Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network
•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aid...
Saved in:
Published in | Radiotherapy and oncology Vol. 141; pp. 192 - 199 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning.
Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.
The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features’ discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.
The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.
We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning. |
---|---|
AbstractList | •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning.
Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.
The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features’ discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.
The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.
We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning. Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning. The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients. The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively. We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning. Highlights•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT. •SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy. •The deep attention mechanism helps identify the most relevant features to differentiate organs. •The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning. Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.BACKGROUND AND PURPOSEManual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.METHODS AND MATERIALSThe proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.RESULTSThe Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.CONCLUSIONWe proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning. |
Author | Tian, Sibo Yang, Xiaofeng Wang, Tonghe Curran, Walter J. Patel, Pretesh Jani, Ashesh B. Liu, Tian Dong, Xue Lei, Yang |
AuthorAffiliation | 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322 |
AuthorAffiliation_xml | – name: 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322 |
Author_xml | – sequence: 1 givenname: Xue surname: Dong fullname: Dong, Xue – sequence: 2 givenname: Yang surname: Lei fullname: Lei, Yang – sequence: 3 givenname: Sibo surname: Tian fullname: Tian, Sibo – sequence: 4 givenname: Tonghe surname: Wang fullname: Wang, Tonghe – sequence: 5 givenname: Pretesh surname: Patel fullname: Patel, Pretesh – sequence: 6 givenname: Walter J. surname: Curran fullname: Curran, Walter J. – sequence: 7 givenname: Ashesh B. surname: Jani fullname: Jani, Ashesh B. – sequence: 8 givenname: Tian surname: Liu fullname: Liu, Tian – sequence: 9 givenname: Xiaofeng surname: Yang fullname: Yang, Xiaofeng email: xiaofeng.yang@emory.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31630868$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUluLEzEUDrLidqv_QGQefZmaTKbJRESQ4mVhRXDX55BJTrvpZpKaZCr992ZoXVSQRTiQkHyXw_nOBTrzwQNCzwleEEzYq-0iKhO8XjSYiAUu1XSP0Ix0XNS46_gZmhUYrzvS4nN0kdIWY9xgyp-gc0oYxR3rZshdH3y-hWx19fnrZa2sAVMNo8u2DnGjfJVgM4DPKtvgq1KDclDtwO0LY3VTjcn6TaUPurzq4JNNuaArA7CrVJ7uE89D_hHi3VP0eK1cgmenc46-fXh_s_pUX335eLl6d1VrRnmuac8FZnS57InmitE16-ka06ajWLct1YYx0YESpl02FMiy1YwZ2je0NT1vBadz9Paouxv7AYwuXUTl5C7aQcWDDMrKP3-8vZWbsJesE4IIUgRengRi-D5CynKwSYNzykMYk2wo5lSwtnQzRy9-97o3-TXiAmiPAB1DShHW9xCC5ZSk3MpjknJKUuJSzUR7_RdN22MKpWPrHiKfBgBlynsLUSZtwWswNoLO0gT7vwLaWW-1cndwgLQNY_QlQUlkaiSW19OmTYtGBKWE8KYIvPm3wMP-PwFvD-bd |
CitedBy_id | crossref_primary_10_1155_2022_1274260 crossref_primary_10_1007_s13735_022_00240_x crossref_primary_10_1016_j_meddos_2022_02_006 crossref_primary_10_1016_j_media_2022_102413 crossref_primary_10_1002_mp_15264 crossref_primary_10_1155_2022_3289663 crossref_primary_10_1002_mp_16750 crossref_primary_10_1117_1_JMI_11_2_024009 crossref_primary_10_1002_mp_15146 crossref_primary_10_1002_mp_14378 crossref_primary_10_1002_mp_14895 crossref_primary_10_1088_1361_6560_ab8077 crossref_primary_10_1002_acm2_13337 crossref_primary_10_1002_mp_14810 crossref_primary_10_1016_j_bspc_2023_105762 crossref_primary_10_14338_IJPT_D_20_00020_1 crossref_primary_10_1016_j_jksuci_2023_101821 crossref_primary_10_1016_j_brachy_2023_05_005 crossref_primary_10_1088_1361_6560_ace674 crossref_primary_10_1007_s00138_023_01401_6 crossref_primary_10_1016_j_compbiomed_2023_107842 crossref_primary_10_1016_j_radonc_2024_110588 crossref_primary_10_1002_acm2_14155 crossref_primary_10_1088_2057_1976_ad6a63 crossref_primary_10_1109_TMI_2020_3025517 crossref_primary_10_1109_TBME_2024_3380058 crossref_primary_10_1097_MD_0000000000034161 crossref_primary_10_1016_j_media_2024_103100 crossref_primary_10_3389_fonc_2021_665807 crossref_primary_10_1016_j_compbiomed_2021_104949 crossref_primary_10_1109_JBHI_2020_3024188 crossref_primary_10_1002_mp_14121 crossref_primary_10_1259_bjr_20210644 crossref_primary_10_1088_1361_6560_abf2f9 crossref_primary_10_1109_TPAMI_2023_3299038 crossref_primary_10_1007_s10916_020_01641_3 crossref_primary_10_1016_j_adro_2023_101340 crossref_primary_10_1109_TCI_2020_3012928 crossref_primary_10_1016_j_adro_2025_101745 crossref_primary_10_1088_1361_6560_ac3c13 crossref_primary_10_1109_TBME_2024_3467216 crossref_primary_10_1016_j_ejmp_2020_07_028 crossref_primary_10_1088_1361_6560_abd953 crossref_primary_10_3390_diagnostics11020354 crossref_primary_10_1016_j_media_2021_102039 crossref_primary_10_3390_rs14205240 crossref_primary_10_1007_s00330_020_07482_5 crossref_primary_10_1088_1361_6560_ac95f7 crossref_primary_10_3390_diagnostics11111964 crossref_primary_10_1002_mp_16135 crossref_primary_10_1109_TGRS_2023_3311788 crossref_primary_10_1088_1361_6560_abb31f crossref_primary_10_1259_bjr_20190855 crossref_primary_10_1002_mp_15322 crossref_primary_10_1145_3527849 crossref_primary_10_1007_s10462_022_10152_1 crossref_primary_10_1016_j_canrad_2021_06_023 crossref_primary_10_1002_mp_15206 crossref_primary_10_1088_1361_6560_ac0856 crossref_primary_10_1002_mp_16329 crossref_primary_10_1007_s40747_024_01639_1 crossref_primary_10_1002_mp_14307 crossref_primary_10_1002_acm2_13121 crossref_primary_10_3389_fonc_2022_970425 crossref_primary_10_1016_j_ejmp_2020_09_004 crossref_primary_10_3389_fonc_2021_771787 crossref_primary_10_1016_j_media_2020_101783 crossref_primary_10_1016_j_ejmp_2021_05_003 crossref_primary_10_1088_2057_1976_ac26e8 crossref_primary_10_1007_s13246_023_01320_w crossref_primary_10_1016_j_neucom_2021_08_157 crossref_primary_10_3390_biomedinformatics3030050 crossref_primary_10_3390_bioengineering10091078 crossref_primary_10_1002_mp_17171 crossref_primary_10_1002_pro6_70003 crossref_primary_10_1186_s13014_020_01528_0 crossref_primary_10_1002_mp_14580 crossref_primary_10_1002_mp_16163 crossref_primary_10_1002_mp_16001 crossref_primary_10_1002_mp_14065 crossref_primary_10_1002_mp_15793 crossref_primary_10_1002_acm2_13097 crossref_primary_10_1002_mp_15507 crossref_primary_10_1016_j_eclinm_2023_102050 crossref_primary_10_1002_mp_14818 crossref_primary_10_1088_1361_6560_ab843e crossref_primary_10_1109_TRPMS_2024_3379580 crossref_primary_10_1007_s11036_020_01678_1 crossref_primary_10_1002_acm2_70034 crossref_primary_10_1016_j_neucom_2023_126295 |
Cites_doi | 10.1016/j.ijrobp.2010.10.019 10.1016/S0360-3016(01)01635-2 10.1016/j.radonc.2008.08.007 10.1016/j.ijrobp.2012.02.003 10.1109/TMI.2008.2011480 10.1007/s00066-005-1383-x 10.1002/mp.13416 10.1002/mp.13560 10.1016/j.radonc.2016.09.009 10.1109/TMI.2011.2171357 10.1016/j.neuroimage.2009.02.018 10.1118/1.3654160 10.1016/j.semradonc.2005.01.005 10.1186/1748-717X-8-106 10.1016/j.media.2015.06.012 10.1109/TMI.2008.918330 10.1002/mp.13458 10.1118/1.4871620 10.1002/mp.13577 10.1007/s00066-012-0117-0 10.1016/j.ijrobp.2006.11.027 10.1002/mp.13617 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.radonc.2019.09.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0887 |
EndPage | 199 |
ExternalDocumentID | PMC6899191 31630868 10_1016_j_radonc_2019_09_028 S0167814019331172 1_s2_0_S0167814019331172 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA215718 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 E3Z EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HED HMK HMO HVGLF HZ~ IHE J1W J5H KOM M27 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K UV1 WUQ X7M Z5R ZGI ZXP ~G- 0SF AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR NCXOZ AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c637t-3b7906355b1c7a63f6b3f032830c443cd6698ea9d4523e154c66d3b234db74973 |
IEDL.DBID | .~1 |
ISSN | 0167-8140 1879-0887 |
IngestDate | Thu Aug 21 14:36:30 EDT 2025 Tue Aug 05 09:58:59 EDT 2025 Thu Apr 03 07:02:10 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Tue Jul 01 01:41:03 EDT 2025 Fri Feb 23 02:48:25 EST 2024 Tue Feb 25 20:09:59 EST 2025 Tue Aug 26 16:36:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Synthetic MRI Multi-organ segmentation |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c637t-3b7906355b1c7a63f6b3f032830c443cd6698ea9d4523e154c66d3b234db74973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6899191 |
PMID | 31630868 |
PQID | 2307396444 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899191 proquest_miscellaneous_2307396444 pubmed_primary_31630868 crossref_primary_10_1016_j_radonc_2019_09_028 crossref_citationtrail_10_1016_j_radonc_2019_09_028 elsevier_sciencedirect_doi_10_1016_j_radonc_2019_09_028 elsevier_clinicalkeyesjournals_1_s2_0_S0167814019331172 elsevier_clinicalkey_doi_10_1016_j_radonc_2019_09_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Radiotherapy and oncology |
PublicationTitleAlternate | Radiother Oncol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Isgum, Staring, Rutten, Prokop, Viergever, van Ginneken (b0045) 2009; 28 Iglesias, Sabuncu (b0055) 2015; 24 Wang, Lei, Tian (b0125) 2019; 46 Wang, Lei, Tang (b0075) 2019 Mishra, Chaudhury, Sarkar, Soin (b0120) 2018 Samaneh Kazemifar, Nguyen, McGuire, Hannan, Jiang, Owrangi (b0105) 2018 Simmat, Georg, Georg, Birkfellner, Goldner, Stock (b0155) 2012; 188 Nelms, Tome, Robinson, Wheeler (b0030) 2012; 82 Wang, Lei, Tian (b0135) 2019 Qazi, Pekar, Kim, Xie, Breen, Jaffray (b0065) 2011; 38 Sun, Bauer, Beichel (b0070) 2012; 31 Lei, Tian, He (b0130) 2019 Sharp, Fritscher, Pekar (b0005) 2014; 41 Breunig, Hernandez, Lin (b0025) 2012; 83 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (b0050) 2009; 46 Rasch, Steenbakkers, van Herk (b0010) 2005; 15 Dong, Lei, Wang (b0095) 2019; 46 Yang, Huang, Lei (b0080) 2018 Liu, Gardner, Wen (b0110) 2019 Ecabert, Peters, Schramm (b0060) 2008; 27 Smith, Lewis, Bauman (b0040) 2007; 67 Kazemifar, Balagopal, Nguyen (b0100) 2018 Lei, Harms, Wang (b0115) 2019 Vinod, Jameson, Min, Holloway (b0020) 2016; 121 Geraghty, Grogan, Ebert (b0150) 2013; 8 Yang, Lei, Wang (b0085) 2018; 45 Balagopal, Kazemifar, Nguyen (b0140) 2018 Huyskens, Maingon, Vanuytsel (b0145) 2009; 90 Hurkmans, Borger, Pieters, Russell, Jansen, Mijnheer (b0015) 2001; 50 Villeirs, Vaerenbergh, Vakaet (b0035) 2005; 181 Wang, Lei, Tian (b0090) 2019 Samaneh Kazemifar (10.1016/j.radonc.2019.09.028_b0105) 2018 Sun (10.1016/j.radonc.2019.09.028_b0070) 2012; 31 Wang (10.1016/j.radonc.2019.09.028_b0075) 2019 Yang (10.1016/j.radonc.2019.09.028_b0080) 2018 Wang (10.1016/j.radonc.2019.09.028_b0135) 2019 Rasch (10.1016/j.radonc.2019.09.028_b0010) 2005; 15 Mishra (10.1016/j.radonc.2019.09.028_b0120) 2018 Iglesias (10.1016/j.radonc.2019.09.028_b0055) 2015; 24 Dong (10.1016/j.radonc.2019.09.028_b0095) 2019; 46 Nelms (10.1016/j.radonc.2019.09.028_b0030) 2012; 82 Qazi (10.1016/j.radonc.2019.09.028_b0065) 2011; 38 Smith (10.1016/j.radonc.2019.09.028_b0040) 2007; 67 Wang (10.1016/j.radonc.2019.09.028_b0125) 2019; 46 Yang (10.1016/j.radonc.2019.09.028_b0085) 2018; 45 Aljabar (10.1016/j.radonc.2019.09.028_b0050) 2009; 46 Villeirs (10.1016/j.radonc.2019.09.028_b0035) 2005; 181 Hurkmans (10.1016/j.radonc.2019.09.028_b0015) 2001; 50 Sharp (10.1016/j.radonc.2019.09.028_b0005) 2014; 41 Balagopal (10.1016/j.radonc.2019.09.028_b0140) 2018 Kazemifar (10.1016/j.radonc.2019.09.028_b0100) 2018 Liu (10.1016/j.radonc.2019.09.028_b0110) 2019 Lei (10.1016/j.radonc.2019.09.028_b0115) 2019 Huyskens (10.1016/j.radonc.2019.09.028_b0145) 2009; 90 Ecabert (10.1016/j.radonc.2019.09.028_b0060) 2008; 27 Wang (10.1016/j.radonc.2019.09.028_b0090) 2019 Simmat (10.1016/j.radonc.2019.09.028_b0155) 2012; 188 Isgum (10.1016/j.radonc.2019.09.028_b0045) 2009; 28 Lei (10.1016/j.radonc.2019.09.028_b0130) 2019 Breunig (10.1016/j.radonc.2019.09.028_b0025) 2012; 83 Geraghty (10.1016/j.radonc.2019.09.028_b0150) 2013; 8 Vinod (10.1016/j.radonc.2019.09.028_b0020) 2016; 121 |
References_xml | – volume: 8 start-page: 106 year: 2013 ident: b0150 article-title: Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial publication-title: Radiat Oncol – start-page: 4 year: 2018 ident: b0105 article-title: . Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning publication-title: Biomed Phys Eng Express – volume: 50 start-page: 1366 year: 2001 end-page: 1372 ident: b0015 article-title: Variability in target volume delineation on CT scans of the breast publication-title: Int J Radiat Oncol Biol Phys – start-page: 63 year: 2018 ident: b0140 article-title: Fully automated organ segmentation in male pelvic CT images publication-title: Phys Med Biol – volume: 31 start-page: 449 year: 2012 end-page: 460 ident: b0070 article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach publication-title: IEEE Trans Med Imaging – volume: 45 start-page: E582 year: 2018 end-page: E583 ident: b0085 article-title: 3D prostate segmentation in MR image using 3D deeply supervised convolutional neural networks publication-title: Med Phys – volume: 67 start-page: 1238 year: 2007 end-page: 1247 ident: b0040 article-title: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR publication-title: Int J Radiat Oncol Biol Phys – start-page: 4 year: 2018 ident: b0100 article-title: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning publication-title: Biomed Phys Eng Express – volume: 46 start-page: 1707 year: 2019 end-page: 1718 ident: b0125 article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation publication-title: Med Phys – year: 2019 ident: b0090 article-title: Deeply supervised 3D FCN with group dilated convolution for automatic MRI prostate segmentation publication-title: Med Phys – volume: 41 year: 2014 ident: b0005 article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy publication-title: Med Phys – year: 2019 ident: b0135 article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery publication-title: Med Phys – volume: 46 start-page: 2157 year: 2019 end-page: 2168 ident: b0095 article-title: Automatic multiorgan segmentation in thorax CT images using U-net-GAN publication-title: Med Phys – volume: 90 start-page: 337 year: 2009 end-page: 345 ident: b0145 article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer publication-title: Radiother Oncol – year: 2019 ident: b0110 article-title: Automatic segmentation of the prostate on CT images using deep neural networks (DNN) publication-title: Int J Radiat Oncol Biol Phys – volume: 188 start-page: 807 year: 2012 end-page: 815 ident: b0155 article-title: Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions publication-title: Strahlenther Onkol – volume: 121 start-page: 169 year: 2016 end-page: 179 ident: b0020 article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies publication-title: Radiother Oncol – volume: 38 start-page: 6160 year: 2011 end-page: 6170 ident: b0065 article-title: Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach publication-title: Med Phys – volume: 83 start-page: e703 year: 2012 end-page: e708 ident: b0025 article-title: A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning publication-title: Int J Radiat Oncol Biol Phys – volume: 28 start-page: 1000 year: 2009 end-page: 1010 ident: b0045 article-title: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans publication-title: IEEE Trans Med Imaging – year: 2019 ident: b0115 article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks publication-title: Med Phys – volume: 15 start-page: 136 year: 2005 end-page: 145 ident: b0010 article-title: Target definition in prostate, head, and neck publication-title: Semin Radiat Oncol – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: b0050 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: Neuroimage – year: 2019 ident: b0130 article-title: Ultrasound prostate segmentation based on multi-directional deeply supervised V-net publication-title: Med Phys – volume: 82 start-page: 368 year: 2012 end-page: 378 ident: b0030 article-title: Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 27 start-page: 1189 year: 2008 end-page: 1201 ident: b0060 article-title: Automatic model-based segmentation of the heart in CT images publication-title: IEEE Trans Med Imaging – year: 2018 ident: b0120 article-title: Ultrasound image segmentation: a deeply supervised network with attention to boundaries publication-title: IEEE Trans Biomed Eng – volume: 181 start-page: 424 year: 2005 end-page: 430 ident: b0035 article-title: Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer publication-title: Strahlenther Onkol – volume: 24 start-page: 205 year: 2015 end-page: 219 ident: b0055 article-title: Multi-atlas segmentation of biomedical images: a survey publication-title: Med Image Anal – year: 2018 ident: b0080 article-title: Med-A-nets: segmentation of multiple organs in chest CT image with deep adversarial networks publication-title: Paper presented at: Med Phys – start-page: 1 year: 2019 end-page: 12 ident: b0075 article-title: A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study publication-title: J Nucl Cardiol – volume: 82 start-page: 368 year: 2012 ident: 10.1016/j.radonc.2019.09.028_b0030 article-title: Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.10.019 – volume: 50 start-page: 1366 year: 2001 ident: 10.1016/j.radonc.2019.09.028_b0015 article-title: Variability in target volume delineation on CT scans of the breast publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01635-2 – volume: 90 start-page: 337 year: 2009 ident: 10.1016/j.radonc.2019.09.028_b0145 article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2008.08.007 – volume: 83 start-page: e703 year: 2012 ident: 10.1016/j.radonc.2019.09.028_b0025 article-title: A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2012.02.003 – volume: 28 start-page: 1000 year: 2009 ident: 10.1016/j.radonc.2019.09.028_b0045 article-title: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.2011480 – volume: 181 start-page: 424 year: 2005 ident: 10.1016/j.radonc.2019.09.028_b0035 article-title: Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer publication-title: Strahlenther Onkol doi: 10.1007/s00066-005-1383-x – year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0090 article-title: Deeply supervised 3D FCN with group dilated convolution for automatic MRI prostate segmentation publication-title: Med Phys doi: 10.1002/mp.13416 – start-page: 4 year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0100 article-title: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning publication-title: Biomed Phys Eng Express – year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0135 article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery publication-title: Med Phys doi: 10.1002/mp.13560 – volume: 121 start-page: 169 year: 2016 ident: 10.1016/j.radonc.2019.09.028_b0020 article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.09.009 – volume: 31 start-page: 449 year: 2012 ident: 10.1016/j.radonc.2019.09.028_b0070 article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2011.2171357 – year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0120 article-title: Ultrasound image segmentation: a deeply supervised network with attention to boundaries publication-title: IEEE Trans Biomed Eng – year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0110 article-title: Automatic segmentation of the prostate on CT images using deep neural networks (DNN) publication-title: Int J Radiat Oncol Biol Phys – volume: 46 start-page: 1707 year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0125 article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation publication-title: Med Phys doi: 10.1002/mp.13416 – volume: 46 start-page: 726 year: 2009 ident: 10.1016/j.radonc.2019.09.028_b0050 article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.018 – year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0080 article-title: Med-A-nets: segmentation of multiple organs in chest CT image with deep adversarial networks – volume: 38 start-page: 6160 year: 2011 ident: 10.1016/j.radonc.2019.09.028_b0065 article-title: Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach publication-title: Med Phys doi: 10.1118/1.3654160 – start-page: 1 year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0075 article-title: A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study publication-title: J Nucl Cardiol – start-page: 4 year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0105 article-title: . Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning publication-title: Biomed Phys Eng Express – volume: 15 start-page: 136 year: 2005 ident: 10.1016/j.radonc.2019.09.028_b0010 article-title: Target definition in prostate, head, and neck publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2005.01.005 – volume: 8 start-page: 106 year: 2013 ident: 10.1016/j.radonc.2019.09.028_b0150 article-title: Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial publication-title: Radiat Oncol doi: 10.1186/1748-717X-8-106 – volume: 24 start-page: 205 year: 2015 ident: 10.1016/j.radonc.2019.09.028_b0055 article-title: Multi-atlas segmentation of biomedical images: a survey publication-title: Med Image Anal doi: 10.1016/j.media.2015.06.012 – volume: 27 start-page: 1189 year: 2008 ident: 10.1016/j.radonc.2019.09.028_b0060 article-title: Automatic model-based segmentation of the heart in CT images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2008.918330 – volume: 46 start-page: 2157 year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0095 article-title: Automatic multiorgan segmentation in thorax CT images using U-net-GAN publication-title: Med Phys doi: 10.1002/mp.13458 – volume: 41 year: 2014 ident: 10.1016/j.radonc.2019.09.028_b0005 article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy publication-title: Med Phys doi: 10.1118/1.4871620 – year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0130 article-title: Ultrasound prostate segmentation based on multi-directional deeply supervised V-net publication-title: Med Phys doi: 10.1002/mp.13577 – start-page: 63 year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0140 article-title: Fully automated organ segmentation in male pelvic CT images publication-title: Phys Med Biol – volume: 188 start-page: 807 year: 2012 ident: 10.1016/j.radonc.2019.09.028_b0155 article-title: Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions publication-title: Strahlenther Onkol doi: 10.1007/s00066-012-0117-0 – volume: 67 start-page: 1238 year: 2007 ident: 10.1016/j.radonc.2019.09.028_b0040 article-title: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2006.11.027 – year: 2019 ident: 10.1016/j.radonc.2019.09.028_b0115 article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks publication-title: Med Phys doi: 10.1002/mp.13617 – volume: 45 start-page: E582 year: 2018 ident: 10.1016/j.radonc.2019.09.028_b0085 article-title: 3D prostate segmentation in MR image using 3D deeply supervised convolutional neural networks publication-title: Med Phys |
SSID | ssj0002037 |
Score | 2.6409972 |
Snippet | •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT... Highlights•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT. •SMRI with a superior soft-tissue contrast can significantly... Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | Deep Learning Hematology, Oncology, and Palliative Medicine Humans Magnetic Resonance Imaging - methods Male Multi-organ segmentation Organs at Risk Pelvis - diagnostic imaging Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - radiotherapy Synthetic MRI Tomography, X-Ray Computed - methods |
Title | Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167814019331172 https://www.clinicalkey.es/playcontent/1-s2.0-S0167814019331172 https://dx.doi.org/10.1016/j.radonc.2019.09.028 https://www.ncbi.nlm.nih.gov/pubmed/31630868 https://www.proquest.com/docview/2307396444 https://pubmed.ncbi.nlm.nih.gov/PMC6899191 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalg7GXse7arSsa7FWLbclS_FjCSrquZfQCfRPWxV1GqoQ6fehLf3vPkeWsWQsdBYMTW3IU6ejoO_g7nwj5mue8dGLomPJ1w-CDZZXPG-ZE4Yq6ElnTRILsoRyfih9n5dkaGfW5MEirTL6_8-nRW6crg9Sbg_lkMjhGAj3qNQEE4Tmsw5jBLhRa-bebvzSPIut0M1HfG0v36XOR43VZu1lAIcO8imqnuCf7w8vTffj5L4vyzrK0-4q8THiS7nRN3iBrPrwmzw_SG_M3ZHp8HQDjwV16cLTHUBDS0cgiZHFDJ9r684uUfxQoHBewYtC5n4IHoaMTirz4c2qv4eHUIpkWrCIsqPN-TlGaM5IlaejI5G_J6e73k9GYpR0WmJVcLRg3qsoQcpjcqlryRhreoMIez6wQ3Dopq6GvKycgXvWAtqyUjpuCC2eUqBR_R9bDLPgPhAIMNGVtAH44CLmVqYUqXWPzwha2gUm_SXjfsdom-XHcBWOqe57ZH90Nh8bh0BkcxXCTsGWteSe_8Uj5sh8z3aeWgjPUsD48Uk89VM-3aUa3OtdtoTN9z-ru1lwx3P_4zS-9UWmY0_iipg5-dtVqJOfzCpAq9Nr7zsiW_54DgIYwFFu8Yn7LAqgXvnonTH5H3XAJsTWE5x-f3OJP5AV-69g8W2R9cXnlPwMmW5jtOOm2ybOd0dHPX3je2x8f3gLxFjmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLagSGOXCdgvNhietKvVJHac5oiqoXbQHqBI3Kz4R1in4lakHPjv917iVBSQQEg5VHVe49rP731P-fyZkF9xzFMrepZlrigZfDAsd3HJrEhsUuQiKsuaIDuWg0vx5yq92iD9di8M0ipD7G9ieh2twzfdMJrdxXTavUACPeo1AQThMeThTbKF6lRph2wdD08H41VATqJGOhMlvtGg3UFX07xuCzv3qGUY57XgKR7L_nyGeopAHxMpH2Smkx3yIUBKetz0epdsOL9H3o3CS_OPZHZx7wHmQSsdnQ8ZakJaWhMJWX2mE63c9U3YguQpXDeQNOjCzSCI0P6EIjX-mpp7-HFqkE8LjuGX1Dq3oKjOWfMlqW_45J_I5cnvSX_AwiELzEieLRnXWR4h6tCxyQrJS6l5iSJ7PDJCcGOlzHuuyK2AktUB4DJSWq4TLqzORJ7xz6Tj5959JRSQoE4LDQjEQtWd6QImw5YmTkxiSlj3-4S3A6tMUCDHgzBmqqWa_VPNdCicDhXBlfT2CVtZLRoFjhfuT9s5U-3uUoiHClLEC3bZc3auCou6UrGqEhWpJ4730HLNd1_xzJ-tUylY1viupvBuflcp5OfzHMAqjNqXxslW_54DhoZKFHu85n6rG1AyfL3FT__W0uESymuo0L-9ucdHZHswGZ2ps-H49Dt5jy0NueeAdJa3d-4QINpS_whL8D-52jrM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+MRI-aided+Multi-organ+Segmentation+on+Male+Pelvic+CT+Using+Cycle+Consistent+Deep+Attention+Network&rft.jtitle=Radiotherapy+and+oncology&rft.au=Dong%2C+Xue&rft.au=Lei%2C+Yang&rft.au=Tian%2C+Sibo&rft.au=Wang%2C+Tonghe&rft.date=2019-12-01&rft.issn=0167-8140&rft.eissn=1879-0887&rft.volume=141&rft.spage=192&rft.epage=199&rft_id=info:doi/10.1016%2Fj.radonc.2019.09.028&rft_id=info%3Apmid%2F31630868&rft.externalDocID=PMC6899191 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01678140%2FS0167814019X00134%2Fcov150h.gif |