 537 start-page: 553 year: 2016 end-page: 557 ident: CR2 article-title: Allelic reprogramming of the histone modification H3K4me3 in early mammalian development publication-title: Nature doi: 10.1038/nature19361 – volume: 30 start-page: 1278 year: 2016 end-page: 1288 ident: CR16 article-title: Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells publication-title: Genes Dev. doi: 10.1101/gad.280495.116 – volume: 51 start-page: 844 year: 2019 end-page: 856 ident: CR4 article-title: SETD2 regulates the maternal epigenome, genomic imprinting and embryonic development publication-title: Nat. Genet. doi: 10.1038/s41588-019-0398-7 – volume: 43 start-page: D771 year: 2015 end-page: D776 ident: CR21 article-title: DBTMEE: a database of transcriptome in mouse early embryos publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1001 – volume: 345 start-page: 1515 year: 2014 end-page: 1518 ident: CR38 article-title: Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development publication-title: Science doi: 10.1126/science.1255023 – volume: 1222 start-page: 227 year: 2015 end-page: 245 ident: CR46 article-title: Micro chromatin immunoprecipitation (muChIP) from early mammalian embryos publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1594-1_17 – volume: 144 start-page: 3264 year: 2017 end-page: 3277 ident: CR11 article-title: Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development publication-title: Development doi: 10.1242/dev.155473 – volume: 49 start-page: 559 year: 1987 end-page: 567 ident: CR31 article-title: Negative regulation of mitosis by , a gene encoding a protein kinase homolog publication-title: Cell doi: 10.1016/0092-8674(87)90458-2 – ident: CR44 – volume: 34 start-page: 806 year: 2018 end-page: 820 ident: CR36 article-title: Nimble and ready to mingle: transposon outbursts of early development publication-title: Trends Genet. doi: 10.1016/j.tig.2018.06.006 – ident: CR48 – volume: 1 start-page: 82 year: 2012 end-page: 91 ident: CR29 article-title: The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A publication-title: Biol. Open doi: 10.1242/bio.2011018 – volume: 30 start-page: 1313 year: 2016 end-page: 1326 ident: CR27 article-title: The CENP-T/-W complex is a binding partner of the histone chaperone FACT publication-title: Genes Dev. doi: 10.1101/gad.275073.115 – ident: CR52 – volume: 324 start-page: 117 year: 2004 end-page: 127 ident: CR22 article-title: TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains publication-title: Gene doi: 10.1016/j.gene.2003.09.022 – volume: 487 start-page: 57 year: 2012 end-page: 63 ident: CR20 article-title: Embryonic stem cell potency fluctuates with endogenous retrovirus activity publication-title: Nature doi: 10.1038/nature11244 – volume: 25 start-page: 15 year: 2007 end-page: 30 ident: CR6 article-title: Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.12.014 – volume: 319 start-page: 110 year: 2008 end-page: 120 ident: CR23 article-title: Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.04.011 – volume: 20 start-page: 620 year: 2018 end-page: 631 ident: CR37 article-title: Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – ident: CR41 – volume: 19 start-page: 436 year: 2018 ident: 494_CR8 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0008-z – volume: 345 start-page: 1515 year: 2014 ident: 494_CR38 publication-title: Science doi: 10.1126/science.1255023 – volume: 27 start-page: 