Potassium transport and plant salt tolerance
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosoli...
Saved in:
Published in | Physiologia plantarum Vol. 133; no. 4; pp. 651 - 669 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.08.2008
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K⁺/Na⁺ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na⁺ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K⁺ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K⁺ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined. |
---|---|
AbstractList | Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined. Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K⁺/Na⁺ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na⁺ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K⁺ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K⁺ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined. Salinity is a major abiotic stress affecting approximately 7% of the world’s total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K + /Na + ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na + uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K + transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K + transport ‘markers’ are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of ‘salt tolerance’ genes is analysed, and prospects for future research and breeding are examined. Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined. |
Author | Shabala, Sergey Cuin, Tracey A. |
Author_xml | – sequence: 1 fullname: Shabala, Sergey – sequence: 2 fullname: Cuin, Tracey A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20592682$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18724408$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFvwDZwKoJ99rxa0ElVGh5jNqRaNWl5SQOypBJhtijTv89TjMMEpvWG1u63znXOueIHHR95whJEDKM5_0yQ6Z1yoDnGQWQGSCAyrbPyGw_OCAzAIapZigPyZH3SwAUAukLcohK0jwHNSMniz5Y75vNKgmD7fy6H0JiuypZt7YLibdtSELfujgr3UvyvLatd6929zG5Of98ffYlnV9dfD37OE9LwaRKpSgU56xyqsgBKklVKXSNCqGqWV1xpqGQVSWtLCIolMLCIoLNC12WsrLsmLybfNdD_3vjfDCrxpeujV9y_cYboXOuBYhHwVwKzTmFR0EKSlOOGMHXO3BTrFxl1kOzssO9-ZtYBN7uAOtL29ZjMI3fcxS4pkLRyKmJK4fe-8HV_6zAjCWapRm7MmNXZizRPJRotlF6-p-0bIINTd_Fipr2KQYfJoO7pnX3T15sFov5-Ir6dNI3PrjtXm-HX0ZIJrm5vbww1_hdfcNPt2Ye-TcTX9ve2J9DzOPmBwVkABoZBcn-ANuuyz4 |
CODEN | PHPLAI |
CitedBy_id | crossref_primary_10_1007_s00344_019_09957_2 crossref_primary_10_1104_pp_112_195370 crossref_primary_10_1007_s11738_015_2046_x crossref_primary_10_1080_11263504_2020_1756975 crossref_primary_10_1093_plcell_koac292 crossref_primary_10_1016_j_envexpbot_2013_11_016 crossref_primary_10_3389_fpls_2022_804716 crossref_primary_10_3390_agronomy11040780 crossref_primary_10_1111_j_1365_3040_2012_02504_x crossref_primary_10_1007_s11738_012_1128_2 crossref_primary_10_1007_s10343_022_00685_4 crossref_primary_10_3390_agriculture8030043 crossref_primary_10_1007_s11356_023_31730_y crossref_primary_10_1016_j_agwat_2015_09_027 crossref_primary_10_1016_j_plaphy_2016_10_011 crossref_primary_10_1111_j_1365_3040_2010_02118_x crossref_primary_10_1007_s10725_021_00781_x crossref_primary_10_1016_j_gene_2018_08_025 crossref_primary_10_1093_treephys_tpaa142 crossref_primary_10_1016_j_plaphy_2016_02_039 crossref_primary_10_3389_fpls_2017_02032 crossref_primary_10_3389_fpls_2018_00714 crossref_primary_10_1128_AEM_01533_18 crossref_primary_10_1071_CP14190 crossref_primary_10_3390_plants10040696 crossref_primary_10_1590_1678_4685_gmb_2016_0106 crossref_primary_10_1007_s11738_016_2101_2 crossref_primary_10_1016_j_envexpbot_2020_104224 crossref_primary_10_1016_j_envexpbot_2010_05_001 crossref_primary_10_1111_pce_12109 crossref_primary_10_1093_mp_ssp102 crossref_primary_10_1111_pce_12599 crossref_primary_10_1021_acs_jafc_7b03398 crossref_primary_10_1111_pce_13441 crossref_primary_10_1016_j_stress_2023_100137 crossref_primary_10_3390_plants12040774 crossref_primary_10_17221_62_2011_PPS crossref_primary_10_3389_fpls_2016_01980 crossref_primary_10_1093_jxb_err280 crossref_primary_10_1093_g3journal_jkab275 crossref_primary_10_1016_j_envexpbot_2013_10_003 crossref_primary_10_1111_nph_18762 crossref_primary_10_1093_jxb_ert460 crossref_primary_10_3389_fpls_2014_00154 crossref_primary_10_1016_j_plaphy_2015_08_016 crossref_primary_10_1111_pbi_13332 crossref_primary_10_1007_s10725_021_00726_4 crossref_primary_10_1016_j_plaphy_2025_109492 crossref_primary_10_1016_j_scienta_2010_07_027 crossref_primary_10_1111_pbr_12623 crossref_primary_10_1002_ldr_4237 crossref_primary_10_1016_j_ecoenv_2019_109814 crossref_primary_10_1111_tpj_14697 crossref_primary_10_1007_s10535_018_0823_2 crossref_primary_10_1093_jxb_eraa354 crossref_primary_10_1016_j_micres_2018_07_008 crossref_primary_10_3389_fpls_2022_859224 crossref_primary_10_1111_pce_14745 crossref_primary_10_20289_zfdergi_426553 crossref_primary_10_2139_ssrn_4092916 crossref_primary_10_1007_s42729_019_00073_4 crossref_primary_10_1146_annurev_phyto_073009_114450 crossref_primary_10_1371_journal_pone_0134822 crossref_primary_10_1007_s13762_022_04427_x crossref_primary_10_1093_jxb_erv465 crossref_primary_10_3389_fpls_2019_01040 crossref_primary_10_61186_flowerjournal_8_1_183 crossref_primary_10_1007_s11756_024_01810_6 crossref_primary_10_1016_j_jplph_2015_07_002 crossref_primary_10_1016_j_envexpbot_2012_07_004 crossref_primary_10_3389_fpls_2016_01787 crossref_primary_10_1111_ppl_12827 crossref_primary_10_1016_j_agwat_2018_08_037 crossref_primary_10_1016_j_scienta_2011_11_025 crossref_primary_10_1111_nph_20428 crossref_primary_10_3390_agriculture15030254 crossref_primary_10_1111_pce_12585 crossref_primary_10_1016_j_febslet_2014_01_062 crossref_primary_10_1111_pce_12586 crossref_primary_10_3390_cells11142174 crossref_primary_10_1007_s11120_009_9441_3 crossref_primary_10_3390_ijms23158519 crossref_primary_10_1186_s12864_023_09859_4 crossref_primary_10_1016_S2095_3119_20_63277_4 crossref_primary_10_52547_jcb_14_43_201 crossref_primary_10_1016_j_envexpbot_2018_05_007 crossref_primary_10_1186_s12284_023_00637_0 crossref_primary_10_1093_jxb_erv435 crossref_primary_10_1007_s13201_021_01395_4 crossref_primary_10_1186_1471_2164_15_1040 crossref_primary_10_1007_s00468_018_1790_0 crossref_primary_10_1007_s12374_023_09382_9 crossref_primary_10_1080_01904167_2016_1201107 crossref_primary_10_3390_ijms241914762 crossref_primary_10_1007_s00425_020_03493_0 crossref_primary_10_3390_agriculture12050594 crossref_primary_10_1016_j_stress_2025_100775 crossref_primary_10_1016_j_envexpbot_2018_05_013 crossref_primary_10_1021_cr900052g crossref_primary_10_14348_molcells_2014_0141 crossref_primary_10_1371_journal_pone_0181450 crossref_primary_10_1007_s40415_020_00675_8 crossref_primary_10_1093_jxb_eru351 crossref_primary_10_1093_pcp_pcx026 crossref_primary_10_1111_nph_19896 crossref_primary_10_1139_a11_003 crossref_primary_10_48130_TP_2023_0020 crossref_primary_10_1016_j_jplph_2016_10_009 crossref_primary_10_1515_opag_2018_0043 crossref_primary_10_3389_fpls_2020_00457 crossref_primary_10_1016_j_scienta_2019_01_038 crossref_primary_10_1111_j_1399_3054_2011_01445_x crossref_primary_10_32615_bp_2021_044 crossref_primary_10_1016_j_mtcomm_2023_107093 crossref_primary_10_1016_j_plaphy_2025_109685 crossref_primary_10_1071_FP15391 crossref_primary_10_1007_s12892_017_0030_0 crossref_primary_10_1111_pce_14943 crossref_primary_10_3389_fpls_2017_01326 crossref_primary_10_1104_pp_114_246520 crossref_primary_10_1007_s11738_018_2745_1 crossref_primary_10_1016_j_scienta_2019_05_067 crossref_primary_10_1111_jac_12387 crossref_primary_10_1134_S1021443718020188 crossref_primary_10_3390_plants10102196 crossref_primary_10_1016_j_plaphy_2011_10_012 crossref_primary_10_1111_ppl_12223 crossref_primary_10_1007_s00344_023_10967_4 crossref_primary_10_1016_j_jtbi_2015_08_024 crossref_primary_10_1093_treephys_tps119 crossref_primary_10_3390_su13063369 crossref_primary_10_1007_s11104_011_1109_z crossref_primary_10_1016_j_envexpbot_2017_08_010 crossref_primary_10_1093_jxb_ert085 crossref_primary_10_1371_journal_pone_0053136 crossref_primary_10_56093_ijas_v92i9_91277 crossref_primary_10_1111_j_1365_3040_2012_02511_x crossref_primary_10_3389_fpls_2020_616077 crossref_primary_10_3390_ijms241612853 crossref_primary_10_1038_srep11391 crossref_primary_10_15252_embj_2019103256 crossref_primary_10_1002_jpln_201200417 crossref_primary_10_3390_plants13060849 crossref_primary_10_1111_j_1399_3054_2012_01599_x crossref_primary_10_1002_jpln_201200414 crossref_primary_10_1007_s42976_021_00205_6 crossref_primary_10_1007_s11771_019_4004_z crossref_primary_10_1371_journal_pone_0057767 crossref_primary_10_3389_fgene_2021_663941 crossref_primary_10_3389_fmicb_2016_01246 crossref_primary_10_1111_pce_12504 crossref_primary_10_1016_j_jplph_2015_12_009 crossref_primary_10_3390_genes13081313 crossref_primary_10_1111_jac_12161 crossref_primary_10_1007_s00122_010_1479_2 crossref_primary_10_1016_j_scienta_2021_109935 crossref_primary_10_1556_CRC_2014_0045 crossref_primary_10_1080_15324982_2016_1148799 crossref_primary_10_1016_j_gene_2013_12_021 crossref_primary_10_1007_s11240_016_0940_6 crossref_primary_10_1007_s11738_020_03098_w crossref_primary_10_3390_ijms14047370 crossref_primary_10_1146_annurev_arplant_042916_040936 crossref_primary_10_3389_fpls_2022_1019169 crossref_primary_10_1007_s12374_016_0905_7 crossref_primary_10_3390_ijms23179900 crossref_primary_10_1016_j_jplph_2019_153108 crossref_primary_10_1093_jxb_erx429 crossref_primary_10_1007_s00709_014_0728_7 crossref_primary_10_1007_s00344_024_11278_y crossref_primary_10_1007_s00344_024_11474_w crossref_primary_10_1111_ppl_13107 crossref_primary_10_3390_agriculture13112146 crossref_primary_10_1007_s11104_013_1891_x crossref_primary_10_32615_ps_2020_025 crossref_primary_10_1007_s11240_010_9768_7 crossref_primary_10_1016_j_plaphy_2022_10_021 crossref_primary_10_1007_s13562_021_00741_6 crossref_primary_10_1016_j_envexpbot_2012_09_006 crossref_primary_10_1016_j_isci_2019_10_043 crossref_primary_10_1007_s00425_015_2400_7 crossref_primary_10_1016_j_apsoil_2015_08_008 crossref_primary_10_1371_journal_pone_0048829 crossref_primary_10_1038_s41598_019_45719_6 crossref_primary_10_1093_bbb_zbad020 crossref_primary_10_1093_treephys_tpp048 crossref_primary_10_1016_j_ecoenv_2019_109397 crossref_primary_10_4236_ajps_2019_1012162 crossref_primary_10_3390_su15054512 crossref_primary_10_1007_s13562_022_00775_4 crossref_primary_10_1111_jipb_12238 crossref_primary_10_1007_s10725_010_9517_2 crossref_primary_10_1007_s10811_020_02284_0 crossref_primary_10_1007_s11104_015_2539_9 crossref_primary_10_1105_tpc_113_115659 crossref_primary_10_1186_s40659_015_0055_2 crossref_primary_10_1007_s11738_017_2379_8 crossref_primary_10_1007_s13580_024_00673_9 crossref_primary_10_3389_fpls_2017_01143 crossref_primary_10_1016_j_jplph_2015_05_002 crossref_primary_10_1016_j_scitotenv_2021_150705 crossref_primary_10_1016_j_agwat_2019_105841 crossref_primary_10_3389_fpls_2022_989946 crossref_primary_10_3390_plants12020295 crossref_primary_10_1016_j_sajb_2023_11_033 crossref_primary_10_1111_jac_12122 crossref_primary_10_1071_FP16025 crossref_primary_10_1111_plb_13216 crossref_primary_10_1111_ppl_12447 crossref_primary_10_1016_j_jplph_2016_12_007 crossref_primary_10_1016_j_plantsci_2018_04_018 crossref_primary_10_1016_j_envexpbot_2015_12_006 crossref_primary_10_1111_jac_12126 crossref_primary_10_1111_ppl_12441 crossref_primary_10_11118_actaun201967061503 crossref_primary_10_1093_jxb_erw378 crossref_primary_10_3390_agriculture11080708 crossref_primary_10_1007_s11104_011_0934_4 crossref_primary_10_1016_j_envexpbot_2021_104734 crossref_primary_10_36610_j_jsab_2020_080200110x crossref_primary_10_1007_s00709_017_1138_4 crossref_primary_10_1016_j_scienta_2014_04_032 crossref_primary_10_1007_s10661_015_4365_1 crossref_primary_10_1111_jac_12352 crossref_primary_10_1093_pcp_pcq007 crossref_primary_10_1111_ppl_12217 crossref_primary_10_1007_s12517_020_06334_2 crossref_primary_10_3390_agronomy10050722 crossref_primary_10_1111_nph_13714 crossref_primary_10_1016_j_plaphy_2023_108194 crossref_primary_10_3389_fpls_2024_1364826 crossref_primary_10_1111_j_1399_3054_2012_01621_x crossref_primary_10_3390_ijms20153729 crossref_primary_10_3390_horticulturae10101062 crossref_primary_10_1021_acs_energyfuels_0c03355 crossref_primary_10_1007_s42452_020_03843_3 crossref_primary_10_1007_s10725_021_00754_0 crossref_primary_10_3390_cells11152338 crossref_primary_10_1016_j_jplph_2014_01_015 crossref_primary_10_17221_449_2024_PSE crossref_primary_10_1016_j_plaphy_2021_09_031 crossref_primary_10_1002_jpln_201500547 crossref_primary_10_1016_j_rsci_2019_05_001 crossref_primary_10_1093_jxb_ery251 crossref_primary_10_1093_aobpla_plx025 crossref_primary_10_1371_journal_pone_0124032 crossref_primary_10_1007_s11738_019_2881_2 crossref_primary_10_1111_j_1467_7652_2011_00661_x crossref_primary_10_1111_nph_15605 crossref_primary_10_1186_s40659_019_0246_3 crossref_primary_10_1111_j_1365_3040_2010_02266_x crossref_primary_10_1007_s42729_023_01144_3 crossref_primary_10_3389_fpls_2017_01739 crossref_primary_10_1016_j_plaphy_2023_108187 crossref_primary_10_1002_jsfa_6825 crossref_primary_10_1021_acssensors_4c01352 crossref_primary_10_3389_fpls_2020_573564 crossref_primary_10_1016_j_envexpbot_2015_11_010 crossref_primary_10_1007_s11738_020_03136_7 crossref_primary_10_1071_FP15200 crossref_primary_10_3390_plants10071401 crossref_primary_10_1111_j_1365_313X_2009_04110_x crossref_primary_10_1016_j_jplph_2014_01_009 crossref_primary_10_1186_s12870_018_1317_2 crossref_primary_10_3389_fpls_2021_753332 crossref_primary_10_3390_f9100601 crossref_primary_10_1007_s11738_014_1709_3 crossref_primary_10_3389_fpls_2017_00856 crossref_primary_10_1016_j_envexpbot_2016_04_002 crossref_primary_10_3390_f13122178 crossref_primary_10_1016_j_envexpbot_2015_11_006 crossref_primary_10_3389_fpls_2022_1097076 crossref_primary_10_1007_s00232_023_00279_9 crossref_primary_10_1016_j_sajb_2023_07_051 crossref_primary_10_1007_s11738_012_0925_y crossref_primary_10_1002_pld3_238 crossref_primary_10_1111_ppl_13056 crossref_primary_10_1016_j_plaphy_2018_02_013 