Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network

•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aid...

Full description

Saved in:
Bibliographic Details
Published inRadiotherapy and oncology Vol. 141; pp. 192 - 199
Main Authors Dong, Xue, Lei, Yang, Tian, Sibo, Wang, Tonghe, Patel, Pretesh, Curran, Walter J., Jani, Ashesh B., Liu, Tian, Yang, Xiaofeng
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning. Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning. The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features’ discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients. The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively. We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.
AbstractList •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy.•The deep attention mechanism helps identify the most relevant features to differentiate organs.•The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning. Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning. The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features’ discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients. The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively. We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.
Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning. The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients. The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively. We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.
Highlights•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT. •SMRI with a superior soft-tissue contrast can significantly improve CT segmentation accuracy. •The deep attention mechanism helps identify the most relevant features to differentiate organs. •The proposed SMRI-aided strategy has a great potential to facilitate radiotherapy planning.
Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.BACKGROUND AND PURPOSEManual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning.The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.METHODS AND MATERIALSThe proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients.The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.RESULTSThe Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively.We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.CONCLUSIONWe proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.
Author Tian, Sibo
Yang, Xiaofeng
Wang, Tonghe
Curran, Walter J.
Patel, Pretesh
Jani, Ashesh B.
Liu, Tian
Dong, Xue
Lei, Yang
AuthorAffiliation 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
AuthorAffiliation_xml – name: 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322
Author_xml – sequence: 1
  givenname: Xue
  surname: Dong
  fullname: Dong, Xue
– sequence: 2
  givenname: Yang
  surname: Lei
  fullname: Lei, Yang
– sequence: 3
  givenname: Sibo
  surname: Tian
  fullname: Tian, Sibo
– sequence: 4
  givenname: Tonghe
  surname: Wang
  fullname: Wang, Tonghe
– sequence: 5
  givenname: Pretesh
  surname: Patel
  fullname: Patel, Pretesh
– sequence: 6
  givenname: Walter J.
  surname: Curran
  fullname: Curran, Walter J.
– sequence: 7
  givenname: Ashesh B.
  surname: Jani
  fullname: Jani, Ashesh B.
– sequence: 8
  givenname: Tian
  surname: Liu
  fullname: Liu, Tian
– sequence: 9
  givenname: Xiaofeng
  surname: Yang
  fullname: Yang, Xiaofeng
  email: xiaofeng.yang@emory.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31630868$$D View this record in MEDLINE/PubMed
BookMark eNqVUluLEzEUDrLidqv_QGQefZmaTKbJRESQ4mVhRXDX55BJTrvpZpKaZCr992ZoXVSQRTiQkHyXw_nOBTrzwQNCzwleEEzYq-0iKhO8XjSYiAUu1XSP0Ix0XNS46_gZmhUYrzvS4nN0kdIWY9xgyp-gc0oYxR3rZshdH3y-hWx19fnrZa2sAVMNo8u2DnGjfJVgM4DPKtvgq1KDclDtwO0LY3VTjcn6TaUPurzq4JNNuaArA7CrVJ7uE89D_hHi3VP0eK1cgmenc46-fXh_s_pUX335eLl6d1VrRnmuac8FZnS57InmitE16-ka06ajWLct1YYx0YESpl02FMiy1YwZ2je0NT1vBadz9Paouxv7AYwuXUTl5C7aQcWDDMrKP3-8vZWbsJesE4IIUgRengRi-D5CynKwSYNzykMYk2wo5lSwtnQzRy9-97o3-TXiAmiPAB1DShHW9xCC5ZSk3MpjknJKUuJSzUR7_RdN22MKpWPrHiKfBgBlynsLUSZtwWswNoLO0gT7vwLaWW-1cndwgLQNY_QlQUlkaiSW19OmTYtGBKWE8KYIvPm3wMP-PwFvD-bd
CitedBy_id crossref_primary_10_1155_2022_1274260
crossref_primary_10_1007_s13735_022_00240_x
crossref_primary_10_1016_j_meddos_2022_02_006
crossref_primary_10_1016_j_media_2022_102413
crossref_primary_10_1002_mp_15264
crossref_primary_10_1155_2022_3289663
crossref_primary_10_1002_mp_16750
crossref_primary_10_1117_1_JMI_11_2_024009
crossref_primary_10_1002_mp_15146
crossref_primary_10_1002_mp_14378
crossref_primary_10_1002_mp_14895
crossref_primary_10_1088_1361_6560_ab8077
crossref_primary_10_1002_acm2_13337
crossref_primary_10_1002_mp_14810
crossref_primary_10_1016_j_bspc_2023_105762
crossref_primary_10_14338_IJPT_D_20_00020_1
crossref_primary_10_1016_j_jksuci_2023_101821
crossref_primary_10_1016_j_brachy_2023_05_005
crossref_primary_10_1088_1361_6560_ace674
crossref_primary_10_1007_s00138_023_01401_6
crossref_primary_10_1016_j_compbiomed_2023_107842
crossref_primary_10_1016_j_radonc_2024_110588
crossref_primary_10_1002_acm2_14155
crossref_primary_10_1088_2057_1976_ad6a63
crossref_primary_10_1109_TMI_2020_3025517
crossref_primary_10_1109_TBME_2024_3380058
crossref_primary_10_1097_MD_0000000000034161
crossref_primary_10_1016_j_media_2024_103100
crossref_primary_10_3389_fonc_2021_665807
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_1109_JBHI_2020_3024188
crossref_primary_10_1002_mp_14121
crossref_primary_10_1259_bjr_20210644
crossref_primary_10_1088_1361_6560_abf2f9
crossref_primary_10_1109_TPAMI_2023_3299038
crossref_primary_10_1007_s10916_020_01641_3
crossref_primary_10_1016_j_adro_2023_101340
crossref_primary_10_1109_TCI_2020_3012928
crossref_primary_10_1016_j_adro_2025_101745
crossref_primary_10_1088_1361_6560_ac3c13
crossref_primary_10_1109_TBME_2024_3467216
crossref_primary_10_1016_j_ejmp_2020_07_028
crossref_primary_10_1088_1361_6560_abd953
crossref_primary_10_3390_diagnostics11020354
crossref_primary_10_1016_j_media_2021_102039
crossref_primary_10_3390_rs14205240
crossref_primary_10_1007_s00330_020_07482_5
crossref_primary_10_1088_1361_6560_ac95f7
crossref_primary_10_3390_diagnostics11111964
crossref_primary_10_1002_mp_16135
crossref_primary_10_1109_TGRS_2023_3311788
crossref_primary_10_1088_1361_6560_abb31f
crossref_primary_10_1259_bjr_20190855
crossref_primary_10_1002_mp_15322
crossref_primary_10_1145_3527849
crossref_primary_10_1007_s10462_022_10152_1
crossref_primary_10_1016_j_canrad_2021_06_023
crossref_primary_10_1002_mp_15206
crossref_primary_10_1088_1361_6560_ac0856
crossref_primary_10_1002_mp_16329
crossref_primary_10_1007_s40747_024_01639_1
crossref_primary_10_1002_mp_14307
crossref_primary_10_1002_acm2_13121
crossref_primary_10_3389_fonc_2022_970425
crossref_primary_10_1016_j_ejmp_2020_09_004
crossref_primary_10_3389_fonc_2021_771787
crossref_primary_10_1016_j_media_2020_101783
crossref_primary_10_1016_j_ejmp_2021_05_003
crossref_primary_10_1088_2057_1976_ac26e8
crossref_primary_10_1007_s13246_023_01320_w
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_3390_biomedinformatics3030050
crossref_primary_10_3390_bioengineering10091078
crossref_primary_10_1002_mp_17171
crossref_primary_10_1002_pro6_70003
crossref_primary_10_1186_s13014_020_01528_0
crossref_primary_10_1002_mp_14580
crossref_primary_10_1002_mp_16163
crossref_primary_10_1002_mp_16001
crossref_primary_10_1002_mp_14065
crossref_primary_10_1002_mp_15793
crossref_primary_10_1002_acm2_13097
crossref_primary_10_1002_mp_15507
crossref_primary_10_1016_j_eclinm_2023_102050
crossref_primary_10_1002_mp_14818
crossref_primary_10_1088_1361_6560_ab843e
crossref_primary_10_1109_TRPMS_2024_3379580
crossref_primary_10_1007_s11036_020_01678_1
crossref_primary_10_1002_acm2_70034
crossref_primary_10_1016_j_neucom_2023_126295
Cites_doi 10.1016/j.ijrobp.2010.10.019
10.1016/S0360-3016(01)01635-2
10.1016/j.radonc.2008.08.007
10.1016/j.ijrobp.2012.02.003
10.1109/TMI.2008.2011480
10.1007/s00066-005-1383-x
10.1002/mp.13416
10.1002/mp.13560
10.1016/j.radonc.2016.09.009
10.1109/TMI.2011.2171357
10.1016/j.neuroimage.2009.02.018
10.1118/1.3654160
10.1016/j.semradonc.2005.01.005
10.1186/1748-717X-8-106
10.1016/j.media.2015.06.012
10.1109/TMI.2008.918330
10.1002/mp.13458
10.1118/1.4871620
10.1002/mp.13577
10.1007/s00066-012-0117-0
10.1016/j.ijrobp.2006.11.027
10.1002/mp.13617
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.radonc.2019.09.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0887
EndPage 199
ExternalDocumentID PMC6899191
31630868
10_1016_j_radonc_2019_09_028
S0167814019331172
1_s2_0_S0167814019331172
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA215718
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
E3Z
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HED
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UV1
WUQ
X7M
Z5R
ZGI
ZXP
~G-
0SF
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
NCXOZ
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c637t-3b7906355b1c7a63f6b3f032830c443cd6698ea9d4523e154c66d3b234db74973
IEDL.DBID .~1
ISSN 0167-8140
1879-0887
IngestDate Thu Aug 21 14:36:30 EDT 2025
Tue Aug 05 09:58:59 EDT 2025
Thu Apr 03 07:02:10 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Tue Jul 01 01:41:03 EDT 2025
Fri Feb 23 02:48:25 EST 2024
Tue Feb 25 20:09:59 EST 2025
Tue Aug 26 16:36:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Synthetic MRI
Multi-organ segmentation
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c637t-3b7906355b1c7a63f6b3f032830c443cd6698ea9d4523e154c66d3b234db74973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first author
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6899191
PMID 31630868
PQID 2307396444
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6899191
proquest_miscellaneous_2307396444
pubmed_primary_31630868
crossref_primary_10_1016_j_radonc_2019_09_028
crossref_citationtrail_10_1016_j_radonc_2019_09_028
elsevier_sciencedirect_doi_10_1016_j_radonc_2019_09_028
elsevier_clinicalkeyesjournals_1_s2_0_S0167814019331172
elsevier_clinicalkey_doi_10_1016_j_radonc_2019_09_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Radiotherapy and oncology
PublicationTitleAlternate Radiother Oncol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Isgum, Staring, Rutten, Prokop, Viergever, van Ginneken (b0045) 2009; 28
Iglesias, Sabuncu (b0055) 2015; 24
Wang, Lei, Tian (b0125) 2019; 46
Wang, Lei, Tang (b0075) 2019
Mishra, Chaudhury, Sarkar, Soin (b0120) 2018
Samaneh Kazemifar, Nguyen, McGuire, Hannan, Jiang, Owrangi (b0105) 2018
Simmat, Georg, Georg, Birkfellner, Goldner, Stock (b0155) 2012; 188
Nelms, Tome, Robinson, Wheeler (b0030) 2012; 82
Wang, Lei, Tian (b0135) 2019
Qazi, Pekar, Kim, Xie, Breen, Jaffray (b0065) 2011; 38
Sun, Bauer, Beichel (b0070) 2012; 31
Lei, Tian, He (b0130) 2019
Sharp, Fritscher, Pekar (b0005) 2014; 41
Breunig, Hernandez, Lin (b0025) 2012; 83
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (b0050) 2009; 46
Rasch, Steenbakkers, van Herk (b0010) 2005; 15
Dong, Lei, Wang (b0095) 2019; 46
Yang, Huang, Lei (b0080) 2018
Liu, Gardner, Wen (b0110) 2019
Ecabert, Peters, Schramm (b0060) 2008; 27
Smith, Lewis, Bauman (b0040) 2007; 67
Kazemifar, Balagopal, Nguyen (b0100) 2018
Lei, Harms, Wang (b0115) 2019
Vinod, Jameson, Min, Holloway (b0020) 2016; 121
Geraghty, Grogan, Ebert (b0150) 2013; 8
Yang, Lei, Wang (b0085) 2018; 45
Balagopal, Kazemifar, Nguyen (b0140) 2018
Huyskens, Maingon, Vanuytsel (b0145) 2009; 90
Hurkmans, Borger, Pieters, Russell, Jansen, Mijnheer (b0015) 2001; 50
Villeirs, Vaerenbergh, Vakaet (b0035) 2005; 181
Wang, Lei, Tian (b0090) 2019
Samaneh Kazemifar (10.1016/j.radonc.2019.09.028_b0105) 2018
Sun (10.1016/j.radonc.2019.09.028_b0070) 2012; 31
Wang (10.1016/j.radonc.2019.09.028_b0075) 2019
Yang (10.1016/j.radonc.2019.09.028_b0080) 2018
Wang (10.1016/j.radonc.2019.09.028_b0135) 2019
Rasch (10.1016/j.radonc.2019.09.028_b0010) 2005; 15
Mishra (10.1016/j.radonc.2019.09.028_b0120) 2018
Iglesias (10.1016/j.radonc.2019.09.028_b0055) 2015; 24
Dong (10.1016/j.radonc.2019.09.028_b0095) 2019; 46
Nelms (10.1016/j.radonc.2019.09.028_b0030) 2012; 82
Qazi (10.1016/j.radonc.2019.09.028_b0065) 2011; 38
Smith (10.1016/j.radonc.2019.09.028_b0040) 2007; 67
Wang (10.1016/j.radonc.2019.09.028_b0125) 2019; 46
Yang (10.1016/j.radonc.2019.09.028_b0085) 2018; 45
Aljabar (10.1016/j.radonc.2019.09.028_b0050) 2009; 46
Villeirs (10.1016/j.radonc.2019.09.028_b0035) 2005; 181
Hurkmans (10.1016/j.radonc.2019.09.028_b0015) 2001; 50
Sharp (10.1016/j.radonc.2019.09.028_b0005) 2014; 41
Balagopal (10.1016/j.radonc.2019.09.028_b0140) 2018
Kazemifar (10.1016/j.radonc.2019.09.028_b0100) 2018
Liu (10.1016/j.radonc.2019.09.028_b0110) 2019
Lei (10.1016/j.radonc.2019.09.028_b0115) 2019
Huyskens (10.1016/j.radonc.2019.09.028_b0145) 2009; 90
Ecabert (10.1016/j.radonc.2019.09.028_b0060) 2008; 27
Wang (10.1016/j.radonc.2019.09.028_b0090) 2019
Simmat (10.1016/j.radonc.2019.09.028_b0155) 2012; 188
Isgum (10.1016/j.radonc.2019.09.028_b0045) 2009; 28
Lei (10.1016/j.radonc.2019.09.028_b0130) 2019
Breunig (10.1016/j.radonc.2019.09.028_b0025) 2012; 83
Geraghty (10.1016/j.radonc.2019.09.028_b0150) 2013; 8
Vinod (10.1016/j.radonc.2019.09.028_b0020) 2016; 121
References_xml – volume: 8
  start-page: 106
  year: 2013
  ident: b0150
  article-title: Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial
  publication-title: Radiat Oncol
– start-page: 4
  year: 2018
  ident: b0105
  article-title: . Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning
  publication-title: Biomed Phys Eng Express
– volume: 50
  start-page: 1366
  year: 2001
  end-page: 1372
  ident: b0015
  article-title: Variability in target volume delineation on CT scans of the breast
  publication-title: Int J Radiat Oncol Biol Phys
– start-page: 63
  year: 2018
  ident: b0140
  article-title: Fully automated organ segmentation in male pelvic CT images
  publication-title: Phys Med Biol
– volume: 31
  start-page: 449
  year: 2012
  end-page: 460
  ident: b0070
  article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach
  publication-title: IEEE Trans Med Imaging
– volume: 45
  start-page: E582
  year: 2018
  end-page: E583
  ident: b0085
  article-title: 3D prostate segmentation in MR image using 3D deeply supervised convolutional neural networks
  publication-title: Med Phys
– volume: 67
  start-page: 1238
  year: 2007
  end-page: 1247
  ident: b0040
  article-title: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR
  publication-title: Int J Radiat Oncol Biol Phys
– start-page: 4
  year: 2018
  ident: b0100
  article-title: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning
  publication-title: Biomed Phys Eng Express
– volume: 46
  start-page: 1707
  year: 2019
  end-page: 1718
  ident: b0125
  article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
– year: 2019
  ident: b0090
  article-title: Deeply supervised 3D FCN with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
– volume: 41
  year: 2014
  ident: b0005
  article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy
  publication-title: Med Phys
– year: 2019
  ident: b0135
  article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery
  publication-title: Med Phys
– volume: 46
  start-page: 2157
  year: 2019
  end-page: 2168
  ident: b0095
  article-title: Automatic multiorgan segmentation in thorax CT images using U-net-GAN
  publication-title: Med Phys
– volume: 90
  start-page: 337
  year: 2009
  end-page: 345
  ident: b0145
  article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer
  publication-title: Radiother Oncol
– year: 2019
  ident: b0110
  article-title: Automatic segmentation of the prostate on CT images using deep neural networks (DNN)
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 188
  start-page: 807
  year: 2012
  end-page: 815
  ident: b0155
  article-title: Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions
  publication-title: Strahlenther Onkol
– volume: 121
  start-page: 169
  year: 2016
  end-page: 179
  ident: b0020
  article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies
  publication-title: Radiother Oncol
– volume: 38
  start-page: 6160
  year: 2011
  end-page: 6170
  ident: b0065
  article-title: Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach
  publication-title: Med Phys
– volume: 83
  start-page: e703
  year: 2012
  end-page: e708
  ident: b0025
  article-title: A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 28
  start-page: 1000
  year: 2009
  end-page: 1010
  ident: b0045
  article-title: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Trans Med Imaging
– year: 2019
  ident: b0115
  article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks
  publication-title: Med Phys
– volume: 15
  start-page: 136
  year: 2005
  end-page: 145
  ident: b0010
  article-title: Target definition in prostate, head, and neck
  publication-title: Semin Radiat Oncol
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: b0050
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: Neuroimage
– year: 2019
  ident: b0130
  article-title: Ultrasound prostate segmentation based on multi-directional deeply supervised V-net
  publication-title: Med Phys
– volume: 82
  start-page: 368
  year: 2012
  end-page: 378
  ident: b0030
  article-title: Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 27
  start-page: 1189
  year: 2008
  end-page: 1201
  ident: b0060
  article-title: Automatic model-based segmentation of the heart in CT images
  publication-title: IEEE Trans Med Imaging
– year: 2018
  ident: b0120
  article-title: Ultrasound image segmentation: a deeply supervised network with attention to boundaries
  publication-title: IEEE Trans Biomed Eng
– volume: 181
  start-page: 424
  year: 2005
  end-page: 430
  ident: b0035
  article-title: Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer
  publication-title: Strahlenther Onkol
– volume: 24
  start-page: 205
  year: 2015
  end-page: 219
  ident: b0055
  article-title: Multi-atlas segmentation of biomedical images: a survey
  publication-title: Med Image Anal
– year: 2018
  ident: b0080
  article-title: Med-A-nets: segmentation of multiple organs in chest CT image with deep adversarial networks
  publication-title: Paper presented at: Med Phys
– start-page: 1
  year: 2019
  end-page: 12
  ident: b0075
  article-title: A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study
  publication-title: J Nucl Cardiol
– volume: 82
  start-page: 368
  year: 2012
  ident: 10.1016/j.radonc.2019.09.028_b0030
  article-title: Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.10.019
– volume: 50
  start-page: 1366
  year: 2001
  ident: 10.1016/j.radonc.2019.09.028_b0015
  article-title: Variability in target volume delineation on CT scans of the breast
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)01635-2
– volume: 90
  start-page: 337
  year: 2009
  ident: 10.1016/j.radonc.2019.09.028_b0145
  article-title: A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.08.007
– volume: 83
  start-page: e703
  year: 2012
  ident: 10.1016/j.radonc.2019.09.028_b0025
  article-title: A system for continual quality improvement of normal tissue delineation for radiation therapy treatment planning
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2012.02.003
– volume: 28
  start-page: 1000
  year: 2009
  ident: 10.1016/j.radonc.2019.09.028_b0045
  article-title: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.2011480
– volume: 181
  start-page: 424
  year: 2005
  ident: 10.1016/j.radonc.2019.09.028_b0035
  article-title: Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-005-1383-x
– year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0090
  article-title: Deeply supervised 3D FCN with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
  doi: 10.1002/mp.13416
– start-page: 4
  year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0100
  article-title: Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning
  publication-title: Biomed Phys Eng Express
– year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0135
  article-title: Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery
  publication-title: Med Phys
  doi: 10.1002/mp.13560
– volume: 121
  start-page: 169
  year: 2016
  ident: 10.1016/j.radonc.2019.09.028_b0020
  article-title: Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.09.009
– volume: 31
  start-page: 449
  year: 2012
  ident: 10.1016/j.radonc.2019.09.028_b0070
  article-title: Automated 3-D segmentation of lungs with lung cancer in CT data using a novel robust active shape model approach
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2011.2171357
– year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0120
  article-title: Ultrasound image segmentation: a deeply supervised network with attention to boundaries
  publication-title: IEEE Trans Biomed Eng
– year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0110
  article-title: Automatic segmentation of the prostate on CT images using deep neural networks (DNN)
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 1707
  year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0125
  article-title: Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation
  publication-title: Med Phys
  doi: 10.1002/mp.13416
– volume: 46
  start-page: 726
  year: 2009
  ident: 10.1016/j.radonc.2019.09.028_b0050
  article-title: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.018
– year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0080
  article-title: Med-A-nets: segmentation of multiple organs in chest CT image with deep adversarial networks
– volume: 38
  start-page: 6160
  year: 2011
  ident: 10.1016/j.radonc.2019.09.028_b0065
  article-title: Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach
  publication-title: Med Phys
  doi: 10.1118/1.3654160
– start-page: 1
  year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0075
  article-title: A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study
  publication-title: J Nucl Cardiol
– start-page: 4
  year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0105
  article-title: . Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning
  publication-title: Biomed Phys Eng Express
– volume: 15
  start-page: 136
  year: 2005
  ident: 10.1016/j.radonc.2019.09.028_b0010
  article-title: Target definition in prostate, head, and neck
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2005.01.005
– volume: 8
  start-page: 106
  year: 2013
  ident: 10.1016/j.radonc.2019.09.028_b0150
  article-title: Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-8-106
– volume: 24
  start-page: 205
  year: 2015
  ident: 10.1016/j.radonc.2019.09.028_b0055
  article-title: Multi-atlas segmentation of biomedical images: a survey
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.06.012
– volume: 27
  start-page: 1189
  year: 2008
  ident: 10.1016/j.radonc.2019.09.028_b0060
  article-title: Automatic model-based segmentation of the heart in CT images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2008.918330
– volume: 46
  start-page: 2157
  year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0095
  article-title: Automatic multiorgan segmentation in thorax CT images using U-net-GAN
  publication-title: Med Phys
  doi: 10.1002/mp.13458
– volume: 41
  year: 2014
  ident: 10.1016/j.radonc.2019.09.028_b0005
  article-title: Vision 20/20: perspectives on automated image segmentation for radiotherapy
  publication-title: Med Phys
  doi: 10.1118/1.4871620
– year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0130
  article-title: Ultrasound prostate segmentation based on multi-directional deeply supervised V-net
  publication-title: Med Phys
  doi: 10.1002/mp.13577
– start-page: 63
  year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0140
  article-title: Fully automated organ segmentation in male pelvic CT images
  publication-title: Phys Med Biol
– volume: 188
  start-page: 807
  year: 2012
  ident: 10.1016/j.radonc.2019.09.028_b0155
  article-title: Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions
  publication-title: Strahlenther Onkol
  doi: 10.1007/s00066-012-0117-0
– volume: 67
  start-page: 1238
  year: 2007
  ident: 10.1016/j.radonc.2019.09.028_b0040
  article-title: Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2006.11.027
– year: 2019
  ident: 10.1016/j.radonc.2019.09.028_b0115
  article-title: MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks
  publication-title: Med Phys
  doi: 10.1002/mp.13617
– volume: 45
  start-page: E582
  year: 2018
  ident: 10.1016/j.radonc.2019.09.028_b0085
  article-title: 3D prostate segmentation in MR image using 3D deeply supervised convolutional neural networks
  publication-title: Med Phys
SSID ssj0002037
Score 2.6409972
Snippet •We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT.•SMRI with a superior soft-tissue contrast can significantly improve CT...
Highlights•We use CT-based synthetic MRI (SMRI) to aid multi-organ segmentation in male pelvic CT. •SMRI with a superior soft-tissue contrast can significantly...
Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms Deep Learning
Hematology, Oncology, and Palliative Medicine
Humans
Magnetic Resonance Imaging - methods
Male
Multi-organ segmentation
Organs at Risk
Pelvis - diagnostic imaging
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - radiotherapy
Synthetic MRI
Tomography, X-Ray Computed - methods
Title Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167814019331172
https://www.clinicalkey.es/playcontent/1-s2.0-S0167814019331172
https://dx.doi.org/10.1016/j.radonc.2019.09.028
https://www.ncbi.nlm.nih.gov/pubmed/31630868
https://www.proquest.com/docview/2307396444
https://pubmed.ncbi.nlm.nih.gov/PMC6899191
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalg7GXse7arSsa7FWLbclS_FjCSrquZfQCfRPWxV1GqoQ6fehLf3vPkeWsWQsdBYMTW3IU6ejoO_g7nwj5mue8dGLomPJ1w-CDZZXPG-ZE4Yq6ElnTRILsoRyfih9n5dkaGfW5MEirTL6_8-nRW6crg9Sbg_lkMjhGAj3qNQEE4Tmsw5jBLhRa-bebvzSPIut0M1HfG0v36XOR43VZu1lAIcO8imqnuCf7w8vTffj5L4vyzrK0-4q8THiS7nRN3iBrPrwmzw_SG_M3ZHp8HQDjwV16cLTHUBDS0cgiZHFDJ9r684uUfxQoHBewYtC5n4IHoaMTirz4c2qv4eHUIpkWrCIsqPN-TlGaM5IlaejI5G_J6e73k9GYpR0WmJVcLRg3qsoQcpjcqlryRhreoMIez6wQ3Dopq6GvKycgXvWAtqyUjpuCC2eUqBR_R9bDLPgPhAIMNGVtAH44CLmVqYUqXWPzwha2gUm_SXjfsdom-XHcBWOqe57ZH90Nh8bh0BkcxXCTsGWteSe_8Uj5sh8z3aeWgjPUsD48Uk89VM-3aUa3OtdtoTN9z-ru1lwx3P_4zS-9UWmY0_iipg5-dtVqJOfzCpAq9Nr7zsiW_54DgIYwFFu8Yn7LAqgXvnonTH5H3XAJsTWE5x-f3OJP5AV-69g8W2R9cXnlPwMmW5jtOOm2ybOd0dHPX3je2x8f3gLxFjmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLagSGOXCdgvNhietKvVJHac5oiqoXbQHqBI3Kz4R1in4lakHPjv917iVBSQQEg5VHVe49rP731P-fyZkF9xzFMrepZlrigZfDAsd3HJrEhsUuQiKsuaIDuWg0vx5yq92iD9di8M0ipD7G9ieh2twzfdMJrdxXTavUACPeo1AQThMeThTbKF6lRph2wdD08H41VATqJGOhMlvtGg3UFX07xuCzv3qGUY57XgKR7L_nyGeopAHxMpH2Smkx3yIUBKetz0epdsOL9H3o3CS_OPZHZx7wHmQSsdnQ8ZakJaWhMJWX2mE63c9U3YguQpXDeQNOjCzSCI0P6EIjX-mpp7-HFqkE8LjuGX1Dq3oKjOWfMlqW_45J_I5cnvSX_AwiELzEieLRnXWR4h6tCxyQrJS6l5iSJ7PDJCcGOlzHuuyK2AktUB4DJSWq4TLqzORJ7xz6Tj5959JRSQoE4LDQjEQtWd6QImw5YmTkxiSlj3-4S3A6tMUCDHgzBmqqWa_VPNdCicDhXBlfT2CVtZLRoFjhfuT9s5U-3uUoiHClLEC3bZc3auCou6UrGqEhWpJ4730HLNd1_xzJ-tUylY1viupvBuflcp5OfzHMAqjNqXxslW_54DhoZKFHu85n6rG1AyfL3FT__W0uESymuo0L-9ucdHZHswGZ2ps-H49Dt5jy0NueeAdJa3d-4QINpS_whL8D-52jrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+MRI-aided+Multi-organ+Segmentation+on+Male+Pelvic+CT+Using+Cycle+Consistent+Deep+Attention+Network&rft.jtitle=Radiotherapy+and+oncology&rft.au=Dong%2C+Xue&rft.au=Lei%2C+Yang&rft.au=Tian%2C+Sibo&rft.au=Wang%2C+Tonghe&rft.date=2019-12-01&rft.issn=0167-8140&rft.eissn=1879-0887&rft.volume=141&rft.spage=192&rft.epage=199&rft_id=info:doi/10.1016%2Fj.radonc.2019.09.028&rft_id=info%3Apmid%2F31630868&rft.externalDocID=PMC6899191
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01678140%2FS0167814019X00134%2Fcov150h.gif