1384 year: 2017 ident: 494_CR34 publication-title: Genome Res. doi: 10.1101/gr.216150.116 – volume: 537 start-page: 548 year: 2016 ident: 494_CR1 publication-title: Nature doi: 10.1038/nature19360 – volume: 319 start-page: 110 year: 2008 ident: 494_CR23 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2008.04.011 – ident: 494_CR44 doi: 10.21203/rs.2.21543/v1 – ident: 494_CR43 doi: 10.21203/rs.2.21613/v1 – volume: 20 start-page: 620 year: 2018 ident: 494_CR37 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0093-4 – volume: 155 start-page: 1088 year: 2013 ident: 494_CR32 publication-title: Cell doi: 10.1016/j.cell.2013.10.043 – volume: 7 start-page: 597 year: 2004 ident: 494_CR33 publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.09.004 – volume: 40 start-page: 736 year: 2010 ident: 494_CR40 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.008 – volume: 487 start-page: 57 year: 2012 ident: 494_CR20 publication-title: Nature doi: 10.1038/nature11244 – ident: 494_CR49 doi: 10.21203/rs.2.21804/v1 – volume: 25 start-page: 15 year: 2007 ident: 494_CR6 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.12.014 – volume: 34 start-page: 806 year: 2018 ident: 494_CR36 publication-title: Trends Genet. doi: 10.1016/j.tig.2018.06.006 – volume: 17 start-page: 758 year: 2015 ident: 494_CR12 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.10.001 – volume: 60 start-page: 584 year: 2015 ident: 494_CR19 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.025 – volume: 30 start-page: 1313 year: 2016 ident: 494_CR27 publication-title: Genes Dev. doi: 10.1101/gad.275073.115 – ident: 494_CR51 – volume: 43 start-page: D771 year: 2015 ident: 494_CR21 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1001 – ident: 494_CR52 – volume: 107 start-page: 10783 year: 2010 ident: 494_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0914507107 – volume: 1 start-page: 82 year: 2012 ident: 494_CR29 publication-title: Biol. Open doi: 10.1242/bio.2011018 – ident: 494_CR45 doi: 10.21203/rs.2.18674/v1 – volume: 23 start-page: 349 year: 2016 ident: 494_CR50 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3180 – volume: 25 start-page: 73 year: 2018 ident: 494_CR3 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-017-0013-5 – volume: 49 start-page: 559 year: 1987 ident: 494_CR31 publication-title: Cell doi: 10.1016/0092-8674(87)90458-2 – volume: 45 start-page: 34 year: 2013 ident: 494_CR15 publication-title: Nat. Genet. doi: 10.1038/ng.2491 – volume: 34 start-page: 1031 year: 2014 ident: 494_CR10 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00864-13 – volume: 35 start-page: 1550 year: 2016 ident: 494_CR7 publication-title: EMBO J. doi: 10.15252/embj.201593317 – volume: 30 start-page: 1278 year: 2016 ident: 494_CR16 publication-title: Genes Dev. doi: 10.1101/gad.280495.116 – volume: 19 start-page: 480 year: 2010 ident: 494_CR26 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp512 – volume: 51 start-page: 844 year: 2019 ident: 494_CR4 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0398-7 – volume: 13 start-page: 297 year: 2012 ident: 494_CR17 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3327 – volume: 312 start-page: 748 year: 2006 ident: 494_CR9 publication-title: Science doi: 10.1126/science.1125162 – volume: 85 start-page: 409 year: 2011 ident: 494_CR24 publication-title: Biol. Reprod. doi: 10.1095/biolreprod.111.090886 – volume: 528 start-page: 