crossref_primary_10_1111_ppl_70057 crossref_primary_10_15406_hij_2019_03_00126 crossref_primary_10_1016_j_jplph_2022_153863 crossref_primary_10_1639_0007_2745_119_1_001 crossref_primary_10_1111_j_1469_8137_2010_03551_x crossref_primary_10_3390_ijms23094472 crossref_primary_10_1371_journal_pone_0080595 crossref_primary_10_3390_f14061110 crossref_primary_10_1016_j_plantsci_2020_110492 crossref_primary_10_1002_jpln_201200230 crossref_primary_10_3390_horticulturae10010031 crossref_primary_10_1071_FP13241 crossref_primary_10_1186_s42269_021_00576_0 crossref_primary_10_1016_j_cj_2022_03_004 crossref_primary_10_1093_pcp_pcr096 crossref_primary_10_1016_j_plantsci_2011_10_011 crossref_primary_10_3389_fmicb_2020_562934 crossref_primary_10_1016_j_jplph_2009_06_013 crossref_primary_10_36610_j_jsab_2020_080200110 crossref_primary_10_1016_j_plantsci_2020_110668 crossref_primary_10_1007_s00572_018_0856_6 crossref_primary_10_3389_fpls_2020_599501 crossref_primary_10_1007_s12298_010_0027_5 crossref_primary_10_3389_fpls_2017_01766 crossref_primary_10_3390_su131910986 crossref_primary_10_1007_s11033_012_2481_3 crossref_primary_10_5511_plantbiotechnology_23_0721a crossref_primary_10_1111_jac_12068 crossref_primary_10_1016_j_plaphy_2017_08_002 crossref_primary_10_3390_agronomy15020309 crossref_primary_10_1093_hr_uhac113 crossref_primary_10_1007_s11103_013_0011_x crossref_primary_10_1007_s00253_022_11897_z crossref_primary_10_1016_j_envexpbot_2022_104896 crossref_primary_10_1371_journal_pone_0066090 crossref_primary_10_1080_00380768_2016_1172022 crossref_primary_10_1007_s00344_018_9830_y crossref_primary_10_1007_s11356_015_5361_2 crossref_primary_10_1080_1343943X_2016_1210990 crossref_primary_10_3390_plants12091737 crossref_primary_10_1007_s11103_014_0278_6 crossref_primary_10_3390_f9100643 crossref_primary_10_1007_s42729_023_01571_2 crossref_primary_10_1007_s44154_021_00016_z crossref_primary_10_1016_j_jplph_2010_08_016 crossref_primary_10_1007_s11033_012_1551_x crossref_primary_10_2139_ssrn_4663385 crossref_primary_10_1093_aob_mcq027 crossref_primary_10_3390_molecules23071518 crossref_primary_10_1007_s00344_015_9513_x crossref_primary_10_1016_j_plaphy_2017_08_024 crossref_primary_10_1094_MPMI_02_17_0027_R crossref_primary_10_1016_j_apsoil_2016_03_015 crossref_primary_10_1093_pcp_pcr061 crossref_primary_10_1111_ppl_12165 crossref_primary_10_1128_MMBR_00042_09 crossref_primary_10_1093_jxb_erz367 crossref_primary_10_1071_FP23089 crossref_primary_10_1080_01904167_2022_2072741 crossref_primary_10_1016_j_jplph_2013_08_008 crossref_primary_10_1071_FP14132 crossref_primary_10_1111_ppl_14358 crossref_primary_10_1021_acssuschemeng_2c02170 crossref_primary_10_32604_phyton_2021_014951 crossref_primary_10_1007_s11120_020_00771_6 crossref_primary_10_4161_psb_4_4_7918 crossref_primary_10_1071_CP11071 crossref_primary_10_1186_s12870_023_04060_x crossref_primary_10_3389_fpls_2021_680131 crossref_primary_10_1071_FP20185 crossref_primary_10_1111_j_1365_3040_2011_02291_x crossref_primary_10_1016_j_envexpbot_2025_106092 crossref_primary_10_1371_journal_pgen_1007798 crossref_primary_10_1007_s10725_017_0262_7 crossref_primary_10_1016_j_sajb_2021_08_033 crossref_primary_10_1111_jipb_12842 crossref_primary_10_1093_plphys_kiad435 crossref_primary_10_3390_plants12132459 crossref_primary_10_1016_j_dendro_2024_126234 crossref_primary_10_5424_sjar_20110902_184_10 crossref_primary_10_1016_j_envexpbot_2019_01_006 crossref_primary_10_3389_fpls_2019_01086 crossref_primary_10_1080_03650340_2015_1095292 crossref_primary_10_17221_22_2015_PSE crossref_primary_10_1007_s11104_012_1335_z crossref_primary_10_1016_j_envexpbot_2024_105706 crossref_primary_10_1038_s41598_020_60922_6 crossref_primary_10_1007_s11738_010_0543_5 crossref_primary_10_1093_jxb_ert402 crossref_primary_10_3390_plants12101952 crossref_primary_10_1007_s10535_011_0111_x crossref_primary_10_1186_s12870_019_2085_3 crossref_primary_10_1016_j_fcr_2019_107678 crossref_primary_10_1111_j_1439_037X_2009_00412_x crossref_primary_10_14348_molcells_2016_0083 crossref_primary_10_1111_j_1438_8677_2009_00301_x crossref_primary_10_1093_jxb_erp013 crossref_primary_10_3390_ijms25115648 crossref_primary_10_3389_fpls_2022_896436 crossref_primary_10_24180_ijaws_1486972 crossref_primary_10_1071_FP20167 crossref_primary_10_1007_s00344_012_9287_3 crossref_primary_10_1093_plphys_kiac564 crossref_primary_10_1007_s00344_020_10097_1 crossref_primary_10_1016_j_tplants_2015_06_008 crossref_primary_10_1016_j_envexpbot_2024_105982 crossref_primary_10_1016_j_iswcr_2016_04_001 crossref_primary_10_1071_CP16311 crossref_primary_10_1080_01904167_2018_1554078 crossref_primary_10_3389_fpls_2014_00430 crossref_primary_10_3390_plants11192548 crossref_primary_10_1007_s00299_024_03292_x crossref_primary_10_3390_ijms23084272 crossref_primary_10_1016_j_scienta_2021_110229 crossref_primary_10_1007_s42729_024_02145_6 crossref_primary_10_1111_1440_1703_12466 crossref_primary_10_1016_j_envexpbot_2022_105131 crossref_primary_10_3390_ijms21155292 crossref_primary_10_3390_ijms23169428 crossref_primary_10_3390_plants13071036 crossref_primary_10_3389_fpls_2016_01716 crossref_primary_10_1007_s00344_024_11601_7 crossref_primary_10_1093_jxb_ers343 crossref_primary_10_4081_pb_2016_6402 crossref_primary_10_3390_agronomy11061040 crossref_primary_10_3390_plants10112477 crossref_primary_10_1016_j_jgg_2023_08_007 crossref_primary_10_1016_S2095_3119_18_61998_7 crossref_primary_10_1007_s11738_014_1548_2 crossref_primary_10_1093_jxb_eru528 crossref_primary_10_1016_j_jplph_2008_12_009 crossref_primary_10_4236_ajps_2018_95081 crossref_primary_10_3390_antiox8040081 crossref_primary_10_1007_s11104_011_1001_x crossref_primary_10_1007_s40502_023_00726_8 crossref_primary_10_1071_FP23023 crossref_primary_10_1186_s40168_024_01969_9 crossref_primary_10_3390_plants13071046 crossref_primary_10_1007_s00344_022_10819_7 crossref_primary_10_1093_aob_mcu217 crossref_primary_10_4081_ija_2019_1182 crossref_primary_10_1007_s10725_020_00619_y crossref_primary_10_1080_00103624_2023_2276270 crossref_primary_10_1093_aob_mcu219 crossref_primary_10_1007_s00299_020_02642_9 crossref_primary_10_1007_s10725_019_00519_w crossref_primary_10_1111_pce_15212 crossref_primary_10_1007_s10142_016_0507_y crossref_primary_10_3390_su16072825 crossref_primary_10_4161_psb_4_1_7269 crossref_primary_10_1007_s11104_024_07101_y crossref_primary_10_1007_s11258_020_01043_y crossref_primary_10_1111_pce_12180 crossref_primary_10_2139_ssrn_4017452 crossref_primary_10_3389_fpls_2014_00605 crossref_primary_10_1021_acsearthspacechem_2c00105 crossref_primary_10_3389_fpls_2016_00848 crossref_primary_10_1111_tpj_16660 crossref_primary_10_1016_j_plaphy_2013_03_004 crossref_primary_10_1007_s11032_013_9851_y crossref_primary_10_3390_horticulturae8060519 crossref_primary_10_5338_KJEA_2019_38_1_8 crossref_primary_10_1016_j_plantsci_2015_03_006 crossref_primary_10_1007_s13205_022_03136_z crossref_primary_10_56150_tjhsl_1263608 crossref_primary_10_1186_s40659_020_00305_3 crossref_primary_10_1371_journal_pone_0060183 crossref_primary_10_1007_s00203_020_02038_z crossref_primary_10_3390_agronomy14061259 crossref_primary_10_1093_aobpla_plab072 crossref_primary_10_1186_s12870_023_04558_4 crossref_primary_10_1080_01904167_2013_766210 crossref_primary_10_3389_fpls_2014_00631 crossref_primary_10_3390_ijms25179480 crossref_primary_10_1007_s11738_013_1325_7 crossref_primary_10_1016_j_plantsci_2017_07_006 crossref_primary_10_3389_fpls_2022_969896 crossref_primary_10_4081_ija_2022_2073 crossref_primary_10_1111_pce_14101 crossref_primary_10_1002_ird_2595 crossref_primary_10_3390_antiox13020221 crossref_primary_10_1007_s11270_019_4311_x crossref_primary_10_1021_acsomega_0c02705 crossref_primary_10_1007_s00344_019_10004_3 crossref_primary_10_1073_pnas_2114347118 crossref_primary_10_1371_journal_pbio_3001772 crossref_primary_10_1016_j_ecoenv_2020_110374 crossref_primary_10_3389_ffgc_2019_00053 crossref_primary_10_1016_j_ecoenv_2025_118012 crossref_primary_10_1007_s11104_024_06770_z crossref_primary_10_1093_pcp_pcz120 crossref_primary_10_1080_15226514_2024_2438772 crossref_primary_10_1016_j_gene_2023_147485 crossref_primary_10_1111_tpj_14580 crossref_primary_10_1007_s00468_015_1233_0 crossref_primary_10_3389_fpls_2019_01361 crossref_primary_10_3389_fpls_2019_00032 crossref_primary_10_1007_s11104_010_0395_1 crossref_primary_10_1007_s00425_014_2117_z crossref_primary_10_1093_treephys_tpaa022 crossref_primary_10_3390_antiox10101605 crossref_primary_10_1007_s00344_022_10644_y crossref_primary_10_1080_01904167_2021_2020828 crossref_primary_10_1016_j_plantsci_2016_08_009 crossref_primary_10_1016_j_plaphy_2017_12_032 crossref_primary_10_1016_j_envexpbot_2024_105797 crossref_primary_10_7717_peerj_4822 crossref_primary_10_1038_srep12516 crossref_primary_10_1016_j_indcrop_2022_116177 crossref_primary_10_1016_j_freeradbiomed_2017_04_009 crossref_primary_10_3390_agronomy15010148 crossref_primary_10_1016_j_micres_2015_11_004 crossref_primary_10_3390_ijms23031149 crossref_primary_10_1007_s00344_018_9780_4 crossref_primary_10_1016_j_envexpbot_2020_104123 crossref_primary_10_3390_plants11111497 crossref_primary_10_1007_s00425_019_03253_9 crossref_primary_10_3389_fsufs_2020_617978 crossref_primary_10_3390_ijms21010148 crossref_primary_10_1104_pp_113_216572 crossref_primary_10_1242_jcs_064352 crossref_primary_10_1186_s43897_023_00075_y crossref_primary_10_3390_agronomy14020309 crossref_primary_10_1007_s11104_012_1366_5 crossref_primary_10_3389_fpls_2017_00187 crossref_primary_10_1556_018_68_2018_1_7 crossref_primary_10_1071_FP16187 crossref_primary_10_3390_microorganisms12122551 crossref_primary_10_3390_agronomy10020191 crossref_primary_10_1007_s00344_021_10399_y crossref_primary_10_1094_MPMI_09_13_0265_R crossref_primary_10_1111_pbi_13699 crossref_primary_10_1080_00103624_2020_1869768 crossref_primary_10_1016_j_scienta_2009_12_031 crossref_primary_10_1093_jxb_erv528 crossref_primary_10_3390_horticulturae9020228 crossref_primary_10_1007_s10725_014_9913_0 crossref_primary_10_1016_j_plantsci_2016_09_016 crossref_primary_10_1590_S1415_43662011000400012 crossref_primary_10_1186_s12870_022_03728_0 crossref_primary_10_3389_fpls_2019_01139 crossref_primary_10_1104_pp_110_164152 crossref_primary_10_1016_j_plaphy_2020_11_044 crossref_primary_10_3389_fpls_2021_750805 crossref_primary_10_1016_j_jenvman_2024_120524 crossref_primary_10_1093_jxb_eru004 crossref_primary_10_3390_plants12132422 crossref_primary_10_1016_j_pbi_2015_04_007 crossref_primary_10_1071_FP09229 crossref_primary_10_1007_s11104_012_1133_7 crossref_primary_10_1007_s11104_012_1179_6 crossref_primary_10_1016_j_jbiotec_2020_10_018 crossref_primary_10_1016_j_envexpbot_2020_104136 crossref_primary_10_3390_ijms25179404 crossref_primary_10_1016_j_envexpbot_2012_10_001 crossref_primary_10_1016_j_envexpbot_2012_10_004 crossref_primary_10_1016_j_semcdb_2017_08_005 crossref_primary_10_1007_s11104_015_2767_z crossref_primary_10_1016_j_apsoil_2012_01_006 crossref_primary_10_1007_s11837_009_0048_0 crossref_primary_10_1155_2019_9530963 crossref_primary_10_1016_j_plaphy_2023_107858 crossref_primary_10_1007_s00344_017_9713_7 crossref_primary_10_1093_aob_mcu177 crossref_primary_10_3390_microorganisms11071687 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_1016_j_envexpbot_2023_105252 crossref_primary_10_1016_j_envexpbot_2020_104146 crossref_primary_10_1111_pbr_12934 crossref_primary_10_3389_fpls_2019_00080 crossref_primary_10_3390_ijms24065605 crossref_primary_10_1016_j_envexpbot_2024_105780 crossref_primary_10_3390_ijms24086988 crossref_primary_10_1080_01904167_2020_1739293 crossref_primary_10_1007_s00572_016_0704_5 crossref_primary_10_1186_s12870_019_1663_8 crossref_primary_10_3390_ijms24021141 crossref_primary_10_1016_j_plaphy_2020_11_055 crossref_primary_10_3389_fgene_2023_1274288 crossref_primary_10_1186_s12870_024_05625_0 crossref_primary_10_1016_j_postharvbio_2012_06_003 crossref_primary_10_2112_JCOASTRES_D_10_00013_1 crossref_primary_10_1016_j_scienta_2023_112130 crossref_primary_10_1038_s41598_024_55325_w crossref_primary_10_1111_ppl_12976 crossref_primary_10_3923_jas_2019_48_55 crossref_primary_10_3390_agronomy15020341 crossref_primary_10_1002_jsfa_10822 crossref_primary_10_3390_ijms20030715 crossref_primary_10_1016_j_plantsci_2017_01_012 crossref_primary_10_3389_fpls_2023_1132877 crossref_primary_10_1016_j_jplph_2024_154322 crossref_primary_10_1080_01904167_2021_1881549 crossref_primary_10_3390_horticulturae8121149 crossref_primary_10_1007_s10681_015_1363_x crossref_primary_10_1002_pld3_532 crossref_primary_10_1071_FP16120 crossref_primary_10_1007_s11356_024_33072_9 crossref_primary_10_1146_annurev_arplant_042809_112116 crossref_primary_10_1111_ppl_12342 crossref_primary_10_1080_00380768_2018_1492334 crossref_primary_10_1093_jxb_erw236 crossref_primary_10_1007_s00344_020_10291_1 crossref_primary_10_1016_j_envexpbot_2014_06_001 crossref_primary_10_3390_agronomy10050663 crossref_primary_10_3389_fpls_2023_1186036 crossref_primary_10_1080_03650340_2016_1204541 crossref_primary_10_1007_s11103_010_9612_9 crossref_primary_10_1071_FP15288 crossref_primary_10_1007_s13580_018_0057_4 crossref_primary_10_1111_ppl_13449 crossref_primary_10_1007_s11033_014_3539_1 crossref_primary_10_1007_s11738_022_03421_7 crossref_primary_10_1111_jipb_12159 crossref_primary_10_3390_agronomy8030031 crossref_primary_10_1007_s11738_011_0847_0 crossref_primary_10_1007_s11104_016_2922_1 crossref_primary_10_1007_s11032_016_0564_x crossref_primary_10_1016_j_sajb_2022_10_027 crossref_primary_10_1016_j_envexpbot_2011_08_019 crossref_primary_10_1016_j_scienta_2011_08_018 crossref_primary_10_13080_z_a_2016_103_030 crossref_primary_10_1007_s11104_010_0616_7 crossref_primary_10_1007_s10725_016_0157_z crossref_primary_10_3390_plants9060786 crossref_primary_10_3390_ijms242316682 crossref_primary_10_1093_aob_mcae152 crossref_primary_10_1016_j_envexpbot_2022_104954 crossref_primary_10_1111_j_1438_8677_2011_00526_x crossref_primary_10_1016_j_scienta_2022_111182 crossref_primary_10_1071_FP13085 crossref_primary_10_1016_j_ncrops_2025_100067 crossref_primary_10_3389_fpls_2017_00593 crossref_primary_10_3389_fpls_2020_613936 crossref_primary_10_1080_00103624_2014_941855 crossref_primary_10_1016_j_envexpbot_2021_104427 crossref_primary_10_1371_journal_pone_0032124 crossref_primary_10_1038_cr_2010_74 crossref_primary_10_1111_jipb_13022 crossref_primary_10_1002_jpln_201700480 crossref_primary_10_3390_ijms21144862 crossref_primary_10_1016_j_hpj_2019_01_002 crossref_primary_10_3389_fpls_2025_1535943 crossref_primary_10_3389_fpls_2018_00249 crossref_primary_10_1007_s00344_017_9683_9 crossref_primary_10_1038_s41598_022_13150_z crossref_primary_10_3389_fpls_2019_00217 crossref_primary_10_1093_jxb_erx127 crossref_primary_10_3390_f8060211 crossref_primary_10_1016_j_plantsci_2014_12_010 crossref_primary_10_1016_j_jplph_2014_02_001 crossref_primary_10_1016_j_envexpbot_2014_05_001 crossref_primary_10_3389_fpls_2017_02113 crossref_primary_10_3389_fpls_2017_01023 crossref_primary_10_1007_s40502_024_00782_8 crossref_primary_10_1093_aob_mcw191 crossref_primary_10_1093_jxb_ery461 crossref_primary_10_1016_j_envexpbot_2020_104301 crossref_primary_10_3390_ijms21144882 crossref_primary_10_1111_j_1365_3040_2011_02296_x crossref_primary_10_3390_life14050595 crossref_primary_10_1007_s00299_010_0872_2 crossref_primary_10_1080_07352689_2011_605739 crossref_primary_10_1016_j_jplph_2016_06_010 crossref_primary_10_3389_fpls_2018_01366 crossref_primary_10_1007_s11738_017_2421_x crossref_primary_10_1002_sae2_12065 crossref_primary_10_1111_ppl_12325 crossref_primary_10_1071_FP16385 crossref_primary_10_15835_nbha49212310 crossref_primary_10_1111_ppl_12320 crossref_primary_10_1093_jxb_eru072 crossref_primary_10_1016_j_indcrop_2013_12_041 crossref_primary_10_1038_srep34548 crossref_primary_10_1007_s00203_021_02226_5 crossref_primary_10_3390_agronomy10091358 crossref_primary_10_1111_pce_13926 crossref_primary_10_1111_plb_12012 crossref_primary_10_1016_j_cj_2024_03_001 crossref_primary_10_1111_ppl_12337 crossref_primary_10_1002_pld3_543 crossref_primary_10_3390_plants11212884 crossref_primary_10_1186_1471_2148_11_8 crossref_primary_10_3390_ijms14059267 crossref_primary_10_3390_plants10050948 crossref_primary_10_1093_pcp_pct134 crossref_primary_10_1042_BCJ20190435 crossref_primary_10_1007_s11738_018_2617_8 crossref_primary_10_1007_s00425_019_03194_3 crossref_primary_10_1007_s11816_018_0480_0 crossref_primary_10_1111_ajgw_12220 crossref_primary_10_1016_j_envexpbot_2014_08_006 crossref_primary_10_1007_s12011_011_9037_6 crossref_primary_10_1093_aobpla_plw055 crossref_primary_10_1093_jxb_erz462 crossref_primary_10_1016_j_ijbiomac_2025_142321 crossref_primary_10_3389_fmicb_2017_01945 crossref_primary_10_1007_s00344_022_10584_7 crossref_primary_10_1007_s00344_024_11551_0 crossref_primary_10_1146_annurev_arplant_050718_100005 crossref_primary_10_1002_cbf_3798 crossref_primary_10_1016_j_plaphy_2021_02_032 crossref_primary_10_3390_plants9040507 crossref_primary_10_1016_j_envexpbot_2009_05_008 crossref_primary_10_1038_s41598_018_31917_1 crossref_primary_10_1007_s11738_011_0747_3 crossref_primary_10_1016_j_envexpbot_2011_11_020 crossref_primary_10_2478_s11756_014_0412_6 crossref_primary_10_3390_plants11233347 crossref_primary_10_1134_S1995425524700392 crossref_primary_10_1111_jipb_13642 crossref_primary_10_1016_j_jplph_2015_03_014 crossref_primary_10_1016_j_plaphy_2018_10_025 crossref_primary_10_3390_agronomy6040054 crossref_primary_10_3389_fpls_2022_1089109 crossref_primary_10_3390_agronomy6040055 crossref_primary_10_1016_j_plantsci_2021_110844 crossref_primary_10_1007_s10535_017_0703_1 crossref_primary_10_1007_s10265_023_01487_z crossref_primary_10_1007_s42729_021_00492_2 crossref_primary_10_1007_s11104_010_0520_1 crossref_primary_10_1371_journal_pone_0071543 crossref_primary_10_1038_s41598_018_37496_5 crossref_primary_10_3389_fpls_2016_02035 crossref_primary_10_1007_s00344_021_10338_x crossref_primary_10_3390_genes13091507 crossref_primary_10_1093_pcp_pcs055 crossref_primary_10_1590_S1677_04202009000400002 crossref_primary_10_1002_jobm_202200361 crossref_primary_10_1016_j_sajb_2019_04_027 crossref_primary_10_1007_s40333_019_0002_0 crossref_primary_10_1016_j_plaphy_2015_12_010 crossref_primary_10_1007_s11738_012_1010_2 crossref_primary_10_1080_01904167_2016_1250910 crossref_primary_10_1111_aab_12364 crossref_primary_10_1016_j_plaphy_2025_109522 crossref_primary_10_1007_s11738_015_2009_2 crossref_primary_10_1016_j_jplph_2021_153432 crossref_primary_10_32615_ps_2020_070 crossref_primary_10_18006_2019_7_1__12_24 crossref_primary_10_3390_plants12203551 crossref_primary_10_3390_plants9010065 crossref_primary_10_1038_s41598_017_10022_9 crossref_primary_10_1371_journal_pone_0071328 crossref_primary_10_1111_ppl_13352 crossref_primary_10_1016_j_plaphy_2019_03_028 crossref_primary_10_18016_ksutarimdoga_vi_1278764 crossref_primary_10_1007_s42976_020_00102_4 crossref_primary_10_1016_j_jplph_2018_10_024 crossref_primary_10_1590_s2179_975x4716 crossref_primary_10_1016_j_chnaes_2014_05_002 crossref_primary_10_1016_j_envexpbot_2012_04_015 crossref_primary_10_3390_ma7043160 crossref_primary_10_1021_acsomega_0c01275 crossref_primary_10_7745_KJSSF_2018_51_4_482 crossref_primary_10_1080_01904167_2018_1459695 crossref_primary_10_3390_plants12051190 crossref_primary_10_1016_j_envexpbot_2017_07_018 crossref_primary_10_1016_S1002_0160_20_60029_7 crossref_primary_10_1111_nph_17937 crossref_primary_10_1016_j_jplph_2017_05_002 crossref_primary_10_1515_BMC_2011_032 crossref_primary_10_1016_j_plaphy_2019_03_019 crossref_primary_10_1080_01904167_2018_1459690 crossref_primary_10_1080_13102818_2018_1522972 crossref_primary_10_1016_j_plantsci_2016_03_003 crossref_primary_10_1080_03235408_2019_1648917 crossref_primary_10_1002_csc2_20249 crossref_primary_10_1016_j_indcrop_2024_118441 crossref_primary_10_3390_agronomy10050677 crossref_primary_10_1007_s00299_021_02731_3 crossref_primary_10_1111_nph_15740 crossref_primary_10_1007_s13580_017_1120_2 crossref_primary_10_1093_jxb_erq422 crossref_primary_10_1016_j_scitotenv_2019_01_214 crossref_primary_10_3390_ijms19010235 crossref_primary_10_3389_fpls_2016_02070 crossref_primary_10_1071_FP15330 crossref_primary_10_1111_ppl_12282 crossref_primary_10_1016_j_rsci_2017_10_002 crossref_primary_10_3390_ijms20040815 crossref_primary_10_3390_ijms23095006 crossref_primary_10_1007_s11738_013_1466_8 crossref_primary_10_1016_j_envexpbot_2021_104478 crossref_primary_10_1016_j_plaphy_2021_01_029 crossref_primary_10_1080_23802359_2023_2275833 crossref_primary_10_1007_s00468_021_02246_0 crossref_primary_10_1093_aobpla_plv136 crossref_primary_10_1109_ACCESS_2018_2888507 crossref_primary_10_1080_03650340_2016_1144925 crossref_primary_10_1016_j_scienta_2019_05_013 crossref_primary_10_1111_ppl_12056 crossref_primary_10_1007_s11240_021_02094_3 crossref_primary_10_1080_17429145_2018_1424355 crossref_primary_10_1139_cjss_2017_0113 crossref_primary_10_1590_1807_1929_agriambi_v22n8p553_557 crossref_primary_10_12677_OJNS_2014_22003 crossref_primary_10_1016_j_rhisph_2020_100262 crossref_primary_10_3390_agronomy14123003 crossref_primary_10_3390_plants10112549 crossref_primary_10_1093_aobpla_plu039 crossref_primary_10_1007_s11104_017_3337_3 crossref_primary_10_3390_life13010154 crossref_primary_10_3389_fpls_2022_1053780 crossref_primary_10_1093_aob_mct205 crossref_primary_10_1093_jxb_erq257 crossref_primary_10_1111_j_1365_3040_2008_01914_x crossref_primary_10_1016_j_ceca_2015_03_001 crossref_primary_10_1016_S2095_3119_13_60244_0 crossref_primary_10_1007_s00425_024_04548_2 crossref_primary_10_1016_j_cj_2021_03_005 crossref_primary_10_1021_acsomega_3c01039 crossref_primary_10_1016_j_envexpbot_2022_105034 crossref_primary_10_1016_j_scienta_2020_109441 crossref_primary_10_1093_aobpla_plu023 crossref_primary_10_1007_s11103_016_0488_1 crossref_primary_10_1007_s11738_013_1311_0 crossref_primary_10_3389_fpls_2014_00787 crossref_primary_10_1155_2014_467395 crossref_primary_10_1007_s00344_023_10992_3 crossref_primary_10_1007_s11738_016_2072_3 crossref_primary_10_1016_j_algal_2019_101526 crossref_primary_10_1155_2017_1537538 crossref_primary_10_3390_ijms24054762 crossref_primary_10_1007_s11738_021_03223_3 crossref_primary_10_3390_su142315514 crossref_primary_10_1093_jxb_eraa285 crossref_primary_10_1111_tpj_13080 crossref_primary_10_1071_FP21140 crossref_primary_10_1016_j_envpol_2019_03_051 crossref_primary_10_1016_j_plaphy_2023_108242 crossref_primary_10_1007_s10750_019_04119_7 crossref_primary_10_3390_plants10071392 crossref_primary_10_3934_biophy_2016_3_380 crossref_primary_10_1016_j_sajb_2022_06_015 crossref_primary_10_1080_00380768_2017_1323672 crossref_primary_10_1111_pce_12082 crossref_primary_10_1007_s10725_015_0028_z crossref_primary_10_1016_j_envexpbot_2023_105518 crossref_primary_10_1371_journal_pone_0147625 crossref_primary_10_1007_s11099_012_0007_9 crossref_primary_10_1111_pce_13386 crossref_primary_10_2139_ssrn_4764708 crossref_primary_10_3389_fpls_2022_903954 crossref_primary_10_1038_s41598_021_84541_x crossref_primary_10_1016_j_envexpbot_2022_105004 crossref_primary_10_1016_j_plantsci_2021_110819 crossref_primary_10_1111_nph_13173 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_1111_j_1365_3040_2009_02071_x crossref_primary_10_1007_s11738_015_1846_3 crossref_primary_10_1007_s00344_020_10185_2 crossref_primary_10_1007_s11104_017_3192_2 crossref_primary_10_1071_FP22059 crossref_primary_10_3390_genes11070803 crossref_primary_10_1007_s10681_012_0782_1 crossref_primary_10_1038_srep36396 crossref_primary_10_1071_FP09051 crossref_primary_10_3389_fevo_2021_789371 crossref_primary_10_1016_S2095_3119_17_61749_0 crossref_primary_10_1071_CP11162 crossref_primary_10_1071_FP13106 crossref_primary_10_1007_s10725_021_00692_x crossref_primary_10_1016_j_plaphy_2023_02_020 crossref_primary_10_1071_FP13308 crossref_primary_10_1111_j_1365_3040_2009_02060_x crossref_primary_10_1016_j_cj_2023_06_001 crossref_primary_10_1016_j_fcr_2019_04_015 crossref_primary_10_1007_s11104_018_3643_4 crossref_primary_10_1007_s11104_019_04134_6 crossref_primary_10_1016_j_plantsci_2015_10_003 crossref_primary_10_3923_jps_2010_391_401 crossref_primary_10_1371_journal_pone_0229513 crossref_primary_10_29133_yyutbd_802653 crossref_primary_10_1371_journal_pone_0135419 crossref_primary_10_33581_2521_1722_2019_3_13_20 crossref_primary_10_1371_journal_pone_0236037 crossref_primary_10_1016_j_plantsci_2020_110736 crossref_primary_10_1111_j_1365_2494_2010_00768_x crossref_primary_10_1007_s11104_018_3632_7 crossref_primary_10_3390_ijms23105732 crossref_primary_10_1007_s10725_016_0180_0 crossref_primary_10_1186_1471_2229_14_113 crossref_primary_10_1007_s13762_018_1657_3 |
Cites_doi | 10.1007/BF00227318 10.1081/PLN-200067462 10.1046/j.1365-313X.2002.01260.x 10.1071/FP04111 10.1111/j.1365-3040.1991.tb01507.x 10.1111/j.1365-3040.2007.01637.x 10.1093/jxb/48.Special_Issue.459 10.1111/j.1399-3054.1991.tb02159.x 10.1006/anbo.1999.0912 10.1016/j.plantsci.2004.05.034 10.1002/j.1460-2075.1992.tb05392.x 10.1007/BF00201510 10.1093/pcp/pce008 10.1016/S1360-1385(97)82562-9 10.1016/S0065-2113(08)60477-0 10.1146/annurev.arplant.54.031902.134831 10.1105/tpc.006999 10.1111/j.1469-8137.1985.tb02816.x 10.1093/jxb/erj001 10.1007/BF02814074 10.1046/j.1365-3040.1997.d01-146.x 10.1046/j.1365-313X.2002.01410.x 10.1071/AR9830607 10.1016/j.febslet.2007.03.058 10.1046/j.1365-313X.1993.04020215.x 10.1046/j.1365-3040.2002.00754.x 10.1104/pp.122.4.1249 10.1111/j.1365-313X.2007.03048.x 10.1111/j.1399-3054.1991.tb02129.x 10.1007/s00425-006-0386-x 10.1046/j.1365-313x.2001.01077.x 10.1111/j.1365-3040.2005.01334.x 10.1016/S0304-4238(98)00195-2 10.1111/j.1365-3040.2005.01364.x 10.1038/ng1643 10.1016/S0981-9428(99)80068-0 10.1046/j.1365-3040.1998.00309.x 10.1016/S0168-9452(03)00282-6 10.1007/s10725-005-4825-7 10.1023/A:1022597102282 10.1093/jxb/erh028 10.1111/j.1365-3040.2007.01726.x 10.1111/j.1365-313X.2005.02595.x 10.1016/j.febslet.2007.03.050 10.1104/pp.125.1.406 10.1046/j.1365-313X.1999.00626.x 10.1093/jxb/erj098 10.1016/S1360-1385(03)00099-2 10.1046/j.1365-313X.2003.01764.x 10.1093/jxb/erg072 10.1093/jexbot/51.348.1243 10.1016/S0014-5793(01)03114-3 10.1046/j.0016-8025.2003.01116.x 10.1104/pp.104.042234 10.1104/pp.001149 10.1073/pnas.231476498 10.1104/pp.010502 10.1034/j.1399-3054.1999.106305.x 10.1111/j.1469-8137.2007.02128.x 10.1073/pnas.191389398 10.1016/j.febslet.2007.04.032 10.1016/S1369-5266(03)00085-2 10.1111/j.1439-037X.1997.tb00349.x 10.1104/pp.007781 10.1016/S1369-5266(02)00255-8 10.1023/A:1009660413133 10.1111/j.1469-8137.2005.01487.x 10.1271/bbb.60.366 10.1007/BF00269539 10.1016/S0176-1617(11)80075-1 10.1071/FP03016 10.1126/science.285.5431.1256 10.1007/BF00221141 10.1073/pnas.96.13.7581 10.1111/j.1399-3054.1991.tb02949.x 10.1093/pcp/pch071 10.1104/pp.106.082388 10.1034/j.1399-3054.1998.1020105.x 10.1093/jxb/50.332.291 10.1007/BF00223692 10.1104/pp.126.4.1646 10.1104/pp.010193 10.1046/j.1365-313X.2003.01871.x 10.1016/S0176-1617(97)80203-9 10.1007/BF00222098 10.1104/pp.84.1.106 10.1126/science.292.5521.1486b 10.1016/S0074-7696(08)62219-6 10.1093/pcp/pch014 10.1016/j.plantsci.2005.07.001 10.1016/S0955-0674(00)00227-1 10.1016/j.febslet.2007.04.014 10.1111/j.1439-0523.1997.tb00974.x 10.1093/jxb/47.1.25 10.1006/anbo.2000.1136 10.1104/pp.106.093476 10.1104/pp.020005 10.1016/j.febslet.2007.03.035 10.1016/S0005-2736(00)00135-8 10.1104/pp.125.4.1643 10.1093/jxb/erj108 10.1046/j.1365-313x.1999.00588.x 10.1007/s00425-005-0074-2 10.1104/pp.99.3.886 10.1111/j.1365-313X.2004.02177.x 10.1093/jxb/erj092 10.1023/A:1018453032336 10.1034/j.1399-3054.2000.100106.x 10.1016/S0014-5793(01)03273-2 10.1038/90824 10.1104/pp.126.3.1061 10.1126/science.280.5365.918 10.1126/science.270.5242.1660 10.1007/978-3-540-37843-3_13 10.1007/978-3-540-37843-3_3 10.1104/pp.104.049213 10.2307/3870060 10.1038/370655a0 10.1093/jxb/erj100 10.1104/pp.83.3.510 10.1046/j.0016-8025.2001.00808.x 10.1104/pp.113.3.795 10.1016/S0743-0167(99)00055-8 10.1093/jxb/eri138 10.1038/nbt766 10.1093/emboj/cdg207 10.1146/annurev.arplant.51.1.463 10.1071/AR99057 |
ContentType | Journal Article Conference Proceeding |
Copyright | Physiologia Plantarum 2008 2008 INIST-CNRS |
Copyright_xml | – notice: Physiologia Plantarum 2008 – notice: 2008 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7S9 L.6 7X8 |
DOI | 10.1111/j.1399-3054.2007.01008.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA CrossRef Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1399-3054 |
EndPage | 669 |
ExternalDocumentID | 18724408 20592682 10_1111_j_1399_3054_2007_01008_x PPL1008 ark_67375_WNG_T1K8J1DW_L US201300913207 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBTR ACBWZ ACCFJ ACCZN ACGFS ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ H~9 IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TWZ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT ZCG ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c6378-76b8553de8b400d728c69f1810df3fd5390b7dd7a7bb856881ba110a4b9cc7da3 |
IEDL.DBID | DR2 |
ISSN | 0031-9317 1399-3054 |
IngestDate | Fri Jul 11 00:59:32 EDT 2025 Thu Jul 10 22:28:59 EDT 2025 Fri Jul 11 00:27:34 EDT 2025 Mon Jul 21 06:06:58 EDT 2025 Mon Jul 21 09:11:33 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Tue Jul 01 04:28:20 EDT 2025 Wed Jan 22 16:52:37 EST 2025 Wed Oct 30 10:05:32 EDT 2024 Wed Dec 27 19:29:15 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Tolerance Salinity |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Potassium and Magnesium Research |
MergedId | FETCHMERGED-LOGICAL-c6378-76b8553de8b400d728c69f1810df3fd5390b7dd7a7bb856881ba110a4b9cc7da3 |
Notes | http://dx.doi.org/10.1111/j.1399-3054.2007.01008.x ark:/67375/WNG-T1K8J1DW-L ArticleID:PPL1008 istex:0B6548344B9BB3FF19D0E7F18A3B7052AF9CC772 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1399-3054.2007.01008.x |
PMID | 18724408 |
PQID | 20892511 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_69459606 proquest_miscellaneous_47695520 proquest_miscellaneous_20892511 pubmed_primary_18724408 pascalfrancis_primary_20592682 crossref_primary_10_1111_j_1399_3054_2007_01008_x crossref_citationtrail_10_1111_j_1399_3054_2007_01008_x wiley_primary_10_1111_j_1399_3054_2007_01008_x_PPL1008 istex_primary_ark_67375_WNG_T1K8J1DW_L fao_agris_US201300913207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2008 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: August 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: Denmark |
PublicationTitle | Physiologia plantarum |
PublicationTitleAlternate | Physiol Plant |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136: 2548-2555 Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223 Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43: 107-153 Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663 Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445 Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007a) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162 Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumomoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155 Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J Exp Bot 56: 1369-1378 Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63-73 Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51: 1243-1253 Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96: 7581-7586 Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043 Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243-252 Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57: 1201-1210 Ashraf M, McNeilly T, Bradshaw AD (1986) Heritability of NaCl tolerance in seven grass species. Euphytica 35: 935-940 Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225: 753-761 Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57: 1097-1107 Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109: 34-43 Zingarelli L, Marre MT, Massardi F, Lado P (1999) Effects of hyper-osmotic stress on K+ fluxes, H+ extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin. Physiol Plant 106: 287-295 Espinosa-Ruiz A, Bellés JM, Serrano R, Culiáñez-Maciă FA (1999) Arabidopsis thaliana AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J 20: 529-539 Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51: 773-787 Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nutr 28: 1365-1374 Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129: 1482-1493 Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50: 291-302 Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514 Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101: 25-77 Chandler SF, Thorpe TA (1987) Characterization of growth, water relations, and proline accumulation in sodium-sulfate tolerant callus of Brassica napus L cv Westar (Canola). Plant Physiol 84: 106-111 Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain. Plant Physiol 126: 1061-1071 Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46: 1924-1933 Ding L, Zhu JK (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113: 795-799 Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98: 2917-2921 Vallejo AJ, Peralta ML, Santa-María GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ 28: 850-862 Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379 Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39: 834-846 Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57: 1137-1147 Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85 Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance. Transgenic Res 6: 41-50 Haw M, Cocklin C, Mercer D (2000) A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia. J Rural Stud 16: 155-169 Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 571: 2204-2214 Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25: 333-341 Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82: 575-581 Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250 Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663 Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. doi:10.1111/j.1365-3040.2007.01726.x Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19: 99-109 Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97: 6896-6901 Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928-938 Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86: 333-338 Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667 Davenport R (2002) Glutamate receptors in plants. Ann Bot 90: 549-557 Saqib M, Zorb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in wheat (Triticum aestivum L.) Plant Sci 169: 959-965 Gierth M, Mäser P (2007) Potassium transporters in plant - involvement in K+ acquisition. Redistribution and homeostasis. FEBS Lett 581: 2348-2356 Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34: 788-801 Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37: 65-71 Babourina O, Leonova T, Shabala S, Newman I (2000) Effect of sudden salt stress on ion fluxes in intact wheat suspension cells. Ann Bot 85: 759-767 Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127: 1617-1625 Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229-239 Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107 Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454 Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12: 837-851 Ashraf M, Khanum A (1997) Relationship between ion accumulation and growth in two spring wheat lines differing in salt t 2004; 167 2007; 225 1998; 280 1991; 14 1997; 150 1997; 48 1997; 47 2007; 581 2000; 85 1994; 370 1999; 285 1997; 2 1997; 6 2003; 51 1997; 9 2003; 54 2001; 42 1991; 186 2004; 31 1990; 43 2000; 16 2000; 12 2004; 39 1995; 22 1991; 83 2007; 175 2007; 571 2000; 97 1996; 60 2002; 90 1998; 94 1999; 51 2000; 122 1999; 50 1998; 10 2000; 1465 2003; 165 2006; 57 1997; 20 2002; 130 2002; 5 2004; 45 2002; 7 1997; 178 1991; 81 2003; 36 1991; 82 1996; 93 1995 1999; 20 2001; 27 1996; 92 1999; 106 2003; 30 1995; 270 1994; 87 1995; 7 2003; 34 2004; 55 1995; 44 1999; 37 2006; 48 2000; 109 2002; 128 2002; 129 2003; 27 2003; 21 2003; 22 1997; 113 1997; 114 1997; 116 2002; 53 2007; 143 1986; 35 2000; 51 2003; 15 2002; 511 2001; 508 2003; 19 1999; 84 2007; 30 2005b; 56 1992; 99 2005; 28 1992; 11 1993; 4 1987; 84 2004; 136 2003; 91 1990; 137 1987; 83 2001; 292 2005a; 222 2003; 6 1991; 42 2003; 8 2007a; 34 2001; 19 1999; 96 1994; 39 2005; 37 2001; 13 2001; 98 2000; 27 1993; 86 2002; 32 1985; 101 2007 2006 2007; 50 1996; 165 1998; 21 1999; 5 2001; 126 2005; 44 2001; 125 2005; 46 2001; 127 1983; 34 2002; 25 2002; 29 2007b 2005; 167 2005; 169 1988; 7 2006; 141 1999; 78 1996; 47 1998; 102 2005; 56 e_1_2_9_52_1 e_1_2_9_79_1 Hassan NS (e_1_2_9_77_1) 1988; 7 e_1_2_9_94_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Serrano R (e_1_2_9_126_1) 1996; 165 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 Marschner H (e_1_2_9_99_1) 1995 e_1_2_9_14_1 e_1_2_9_141_1 Bajaj S (e_1_2_9_12_1) 1999; 5 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Cuin TA (e_1_2_9_38_1) 2006 Golldack D (e_1_2_9_70_1) 1997; 114 e_1_2_9_6_1 Chen ZH (e_1_2_9_30_1) 2007 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 Chandler SF (e_1_2_9_26_1) 1987; 84 Dennison KL (e_1_2_9_48_1) 2001; 127 e_1_2_9_138_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 Ding L (e_1_2_9_49_1) 1997; 113 e_1_2_9_130_1 e_1_2_9_153_1 Reid RJ (e_1_2_9_113_1) 2000; 27 Harinasut P (e_1_2_9_75_1) 1996; 60 e_1_2_9_53_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Fooland MR (e_1_2_9_57_1) 1997; 116 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_140_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Babourina O (e_1_2_9_11_1) 2000; 85 e_1_2_9_80_1 e_1_2_9_5_1 Fu HH (e_1_2_9_58_1) 1998; 10 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_152_1 Volkov V (e_1_2_9_149_1) 2003; 27 e_1_2_9_27_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 Ayala F (e_1_2_9_9_1) 1996; 47 e_1_2_9_96_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Shabala S (e_1_2_9_128_1) 2006 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_143_1 Golldack D (e_1_2_9_69_1) 2001; 125 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Bertl A (e_1_2_9_17_1) 1994; 39 e_1_2_9_81_1 e_1_2_9_4_1 Lacombe B (e_1_2_9_87_1) 2000; 12 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 Cramer GR (e_1_2_9_35_1) 1987; 83 e_1_2_9_47_1 Qi Z (e_1_2_9_111_1) 2004; 136 e_1_2_9_132_1 Santa‐María GE (e_1_2_9_121_1) 1997; 9 e_1_2_9_74_1 e_1_2_9_51_1 Genc Y (e_1_2_9_67_1) 2007 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_97_1 Mano Y (e_1_2_9_98_1) 1997; 47 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_127_1 e_1_2_9_100_1 Gregorio GB (e_1_2_9_72_1) 1993; 86 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 Bordas M (e_1_2_9_21_1) 1997; 6 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Azaizeh H (e_1_2_9_10_1) 1992; 99 e_1_2_9_112_1 e_1_2_9_139_1 Flowers TJ (e_1_2_9_55_1) 1995; 22 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_29_1 e_1_2_9_150_1 Munns R (e_1_2_9_105_1) 1999; 51 |
References_xml | – reference: Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39: 834-846 – reference: Shabala L, Cuin TA, Newman IA, Shabala S (2005a) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222: 1041-1050 – reference: Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229-239 – reference: Garthwaite AJ, Von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl− into the shoots. J Exp Bot 56: 2365-2378 – reference: Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8: 286-293 – reference: Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225: 753-761 – reference: Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42: 74-84 – reference: Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655-658 – reference: Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379 – reference: Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136: 2500-2511 – reference: Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63-73 – reference: Saqib M, Zorb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in wheat (Triticum aestivum L.) Plant Sci 169: 959-965 – reference: Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603 – reference: Schönknecht G, Spoormaker P, Steinmeyer R, Bruggeman L, Ache P, Dutta R, Reintanz B, Godde M, Hedrich R, Palme K (2002) KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett 511: 28-32 – reference: Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136: 2548-2555 – reference: Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Müller-Röber B (2002) Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1. Plant J 29: 809-820 – reference: Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22: 2004-2014 – reference: Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54: 657-661 – reference: Dvořák J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87: 872-877 – reference: Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96: 7581-7586 – reference: Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31: 1105-1114 – reference: Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223 – reference: Wu YY, Chen GD, Meng QW, Cheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45: 600-607 – reference: Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43: 107-153 – reference: Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12: 837-851 – reference: Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57: 1017-1023 – reference: Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51: 773-787 – reference: Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165: 1-52 – reference: Serrano R, Rodríguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13: 399-404 – reference: Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98: 2917-2921 – reference: Gierth M, Mäser P (2007) Potassium transporters in plant - involvement in K+ acquisition. Redistribution and homeostasis. FEBS Lett 581: 2348-2356 – reference: Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7: 168-175 – reference: Gaxiola R, Delarrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 11: 3157-3164 – reference: Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78: 237-260 – reference: Chandler SF, Thorpe TA (1987) Characterization of growth, water relations, and proline accumulation in sodium-sulfate tolerant callus of Brassica napus L cv Westar (Canola). Plant Physiol 84: 106-111 – reference: Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246 – reference: Chérel I (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55: 337-351 – reference: Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98: 12832-12836 – reference: Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5: 250-257 – reference: Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141-1146 – reference: Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663 – reference: Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30: 507-514 – reference: Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97: 6896-6901 – reference: Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768 – reference: Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465: 140-151 – reference: Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S. 2007b).Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol Doi:10.1104/pp.107.110262 – reference: Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581: 2247-2254 – reference: Teodoro AE, Zingarelli L, Lado P (1998) Early changes of Cl− efflux and H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiol Plant 102: 29-37 – reference: Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508: 463-469 – reference: Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27: 129-138 – reference: Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175: 387-404 – reference: Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127: 1012-1019 – reference: Lebaudy A, Véry A-A, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581: 2357-2366 – reference: Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243-252 – reference: Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32: 139-149 – reference: Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127: 1617-1625 – reference: Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128: 379-387 – reference: Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445 – reference: Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25: 333-341 – reference: Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7: 1099-1111 – reference: Morgan JM (1983) Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agric Res 34: 607-614 – reference: Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. doi:10.1111/j.1365-3040.2007.01726.x – reference: Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34: 788-801 – reference: Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37: 65-71 – reference: Ashraf M, Khanum A (1997) Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. J Agron Crop Sci 178: 39-51 – reference: Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921 – reference: Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50: 278-292 – reference: Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51: 1243-1253 – reference: Gaxiola RA, Li JS, Undurranga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants results from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98: 11444-11449 – reference: Cramer GR, Epstein E, Läuchli A (1991) Effects of sodium, potassium and calcium on salt-stressed barley. 2. Elemental analysis. Physiol Plant 81: 197-202 – reference: Botella MA, Martinez V, Pardines J, Cerda A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150: 200-205 – reference: Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122: 1249-1259 – reference: Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143: 1918-1928 – reference: Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82: 575-581 – reference: Haw M, Cocklin C, Mercer D (2000) A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia. J Rural Stud 16: 155-169 – reference: Fooland MR (1997) Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed 116: 53-58 – reference: Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci Biotechnol Biochem 60: 366-368 – reference: Santa-María GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9: 2281-2289 – reference: Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86: 333-338 – reference: Ding L, Zhu JK (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113: 795-799 – reference: Ashraf M, McNeilly T, Bradshaw AD (1986) Heritability of NaCl tolerance in seven grass species. Euphytica 35: 935-940 – reference: Ndayiragije A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48: 51-63 – reference: Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129: 1482-1493 – reference: Gorham J, Bristol A, Young EM, Jones RGW (1991) The presence of the enhanced K/Na discrimination trait in diploid triticum species. Theor Appl Genet 82: 729-736 – reference: Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+ and Cl− into protoplasts derived from the cortex of wheat roots. J Exp Bot 48: 459-480 – reference: Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short-term and long-term effects of salinity on leaf growth in rice (Oryza sativa L). J Exp Bot 42: 881-889 – reference: Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21: 535-553 – reference: Garcia A, Rizzo CA, UdDin J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ 20: 1167-1174 – reference: Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5: 493-503 – reference: Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250 – reference: Erdei L, Trivedi S, Takeda K, Matsumoto H (1990) Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat-varieties differing in salt and drought tolerance. J Plant Physiol 137: 165-168 – reference: Vallejo AJ, Peralta ML, Santa-María GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ 28: 850-862 – reference: Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain. Plant Physiol 126: 1061-1071 – reference: Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27: 1-14 – reference: Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45: 146-159 – reference: Munns R, Hare RA, James RA, Rebetzke GJ (1999) Genetic variation for improving the salt tolerance of durum wheat. Austr J Agric Res 51: 69-74 – reference: Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57: 1137-1147 – reference: Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50: 291-302 – reference: Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57: 1059-1078 – reference: Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109: 34-43 – reference: Golldack D, Kamasani UR, Quigley F, Bennett J, Bohnert HJ (1997) Salt stress-dependent expression of a HKT1-type high affinity potassium transporter in rice. Plant Physiol 114: 529-529 – reference: Babourina O, Leonova T, Shabala S, Newman I (2000) Effect of sudden salt stress on ion fluxes in intact wheat suspension cells. Ann Bot 85: 759-767 – reference: Bertl A, Anderson JA, Slayman CL, Sentenac H, Gaber RF (1994) Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterologously expressed ion channels. Folia Microbiol (Praha) 39: 507-509 – reference: Mano Y, Takeda K (1997) Diallel analysis of salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Breed Sci 47: 203-209 – reference: Marschner H (1995) The Mineral Nutrition of Higher Plants. Academic Press, London – reference: Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043 – reference: Xue ZY, Zhi DY, Xue GL, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum sativum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167: 849-859 – reference: Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30: 497-507 – reference: Palmgren MG (1991) Regulation of plasma membrane H+-ATPase activity. Physiol Plant 83: 314-323 – reference: Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107 – reference: Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499 – reference: Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19: 99-109 – reference: Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Aust J Plant Physiol 27: 709-715 – reference: Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258 – reference: Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655 – reference: Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165: 837-844 – reference: Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J Exp Bot 56: 1369-1378 – reference: Zingarelli L, Marre MT, Massardi F, Lado P (1999) Effects of hyper-osmotic stress on K+ fluxes, H+ extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin. Physiol Plant 106: 287-295 – reference: Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57: 1201-1210 – reference: Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514 – reference: Ayala F, Oleary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl. J Exp Bot 47: 25-32 – reference: Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128: 400-410 – reference: Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance. Transgenic Res 6: 41-50 – reference: Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319 – reference: Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292: 1486-1487 – reference: Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171-182 – reference: Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299 – reference: Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663 – reference: Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928-938 – reference: Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130: 784-795 – reference: Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 571: 2204-2214 – reference: Hassan NS, Wilkins DA (1988) In vitro selection for salt tolerant lines in Lycopersicon peruvianum. Plant Cell Rep 7: 463-466 – reference: Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48-54 – reference: Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46: 1924-1933 – reference: Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumomoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155 – reference: Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101: 25-77 – reference: Azaizeh H, Gunne B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99: 886-894 – reference: Espinosa-Ruiz A, Bellés JM, Serrano R, Culiáñez-Maciă FA (1999) Arabidopsis thaliana AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J 20: 529-539 – reference: Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527 – reference: Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125: 406-422 – reference: Davenport R (2002) Glutamate receptors in plants. Ann Bot 90: 549-557 – reference: Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nutr 28: 1365-1374 – reference: Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186: 143-153 – reference: Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667 – reference: Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454 – reference: Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133 – reference: Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants - where next? Aust J Plant Physiol 22: 875-884 – reference: Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125: 1643-1654 – reference: Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85 – reference: Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665 – reference: Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57: 1097-1107 – reference: Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007a) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162 – reference: Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14: 319-325 – reference: Cramer GR, Lynch J, Läuchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. Plant Physiol 83: 510-516 – reference: Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581: 1993-1999 – volume: 280 start-page: 918 year: 1998 end-page: 921 article-title: A role for the AKT1 potassium channel in plant nutrition publication-title: Science – volume: 1465 start-page: 140 year: 2000 end-page: 151 article-title: Sodium transport in plant cells publication-title: Biochim Biophys Acta – volume: 109 start-page: 34 year: 2000 end-page: 43 article-title: Cloning of and barley cDNAs encoding HAK potassium transporters in root and shoot cells publication-title: Physiol Plant – volume: 25 start-page: 333 year: 2002 end-page: 341 article-title: Osmolyte accumulation: can it really help increase crop yield under drought conditions? publication-title: Plant Cell Environ – volume: 5 start-page: 493 year: 1999 end-page: 503 article-title: Transgenic approaches to increase dehydration‐stress tolerance in plants publication-title: Mol Breed – volume: 99 start-page: 886 year: 1992 end-page: 894 article-title: Effects of NaCl and CaCl on water transport across root cells of maize (Zea mays L.) seedlings publication-title: Plant Physiol – volume: 113 start-page: 795 year: 1997 end-page: 799 article-title: Reduced Na uptake in the NaCl‐hypersensitive mutant of publication-title: Plant Physiol – volume: 57 start-page: 1059 year: 2006 end-page: 1078 article-title: Use of wild relatives to improve salt tolerance in wheat publication-title: J Exp Bot – volume: 20 start-page: 171 year: 1999 end-page: 182 article-title: A tobacco plasma membrane calmodulin‐binding transporter confers Ni tolerance and Pb hypersensitivity in transgenic plants publication-title: Plant J – volume: 167 start-page: 645 year: 2005 end-page: 663 article-title: Genes and salt tolerance: bringing them together publication-title: New Phytol – volume: 51 start-page: 773 year: 2003 end-page: 787 article-title: Regulated expression of Shaker K channel genes involved in K uptake and distribution in the plant publication-title: Plant Mol Biol – volume: 125 start-page: 406 year: 2001 end-page: 422 article-title: Quantitative trait loci for component physiological traits determining salt tolerance in rice publication-title: Plant Physiol – volume: 129 start-page: 290 year: 2002 end-page: 299 article-title: Turgor regulation in osmotically stressed epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements publication-title: Plant Physiol – volume: 4 start-page: 215 year: 1993 end-page: 223 article-title: Proline biosynthesis and osmoregulation in plants publication-title: Plant J – volume: 42 start-page: 74 year: 2001 end-page: 84 article-title: Overexpression of the AtGluR2 gene encoding an homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants publication-title: Plant Cell Physiol – volume: 39 start-page: 507 year: 1994 end-page: 509 article-title: Inward and outward rectifying potassium currents in mediated by endogenous and heterologously expressed ion channels publication-title: Folia Microbiol (Praha) – volume: 11 start-page: 3157 year: 1992 end-page: 3164 article-title: A novel and conserved salt‐induced protein is an important determinant of salt tolerance in yeast publication-title: EMBO J – volume: 222 start-page: 1041 year: 2005a end-page: 1050 article-title: Salinity‐induced ion flux patterns from the excised roots of Arabidopsis sos mutants publication-title: Planta – volume: 8 start-page: 286 year: 2003 end-page: 293 article-title: CNGCs: prime targets of plant cyclic nucleotide signalling? publication-title: Trends Plant Sci – volume: 22 start-page: 875 year: 1995 end-page: 884 article-title: Breeding for salinity resistance in crop plants – where next? publication-title: Aust J Plant Physiol – volume: 87 start-page: 872 year: 1994 end-page: 877 article-title: Enhancement of the salt tolerance of L. by the locus transferred from the L. chromosome 4D by homoeologous recombination publication-title: Theor Appl Genet – volume: 581 start-page: 2357 year: 2007 end-page: 2366 article-title: K channel activity in plants: genes, regulations and functions publication-title: FEBS Lett – volume: 51 start-page: 1243 year: 2000 end-page: 1253 article-title: Ion‐specific mechanisms of osmoregulation in bean mesophyll cells publication-title: J Exp Bot – volume: 106 start-page: 287 year: 1999 end-page: 295 article-title: Effects of hyper‐osmotic stress on K fluxes, H extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin publication-title: Physiol Plant – volume: 27 start-page: 129 year: 2001 end-page: 138 article-title: Two types of HKT transporters with different properties of Na and K transport in publication-title: Plant J – volume: 581 start-page: 1993 year: 2007 end-page: 1999 article-title: Polyamines prevent NaCl‐induced K efflux from pea mesophyll by blocking non‐selective cation channels publication-title: FEBS Lett – volume: 86 start-page: 333 year: 1993 end-page: 338 article-title: Genetic analysis of salinity tolerance in rice ( L.) publication-title: Theor Appl Genet – volume: 186 start-page: 143 year: 1991 end-page: 153 article-title: Stretch‐activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of L publication-title: Planta – volume: 34 start-page: 607 year: 1983 end-page: 614 article-title: Osmoregulation as a selection criterion for drought tolerance in wheat publication-title: Aust J Agric Res – volume: 57 start-page: 1201 year: 2006 end-page: 1210 article-title: Functional analysis of CHX21: a putative sodium transporter in Arabidopsis publication-title: J Exp Bot – volume: 225 start-page: 753 year: 2007 end-page: 761 article-title: Amino acids regulate salinity‐induced potassium efflux in barley root epidermis publication-title: Planta – volume: 125 start-page: 1643 year: 2001 end-page: 1654 article-title: Salt‐induced expression of the vacuolar H ‐ATPase in the common ice plant is developmentally controlled and tissue specific publication-title: Plant Physiol – volume: 82 start-page: 729 year: 1991 end-page: 736 article-title: The presence of the enhanced K/Na discrimination trait in diploid triticum species publication-title: Theor Appl Genet – volume: 44 start-page: 243 year: 1995 end-page: 252 article-title: The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen‐evolving photosystem II complex publication-title: Photosynth Res – volume: 54 start-page: 575 year: 2003 end-page: 603 article-title: Molecular mechanisms and regulation of K transport in higher plants publication-title: Annu Rev Plant Biol – volume: 83 start-page: 510 year: 1987 end-page: 516 article-title: Influx of Na , K , and Ca into roots of salt‐stressed cotton seedlings. Effects of supplemental Ca publication-title: Plant Physiol – volume: 98 start-page: 14150 year: 2001 end-page: 14155 article-title: AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots publication-title: Proc Natl Acad Sci USA – volume: 150 start-page: 200 year: 1997 end-page: 205 article-title: Salinity induced potassium deficiency in maize plants publication-title: J Plant Physiol – volume: 30 start-page: 497 year: 2007 end-page: 507 article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in Arabidopsis publication-title: Plant Cell Environ – volume: 127 start-page: 1012 year: 2001 end-page: 1019 article-title: Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of publication-title: Plant Physiol – volume: 126 start-page: 1646 year: 2001 end-page: 1667 article-title: Phylogenetic relationships within cation transporter families of publication-title: Plant Physiol – volume: 7 start-page: 1099 year: 1995 end-page: 1111 article-title: Adaptation to environmental stresses publication-title: Plant Cell – volume: 51 start-page: 69 year: 1999 end-page: 74 article-title: Genetic variation for improving the salt tolerance of durum wheat publication-title: Austr J Agric Res – volume: 285 start-page: 1256 year: 1999 end-page: 1258 article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in publication-title: Science – volume: 16 start-page: 155 year: 2000 end-page: 169 article-title: A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia publication-title: J Rural Stud – volume: 130 start-page: 784 year: 2002 end-page: 795 article-title: Inventory and functional characterization of the HAK potassium transporters of rice publication-title: Plant Physiol – volume: 581 start-page: 2247 year: 2007 end-page: 2254 article-title: Na transport in plants publication-title: FEBS Lett – volume: 45 start-page: 146 year: 2004 end-page: 159 article-title: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na /H antiporter from rice publication-title: Plant Cell Physiol – volume: 60 start-page: 366 year: 1996 end-page: 368 article-title: Exogenous glycinebetaine accumulation and increased salt‐tolerance in rice seedlings publication-title: Biosci Biotechnol Biochem – volume: 101 start-page: 25 year: 1985 end-page: 77 article-title: Regulation of pH and generation of osmolarity in vascular plants: a cost‐benefit analysis in relation to efficiency of use of energy, nitrogen and water publication-title: New Phytol – volume: 39 start-page: 834 year: 2004 end-page: 846 article-title: Characterization of AtCHX17, a member of the cation/H exchangers, CHX family, from suggests a role in K homeostasis publication-title: Plant J – volume: 292 start-page: 1486 year: 2001 end-page: 1487 article-title: The identity of plant glutamate receptors publication-title: Science – volume: 92 start-page: 448 year: 1996 end-page: 454 article-title: Mapping of the K /Na discrimination locus in wheat publication-title: Theor Appl Genet – volume: 34 start-page: 788 year: 2003 end-page: 801 article-title: Sodium transport and HKT transporters: the rice model publication-title: Plant J – volume: 37 start-page: 65 year: 1999 end-page: 71 article-title: Short‐term salt tolerance mechanisms in differentially salt tolerant tomato species publication-title: Plant Physiol Biochem – volume: 165 start-page: 1 year: 1996 end-page: 52 article-title: Salt tolerance in plants and microorganisms: toxicity targets and defense responses publication-title: Int Rev Cytol – volume: 141 start-page: 1653 year: 2006 end-page: 1665 article-title: Extracellular Ca ameliorates NaCl‐induced K loss from Arabidopsis root and leaf cells by controlling plasma membrane K ‐permeable channels publication-title: Plant Physiol – volume: 5 start-page: 250 year: 2002 end-page: 257 article-title: Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes publication-title: Curr Opin Plant Biol – volume: 126 start-page: 1061 year: 2001 end-page: 1071 article-title: The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain publication-title: Plant Physiol – volume: 56 start-page: 1369 year: 2005b end-page: 1378 article-title: Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves publication-title: J Exp Bot – volume: 7 start-page: 168 year: 2002 end-page: 175 article-title: Cation channels in the plasma membrane publication-title: Trends Plant Sci – volume: 98 start-page: 12832 year: 2001 end-page: 12836 article-title: Engineering salt tolerant plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 81 year: 2003 end-page: 85 article-title: Overexpression of a plasma membrane Na /H antiporter gene improves salt tolerance in publication-title: Nat Biotechnol – volume: 34 start-page: 150 year: 2007a end-page: 162 article-title: Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance publication-title: Funct Plant Biol – volume: 136 start-page: 2500 year: 2004 end-page: 2511 article-title: AtHKT1 facilitates Na homeostasis and K nutrition in planta publication-title: Plant Physiol – volume: 30 start-page: 507 year: 2003 end-page: 514 article-title: Effect of calcium on root development and root ion fluxes in salinised barley seedlings publication-title: Funct Plant Biol – volume: 6 start-page: 41 year: 1997 end-page: 50 article-title: Transfer of the yeast salt tolerance gene HAL1 to L. cultivats and in vitro evaluation of salt tolerance publication-title: Transgenic Res – volume: 102 start-page: 29 year: 1998 end-page: 37 article-title: Early changes of Cl efflux and H extrusion induced by osmotic stress in cells publication-title: Physiol Plant – volume: 78 start-page: 237 year: 1999 end-page: 260 article-title: Transformation and compatible solutes publication-title: Sci Hortic – volume: 42 start-page: 881 year: 1991 end-page: 889 article-title: Short‐term and long‐term effects of salinity on leaf growth in rice ( L) publication-title: J Exp Bot – volume: 43 start-page: 107 year: 1990 end-page: 153 article-title: A critical‐evaluation of traits for improving crop yields in water‐limited environments publication-title: Adv Agron – volume: 55 start-page: 307 year: 2004 end-page: 319 article-title: Improving crop salt tolerance publication-title: J Exp Bot – volume: 35 start-page: 935 year: 1986 end-page: 940 article-title: Heritability of NaCl tolerance in seven grass species publication-title: Euphytica – year: 1995 – volume: 44 start-page: 928 year: 2005 end-page: 938 article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem vessels to xylem parenchyma cells publication-title: Plant J – volume: 19 start-page: 765 year: 2001 end-page: 768 article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit publication-title: Nat Biotechnol – volume: 581 start-page: 2348 year: 2007 end-page: 2356 article-title: Potassium transporters in plant – involvement in K acquisition. Redistribution and homeostasis publication-title: FEBS Lett – volume: 20 start-page: 529 year: 1999 end-page: 539 article-title: AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth publication-title: Plant J – volume: 127 start-page: 1617 year: 2001 end-page: 1625 article-title: Sodium uptake in roots is regulated by cyclic nucleotides publication-title: Plant Physiol – volume: 51 start-page: 463 year: 2000 end-page: 499 article-title: Plant cellular and molecular responses to high salinity publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 98 start-page: 2917 year: 2001 end-page: 2921 article-title: KAT1 is not essential for stomatal opening publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 1 year: 2003 end-page: 14 article-title: , a salt‐tolerant relative of , possesses effective mechanisms to discriminate between potassium and sodium publication-title: Plant Cell Environ – volume: 28 start-page: 850 year: 2005 end-page: 862 article-title: Expression of potassium‐transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis publication-title: Plant Cell Environ – volume: 32 start-page: 139 year: 2002 end-page: 149 article-title: A role for HKT1 in sodium uptake by wheat roots publication-title: Plant J – volume: 28 start-page: 1230 year: 2005 end-page: 1246 article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley publication-title: Plant Cell Environ – volume: 94 start-page: 647 year: 1998 end-page: 655 article-title: Identification and disruption of a plant shaker‐like outward channel involved in K release into the xylem sap publication-title: Cell – start-page: 35 year: 2006 end-page: 71 – volume: 19 start-page: 99 year: 2003 end-page: 109 article-title: The resistance of quinoa ( Willd.) to adverse abiotic factors publication-title: Food Rev Int – volume: 53 start-page: 67 year: 2002 end-page: 107 article-title: Nonselective cation channels in plants publication-title: Annu Rev Plant Biol – volume: 370 start-page: 655 year: 1994 end-page: 658 article-title: Structure and transport mechanism of a high‐affinity potassium uptake transporter from higher plants publication-title: Nature – volume: 571 start-page: 2204 year: 2007 end-page: 2214 article-title: Plant proton pumps publication-title: FEBS Lett – volume: 47 start-page: 203 year: 1997 end-page: 209 article-title: Diallel analysis of salt tolerance at germination and the seedling stage in barley ( L.) publication-title: Breed Sci – volume: 37 start-page: 1141 year: 2005 end-page: 1146 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nat Genet – volume: 48 start-page: 51 year: 2006 end-page: 63 article-title: Exogenous putrescine reduces sodium and chloride accumulation in NaCl‐treated calli of the salt‐sensitive rice cultivar I Kong Pao publication-title: Plant Growth Regul – volume: 36 start-page: 229 year: 2003 end-page: 239 article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of AtNHX1, the vacuolar Na /H antiporter publication-title: Plant J – volume: 10 start-page: 63 year: 1998 end-page: 73 article-title: AtKUP1: a dual‐affinity K transporter from publication-title: Plant Cell – volume: 22 start-page: 2004 year: 2003 end-page: 2014 article-title: Functional analysis of AtHKT1 in shows that Na recirculation by the phloem is crucial for salt tolerance publication-title: EMBO J – volume: 55 start-page: 337 year: 2004 end-page: 351 article-title: Regulation of K channel activities in plants: from physiological to molecular aspects publication-title: J Exp Bot – volume: 85 start-page: 759 year: 2000 end-page: 767 article-title: Effect of sudden salt stress on ion fluxes in intact wheat suspension cells publication-title: Ann Bot – volume: 508 start-page: 463 year: 2001 end-page: 469 article-title: K channel profile and electrical properties of root hairs publication-title: FEBS Lett – volume: 2 start-page: 48 year: 1997 end-page: 54 article-title: Plant responses to water deficit publication-title: Trends Plant Sci – volume: 165 start-page: 837 year: 2003 end-page: 844 article-title: Study on the salt and drought tolerance of and under iso‐osmotic salt and water stress publication-title: Plant Sci – volume: 98 start-page: 11444 year: 2001 end-page: 11449 article-title: Drought‐ and salt‐tolerant plants results from overexpression of the AVP1 H ‐pump publication-title: Proc Natl Acad Sci USA – volume: 114 start-page: 529 year: 1997 end-page: 529 article-title: Salt stress‐dependent expression of a HKT1‐type high affinity potassium transporter in rice publication-title: Plant Physiol – volume: 122 start-page: 1249 year: 2000 end-page: 1259 article-title: The Arabidopsis HKT1 gene homolog mediates inward Na currents in oocytes and Na uptake in publication-title: Plant Physiol – year: 2007 article-title: Reassessment of tissue Na concentration as a criterion for salinity tolerance in bread wheat publication-title: Plant Cell Environ – volume: 90 start-page: 549 year: 2002 end-page: 557 article-title: Glutamate receptors in plants publication-title: Ann Bot – volume: 178 start-page: 39 year: 1997 end-page: 51 article-title: Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages publication-title: J Agron Crop Sci – volume: 13 start-page: 399 year: 2001 end-page: 404 article-title: Ion homeostasis during salt stress in plants publication-title: Curr Opin Cell Biol – volume: 175 start-page: 387 year: 2007 end-page: 404 article-title: Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development publication-title: New Phytol – volume: 511 start-page: 28 year: 2002 end-page: 32 article-title: KCO1 is a component of the slow‐vacuolar (SV) ion channel publication-title: FEBS Lett – volume: 84 start-page: 123 year: 1999 end-page: 133 article-title: K nutrition and Na toxicity: the basis of cellular K /Na ratios publication-title: Ann Bot – volume: 45 start-page: 600 year: 2004 end-page: 607 article-title: The cotton gene encoding a novel putative tonoplast Na /H antiporter plays an important role in salt stress publication-title: Plant Cell Physiol – volume: 82 start-page: 575 year: 1991 end-page: 581 article-title: Polyamines in various rice ( ) genotypes with respect to sodium‐chloride salinity publication-title: Physiol Plant – volume: 57 start-page: 1097 year: 2006 end-page: 1107 article-title: Dissecting salt stress pathways publication-title: J Exp Bot – volume: 31 start-page: 1105 year: 2004 end-page: 1114 article-title: A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat publication-title: Funct Plant Biol – volume: 28 start-page: 1365 year: 2005 end-page: 1374 article-title: Salt stimulation and tolerance in an intertidal stem‐succulent halophyte publication-title: J Plant Nutr – volume: 25 start-page: 239 year: 2002 end-page: 250 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ – volume: 7 start-page: 463 year: 1988 end-page: 466 article-title: selection for salt tolerant lines in publication-title: Plant Cell Rep – volume: 129 start-page: 1482 year: 2002 end-page: 1493 article-title: The expression of HAK‐type K transporters is regulated in response to salinity stress in common ice plant publication-title: Plant Physiol – year: 2007b article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt stressed barley publication-title: Plant Physiol – volume: 81 start-page: 197 year: 1991 end-page: 202 article-title: Effects of sodium, potassium and calcium on salt‐stressed barley. 2. Elemental analysis publication-title: Physiol Plant – volume: 128 start-page: 400 year: 2002 end-page: 410 article-title: Electrophysiological analysis of cloned cyclic nucleotide‐gated ion channels publication-title: Plant Physiol – volume: 57 start-page: 1017 year: 2006 end-page: 1023 article-title: World salinization with emphasis on Australia publication-title: J Exp Bot – volume: 97 start-page: 6896 year: 2000 end-page: 6901 article-title: The salt tolerance gene SOS1 encodes a putative Na /H antiporter publication-title: Proc Natl Acad Sci USA – volume: 137 start-page: 165 year: 1990 end-page: 168 article-title: Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat‐varieties differing in salt and drought tolerance publication-title: J Plant Physiol – volume: 20 start-page: 1167 year: 1997 end-page: 1174 article-title: Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat publication-title: Plant Cell Environ – volume: 9 start-page: 2281 year: 1997 end-page: 2289 article-title: The HAK1 gene of barley is a member of a large gene family and encodes a high‐affinity potassium transporter publication-title: Plant Cell – volume: 27 start-page: 709 year: 2000 end-page: 715 article-title: The limits of sodium/calcium interactions in plant growth publication-title: Aust J Plant Physiol – start-page: 287 year: 2006 end-page: 317 – volume: 54 start-page: 657 year: 2003 end-page: 661 article-title: Potassium activities in cell compartments of salt‐grown barley leaves publication-title: J Exp Bot – volume: 143 start-page: 1918 year: 2007 end-page: 1928 article-title: HKT1;5‐like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 publication-title: Plant Physiol – volume: 15 start-page: 365 year: 2003 end-page: 379 article-title: HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide‐gated channel ion channel family publication-title: Plant Cell – volume: 21 start-page: 535 year: 1998 end-page: 553 article-title: Dissecting the roles of osmolyte accumulation during stress publication-title: Plant Cell Environ – volume: 128 start-page: 379 year: 2002 end-page: 387 article-title: Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from roots publication-title: Plant Physiol – volume: 169 start-page: 959 year: 2005 end-page: 965 article-title: The expression of the endogenous vacuolar Na /H antiporters in wheat ( L publication-title: Plant Sci – volume: 12 start-page: 837 year: 2000 end-page: 851 article-title: A shaker‐like K channel with weak rectification is expressed in both source and sink phloem tissues of publication-title: Plant Cell – volume: 14 start-page: 319 year: 1991 end-page: 325 article-title: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis publication-title: Plant Cell Environ – volume: 56 start-page: 2365 year: 2005 end-page: 2378 article-title: Salt tolerance in wild species is associated with restricted entry of Na and Cl into the shoots publication-title: J Exp Bot – volume: 46 start-page: 1924 year: 2005 end-page: 1933 article-title: Exogenously supplied compatible solutes rapidly ameliorate NaCl‐induced potassium efflux from barley roots publication-title: Plant Cell Physiol – volume: 57 start-page: 1137 year: 2006 end-page: 1147 article-title: The role of monovalent cation transporters in plant responses to salinity publication-title: J Exp Bot – volume: 136 start-page: 2548 year: 2004 end-page: 2555 article-title: Protection of plasma membrane K transport by the Na /H antiporter during salinity stress publication-title: Plant Physiol – volume: 116 start-page: 53 year: 1997 end-page: 58 article-title: Genetic basis of physiological traits related to salt tolerance in tomato, Mill publication-title: Plant Breed – volume: 47 start-page: 25 year: 1996 end-page: 32 article-title: Increased vacuolar and plasma membrane H ‐ATPase activities in Torr in response to NaCl publication-title: J Exp Bot – volume: 270 start-page: 1660 year: 1995 end-page: 1663 article-title: Sodium‐driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance publication-title: Science – volume: 50 start-page: 291 year: 1999 end-page: 302 article-title: Genetic analysis of osmotic adjustment in crop plants publication-title: J Exp Bot – volume: 50 start-page: 278 year: 2007 end-page: 292 article-title: Identification and functional characterization of cation‐chloride cotransporters in plants publication-title: Plant J – volume: 29 start-page: 809 year: 2002 end-page: 820 article-title: Vacuolar membrane localization of the Arabidopsis ‘two‐pore’ K channel KCO1 publication-title: Plant J – volume: 93 start-page: 10510 year: 1996 end-page: 10514 article-title: Potassium homeostasis in vacuolate plant cells publication-title: Proc Natl Acad Sci USA – volume: 96 start-page: 7581 year: 1999 end-page: 7586 article-title: AKT3, a phloem‐localized K channel, is blocked by protons publication-title: Proc Natl Acad Sci USA – volume: 57 start-page: 1025 year: 2006 end-page: 1043 article-title: Approaches to increasing the salt tolerance of wheat and other cereals publication-title: J Exp Bot – volume: 48 start-page: 459 year: 1997 end-page: 480 article-title: Pathways for the permeation of Na and Cl into protoplasts derived from the cortex of wheat roots publication-title: J Exp Bot – volume: 91 start-page: 503 year: 2003 end-page: 527 article-title: Na tolerance and Na transport in higher plants publication-title: Ann Bot – volume: 84 start-page: 106 year: 1987 end-page: 111 article-title: Characterization of growth, water relations, and proline accumulation in sodium‐sulfate tolerant callus of L cv Westar (Canola) publication-title: Plant Physiol – volume: 83 start-page: 314 year: 1991 end-page: 323 article-title: Regulation of plasma membrane H ‐ATPase activity publication-title: Physiol Plant – volume: 6 start-page: 441 year: 2003 end-page: 445 article-title: Regulation of ion homeostasis under salt stress publication-title: Curr Opin Plant Biol – volume: 167 start-page: 849 year: 2004 end-page: 859 article-title: Enhanced salt tolerance of transgenic wheat ( L.) expressing a vacuolar Na /H antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na publication-title: Plant Sci – ident: e_1_2_9_71_1 doi: 10.1007/BF00227318 – ident: e_1_2_9_84_1 doi: 10.1081/PLN-200067462 – volume: 12 start-page: 837 year: 2000 ident: e_1_2_9_87_1 article-title: A shaker‐like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis publication-title: Plant Cell – ident: e_1_2_9_42_1 doi: 10.1046/j.1365-313X.2002.01260.x – ident: e_1_2_9_92_1 doi: 10.1071/FP04111 – ident: e_1_2_9_56_1 doi: 10.1111/j.1365-3040.1991.tb01507.x – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-3040.2007.01637.x – ident: e_1_2_9_144_1 doi: 10.1093/jxb/48.Special_Issue.459 – volume: 47 start-page: 203 year: 1997 ident: e_1_2_9_98_1 article-title: Diallel analysis of salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) publication-title: Breed Sci – ident: e_1_2_9_109_1 doi: 10.1111/j.1399-3054.1991.tb02159.x – ident: e_1_2_9_96_1 doi: 10.1006/anbo.1999.0912 – ident: e_1_2_9_153_1 doi: 10.1016/j.plantsci.2004.05.034 – ident: e_1_2_9_63_1 doi: 10.1002/j.1460-2075.1992.tb05392.x – ident: e_1_2_9_34_1 doi: 10.1007/BF00201510 – ident: e_1_2_9_85_1 doi: 10.1093/pcp/pce008 – ident: e_1_2_9_23_1 doi: 10.1016/S1360-1385(97)82562-9 – ident: e_1_2_9_93_1 doi: 10.1016/S0065-2113(08)60477-0 – volume-title: The Mineral Nutrition of Higher Plants year: 1995 ident: e_1_2_9_99_1 – ident: e_1_2_9_148_1 doi: 10.1146/annurev.arplant.54.031902.134831 – ident: e_1_2_9_13_1 doi: 10.1105/tpc.006999 – ident: e_1_2_9_112_1 doi: 10.1111/j.1469-8137.1985.tb02816.x – ident: e_1_2_9_95_1 doi: 10.1093/jxb/erj001 – volume: 39 start-page: 507 year: 1994 ident: e_1_2_9_17_1 article-title: Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterologously expressed ion channels publication-title: Folia Microbiol (Praha) doi: 10.1007/BF02814074 – ident: e_1_2_9_60_1 doi: 10.1046/j.1365-3040.1997.d01-146.x – ident: e_1_2_9_89_1 doi: 10.1046/j.1365-313X.2002.01410.x – ident: e_1_2_9_102_1 doi: 10.1071/AR9830607 – ident: e_1_2_9_91_1 doi: 10.1016/j.febslet.2007.03.058 – ident: e_1_2_9_45_1 doi: 10.1046/j.1365-313X.1993.04020215.x – ident: e_1_2_9_125_1 doi: 10.1046/j.1365-3040.2002.00754.x – ident: e_1_2_9_145_1 doi: 10.1104/pp.122.4.1249 – ident: e_1_2_9_32_1 doi: 10.1111/j.1365-313X.2007.03048.x – ident: e_1_2_9_36_1 doi: 10.1111/j.1399-3054.1991.tb02129.x – ident: e_1_2_9_39_1 doi: 10.1007/s00425-006-0386-x – ident: e_1_2_9_80_1 doi: 10.1046/j.1365-313x.2001.01077.x – volume: 114 start-page: 529 year: 1997 ident: e_1_2_9_70_1 article-title: Salt stress‐dependent expression of a HKT1‐type high affinity potassium transporter in rice publication-title: Plant Physiol – ident: e_1_2_9_146_1 doi: 10.1111/j.1365-3040.2005.01334.x – ident: e_1_2_9_19_1 doi: 10.1016/S0304-4238(98)00195-2 – ident: e_1_2_9_29_1 doi: 10.1111/j.1365-3040.2005.01364.x – ident: e_1_2_9_114_1 doi: 10.1038/ng1643 – ident: e_1_2_9_44_1 doi: 10.1046/j.1365-313X.1993.04020215.x – ident: e_1_2_9_120_1 doi: 10.1016/S0981-9428(99)80068-0 – ident: e_1_2_9_74_1 doi: 10.1046/j.1365-3040.1998.00309.x – ident: e_1_2_9_83_1 doi: 10.1016/S0168-9452(03)00282-6 – year: 2007 ident: e_1_2_9_30_1 article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley publication-title: Plant Physiol – volume: 27 start-page: 709 year: 2000 ident: e_1_2_9_113_1 article-title: The limits of sodium/calcium interactions in plant growth publication-title: Aust J Plant Physiol – ident: e_1_2_9_107_1 doi: 10.1007/s10725-005-4825-7 – ident: e_1_2_9_110_1 doi: 10.1023/A:1022597102282 – ident: e_1_2_9_31_1 doi: 10.1093/jxb/erh028 – volume: 22 start-page: 875 year: 1995 ident: e_1_2_9_55_1 article-title: Breeding for salinity resistance in crop plants – where next? publication-title: Aust J Plant Physiol – ident: e_1_2_9_41_1 doi: 10.1046/j.1365-313X.2002.01260.x – ident: e_1_2_9_108_1 doi: 10.1111/j.1399-3054.1991.tb02159.x – year: 2007 ident: e_1_2_9_67_1 article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01726.x – ident: e_1_2_9_139_1 doi: 10.1111/j.1365-313X.2005.02595.x – ident: e_1_2_9_66_1 doi: 10.1016/j.febslet.2007.03.050 – ident: e_1_2_9_86_1 doi: 10.1104/pp.125.1.406 – ident: e_1_2_9_54_1 doi: 10.1046/j.1365-313X.1999.00626.x – ident: e_1_2_9_94_1 doi: 10.1093/jxb/erj098 – ident: e_1_2_9_141_1 doi: 10.1016/S1360-1385(03)00099-2 – ident: e_1_2_9_61_1 doi: 10.1046/j.1365-313X.2003.01764.x – ident: e_1_2_9_33_1 doi: 10.1111/j.1365-313X.2007.03048.x – ident: e_1_2_9_40_1 doi: 10.1093/jxb/erg072 – ident: e_1_2_9_130_1 doi: 10.1093/jexbot/51.348.1243 – ident: e_1_2_9_81_1 doi: 10.1016/S0014-5793(01)03114-3 – ident: e_1_2_9_150_1 doi: 10.1046/j.0016-8025.2003.01116.x – ident: e_1_2_9_119_1 doi: 10.1104/pp.104.042234 – ident: e_1_2_9_138_1 doi: 10.1104/pp.001149 – ident: e_1_2_9_156_1 doi: 10.1073/pnas.231476498 – ident: e_1_2_9_97_1 doi: 10.1104/pp.010502 – ident: e_1_2_9_8_1 doi: 10.1034/j.1399-3054.1999.106305.x – ident: e_1_2_9_46_1 doi: 10.1111/j.1469-8137.2007.02128.x – ident: e_1_2_9_64_1 doi: 10.1073/pnas.191389398 – ident: e_1_2_9_135_1 doi: 10.1016/j.febslet.2007.04.032 – ident: e_1_2_9_157_1 doi: 10.1016/S1369-5266(03)00085-2 – ident: e_1_2_9_7_1 doi: 10.1111/j.1439-037X.1997.tb00349.x – ident: e_1_2_9_14_1 doi: 10.1104/pp.007781 – ident: e_1_2_9_27_1 doi: 10.1016/S1369-5266(02)00255-8 – volume: 5 start-page: 493 year: 1999 ident: e_1_2_9_12_1 article-title: Transgenic approaches to increase dehydration‐stress tolerance in plants publication-title: Mol Breed doi: 10.1023/A:1009660413133 – ident: e_1_2_9_104_1 doi: 10.1111/j.1469-8137.2005.01487.x – volume: 60 start-page: 366 year: 1996 ident: e_1_2_9_75_1 article-title: Exogenous glycinebetaine accumulation and increased salt‐tolerance in rice seedlings publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.60.366 – volume: 7 start-page: 463 year: 1988 ident: e_1_2_9_77_1 article-title: In vitro selection for salt tolerant lines in Lycopersicon peruvianum publication-title: Plant Cell Rep doi: 10.1007/BF00269539 – ident: e_1_2_9_52_1 doi: 10.1016/S0176-1617(11)80075-1 – ident: e_1_2_9_131_1 doi: 10.1071/FP03016 – ident: e_1_2_9_4_1 doi: 10.1126/science.285.5431.1256 – ident: e_1_2_9_53_1 doi: 10.1046/j.1365-313X.1999.00626.x – ident: e_1_2_9_47_1 doi: 10.1111/j.1469-8137.2007.02128.x – ident: e_1_2_9_51_1 doi: 10.1007/BF00221141 – ident: e_1_2_9_100_1 doi: 10.1073/pnas.96.13.7581 – volume: 27 start-page: 1 year: 2003 ident: e_1_2_9_149_1 article-title: Thellungiella halophila, a salt‐tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium publication-title: Plant Cell Environ doi: 10.1046/j.0016-8025.2003.01116.x – ident: e_1_2_9_15_1 doi: 10.1111/j.1399-3054.1991.tb02949.x – ident: e_1_2_9_151_1 doi: 10.1093/pcp/pch071 – ident: e_1_2_9_134_1 doi: 10.1104/pp.106.082388 – ident: e_1_2_9_142_1 doi: 10.1034/j.1399-3054.1998.1020105.x – ident: e_1_2_9_155_1 doi: 10.1093/jxb/50.332.291 – ident: e_1_2_9_50_1 doi: 10.1007/BF00223692 – ident: e_1_2_9_101_1 doi: 10.1104/pp.126.4.1646 – volume: 127 start-page: 1012 year: 2001 ident: e_1_2_9_48_1 article-title: Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.010193 – ident: e_1_2_9_158_1 doi: 10.1034/j.1399-3054.1999.106305.x – ident: e_1_2_9_5_1 doi: 10.1046/j.1365-313X.2003.01871.x – ident: e_1_2_9_140_1 doi: 10.1111/j.1365-313X.2005.02595.x – ident: e_1_2_9_22_1 doi: 10.1016/S0176-1617(97)80203-9 – volume: 86 start-page: 333 year: 1993 ident: e_1_2_9_72_1 article-title: Genetic analysis of salinity tolerance in rice (Oryza sativa L.) publication-title: Theor Appl Genet doi: 10.1007/BF00222098 – volume: 84 start-page: 106 year: 1987 ident: e_1_2_9_26_1 article-title: Characterization of growth, water relations, and proline accumulation in sodium‐sulfate tolerant callus of Brassica napus L cv Westar (Canola) publication-title: Plant Physiol doi: 10.1104/pp.84.1.106 – ident: e_1_2_9_152_1 doi: 10.1016/j.plantsci.2004.05.034 – ident: e_1_2_9_88_1 doi: 10.1126/science.292.5521.1486b – volume: 10 start-page: 63 year: 1998 ident: e_1_2_9_58_1 article-title: AtKUP1: a dual‐affinity K+ transporter from Arabidopsis publication-title: Plant Cell – volume: 165 start-page: 1 year: 1996 ident: e_1_2_9_126_1 article-title: Salt tolerance in plants and microorganisms: toxicity targets and defense responses publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(08)62219-6 – ident: e_1_2_9_59_1 doi: 10.1093/pcp/pch014 – ident: e_1_2_9_122_1 doi: 10.1016/j.plantsci.2005.07.001 – ident: e_1_2_9_127_1 doi: 10.1016/S0955-0674(00)00227-1 – ident: e_1_2_9_3_1 doi: 10.1016/j.febslet.2007.04.014 – ident: e_1_2_9_82_1 doi: 10.1016/S0014-5793(01)03114-3 – volume: 116 start-page: 53 year: 1997 ident: e_1_2_9_57_1 article-title: Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill publication-title: Plant Breed doi: 10.1111/j.1439-0523.1997.tb00974.x – ident: e_1_2_9_90_1 doi: 10.1016/j.febslet.2007.03.058 – volume: 47 start-page: 25 year: 1996 ident: e_1_2_9_9_1 article-title: Increased vacuolar and plasma membrane H+‐ATPase activities in Salicornia bigelovii Torr in response to NaCl publication-title: J Exp Bot doi: 10.1093/jxb/47.1.25 – volume: 85 start-page: 759 year: 2000 ident: e_1_2_9_11_1 article-title: Effect of sudden salt stress on ion fluxes in intact wheat suspension cells publication-title: Ann Bot doi: 10.1006/anbo.2000.1136 – ident: e_1_2_9_24_1 doi: 10.1104/pp.106.093476 – ident: e_1_2_9_129_1 doi: 10.1104/pp.020005 – ident: e_1_2_9_65_1 doi: 10.1073/pnas.191389398 – ident: e_1_2_9_62_1 doi: 10.1046/j.1365-313X.2003.01764.x – ident: e_1_2_9_68_1 doi: 10.1016/j.febslet.2007.03.035 – ident: e_1_2_9_18_1 doi: 10.1016/S0005-2736(00)00135-8 – volume: 125 start-page: 1643 year: 2001 ident: e_1_2_9_69_1 article-title: Salt‐induced expression of the vacuolar H+‐ATPase in the common ice plant is developmentally controlled and tissue specific publication-title: Plant Physiol doi: 10.1104/pp.125.4.1643 – ident: e_1_2_9_115_1 doi: 10.1093/jxb/erj108 – ident: e_1_2_9_6_1 doi: 10.1046/j.1365-313x.1999.00588.x – ident: e_1_2_9_143_1 doi: 10.1034/j.1399-3054.1998.1020105.x – ident: e_1_2_9_147_1 doi: 10.1111/j.1365-3040.2005.01334.x – ident: e_1_2_9_132_1 doi: 10.1007/s00425-005-0074-2 – volume: 99 start-page: 886 year: 1992 ident: e_1_2_9_10_1 article-title: Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings publication-title: Plant Physiol doi: 10.1104/pp.99.3.886 – ident: e_1_2_9_25_1 doi: 10.1111/j.1365-313X.2004.02177.x – ident: e_1_2_9_73_1 doi: 10.1093/jxb/erj092 – volume: 6 start-page: 41 year: 1997 ident: e_1_2_9_21_1 article-title: Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance publication-title: Transgenic Res doi: 10.1023/A:1018453032336 – ident: e_1_2_9_117_1 doi: 10.1034/j.1399-3054.2000.100106.x – ident: e_1_2_9_124_1 doi: 10.1016/S0014-5793(01)03273-2 – ident: e_1_2_9_154_1 doi: 10.1038/90824 – ident: e_1_2_9_2_1 doi: 10.1104/pp.126.3.1061 – ident: e_1_2_9_79_1 doi: 10.1126/science.280.5365.918 – ident: e_1_2_9_116_1 doi: 10.1126/science.270.5242.1660 – start-page: 287 volume-title: Plant Electrophysiology – Theory and Methods year: 2006 ident: e_1_2_9_38_1 doi: 10.1007/978-3-540-37843-3_13 – start-page: 35 volume-title: Plant Electrophysiology – Theory and Methods year: 2006 ident: e_1_2_9_128_1 doi: 10.1007/978-3-540-37843-3_3 – volume: 136 start-page: 2548 year: 2004 ident: e_1_2_9_111_1 article-title: Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress publication-title: Plant Physiol doi: 10.1104/pp.104.049213 – ident: e_1_2_9_20_1 doi: 10.2307/3870060 – ident: e_1_2_9_123_1 doi: 10.1038/370655a0 – ident: e_1_2_9_106_1 doi: 10.1093/jxb/erj100 – volume: 83 start-page: 510 year: 1987 ident: e_1_2_9_35_1 article-title: Influx of Na+, K+, and Ca2+ into roots of salt‐stressed cotton seedlings. Effects of supplemental Ca2+ publication-title: Plant Physiol doi: 10.1104/pp.83.3.510 – ident: e_1_2_9_103_1 doi: 10.1046/j.0016-8025.2001.00808.x – volume: 113 start-page: 795 year: 1997 ident: e_1_2_9_49_1 article-title: Reduced Na+ uptake in the NaCl‐hypersensitive sos1 mutant of Arabidopsis thaliana publication-title: Plant Physiol doi: 10.1104/pp.113.3.795 – ident: e_1_2_9_78_1 doi: 10.1016/S0743-0167(99)00055-8 – ident: e_1_2_9_133_1 doi: 10.1093/jxb/eri138 – ident: e_1_2_9_136_1 doi: 10.1016/j.febslet.2007.04.032 – ident: e_1_2_9_137_1 doi: 10.1038/nbt766 – ident: e_1_2_9_16_1 doi: 10.1093/emboj/cdg207 – ident: e_1_2_9_76_1 doi: 10.1146/annurev.arplant.51.1.463 – ident: e_1_2_9_28_1 doi: 10.1111/j.1365-3040.2005.01364.x – volume: 51 start-page: 69 year: 1999 ident: e_1_2_9_105_1 article-title: Genetic variation for improving the salt tolerance of durum wheat publication-title: Austr J Agric Res doi: 10.1071/AR99057 – ident: e_1_2_9_118_1 doi: 10.1034/j.1399-3054.2000.100106.x – ident: e_1_2_9_37_1 doi: 10.1111/j.1399-3054.1991.tb02129.x – volume: 9 start-page: 2281 year: 1997 ident: e_1_2_9_121_1 article-title: The HAK1 gene of barley is a member of a large gene family and encodes a high‐affinity potassium transporter publication-title: Plant Cell |
SSID | ssj0016612 |
Score | 2.5016854 |
SecondaryResourceType | review_article |
Snippet | Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the... Salinity is a major abiotic stress affecting approximately 7% of the world’s total land area resulting in billion dollar losses in crop production around the... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 651 |
SubjectTerms | abiotic stress Adaptation to environment and cultivation conditions Adaptation, Physiological Adaptation, Physiological - drug effects Agronomy. Soil science and plant productions Biological and medical sciences calcium crop losses crop production drug effects electrophysiology Fundamental and applied biological sciences. Psychology genes genetic traits genetics Genetics and breeding of economic plants homeostasis Homeostasis - drug effects Homeostasis - genetics inheritance (genetics) Ion Transport Ion Transport - drug effects metabolism molecular genetics pharmacology plant breeders plant genetics plant tissues planting Plants Plants - drug effects Plants - genetics Plants - metabolism polyamines potassium Potassium - metabolism salinity salt tolerance Sodium Chloride Sodium Chloride - pharmacology solutes transporters Varietal selection. Specialized plant breeding, plant breeding aims |
Title | Potassium transport and plant salt tolerance |
URI | https://api.istex.fr/ark:/67375/WNG-T1K8J1DW-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2007.01008.x https://www.ncbi.nlm.nih.gov/pubmed/18724408 https://www.proquest.com/docview/20892511 https://www.proquest.com/docview/47695520 https://www.proquest.com/docview/69459606 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFUl5NoSUHxImsEsfx48irVKWqVtBVe7Ps2OGwS1J1s1LbX8-Mkw0EtVKFuPlgW_J4xvNN_OUzIW8qSg2UsnkiKiYS5pxJIM_nCS_LjBrpU-sCy_eYH8zY4Vlx1vOf8F-YTh9i-OCGkRHOawxwY5fjIIfkmoC_sl6JEHVqJognkbqF-OjboCSVQRrqhMPzLFGQM8eknhsnGmWq-5VpAL-i6S-RP2mWYMKqe_viJnA6xrohWe1vkvl6mR1HZT5ZtXZSXv-lAPl_7PCYPOoxbfy-c8Itcs_XT8iDDw3gzqun5N0UGhB5q59xu1ZSj03t4vMF7Gq8NIs2bpuFx1X6Z2S2__nk40HSv9GQlDyHAlRwK4sid15aOA2coLLkqgLYkLoqr1yRq9QK54QRFjpyCSjZAOIwzKqyFM7kz8lG3dR-G_bDK2l5mfEgQ6iUZZQGEeXCUc9SGRGx3g9d9gLm-I7GQv9RyIApNJoCn9cUOphCX0YkG0aedyIedxizDVuuzQ84a_XsO8UbXtRQpamIyNvgB8Nc5mKO_DhR6NPjL_ok-yoPs0-n-igieyNHGQZQALWUSxqR12vP0RDWeFdjat-sltBDKqz-bu_BBFdFQdPbe3DFCixQI_Kic8rfi5eCsmBSHlzrzlbR0-kRtnb-deBL8rBj3CCF8hXZaC9WfhdgXWv3QsD-Ar7aNt4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQku5U3Do80BOJFV4iS2c-AALGXbXVYr2FV7c53Y4dBtUnWzYstf46_wYxjnBUGtVCH1wC0HO0rG3_ibiSffALxICZGYyvoOSwPmBEpJB3ned2iSeERy7caqrPId08Es2D8MD9fgR_MvTKUP0X5wM55R7tfGwc0H6a6XI7s6CNigliI0QjW9VV1hOdTn3zB_W7zZ6-NivyRk98P0_cCpWww4CfUxf2I05mHoK81jBLNihCc0SpH1XJX6qQr9yI2ZUkyyGAdSjkGeRMKUQRwlCVPSx_uuww3TUNwI9_c_t9pVHhJfJVXue06ELN0tI7rwyTvcuJ7KHCNms9grU7EpF7hoadVt46JwuBtdl_S4ewd-NoatqmKOe8si7iXf_9Kc_E8tfxc267Ddflv52T1Y09l9uPkux9D6_AG8nuAFbi7LE7toxOJtmSn7dI7AtRdyXthFPtfGrPohzK7lSR_BRpZnegsBoCMe08SjpdJiFMUBIaVOdKiIDlxuAWsAIJJao920CpmLP3I1NL0wpjcdRJkoTS9WFnjtzNNKp-QKc7YQY0J-RToRsy_EHGIbmVjiMgtelcBr7yXPjk0JIAvFwfijmHpDvu_1D8TIgu0OMtsJBON2QjmxYKeBqsCdyxxHyUznywWO4JFJcC8fETAahSFxLx9BoyA0ObgFjysv-P3ynJGgNCktsXxlq4jJZGSunvzrxB24NZh-GonR3nj4FG5XBUamYvQZbBRnS_0co9gi3i53CxuOrttJfgGHpJTP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSEuvKHm0foAnHBkr9f7OHAAQmibKIqgUXtb1t41h4YkahyR8tP4K_wZZv0IGLVShdQDNx92V-t57DfjHX8D8DwnRGMqGwc8pzygxugAcT4OWJZFRAsbpqas8h2yvTE9OE6ON-BH8y9MxQ-x_uDmPKM8r52Dz03ednIE1wDtldZMhI6nprOqCyz79uwbpm-L1_td1PULQnrvD9_tBXWHgSBjMaZPnKUiSWJjRYq2bDgRGZM5gl5o8jg3SSzDlBvDNU9xIBMY42nES01TmWXc6BjX3YRrlIXStY3oflxTV0WIexVTeRwFEkG6XUV07s5b0LiZ6xkGzE7XK1ewqReos7xqtnFeNNwOrkt07N2Gn41cq6KYk86ySDvZ978oJ_9Pwd-BW3XQ7r-pvOwubNjpPbj-doaB9dl9eDXCBzxall_9oqGK9_XU-PMJmq2_0JPCL2YT66RqH8D4Snb6ELams6ndRv1bKVKWRazkWZQypYSULNGJIZaGwgPe6F9lNUO7axQyUX9kaih65UTv-odyVYperTyI1jPnFUvJJeZso4kp_QXBRI0_EXeF7UhiScg9eFna3XotfXriCgB5oo6GH9Rh1BcHUfdIDTzYaRnmegLBqJ0wQTzYbSxV4bnlLqP01M6WCxwhpEtvLx5BOZNJQsKLRzBJE5eBe_CocoLfLy84oaVIWWnKl5aKGo0G7unxv07chRujbk8N9of9J3Czqi5y5aJPYas4XdpnGMIW6U55Vvjw-ap95BcAoJN- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physiologia+plantarum&rft.atitle=Potassium+transport+and+plant+salt+tolerance&rft.au=SHABALA%2C+Sergey&rft.au=CUIN%2C+Tracey+A&rft.date=2008-08-01&rft.pub=Blackwell&rft.issn=0031-9317&rft.volume=133&rft.issue=4&rft.spage=651&rft.epage=669&rft_id=info:doi/10.1111%2Fj.1399-3054.2007.01008.x&rft.externalDBID=n%2Fa&rft.externalDocID=20592682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon |