R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1

Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-...

Full description

Saved in:
Bibliographic Details
Published inNature protocols Vol. 14; no. 5; pp. 1661 - 1685
Main Authors Chen, Jia-Yu, Zhang, Xuan, Fu, Xiang-Dong, Chen, Liang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA–DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA–DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS). This protocol describes the steps in R-ChIP, a procedure based on chromatin immunoprecipitation (ChIP) of an exogenously expressed mutant RNASEH1 to capture the genome-wide distribution of R-loops.
AbstractList Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA-DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA-DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS). This protocol describes the steps in R-ChIP, a procedure based on chromatin immunoprecipitation (ChIP) of an exogenously expressed mutant RNASEH1 to capture the genome-wide distribution of R-loops.
Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA–DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA–DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS).
Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA-DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA-DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS).Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA-DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA-DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS).
Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA–DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA–DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS). This protocol describes the steps in R-ChIP, a procedure based on chromatin immunoprecipitation (ChIP) of an exogenously expressed mutant RNASEH1 to capture the genome-wide distribution of R-loops.
Audience Academic
Author Fu, Xiang-Dong
Chen, Liang
Zhang, Xuan
Chen, Jia-Yu
AuthorAffiliation 2 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
1 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
AuthorAffiliation_xml – name: 2 Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
– name: 1 Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
Author_xml – sequence: 1
  givenname: Jia-Yu
  orcidid: 0000-0001-9449-9321
  surname: Chen
  fullname: Chen, Jia-Yu
  organization: Department of Cellular and Molecular Medicine, University of California, San Diego
– sequence: 2
  givenname: Xuan
  surname: Zhang
  fullname: Zhang, Xuan
  organization: Department of Cellular and Molecular Medicine, University of California, San Diego
– sequence: 3
  givenname: Xiang-Dong
  orcidid: 0000-0001-5499-8732
  surname: Fu
  fullname: Fu, Xiang-Dong
  email: xdfu@ucsd.edu
  organization: Department of Cellular and Molecular Medicine, University of California, San Diego
– sequence: 4
  givenname: Liang
  orcidid: 0000-0002-6748-9416
  surname: Chen
  fullname: Chen, Liang
  email: liang_chen@whu.edu.cn
  organization: Department of Cellular and Molecular Medicine, University of California, San Diego, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30996261$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAGxQJDawcPHd8QZpNCp0pIrLFNaW4zipK8ce4qQwb4_DtIWpAFmWrePv_318fI6LgxCDLYrnCJ4iSKo3iSImOYBI5sko4I-KIyQYBFhIefBrTwFGlTwsjlO6hpAKwsWT4pBAKTnm6Kj4vAbLq9Wnso1D2dkQewu-u8aWvd5sXOjK2JZr4GPcpLLellOaY0aP2m9HZ7T329IFbUZ3Y8v1h8Xl2Tl6WjxutU_22e16Unx9d_ZleQ4uPr5fLRcXwHAiRsBgTaqmglTWGjdYVETQihLLWtoIDDljDZQNbxnEWDOKLGEtt1hgVMsGGUJOirc7381U97YxNoyD9mozuF4PWxW1U_snwV2pLt4oziHlWGSDV7cGQ_w22TSq3iVjvdfBxikpjBEimDNSZfTlA_Q6TkPIz5spLjjnOfd7qtPeKhfamO81s6lasIpCVFE-5336FyqPxvbO5A9uXY7vCV7vCTIz2h9jp6eU1Opyvc---LMo99W4-_AMiB1ghpjSYFtl3KhHF-caOa8QVHNrqV1rqdxaam4txbMSPVDemf9Pg3ealNnQ2eF33f4t-gk5Wts6
CitedBy_id crossref_primary_10_1093_nar_gkae845
crossref_primary_10_1016_j_celrep_2020_108166
crossref_primary_10_1021_jacs_3c06706
crossref_primary_10_1093_nar_gkac1027
crossref_primary_10_3390_cancers15204986
crossref_primary_10_1083_jcb_202309036
crossref_primary_10_1016_j_celrep_2020_108546
crossref_primary_10_3389_fgene_2022_823241
crossref_primary_10_1093_nar_gkab180
crossref_primary_10_1093_nar_gkab1103
crossref_primary_10_1002_cpmb_113
crossref_primary_10_1093_bib_bbac238
crossref_primary_10_1186_s12943_023_01724_y
crossref_primary_10_3390_epigenomes6030026
crossref_primary_10_1016_j_biochi_2023_08_013
crossref_primary_10_3390_ijms21051706
crossref_primary_10_1093_bioadv_vbad121
crossref_primary_10_1038_s41467_021_21921_x
crossref_primary_10_1101_gr_278236_123
crossref_primary_10_1073_pnas_2415869122
crossref_primary_10_1080_10409238_2019_1670131
crossref_primary_10_1158_0008_5472_CAN_22_2948
crossref_primary_10_1016_j_celrep_2023_113644
crossref_primary_10_1093_nar_gkac537
crossref_primary_10_1016_j_jbc_2024_107830
crossref_primary_10_1016_j_tplants_2019_07_010
crossref_primary_10_1016_j_csbj_2022_12_009
crossref_primary_10_1016_j_isci_2024_110584
crossref_primary_10_1080_15592294_2023_2293411
crossref_primary_10_3390_ijms22073740
crossref_primary_10_1007_s00395_021_00889_1
crossref_primary_10_1038_s41580_022_00474_x
crossref_primary_10_1101_gad_348858_121
crossref_primary_10_1126_sciadv_abe3516
crossref_primary_10_1186_s13059_022_02727_6
crossref_primary_10_3389_frhem_2023_1297657
crossref_primary_10_1016_j_mcpro_2021_100142
crossref_primary_10_1038_s41467_022_29187_7
crossref_primary_10_1089_nat_2021_0107
crossref_primary_10_1038_s41467_025_57599_8
crossref_primary_10_7554_eLife_65146
crossref_primary_10_1007_s00018_024_05536_1
crossref_primary_10_1016_j_bbagrm_2021_194750
crossref_primary_10_3389_fonc_2019_01538
Cites_doi 10.1073/pnas.1707845114
10.1016/j.molcel.2016.05.032
10.1016/j.molcel.2017.01.029
10.1016/j.cell.2016.10.001
10.1006/geno.1998.5497
10.1016/j.molcel.2012.01.017
10.1101/gr.136184.111
10.1073/pnas.1421197112
10.1126/science.1234848
10.1371/journal.pgen.1004794
10.1101/gad.590910
10.1016/j.jmb.2017.12.016
10.1038/emboj.2008.44
10.1016/j.molcel.2012.04.009
10.1016/j.molcel.2017.02.006
10.1016/j.molcel.2017.12.029
10.1038/nbt.3383
10.1038/nsmb.3122
10.1016/j.cell.2011.11.013
10.1038/ncomms8743
10.1002/j.1460-2075.1996.tb00676.x
10.1371/journal.pone.0178875
10.7554/eLife.17548
10.1038/ni919
10.1186/gb-2008-9-9-r137
10.1021/bi00035a029
10.1038/nature14512
10.1016/j.celrep.2018.04.025
10.1016/j.dnarep.2011.04.013
10.1016/j.jmb.2016.08.031
10.1073/pnas.1305426110
10.1016/j.celrep.2015.03.043
10.1016/j.cell.2017.06.006
10.1038/s41477-017-0004-x
10.1016/j.molcel.2017.10.008
10.1073/pnas.77.5.2450
10.1093/bioinformatics/btp352
10.1002/jmr.2284
10.1101/gad.280834.116
10.1016/j.chembiol.2016.09.011
10.7554/eLife.27024
10.1128/MCB.01251-07
10.1128/MCB.00897-09
10.1093/nar/gkx403
10.1016/j.cell.2015.04.034
10.1101/gr.219394.116
10.1101/gad.1200804
10.1371/journal.pgen.1005696
10.7554/eLife.28306
10.1126/science.aan6490
10.1016/j.cell.2005.06.008
10.1038/nbt.3968
10.1214/11-AOAS466
10.1016/j.molcel.2015.10.001
10.3390/genes8010033
10.1016/j.molcel.2011.04.026
10.1038/ng.3142
10.1016/j.tig.2016.10.002
10.1016/j.molcel.2003.08.010
10.1016/j.ceb.2015.04.008
10.1186/s13072-015-0040-6
10.1038/nature13374
10.1016/j.cell.2017.07.043
10.1101/gad.17010011
10.1038/nmeth.1923
10.1101/gad.573310
10.1128/MCB.00139-09
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7T5
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
RC3
7X8
5PM
DOI 10.1038/s41596-019-0154-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


MEDLINE

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1750-2799
EndPage 1685
ExternalDocumentID PMC6604627
A584018463
30996261
10_1038_s41596_019_0154_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM052872
– fundername: NHGRI NIH HHS
  grantid: R01 HG004659
– fundername: NIGMS NIH HHS
  grantid: R01 GM049369
– fundername: NIDDK NIH HHS
  grantid: K99 DK120952
– fundername: NIDDK NIH HHS
  grantid: R56 DK098808
– fundername: NIDDK NIH HHS
  grantid: R01 DK098808
GroupedDBID ---
0R~
123
29M
39C
3TQ
3V.
4.4
53G
5BI
5M7
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
DB5
DU5
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FSGXE
FYUFA
FZEXT
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LGEZI
LK8
LOTEE
M1P
M7P
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ACMFV
AFANA
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QG
7T5
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c637t-50b38d8049ba2d278374843e5f4d720655d09d6f5022a541e35f6e2721b9d1c33
IEDL.DBID 7X7
ISSN 1754-2189
1750-2799
IngestDate Thu Aug 21 17:43:23 EDT 2025
Tue Aug 05 09:46:56 EDT 2025
Fri Jul 25 08:53:47 EDT 2025
Tue Jun 17 21:16:56 EDT 2025
Tue Jun 10 20:47:06 EDT 2025
Fri Jun 27 04:46:12 EDT 2025
Mon Jul 21 05:44:11 EDT 2025
Tue Jul 01 00:19:39 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-50b38d8049ba2d278374843e5f4d720655d09d6f5022a541e35f6e2721b9d1c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions
L.C. and X.-D.F. conceived the idea; L.C. and J.-Y.C. codeveloped the R-ChIP method and data analysis pipeline; L.C. and X.Z. performed the experiments. J.-Y.C. performed bioinformatics analysis with assistance from L.C.; L.C., J.-Y.C. and X.-D.F. wrote the manuscript.
ORCID 0000-0001-5499-8732
0000-0001-9449-9321
0000-0002-6748-9416
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6604627
PMID 30996261
PQID 2216766684
PQPubID 536306
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6604627
proquest_miscellaneous_2211326538
proquest_journals_2216766684
gale_infotracmisc_A584018463
gale_infotracacademiconefile_A584018463
gale_incontextgauss_ISR_A584018463
pubmed_primary_30996261
crossref_citationtrail_10_1038_s41596_019_0154_6
crossref_primary_10_1038_s41596_019_0154_6
springer_journals_10_1038_s41596_019_0154_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Recipes for Researchers
PublicationTitle Nature protocols
PublicationTitleAbbrev Nat Protoc
PublicationTitleAlternate Nat Protoc
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Sanz (CR2) 2016; 63
Nguyen (CR57) 2017; 65
Li (CR67) 2009; 25
Hamperl, Bocek, Saldivar, Swigut, Cimprich (CR16) 2017; 170
Nowotny (CR56) 2008; 27
Duquette, Handa, Vincent, Taylor, Maizels (CR10) 2004; 18
Aguilera, Garcia-Muse (CR1) 2012; 46
Chen (CR4) 2017; 68
Sugimoto (CR9) 1995; 34
Legros, Malapert, Niinuma, Bernard, Vanoosthuyse (CR59) 2014; 10
Schmitz, Mayer, Postepska, Grummt (CR50) 2010; 24
Wahba, Costantino, Tan, Zimmer, Koshland (CR3) 2016; 30
Rhee, Pugh (CR61) 2011; 147
Xu, Clayton (CR27) 1996; 15
Hartono (CR46) 2018; 430
Vanoosthuyse (CR44) 2018; 4
Mondal (CR52) 2015; 6
Zhang (CR63) 2008; 9
Stork (CR15) 2016; 5
Roy, Yu, Lieber (CR11) 2008; 28
Nadel (CR37) 2015; 8
Li (CR48) 2017; 35
Skourti-Stathaki, Proudfoot, Gromak (CR25) 2011; 42
Li, Brown, Huang, Bickel (CR64) 2011; 5
Cerritelli, Crouch (CR39) 1998; 53
Rotem (CR62) 2015; 33
Ohle (CR30) 2016; 167
Core (CR68) 2014; 46
Itoh, Tomizawa (CR26) 1980; 77
Costantino, Koshland (CR34) 2015; 34
Yu, Chedin, Hsieh, Wilson, Lieber (CR40) 2003; 4
Langmead, Salzberg (CR66) 2012; 9
El Hage, French, Beyer, Tollervey (CR20) 2010; 24
Chedin (CR14) 2016; 32
O’Leary (CR53) 2015; 11
Boque-Sastre (CR29) 2015; 112
Bhatia (CR58) 2014; 511
Kabeche, Nguyen, Buisson, Zou (CR7) 2018; 359
Chen, Chen, Acharya, Rando, Fazzio (CR41) 2015; 22
Landt (CR65) 2012; 22
Taneja (CR22) 2017; 66
Sun, Csorba, Skourti-Stathaki, Proudfoot, Dean (CR28) 2013; 340
Konig, Schubert, Langst (CR45) 2017; 12
Powell (CR36) 2013; 110
Ginno, Lott, Christensen, Korf, Chedin (CR8) 2012; 45
Belotserkovskii, Soo Shin, Hanawalt (CR31) 2017; 45
Chen (CR33) 2018; 69
Bell (CR49) 2018; 7
Postepska-Igielska (CR54) 2015; 60
Li, Manley (CR17) 2005; 122
Roy, Lieber (CR12) 2009; 29
Chang, Stirling (CR21) 2017; 8
Li, Syed, Sugiyama (CR55) 2016; 23
Roy, Zhang, Lu, Hsieh, Lieber (CR13) 2010; 30
Cristini, Groh, Kristiansen, Gromak (CR24) 2018; 23
Xu (CR38) 2017; 3
Chakraborty, Grosse (CR23) 2011; 10
Tresini (CR60) 2015; 523
Graf (CR6) 2017; 170
Richard, Manley (CR35) 2017; 429
Huertas, Aguilera (CR19) 2003; 12
Halasz (CR43) 2017; 27
Bacolla, Wang, Vasquez (CR51) 2015; 11
Gan (CR32) 2011; 25
Phillips (CR47) 2013; 26
Garcia-Benitez, Gaillard, Aguilera (CR18) 2017; 114
Pefanis (CR5) 2015; 161
Dumelie, Jaffrey (CR42) 2017; 6
C Ohle (154_CR30) 2016; 167
X Li (154_CR17) 2005; 122
JG Dumelie (154_CR42) 2017; 6
W Xu (154_CR38) 2017; 3
Y Zhang (154_CR63) 2008; 9
D Roy (154_CR12) 2009; 29
P Legros (154_CR59) 2014; 10
F Chedin (154_CR14) 2016; 32
K Yu (154_CR40) 2003; 4
R Boque-Sastre (154_CR29) 2015; 112
F Konig (154_CR45) 2017; 12
Q Li (154_CR64) 2011; 5
M Graf (154_CR6) 2017; 170
B Xu (154_CR27) 1996; 15
A Aguilera (154_CR1) 2012; 46
A Rotem (154_CR62) 2015; 33
LJ Core (154_CR68) 2014; 46
D Roy (154_CR11) 2008; 28
P Huertas (154_CR19) 2003; 12
BP Belotserkovskii (154_CR31) 2017; 45
S Hamperl (154_CR16) 2017; 170
V Bhatia (154_CR58) 2014; 511
A Bacolla (154_CR51) 2015; 11
PA Ginno (154_CR8) 2012; 45
PB Chen (154_CR41) 2015; 22
L Chen (154_CR33) 2018; 69
HD Nguyen (154_CR57) 2017; 65
E Pefanis (154_CR5) 2015; 161
DD Phillips (154_CR47) 2013; 26
LA Sanz (154_CR2) 2016; 63
N Taneja (154_CR22) 2017; 66
T Itoh (154_CR26) 1980; 77
D Roy (154_CR13) 2010; 30
M Tresini (154_CR60) 2015; 523
SG Landt (154_CR65) 2012; 22
EY Chang (154_CR21) 2017; 8
KM Schmitz (154_CR50) 2010; 24
HS Rhee (154_CR61) 2011; 147
WT Powell (154_CR36) 2013; 110
SR Hartono (154_CR46) 2018; 430
X Li (154_CR48) 2017; 35
Y Li (154_CR55) 2016; 23
A Postepska-Igielska (154_CR54) 2015; 60
A Cristini (154_CR24) 2018; 23
A El Hage (154_CR20) 2010; 24
P Chakraborty (154_CR23) 2011; 10
ML Duquette (154_CR10) 2004; 18
SM Cerritelli (154_CR39) 1998; 53
F Garcia-Benitez (154_CR18) 2017; 114
P Richard (154_CR35) 2017; 429
B Langmead (154_CR66) 2012; 9
L Chen (154_CR4) 2017; 68
Q Sun (154_CR28) 2013; 340
M Nowotny (154_CR56) 2008; 27
L Wahba (154_CR3) 2016; 30
L Costantino (154_CR34) 2015; 34
H Li (154_CR67) 2009; 25
L Kabeche (154_CR7) 2018; 359
K Skourti-Stathaki (154_CR25) 2011; 42
T Mondal (154_CR52) 2015; 6
V Vanoosthuyse (154_CR44) 2018; 4
L Halasz (154_CR43) 2017; 27
J Nadel (154_CR37) 2015; 8
JC Bell (154_CR49) 2018; 7
VB O’Leary (154_CR53) 2015; 11
W Gan (154_CR32) 2011; 25
CT Stork (154_CR15) 2016; 5
N Sugimoto (154_CR9) 1995; 34
References_xml – volume: 114
  start-page: 10942
  year: 2017
  end-page: 10947
  ident: CR18
  article-title: Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707845114
– volume: 63
  start-page: 167
  year: 2016
  end-page: 178
  ident: CR2
  article-title: Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.032
– volume: 65
  start-page: 832
  year: 2017
  end-page: 847
  ident: CR57
  article-title: Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.029
– volume: 167
  start-page: 1001
  year: 2016
  end-page: 1013
  ident: CR30
  article-title: Transient RNA-DNA hybrids are required for efficient double-strand break repair
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.001
– volume: 53
  start-page: 300
  year: 1998
  end-page: 307
  ident: CR39
  article-title: Cloning, expression, and mapping of ribonucleases H of human and mouse related to bacterial RNase HI
  publication-title: Genomics
  doi: 10.1006/geno.1998.5497
– volume: 45
  start-page: 814
  year: 2012
  end-page: 825
  ident: CR8
  article-title: R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.017
– volume: 4
  start-page: E9
  year: 2018
  ident: CR44
  article-title: Strengths and weaknesses of the current strategies to map and characterize R-loops
  publication-title: Noncoding RNA
– volume: 22
  start-page: 1813
  year: 2012
  end-page: 1831
  ident: CR65
  article-title: ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia
  publication-title: Genome Res.
  doi: 10.1101/gr.136184.111
– volume: 112
  start-page: 5785
  year: 2015
  end-page: 5790
  ident: CR29
  article-title: Head-to-head antisense transcription and R-loop formation promotes transcriptional activation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1421197112
– volume: 340
  start-page: 619
  year: 2013
  end-page: 621
  ident: CR28
  article-title: R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus
  publication-title: Science
  doi: 10.1126/science.1234848
– volume: 10
  start-page: e1004794
  year: 2014
  ident: CR59
  article-title: RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004794
– volume: 24
  start-page: 2264
  year: 2010
  end-page: 2269
  ident: CR50
  article-title: Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes
  publication-title: Genes Dev
  doi: 10.1101/gad.590910
– volume: 430
  start-page: 272
  year: 2018
  end-page: 284
  ident: CR46
  article-title: The affinity of the S9.6 antibody for double-stranded RNAs impacts the accurate mapping of R-loops in fission yeast
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.12.016
– volume: 27
  start-page: 1172
  year: 2008
  end-page: 1181
  ident: CR56
  article-title: Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.44
– volume: 46
  start-page: 115
  year: 2012
  end-page: 124
  ident: CR1
  article-title: R loops: from transcription byproducts to threats to genome stability
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.04.009
– volume: 66
  start-page: 50
  year: 2017
  end-page: 62
  ident: CR22
  article-title: SNF2 family protein Fft3 suppresses nucleosome turnover to promote epigenetic inheritance and proper replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.006
– volume: 69
  start-page: 412
  year: 2018
  end-page: 425.e6
  ident: CR33
  article-title: The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.029
– volume: 33
  start-page: 1165
  year: 2015
  end-page: 1172
  ident: CR62
  article-title: Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3383
– volume: 22
  start-page: 999
  year: 2015
  end-page: 1007
  ident: CR41
  article-title: R loops regulate promoter-proximal chromatin architecture and cellular differentiation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3122
– volume: 147
  start-page: 1408
  year: 2011
  end-page: 1419
  ident: CR61
  article-title: Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.013
– volume: 6
  year: 2015
  ident: CR52
  article-title: MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8743
– volume: 15
  start-page: 3135
  year: 1996
  end-page: 3143
  ident: CR27
  article-title: RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00676.x
– volume: 12
  start-page: e0178875
  year: 2017
  ident: CR45
  article-title: The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178875
– volume: 5
  start-page: e17548
  year: 2016
  ident: CR15
  article-title: Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage
  publication-title: Elife
  doi: 10.7554/eLife.17548
– volume: 4
  start-page: 442
  year: 2003
  end-page: 451
  ident: CR40
  article-title: R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni919
– volume: 9
  year: 2008
  ident: CR63
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 34
  start-page: 11211
  year: 1995
  end-page: 11216
  ident: CR9
  article-title: Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes
  publication-title: Biochemistry
  doi: 10.1021/bi00035a029
– volume: 523
  start-page: 53
  year: 2015
  end-page: 58
  ident: CR60
  article-title: The core spliceosome as target and effector of non-canonical ATM signalling
  publication-title: Nature
  doi: 10.1038/nature14512
– volume: 23
  start-page: 1891
  year: 2018
  end-page: 1905
  ident: CR24
  article-title: RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.04.025
– volume: 10
  start-page: 654
  year: 2011
  end-page: 665
  ident: CR23
  article-title: Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2011.04.013
– volume: 429
  start-page: 3168
  year: 2017
  end-page: 3180
  ident: CR35
  article-title: R loops and links to human disease
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.08.031
– volume: 110
  start-page: 13938
  year: 2013
  end-page: 13943
  ident: CR36
  article-title: R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305426110
– volume: 11
  start-page: 474
  year: 2015
  end-page: 485
  ident: CR53
  article-title: PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.043
– volume: 170
  start-page: 72
  year: 2017
  end-page: 85
  ident: CR6
  article-title: Telomere length determines TERRA and R-loop regulation through the cell cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.006
– volume: 3
  start-page: 704
  year: 2017
  end-page: 714
  ident: CR38
  article-title: The R-loop is a common chromatin feature of the Arabidopsis genome
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0004-x
– volume: 68
  start-page: 745
  year: 2017
  end-page: 757
  ident: CR4
  article-title: R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.10.008
– volume: 77
  start-page: 2450
  year: 1980
  end-page: 2454
  ident: CR26
  article-title: Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.5.2450
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: CR67
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 26
  start-page: 376
  year: 2013
  end-page: 381
  ident: CR47
  article-title: The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.2284
– volume: 30
  start-page: 1327
  year: 2016
  end-page: 1338
  ident: CR3
  article-title: S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation
  publication-title: Genes Dev.
  doi: 10.1101/gad.280834.116
– volume: 23
  start-page: 1325
  year: 2016
  end-page: 1333
  ident: CR55
  article-title: RNA-DNA triplex formation by long noncoding RNAs
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2016.09.011
– volume: 7
  start-page: e27024
  year: 2018
  ident: CR49
  article-title: Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts
  publication-title: Elife
  doi: 10.7554/eLife.27024
– volume: 28
  start-page: 50
  year: 2008
  end-page: 60
  ident: CR11
  article-title: Mechanism of R-loop formation at immunoglobulin class switch sequences
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01251-07
– volume: 30
  start-page: 146
  year: 2010
  end-page: 159
  ident: CR13
  article-title: Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00897-09
– volume: 45
  start-page: 6589
  year: 2017
  end-page: 6599
  ident: CR31
  article-title: Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx403
– volume: 161
  start-page: 774
  year: 2015
  end-page: 789
  ident: CR5
  article-title: RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.034
– volume: 27
  start-page: 1063
  year: 2017
  end-page: 1073
  ident: CR43
  article-title: RNA-DNA hybrid (R-loop) immunoprecipitation mapping: an analytical workflow to evaluate inherent biases
  publication-title: Genome Res.
  doi: 10.1101/gr.219394.116
– volume: 18
  start-page: 1618
  year: 2004
  end-page: 1629
  ident: CR10
  article-title: Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA
  publication-title: Genes Dev.
  doi: 10.1101/gad.1200804
– volume: 11
  start-page: e1005696
  year: 2015
  ident: CR51
  article-title: New perspectives on DNA and RNA triplexes as effectors of biological activity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005696
– volume: 6
  start-page: e28306
  year: 2017
  ident: CR42
  article-title: Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq
  publication-title: Elife
  doi: 10.7554/eLife.28306
– volume: 359
  start-page: 108
  year: 2018
  end-page: 114
  ident: CR7
  article-title: A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation
  publication-title: Science
  doi: 10.1126/science.aan6490
– volume: 122
  start-page: 365
  year: 2005
  end-page: 378
  ident: CR17
  article-title: Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.008
– volume: 35
  start-page: 940
  year: 2017
  end-page: 950
  ident: CR48
  article-title: GRID-seq reveals the global RNA-chromatin interactome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3968
– volume: 5
  start-page: 1752
  year: 2011
  end-page: 1779
  ident: CR64
  article-title: Measuring reproducibility of high-throughput experiments
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS466
– volume: 60
  start-page: 626
  year: 2015
  end-page: 636
  ident: CR54
  article-title: LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.001
– volume: 8
  start-page: 33
  year: 2017
  ident: CR21
  article-title: Replication fork protection factors controlling R-loop bypass and suppression
  publication-title: Genes (Basel)
  doi: 10.3390/genes8010033
– volume: 42
  start-page: 794
  year: 2011
  end-page: 805
  ident: CR25
  article-title: Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.026
– volume: 46
  start-page: 1311
  year: 2014
  end-page: 1320
  ident: CR68
  article-title: Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3142
– volume: 32
  start-page: 828
  year: 2016
  end-page: 838
  ident: CR14
  article-title: Nascent connections: R-loops and chromatin patterning
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2016.10.002
– volume: 12
  start-page: 711
  year: 2003
  end-page: 721
  ident: CR19
  article-title: Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2003.08.010
– volume: 34
  start-page: 39
  year: 2015
  end-page: 45
  ident: CR34
  article-title: The Yin and Yang of R-loop biology
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.04.008
– volume: 8
  start-page: 46
  year: 2015
  ident: CR37
  article-title: RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-015-0040-6
– volume: 511
  start-page: 362
  year: 2014
  end-page: 365
  ident: CR58
  article-title: BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2
  publication-title: Nature
  doi: 10.1038/nature13374
– volume: 170
  start-page: 774
  year: 2017
  end-page: 786
  ident: CR16
  article-title: Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.043
– volume: 25
  start-page: 2041
  year: 2011
  end-page: 2056
  ident: CR32
  article-title: R-loop-mediated genomic instability is caused by impairment of replication fork progression
  publication-title: Genes Dev.
  doi: 10.1101/gad.17010011
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: CR66
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 24
  start-page: 1546
  year: 2010
  end-page: 1558
  ident: CR20
  article-title: Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.573310
– volume: 29
  start-page: 3124
  year: 2009
  end-page: 3133
  ident: CR12
  article-title: G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00139-09
– volume: 60
  start-page: 626
  year: 2015
  ident: 154_CR54
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.001
– volume: 430
  start-page: 272
  year: 2018
  ident: 154_CR46
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.12.016
– volume: 68
  start-page: 745
  year: 2017
  ident: 154_CR4
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.10.008
– volume: 26
  start-page: 376
  year: 2013
  ident: 154_CR47
  publication-title: J. Mol. Recognit.
  doi: 10.1002/jmr.2284
– volume: 66
  start-page: 50
  year: 2017
  ident: 154_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.006
– volume: 22
  start-page: 999
  year: 2015
  ident: 154_CR41
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3122
– volume: 69
  start-page: 412
  year: 2018
  ident: 154_CR33
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.029
– volume: 10
  start-page: e1004794
  year: 2014
  ident: 154_CR59
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004794
– volume: 112
  start-page: 5785
  year: 2015
  ident: 154_CR29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1421197112
– volume: 359
  start-page: 108
  year: 2018
  ident: 154_CR7
  publication-title: Science
  doi: 10.1126/science.aan6490
– volume: 12
  start-page: e0178875
  year: 2017
  ident: 154_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178875
– volume: 4
  start-page: 442
  year: 2003
  ident: 154_CR40
  publication-title: Nat. Immunol.
  doi: 10.1038/ni919
– volume: 32
  start-page: 828
  year: 2016
  ident: 154_CR14
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2016.10.002
– volume: 147
  start-page: 1408
  year: 2011
  ident: 154_CR61
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.013
– volume: 6
  start-page: e28306
  year: 2017
  ident: 154_CR42
  publication-title: Elife
  doi: 10.7554/eLife.28306
– volume: 161
  start-page: 774
  year: 2015
  ident: 154_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.034
– volume: 429
  start-page: 3168
  year: 2017
  ident: 154_CR35
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.08.031
– volume: 22
  start-page: 1813
  year: 2012
  ident: 154_CR65
  publication-title: Genome Res.
  doi: 10.1101/gr.136184.111
– volume: 18
  start-page: 1618
  year: 2004
  ident: 154_CR10
  publication-title: Genes Dev.
  doi: 10.1101/gad.1200804
– volume: 6
  year: 2015
  ident: 154_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8743
– volume: 340
  start-page: 619
  year: 2013
  ident: 154_CR28
  publication-title: Science
  doi: 10.1126/science.1234848
– volume: 24
  start-page: 1546
  year: 2010
  ident: 154_CR20
  publication-title: Genes Dev.
  doi: 10.1101/gad.573310
– volume: 15
  start-page: 3135
  year: 1996
  ident: 154_CR27
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00676.x
– volume: 7
  start-page: e27024
  year: 2018
  ident: 154_CR49
  publication-title: Elife
  doi: 10.7554/eLife.27024
– volume: 5
  start-page: e17548
  year: 2016
  ident: 154_CR15
  publication-title: Elife
  doi: 10.7554/eLife.17548
– volume: 46
  start-page: 115
  year: 2012
  ident: 154_CR1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.04.009
– volume: 110
  start-page: 13938
  year: 2013
  ident: 154_CR36
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1305426110
– volume: 8
  start-page: 33
  year: 2017
  ident: 154_CR21
  publication-title: Genes (Basel)
  doi: 10.3390/genes8010033
– volume: 3
  start-page: 704
  year: 2017
  ident: 154_CR38
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0004-x
– volume: 12
  start-page: 711
  year: 2003
  ident: 154_CR19
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2003.08.010
– volume: 25
  start-page: 2041
  year: 2011
  ident: 154_CR32
  publication-title: Genes Dev.
  doi: 10.1101/gad.17010011
– volume: 5
  start-page: 1752
  year: 2011
  ident: 154_CR64
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/11-AOAS466
– volume: 34
  start-page: 11211
  year: 1995
  ident: 154_CR9
  publication-title: Biochemistry
  doi: 10.1021/bi00035a029
– volume: 4
  start-page: E9
  year: 2018
  ident: 154_CR44
  publication-title: Noncoding RNA
– volume: 65
  start-page: 832
  year: 2017
  ident: 154_CR57
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.029
– volume: 10
  start-page: 654
  year: 2011
  ident: 154_CR23
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2011.04.013
– volume: 45
  start-page: 814
  year: 2012
  ident: 154_CR8
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.017
– volume: 63
  start-page: 167
  year: 2016
  ident: 154_CR2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.05.032
– volume: 24
  start-page: 2264
  year: 2010
  ident: 154_CR50
  publication-title: Genes Dev
  doi: 10.1101/gad.590910
– volume: 170
  start-page: 774
  year: 2017
  ident: 154_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.043
– volume: 114
  start-page: 10942
  year: 2017
  ident: 154_CR18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707845114
– volume: 23
  start-page: 1891
  year: 2018
  ident: 154_CR24
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.04.025
– volume: 34
  start-page: 39
  year: 2015
  ident: 154_CR34
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.04.008
– volume: 9
  year: 2008
  ident: 154_CR63
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 167
  start-page: 1001
  year: 2016
  ident: 154_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.001
– volume: 27
  start-page: 1063
  year: 2017
  ident: 154_CR43
  publication-title: Genome Res.
  doi: 10.1101/gr.219394.116
– volume: 9
  start-page: 357
  year: 2012
  ident: 154_CR66
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 30
  start-page: 1327
  year: 2016
  ident: 154_CR3
  publication-title: Genes Dev.
  doi: 10.1101/gad.280834.116
– volume: 35
  start-page: 940
  year: 2017
  ident: 154_CR48
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3968
– volume: 11
  start-page: 474
  year: 2015
  ident: 154_CR53
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.03.043
– volume: 33
  start-page: 1165
  year: 2015
  ident: 154_CR62
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3383
– volume: 45
  start-page: 6589
  year: 2017
  ident: 154_CR31
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx403
– volume: 511
  start-page: 362
  year: 2014
  ident: 154_CR58
  publication-title: Nature
  doi: 10.1038/nature13374
– volume: 11
  start-page: e1005696
  year: 2015
  ident: 154_CR51
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005696
– volume: 170
  start-page: 72
  year: 2017
  ident: 154_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.006
– volume: 42
  start-page: 794
  year: 2011
  ident: 154_CR25
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.026
– volume: 523
  start-page: 53
  year: 2015
  ident: 154_CR60
  publication-title: Nature
  doi: 10.1038/nature14512
– volume: 30
  start-page: 146
  year: 2010
  ident: 154_CR13
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00897-09
– volume: 46
  start-page: 1311
  year: 2014
  ident: 154_CR68
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3142
– volume: 25
  start-page: 2078
  year: 2009
  ident: 154_CR67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 8
  start-page: 46
  year: 2015
  ident: 154_CR37
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-015-0040-6
– volume: 29
  start-page: 3124
  year: 2009
  ident: 154_CR12
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00139-09
– volume: 27
  start-page: 1172
  year: 2008
  ident: 154_CR56
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.44
– volume: 122
  start-page: 365
  year: 2005
  ident: 154_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.008
– volume: 23
  start-page: 1325
  year: 2016
  ident: 154_CR55
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2016.09.011
– volume: 28
  start-page: 50
  year: 2008
  ident: 154_CR11
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01251-07
– volume: 53
  start-page: 300
  year: 1998
  ident: 154_CR39
  publication-title: Genomics
  doi: 10.1006/geno.1998.5497
– volume: 77
  start-page: 2450
  year: 1980
  ident: 154_CR26
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.5.2450
SSID ssj0047367
Score 2.4911282
Snippet Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1661
SubjectTerms 631/1647/2217/2088
631/337/572
631/61/212
Analytical Chemistry
Animals
Biological activity
Biological Techniques
Biomedical and Life Sciences
Cell Line
Cell lines
Chromatin
Chromatin Immunoprecipitation - methods
Chromosome Mapping - methods
Computational Biology/Bioinformatics
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA damage
DNA repair
DNA structure
DNA-directed RNA polymerase
Gene expression
Gene mapping
Genetic aspects
Genetic research
Genomes
Genomic instability
Genomics
Hybrid structures
Hybrids
Hydrolases
Immunoprecipitation
Life Sciences
Mapping
Methods
Microarrays
Monoclonal antibodies
Mutation
Myelodysplastic syndrome
Organic Chemistry
Protocol
R-loops
Ribonuclease H - chemistry
Ribonuclease H - genetics
Ribonuclease H - metabolism
Ribonucleic acid
RNA
RNA - chemistry
RNA - genetics
RNA polymerase
RNA polymerase II
Splicing
Splicing factors
Stability
Structure
Transcription
Title R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1
URI https://link.springer.com/article/10.1038/s41596-019-0154-6
https://www.ncbi.nlm.nih.gov/pubmed/30996261
https://www.proquest.com/docview/2216766684
https://www.proquest.com/docview/2211326538
https://pubmed.ncbi.nlm.nih.gov/PMC6604627
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9911xVtDAYborFlyfbTSEpCOljo3BXyJmxLTgOpndUJI__97uSPzoH1yQ86Y-t00n3o7neEfEoj1GogvEIIzXzhGhb6fsTyVPAAwUpCgfXOP2Zyeu1_n4t5E3CrmrTK9ky0B7UuM4yRn3meKwOwtUP_2_o3w65ReLvatNB4TA4RugylOph3DpcfcNtBFjSkz0CVRe2tJg_PKlBcmH6LJTxgRTDZ00v7p_M_6mk_dXLv_tSqpclz8qyxJ-mwFoAX5JEpXpIndYfJ3SvyM2bnNxeXFExTinCst4b9WWpDbxPEZVjQMqcxW5XluqLpjmIS_ILaiM7OxrhXO7osEnsk0ng2vBpP3dfkejL-dT5lTRcFlkkebJgYpDzUIXgCaeJpbKyB8KHciNzXgQcWiNCDSMtcgDZPhO8aLnJpPPAM00i7GedvyEFRFuaI0NxNuMlgEYQGv0zrNEGwdomlILDIae6QQctDlTUQ49jpYqXsVTcPVc12BWxXyHYlHfKle2Vd42s8RPwRF0YhbkWBiTGLZFtV6uIqVkMQuQF4q5I75HNDlJfw8Sxp6gxgCgh11aM86VHCxsr6w-36q2ZjV-peDB3yoRvGNzFZrTDl1tKAjy9BlTjkbS0u3dw4WOTgQ7oOCXqC1BEg3Hd_pFjeWNhvKbGQOHDI11bk7n_rvyw7fngS78hTz-4BzOA8IQebu615D1bWJj21W-mUHA4no9EMnqPx7DL-C-v4IOI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQQviG8CAwwCIYGsNXHspA8IVWNTy7YKuk3qm0lip6vUJYW0mvJP8Tdy53yMVGJve_ZFrc9n_-7su98R8i7uI6qB8QohNPOFa1jo-32WxoIHSFYSCqx3Ph7L4Zn_bSqmW-RPUwuDaZXNmWgPap0neEe-63muDMDXDv0vy18Mu0bh62rTQqMyi0NTXkLIVnwefYX1fe95B_une0NWdxVgieTBiolezEMdgmccR57GRhNIp8mNSH0deIDIQvf6WqYC0C0Svmu4SKXxIFKK-9pN8AIUjvxbALw9DPaCaRvg-QG3HWsBkX0G0NlvXlF5uFsAUGK6L5YMgdfCZAcHN9HgHzjcTNXceK-1MHhwn9yr_Vc6qAzuAdky2UNyu-poWT4iPyZs73z0nYIrTJH-9cKwy7k29CJCHogZzVM6YYs8XxY0Likm3c-ovUEq7Z36oqTzLLJHMJ2MByf7Q_cxObsR_T4h21memWeEpm7ETQKLLjTEgVrHEZLDSyw9AaOKU4f0Gh2qpKY0x84aC2Wf1nmoKrUrULtCtSvpkI_tJ8uKz-M64be4MAp5MjJMxJlF66JQo5OJGoCJ9yA6ltwhH2qhNIcfT6K6rgGmgNRaHcmdjiRs5KQ73Ky_qg-SQl2ZvUPetMP4JSbHZSZfWxkXvHCALoc8rcylnRuHCABiVtchQceQWgGkF--OZPNzSzMuJRYuBw751Jjc1d_6r8qeXz-J1-TO8PT4SB2NxocvyF3P7gfMHt0h26vfa_MSPLxV_MpuK0p-3vQ-_gugQ1gx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrUBcEG8MBRYEQgKtEj927RwQCm2ihEIUUir1trW96zRSagecqMpf49cx40eKI9FbzztWsrMz883szgPgbdQhVEPhFUJo7gnb8MDzOjyJhOtTs5JAUL3z95EcnHhfT8XpDvypa2EorbK2iYWh1llMd-Qtx7Glj7524LWSKi1ifNj_vPjFaYIUvbTW4zRKETky60sM3_JPw0M863eO0-_9PBjwasIAj6XrL7loR26gA_SSo9DRNHSCWmu6RiSe9h1EZ6HbHS0TgUgXCs82rkikcTBqijrajukyFM3_nk9R0S7sfemNxpMaBzzfLebXIj57HIG0U7-pukErR9ik5F8qIEIfhssGKm5jwz_guJ24ufV6W4Bi_x7crbxZ1i3F7z7smPQB3CrnW64fwo8JPzgfjhk6xoyawV4YfjnThl2E1BViyrKETfg8yxY5i9aMUvCnrLhPWhc37PM1m6VhYZDZZNQ97g3sR3ByIxx-DLtplpqnwBI7dE2MIiA0RoVaRyG1ipdUiIIiFiUWtGseqrhqcE5zNuaqeGh3A1WyXSHbFbFdSQs-bD5ZlN09riN-QwejqGtGSvI3DVd5robHE9VFgW9jrCxdC95XREmGPx6HVZUDboEabTUo9xuUqNZxc7k-f1WZlVxdKYEFrzfL9CWlyqUmWxU0NvrkCGQWPCnFZbM3F-MBjGBtC_yGIG0IqNl4cyWdnRdNx6WkMmbfgo-1yF39rf-y7Nn1m3gFt1GH1bfh6Og53HEKdaBU0n3YXf5emRfo7i2jl5VeMTi7aVX-CygsXcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-ChIP+for+genome-wide+mapping+of+R-loops+by+using+catalytically+inactive+RNASEH1&rft.jtitle=Nature+protocols&rft.au=Chen%2C+Jia-Yu&rft.au=Zhang%2C+Xuan&rft.au=Fu%2C+Xiang-Dong&rft.au=Chen%2C+Liang&rft.date=2019-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1754-2189&rft.volume=14&rft.issue=5&rft.spage=1661&rft_id=info:doi/10.1038%2Fs41596-019-0154-6&rft.externalDocID=A584018463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-2189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-2189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-2189&client=summon