218 year: 2015 ident: 494_CR14 publication-title: Nature doi: 10.1038/nature15749 – volume: 13 start-page: 2375 year: 1999 ident: 494_CR28 publication-title: Genes Dev. doi: 10.1101/gad.13.18.2375 – ident: 494_CR42 doi: 10.21203/rs.2.21562/v1 – volume: 1222 start-page: 227 year: 2015 ident: 494_CR46 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-1594-1_17 – volume: 10 start-page: e1004505 year: 2014 ident: 494_CR25 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004505 – ident: 494_CR41 doi: 10.21203/rs.2.21552/v1 – volume: 537 start-page: 553 year: 2016 ident: 494_CR2 publication-title: Nature doi: 10.1038/nature19361 – volume: 76 start-page: 145 year: 1994 ident: 494_CR30 publication-title: Cell doi: 10.1016/0092-8674(94)90179-1 – volume: 3 start-page: 1032 year: 2008 ident: 494_CR47 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.68 – ident: 494_CR48 doi: 10.21203/rs.2.21645/v1 – volume: 144 start-page: 3264 year: 2017 ident: 494_CR11 publication-title: Development doi: 10.1242/dev.155473 – volume: 324 start-page: 117 year: 2004 ident: 494_CR22 publication-title: Gene doi: 10.1016/j.gene.2003.09.022 – volume: 159 start-page: 884 year: 2014 ident: 494_CR13 publication-title: Cell doi: 10.1016/j.cell.2014.09.055 – volume: 29 start-page: 585 year: 2015 ident: 494_CR39 publication-title: Genes Dev. doi: 10.1101/gad.256354.114 – volume: 32 start-page: 29 year: 2016 ident: 494_CR5 publication-title: Trends Genet. doi: 10.1016/j.tig.2015.11.001 – volume: 9 year: 2018 ident: 494_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05841-x – reference: 32231308 - Nat Cell Biol. 2020 Apr;22(4):355-357. doi: 10.1038/s41556-020-0499-7. |
SSID | ssj0014407 |
Score | 2.5781896 |
Snippet | The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging
1
–
4
. Histone H3 lysine... The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging . Histone H3 lysine 9... The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging.sup.1-4. Histone H3... The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1–4. Histone H3 lysine 9... The importance of germline-inherited post-translational histone modifications on priming early mammalian development is just emerging1-4. Histone H3 lysine 9... The importance of germline-inherited posttranslational histone modifications on priming early mammalian development is just emerging 1 – 4 . Histone H3 lysine... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 380 |
SubjectTerms | 14/1 14/19 14/34 38/1 38/91 45/15 45/91 631/136/2086 631/337/176 64/110 Animals Biomedical and Life Sciences Cancer Research Catalytic activity Cell Biology Demethylation Developmental Biology Domains Embryo Implantation Embryo, Mammalian Embryonic development Embryos Enzymes Epigenetic inheritance Epigenetics Female Fertilization Fertilization - genetics Gametocytes Genetic aspects Genetic research Genomes Heterochromatin Heterochromatin - chemistry Heterochromatin - metabolism Histone Demethylases - genetics Histone Demethylases - metabolism Histone H3 Histones Histones - genetics Histones - metabolism Hydrolases Implantation Letter Life Sciences Lysine Male Mammals Metaphase Methylation Mice Mice, Knockout Oocytes Oocytes - cytology Oocytes - growth & development Oocytes - metabolism Post-translation Post-translational modification Priming Promoter Regions, Genetic Protein Processing, Post-Translational Stem Cells Transcription activation Transcription, Genetic Zygote - cytology Zygote - growth & development Zygote - metabolism Zygotes |
Title | KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes |
URI | https://link.springer.com/article/10.1038/s41556-020-0494-z https://www.ncbi.nlm.nih.gov/pubmed/32231309 https://www.proquest.com/docview/2386859795 https://www.proquest.com/docview/2385268955 https://pubmed.ncbi.nlm.nih.gov/PMC7212036 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CYzIICQlkrYmdDz-hFlYVplVoMKlvVuw4oxKLR5OC2r-eu3yNVGJPqeJzXNtn353v_DtC3kSJ8a2NfDBLopCJOA2ZDmzOQBkxqZ9EIrN4G_l0Hs3OxZdFuGgP3Mo2rLLbE-uNOnMGz8iPQLRECWi_Mvxw9Yth1ij0rrYpNG6TfYQuQ66OF73BhX7LuLldFLIYFIHOq8mToxIFKYbfYnCjFGw7kEu7u_M_4mk3dHLHf1qLpel9cq_VJ-m4YYAH5JYtHpI7TYbJzSPy5-TTqRjTVZNx3pYU9D0KSmqN_Mwqx7abCwdVaYUyqw7fonpDW_QGaJHqlUszOuMn4tJymrnLdFmUFG-l4EuJL5fF7xQP3eAHdc5soJ3H5Hx6_P3jjLW5FpiJeFyxMJOxAWMGxiKQeqTzOBBRnvk28Dks6UBLnkOpFjZA16BOAmNkLlIdSotqBX9C9gpX2GeEan-Uh9IkCVhKIsiF5Bw-ElmpuUilTD0y6kZamRaIHPNh_FS1Q5wnqpkcBZOjcHLU1iPv-ipXDQrHTcSvcfoUolsUGD5zka7LUn3-dqbGEQIoJmCKe-RtS5Q7aNyk7W0E6AICYg0oDwaUsPzMsLjjEtUu_1JdM6tHXvXFWBND2grr1jUNQu3IEGieNkzV9w12WQ7KhfRIPGC3ngBBwYclxfJHDQ4OFj36lj3yvmPM67_13yF7fnMnXpC7QbNS2Mg_IHvVam1fgi5W6cN6wR2S_fF0MpnDc3I8_3r2F4aZMQE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeBAQaBkEDWmtj58ANCFWNq6boH2KS-mdhxRiWWjKZlSv8o_kbu8jVSib3tLYrPcZw7-36XO98R8jqIjGtt4IJZEvhMhLHPtGdTBmDExG4UiMTiaeTpYTA6Fl9m_myL_GnPwmBYZbsnVht1khv8R74LqiWIAP1K_-PZL4ZVo9C72pbQqMViYstzMNmKD-M94O8bz9v_fPRpxJqqAswEPFwyP5GhAdguJGzFeqDT0BNBmrjWczkIr6clT6FVC-uhE0xHnjEyFbH2pUUFyuG518h1ULwDNPbCWWfgoZ80rE8z-SwE4NF6UXm0W6DixnBfDKaUgq17enBTG_yjDjdDNTf8tZUa3L9Dbjf4lQ5rgbtLtmx2j9yoK1qW98n5ZG8qhnRRV7i3BQV8SQEUV5mm2TJn6_Ikh650iTqyChejuqRNtggYkepFHid0xCfi1HKa5KfxPCsonoLBmxJvzrPfMf7kgwua56aEcR6Q4yvhwkOyneWZfUyodgepL00UgWUmvFRIzuEhgZWai1jK2CGD9ksr0yQ-x_obP1XlgOeRqpmjgDkKmaPWDnnXdTmrs35cRvwK2acwm0aG4Ton8aoo1PjbVzUMMGFjBKa_Q942RGkOg5u4Of0AU8AEXD3KnR4lLHfTb26lRDXbTaEuFodDXnbN2BND6DKbryoaTO0jfaB5VAtVNzfY1TmAGemQsCduHQEmIe-3ZPMfVTLyELAPoCCHvG8F8-K1_vvJnlw-iRfk5uhoeqAOxoeTp-SWV68aNnB3yPZysbLPAAcu9fNq8VHy_apX-18wUWjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8CAwwCIYGsNrHz4QeECl21UlZNg0l7M7HjjEosGU3L1P5p_HXc5aMjldjb3qr4nNS5r59z5ztCXgWRca0NXNiWBD4TYewz7dmUARgxsRsFIrF4Gnl_Euwdic_H_vEW-dOchcG0ysYmloY6yQ1-I--CawkiQL_S76Z1WsTBYPjh7BfDDlIYaW3aaVQiMrbLc9i-Fe9HA-D1a88b7n77tMfqDgPMBDycMz-RoQEILySYZd3TaeiJIE1c67kcBNnTkqcwqoX1MCCmI88YmYpY-9KiM-Vw32tkO8RdUYdsf9ydHByuYxhClIe1wRT5LAQY0sRUedQt0I1j8i-mVkrBVi2vuOkb_nGOm4mbG9Hb0ikOb5NbNZql_Ur87pAtm90l16v-lst75Hw82Bd9Oqv63duCAtqkAJHLutNsnrPV8iSHqXSOHrNMHqN6SevaEfBEqmd5nNA9PhanltMkP42nWUHxTAxelHhxmv2O8ZMf_KB5bpbwnPvk6Er48IB0sjyzjwjVbi_1pYki2KcJLxWSc7hJYKXmIpYydkivedPK1GXQsRvHT1WG43mkKuYoYI5C5qiVQ96up5xVNUAuI36J7FNYWyNDKT2JF0WhRl8PVT_A8o1Rzwsd8qYmSnN4uInrsxCwBCzH1aLcaVGC8pv2cCMlqjY-hbpQFYe8WA_jTEyoy2y-KGmw0I_0geZhJVTrtYGN5wBtpEPClritCbAkeXskm_4oS5OHgIQAEznkXSOYF3_rv6_s8eWLeE5ugKarL6PJ-Am56VVKw3ruDunMZwv7FEDhXD-rtY-S71et8H8BoGBuWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KDM4A+regulates+the+maternal-to-zygotic+transition+by+protecting+broad+H3K4me3+domains+from+H3K9me3+invasion+in+oocytes&rft.jtitle=Nature+cell+biology&rft.au=Sankar%2C+Aditya&rft.au=Lerdrup%2C+Mads&rft.au=Manaf%2C+Adeel&rft.au=Johansen%2C+Jens+Vilstrup&rft.date=2020-04-01&rft.issn=1476-4679&rft.eissn=1476-4679&rft.volume=22&rft.issue=4&rft.spage=380&rft_id=info:doi/10.1038%2Fs41556-020-0494-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |