Potassium transport and plant salt tolerance

Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosoli...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 133; no. 4; pp. 651 - 669
Main Authors Shabala, Sergey, Cuin, Tracey A
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2008
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K⁺/Na⁺ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na⁺ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K⁺ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K⁺ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
AbstractList Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K⁺/Na⁺ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na⁺ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K⁺ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K⁺ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Salinity is a major abiotic stress affecting approximately 7% of the world’s total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K + /Na + ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na + uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K + transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K + transport ‘markers’ are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of ‘salt tolerance’ genes is analysed, and prospects for future research and breeding are examined.
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Author Shabala, Sergey
Cuin, Tracey A.
Author_xml – sequence: 1
  fullname: Shabala, Sergey
– sequence: 2
  fullname: Cuin, Tracey A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20592682$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18724408$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFvwDZwKoJ99rxa0ElVGh5jNqRaNWl5SQOypBJhtijTv89TjMMEpvWG1u63znXOueIHHR95whJEDKM5_0yQ6Z1yoDnGQWQGSCAyrbPyGw_OCAzAIapZigPyZH3SwAUAukLcohK0jwHNSMniz5Y75vNKgmD7fy6H0JiuypZt7YLibdtSELfujgr3UvyvLatd6929zG5Of98ffYlnV9dfD37OE9LwaRKpSgU56xyqsgBKklVKXSNCqGqWV1xpqGQVSWtLCIolMLCIoLNC12WsrLsmLybfNdD_3vjfDCrxpeujV9y_cYboXOuBYhHwVwKzTmFR0EKSlOOGMHXO3BTrFxl1kOzssO9-ZtYBN7uAOtL29ZjMI3fcxS4pkLRyKmJK4fe-8HV_6zAjCWapRm7MmNXZizRPJRotlF6-p-0bIINTd_Fipr2KQYfJoO7pnX3T15sFov5-Ir6dNI3PrjtXm-HX0ZIJrm5vbww1_hdfcNPt2Ye-TcTX9ve2J9DzOPmBwVkABoZBcn-ANuuyz4
CODEN PHPLAI
CitedBy_id crossref_primary_10_1007_s00344_019_09957_2
crossref_primary_10_1104_pp_112_195370
crossref_primary_10_1007_s11738_015_2046_x
crossref_primary_10_1080_11263504_2020_1756975
crossref_primary_10_1093_plcell_koac292
crossref_primary_10_1016_j_envexpbot_2013_11_016
crossref_primary_10_3389_fpls_2022_804716
crossref_primary_10_3390_agronomy11040780
crossref_primary_10_1111_j_1365_3040_2012_02504_x
crossref_primary_10_1007_s11738_012_1128_2
crossref_primary_10_1007_s10343_022_00685_4
crossref_primary_10_3390_agriculture8030043
crossref_primary_10_1007_s11356_023_31730_y
crossref_primary_10_1016_j_agwat_2015_09_027
crossref_primary_10_1016_j_plaphy_2016_10_011
crossref_primary_10_1111_j_1365_3040_2010_02118_x
crossref_primary_10_1007_s10725_021_00781_x
crossref_primary_10_1016_j_gene_2018_08_025
crossref_primary_10_1093_treephys_tpaa142
crossref_primary_10_1016_j_plaphy_2016_02_039
crossref_primary_10_3389_fpls_2017_02032
crossref_primary_10_3389_fpls_2018_00714
crossref_primary_10_1128_AEM_01533_18
crossref_primary_10_1071_CP14190
crossref_primary_10_3390_plants10040696
crossref_primary_10_1590_1678_4685_gmb_2016_0106
crossref_primary_10_1007_s11738_016_2101_2
crossref_primary_10_1016_j_envexpbot_2020_104224
crossref_primary_10_1016_j_envexpbot_2010_05_001
crossref_primary_10_1111_pce_12109
crossref_primary_10_1093_mp_ssp102
crossref_primary_10_1111_pce_12599
crossref_primary_10_1021_acs_jafc_7b03398
crossref_primary_10_1111_pce_13441
crossref_primary_10_1016_j_stress_2023_100137
crossref_primary_10_3390_plants12040774
crossref_primary_10_17221_62_2011_PPS
crossref_primary_10_3389_fpls_2016_01980
crossref_primary_10_1093_jxb_err280
crossref_primary_10_1093_g3journal_jkab275
crossref_primary_10_1016_j_envexpbot_2013_10_003
crossref_primary_10_1111_nph_18762
crossref_primary_10_1093_jxb_ert460
crossref_primary_10_3389_fpls_2014_00154
crossref_primary_10_1016_j_plaphy_2015_08_016
crossref_primary_10_1111_pbi_13332
crossref_primary_10_1007_s10725_021_00726_4
crossref_primary_10_1016_j_plaphy_2025_109492
crossref_primary_10_1016_j_scienta_2010_07_027
crossref_primary_10_1111_pbr_12623
crossref_primary_10_1002_ldr_4237
crossref_primary_10_1016_j_ecoenv_2019_109814
crossref_primary_10_1111_tpj_14697
crossref_primary_10_1007_s10535_018_0823_2
crossref_primary_10_1093_jxb_eraa354
crossref_primary_10_1016_j_micres_2018_07_008
crossref_primary_10_3389_fpls_2022_859224
crossref_primary_10_1111_pce_14745
crossref_primary_10_20289_zfdergi_426553
crossref_primary_10_2139_ssrn_4092916
crossref_primary_10_1007_s42729_019_00073_4
crossref_primary_10_1146_annurev_phyto_073009_114450
crossref_primary_10_1371_journal_pone_0134822
crossref_primary_10_1007_s13762_022_04427_x
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_3389_fpls_2019_01040
crossref_primary_10_61186_flowerjournal_8_1_183
crossref_primary_10_1007_s11756_024_01810_6
crossref_primary_10_1016_j_jplph_2015_07_002
crossref_primary_10_1016_j_envexpbot_2012_07_004
crossref_primary_10_3389_fpls_2016_01787
crossref_primary_10_1111_ppl_12827
crossref_primary_10_1016_j_agwat_2018_08_037
crossref_primary_10_1016_j_scienta_2011_11_025
crossref_primary_10_1111_nph_20428
crossref_primary_10_3390_agriculture15030254
crossref_primary_10_1111_pce_12585
crossref_primary_10_1016_j_febslet_2014_01_062
crossref_primary_10_1111_pce_12586
crossref_primary_10_3390_cells11142174
crossref_primary_10_1007_s11120_009_9441_3
crossref_primary_10_3390_ijms23158519
crossref_primary_10_1186_s12864_023_09859_4
crossref_primary_10_1016_S2095_3119_20_63277_4
crossref_primary_10_52547_jcb_14_43_201
crossref_primary_10_1016_j_envexpbot_2018_05_007
crossref_primary_10_1186_s12284_023_00637_0
crossref_primary_10_1093_jxb_erv435
crossref_primary_10_1007_s13201_021_01395_4
crossref_primary_10_1186_1471_2164_15_1040
crossref_primary_10_1007_s00468_018_1790_0
crossref_primary_10_1007_s12374_023_09382_9
crossref_primary_10_1080_01904167_2016_1201107
crossref_primary_10_3390_ijms241914762
crossref_primary_10_1007_s00425_020_03493_0
crossref_primary_10_3390_agriculture12050594
crossref_primary_10_1016_j_stress_2025_100775
crossref_primary_10_1016_j_envexpbot_2018_05_013
crossref_primary_10_1021_cr900052g
crossref_primary_10_14348_molcells_2014_0141
crossref_primary_10_1371_journal_pone_0181450
crossref_primary_10_1007_s40415_020_00675_8
crossref_primary_10_1093_jxb_eru351
crossref_primary_10_1093_pcp_pcx026
crossref_primary_10_1111_nph_19896
crossref_primary_10_1139_a11_003
crossref_primary_10_48130_TP_2023_0020
crossref_primary_10_1016_j_jplph_2016_10_009
crossref_primary_10_1515_opag_2018_0043
crossref_primary_10_3389_fpls_2020_00457
crossref_primary_10_1016_j_scienta_2019_01_038
crossref_primary_10_1111_j_1399_3054_2011_01445_x
crossref_primary_10_32615_bp_2021_044
crossref_primary_10_1016_j_mtcomm_2023_107093
crossref_primary_10_1016_j_plaphy_2025_109685
crossref_primary_10_1071_FP15391
crossref_primary_10_1007_s12892_017_0030_0
crossref_primary_10_1111_pce_14943
crossref_primary_10_3389_fpls_2017_01326
crossref_primary_10_1104_pp_114_246520
crossref_primary_10_1007_s11738_018_2745_1
crossref_primary_10_1016_j_scienta_2019_05_067
crossref_primary_10_1111_jac_12387
crossref_primary_10_1134_S1021443718020188
crossref_primary_10_3390_plants10102196
crossref_primary_10_1016_j_plaphy_2011_10_012
crossref_primary_10_1111_ppl_12223
crossref_primary_10_1007_s00344_023_10967_4
crossref_primary_10_1016_j_jtbi_2015_08_024
crossref_primary_10_1093_treephys_tps119
crossref_primary_10_3390_su13063369
crossref_primary_10_1007_s11104_011_1109_z
crossref_primary_10_1016_j_envexpbot_2017_08_010
crossref_primary_10_1093_jxb_ert085
crossref_primary_10_1371_journal_pone_0053136
crossref_primary_10_56093_ijas_v92i9_91277
crossref_primary_10_1111_j_1365_3040_2012_02511_x
crossref_primary_10_3389_fpls_2020_616077
crossref_primary_10_3390_ijms241612853
crossref_primary_10_1038_srep11391
crossref_primary_10_15252_embj_2019103256
crossref_primary_10_1002_jpln_201200417
crossref_primary_10_3390_plants13060849
crossref_primary_10_1111_j_1399_3054_2012_01599_x
crossref_primary_10_1002_jpln_201200414
crossref_primary_10_1007_s42976_021_00205_6
crossref_primary_10_1007_s11771_019_4004_z
crossref_primary_10_1371_journal_pone_0057767
crossref_primary_10_3389_fgene_2021_663941
crossref_primary_10_3389_fmicb_2016_01246
crossref_primary_10_1111_pce_12504
crossref_primary_10_1016_j_jplph_2015_12_009
crossref_primary_10_3390_genes13081313
crossref_primary_10_1111_jac_12161
crossref_primary_10_1007_s00122_010_1479_2
crossref_primary_10_1016_j_scienta_2021_109935
crossref_primary_10_1556_CRC_2014_0045
crossref_primary_10_1080_15324982_2016_1148799
crossref_primary_10_1016_j_gene_2013_12_021
crossref_primary_10_1007_s11240_016_0940_6
crossref_primary_10_1007_s11738_020_03098_w
crossref_primary_10_3390_ijms14047370
crossref_primary_10_1146_annurev_arplant_042916_040936
crossref_primary_10_3389_fpls_2022_1019169
crossref_primary_10_1007_s12374_016_0905_7
crossref_primary_10_3390_ijms23179900
crossref_primary_10_1016_j_jplph_2019_153108
crossref_primary_10_1093_jxb_erx429
crossref_primary_10_1007_s00709_014_0728_7
crossref_primary_10_1007_s00344_024_11278_y
crossref_primary_10_1007_s00344_024_11474_w
crossref_primary_10_1111_ppl_13107
crossref_primary_10_3390_agriculture13112146
crossref_primary_10_1007_s11104_013_1891_x
crossref_primary_10_32615_ps_2020_025
crossref_primary_10_1007_s11240_010_9768_7
crossref_primary_10_1016_j_plaphy_2022_10_021
crossref_primary_10_1007_s13562_021_00741_6
crossref_primary_10_1016_j_envexpbot_2012_09_006
crossref_primary_10_1016_j_isci_2019_10_043
crossref_primary_10_1007_s00425_015_2400_7
crossref_primary_10_1016_j_apsoil_2015_08_008
crossref_primary_10_1371_journal_pone_0048829
crossref_primary_10_1038_s41598_019_45719_6
crossref_primary_10_1093_bbb_zbad020
crossref_primary_10_1093_treephys_tpp048
crossref_primary_10_1016_j_ecoenv_2019_109397
crossref_primary_10_4236_ajps_2019_1012162
crossref_primary_10_3390_su15054512
crossref_primary_10_1007_s13562_022_00775_4
crossref_primary_10_1111_jipb_12238
crossref_primary_10_1007_s10725_010_9517_2
crossref_primary_10_1007_s10811_020_02284_0
crossref_primary_10_1007_s11104_015_2539_9
crossref_primary_10_1105_tpc_113_115659
crossref_primary_10_1186_s40659_015_0055_2
crossref_primary_10_1007_s11738_017_2379_8
crossref_primary_10_1007_s13580_024_00673_9
crossref_primary_10_3389_fpls_2017_01143
crossref_primary_10_1016_j_jplph_2015_05_002
crossref_primary_10_1016_j_scitotenv_2021_150705
crossref_primary_10_1016_j_agwat_2019_105841
crossref_primary_10_3389_fpls_2022_989946
crossref_primary_10_3390_plants12020295
crossref_primary_10_1016_j_sajb_2023_11_033
crossref_primary_10_1111_jac_12122
crossref_primary_10_1071_FP16025
crossref_primary_10_1111_plb_13216
crossref_primary_10_1111_ppl_12447
crossref_primary_10_1016_j_jplph_2016_12_007
crossref_primary_10_1016_j_plantsci_2018_04_018
crossref_primary_10_1016_j_envexpbot_2015_12_006
crossref_primary_10_1111_jac_12126
crossref_primary_10_1111_ppl_12441
crossref_primary_10_11118_actaun201967061503
crossref_primary_10_1093_jxb_erw378
crossref_primary_10_3390_agriculture11080708
crossref_primary_10_1007_s11104_011_0934_4
crossref_primary_10_1016_j_envexpbot_2021_104734
crossref_primary_10_36610_j_jsab_2020_080200110x
crossref_primary_10_1007_s00709_017_1138_4
crossref_primary_10_1016_j_scienta_2014_04_032
crossref_primary_10_1007_s10661_015_4365_1
crossref_primary_10_1111_jac_12352
crossref_primary_10_1093_pcp_pcq007
crossref_primary_10_1111_ppl_12217
crossref_primary_10_1007_s12517_020_06334_2
crossref_primary_10_3390_agronomy10050722
crossref_primary_10_1111_nph_13714
crossref_primary_10_1016_j_plaphy_2023_108194
crossref_primary_10_3389_fpls_2024_1364826
crossref_primary_10_1111_j_1399_3054_2012_01621_x
crossref_primary_10_3390_ijms20153729
crossref_primary_10_3390_horticulturae10101062
crossref_primary_10_1021_acs_energyfuels_0c03355
crossref_primary_10_1007_s42452_020_03843_3
crossref_primary_10_1007_s10725_021_00754_0
crossref_primary_10_3390_cells11152338
crossref_primary_10_1016_j_jplph_2014_01_015
crossref_primary_10_17221_449_2024_PSE
crossref_primary_10_1016_j_plaphy_2021_09_031
crossref_primary_10_1002_jpln_201500547
crossref_primary_10_1016_j_rsci_2019_05_001
crossref_primary_10_1093_jxb_ery251
crossref_primary_10_1093_aobpla_plx025
crossref_primary_10_1371_journal_pone_0124032
crossref_primary_10_1007_s11738_019_2881_2
crossref_primary_10_1111_j_1467_7652_2011_00661_x
crossref_primary_10_1111_nph_15605
crossref_primary_10_1186_s40659_019_0246_3
crossref_primary_10_1111_j_1365_3040_2010_02266_x
crossref_primary_10_1007_s42729_023_01144_3
crossref_primary_10_3389_fpls_2017_01739
crossref_primary_10_1016_j_plaphy_2023_108187
crossref_primary_10_1002_jsfa_6825
crossref_primary_10_1021_acssensors_4c01352
crossref_primary_10_3389_fpls_2020_573564
crossref_primary_10_1016_j_envexpbot_2015_11_010
crossref_primary_10_1007_s11738_020_03136_7
crossref_primary_10_1071_FP15200
crossref_primary_10_3390_plants10071401
crossref_primary_10_1111_j_1365_313X_2009_04110_x
crossref_primary_10_1016_j_jplph_2014_01_009
crossref_primary_10_1186_s12870_018_1317_2
crossref_primary_10_3389_fpls_2021_753332
crossref_primary_10_3390_f9100601
crossref_primary_10_1007_s11738_014_1709_3
crossref_primary_10_3389_fpls_2017_00856
crossref_primary_10_1016_j_envexpbot_2016_04_002
crossref_primary_10_3390_f13122178
crossref_primary_10_1016_j_envexpbot_2015_11_006
crossref_primary_10_3389_fpls_2022_1097076
crossref_primary_10_1007_s00232_023_00279_9
crossref_primary_10_1016_j_sajb_2023_07_051
crossref_primary_10_1007_s11738_012_0925_y
crossref_primary_10_1002_pld3_238
crossref_primary_10_1111_ppl_13056
crossref_primary_10_1016_j_plaphy_2018_02_013
crossref_primary_10_1111_ppl_70057
crossref_primary_10_15406_hij_2019_03_00126
crossref_primary_10_1016_j_jplph_2022_153863
crossref_primary_10_1639_0007_2745_119_1_001
crossref_primary_10_1111_j_1469_8137_2010_03551_x
crossref_primary_10_3390_ijms23094472
crossref_primary_10_1371_journal_pone_0080595
crossref_primary_10_3390_f14061110
crossref_primary_10_1016_j_plantsci_2020_110492
crossref_primary_10_1002_jpln_201200230
crossref_primary_10_3390_horticulturae10010031
crossref_primary_10_1071_FP13241
crossref_primary_10_1186_s42269_021_00576_0
crossref_primary_10_1016_j_cj_2022_03_004
crossref_primary_10_1093_pcp_pcr096
crossref_primary_10_1016_j_plantsci_2011_10_011
crossref_primary_10_3389_fmicb_2020_562934
crossref_primary_10_1016_j_jplph_2009_06_013
crossref_primary_10_36610_j_jsab_2020_080200110
crossref_primary_10_1016_j_plantsci_2020_110668
crossref_primary_10_1007_s00572_018_0856_6
crossref_primary_10_3389_fpls_2020_599501
crossref_primary_10_1007_s12298_010_0027_5
crossref_primary_10_3389_fpls_2017_01766
crossref_primary_10_3390_su131910986
crossref_primary_10_1007_s11033_012_2481_3
crossref_primary_10_5511_plantbiotechnology_23_0721a
crossref_primary_10_1111_jac_12068
crossref_primary_10_1016_j_plaphy_2017_08_002
crossref_primary_10_3390_agronomy15020309
crossref_primary_10_1093_hr_uhac113
crossref_primary_10_1007_s11103_013_0011_x
crossref_primary_10_1007_s00253_022_11897_z
crossref_primary_10_1016_j_envexpbot_2022_104896
crossref_primary_10_1371_journal_pone_0066090
crossref_primary_10_1080_00380768_2016_1172022
crossref_primary_10_1007_s00344_018_9830_y
crossref_primary_10_1007_s11356_015_5361_2
crossref_primary_10_1080_1343943X_2016_1210990
crossref_primary_10_3390_plants12091737
crossref_primary_10_1007_s11103_014_0278_6
crossref_primary_10_3390_f9100643
crossref_primary_10_1007_s42729_023_01571_2
crossref_primary_10_1007_s44154_021_00016_z
crossref_primary_10_1016_j_jplph_2010_08_016
crossref_primary_10_1007_s11033_012_1551_x
crossref_primary_10_2139_ssrn_4663385
crossref_primary_10_1093_aob_mcq027
crossref_primary_10_3390_molecules23071518
crossref_primary_10_1007_s00344_015_9513_x
crossref_primary_10_1016_j_plaphy_2017_08_024
crossref_primary_10_1094_MPMI_02_17_0027_R
crossref_primary_10_1016_j_apsoil_2016_03_015
crossref_primary_10_1093_pcp_pcr061
crossref_primary_10_1111_ppl_12165
crossref_primary_10_1128_MMBR_00042_09
crossref_primary_10_1093_jxb_erz367
crossref_primary_10_1071_FP23089
crossref_primary_10_1080_01904167_2022_2072741
crossref_primary_10_1016_j_jplph_2013_08_008
crossref_primary_10_1071_FP14132
crossref_primary_10_1111_ppl_14358
crossref_primary_10_1021_acssuschemeng_2c02170
crossref_primary_10_32604_phyton_2021_014951
crossref_primary_10_1007_s11120_020_00771_6
crossref_primary_10_4161_psb_4_4_7918
crossref_primary_10_1071_CP11071
crossref_primary_10_1186_s12870_023_04060_x
crossref_primary_10_3389_fpls_2021_680131
crossref_primary_10_1071_FP20185
crossref_primary_10_1111_j_1365_3040_2011_02291_x
crossref_primary_10_1016_j_envexpbot_2025_106092
crossref_primary_10_1371_journal_pgen_1007798
crossref_primary_10_1007_s10725_017_0262_7
crossref_primary_10_1016_j_sajb_2021_08_033
crossref_primary_10_1111_jipb_12842
crossref_primary_10_1093_plphys_kiad435
crossref_primary_10_3390_plants12132459
crossref_primary_10_1016_j_dendro_2024_126234
crossref_primary_10_5424_sjar_20110902_184_10
crossref_primary_10_1016_j_envexpbot_2019_01_006
crossref_primary_10_3389_fpls_2019_01086
crossref_primary_10_1080_03650340_2015_1095292
crossref_primary_10_17221_22_2015_PSE
crossref_primary_10_1007_s11104_012_1335_z
crossref_primary_10_1016_j_envexpbot_2024_105706
crossref_primary_10_1038_s41598_020_60922_6
crossref_primary_10_1007_s11738_010_0543_5
crossref_primary_10_1093_jxb_ert402
crossref_primary_10_3390_plants12101952
crossref_primary_10_1007_s10535_011_0111_x
crossref_primary_10_1186_s12870_019_2085_3
crossref_primary_10_1016_j_fcr_2019_107678
crossref_primary_10_1111_j_1439_037X_2009_00412_x
crossref_primary_10_14348_molcells_2016_0083
crossref_primary_10_1111_j_1438_8677_2009_00301_x
crossref_primary_10_1093_jxb_erp013
crossref_primary_10_3390_ijms25115648
crossref_primary_10_3389_fpls_2022_896436
crossref_primary_10_24180_ijaws_1486972
crossref_primary_10_1071_FP20167
crossref_primary_10_1007_s00344_012_9287_3
crossref_primary_10_1093_plphys_kiac564
crossref_primary_10_1007_s00344_020_10097_1
crossref_primary_10_1016_j_tplants_2015_06_008
crossref_primary_10_1016_j_envexpbot_2024_105982
crossref_primary_10_1016_j_iswcr_2016_04_001
crossref_primary_10_1071_CP16311
crossref_primary_10_1080_01904167_2018_1554078
crossref_primary_10_3389_fpls_2014_00430
crossref_primary_10_3390_plants11192548
crossref_primary_10_1007_s00299_024_03292_x
crossref_primary_10_3390_ijms23084272
crossref_primary_10_1016_j_scienta_2021_110229
crossref_primary_10_1007_s42729_024_02145_6
crossref_primary_10_1111_1440_1703_12466
crossref_primary_10_1016_j_envexpbot_2022_105131
crossref_primary_10_3390_ijms21155292
crossref_primary_10_3390_ijms23169428
crossref_primary_10_3390_plants13071036
crossref_primary_10_3389_fpls_2016_01716
crossref_primary_10_1007_s00344_024_11601_7
crossref_primary_10_1093_jxb_ers343
crossref_primary_10_4081_pb_2016_6402
crossref_primary_10_3390_agronomy11061040
crossref_primary_10_3390_plants10112477
crossref_primary_10_1016_j_jgg_2023_08_007
crossref_primary_10_1016_S2095_3119_18_61998_7
crossref_primary_10_1007_s11738_014_1548_2
crossref_primary_10_1093_jxb_eru528
crossref_primary_10_1016_j_jplph_2008_12_009
crossref_primary_10_4236_ajps_2018_95081
crossref_primary_10_3390_antiox8040081
crossref_primary_10_1007_s11104_011_1001_x
crossref_primary_10_1007_s40502_023_00726_8
crossref_primary_10_1071_FP23023
crossref_primary_10_1186_s40168_024_01969_9
crossref_primary_10_3390_plants13071046
crossref_primary_10_1007_s00344_022_10819_7
crossref_primary_10_1093_aob_mcu217
crossref_primary_10_4081_ija_2019_1182
crossref_primary_10_1007_s10725_020_00619_y
crossref_primary_10_1080_00103624_2023_2276270
crossref_primary_10_1093_aob_mcu219
crossref_primary_10_1007_s00299_020_02642_9
crossref_primary_10_1007_s10725_019_00519_w
crossref_primary_10_1111_pce_15212
crossref_primary_10_1007_s10142_016_0507_y
crossref_primary_10_3390_su16072825
crossref_primary_10_4161_psb_4_1_7269
crossref_primary_10_1007_s11104_024_07101_y
crossref_primary_10_1007_s11258_020_01043_y
crossref_primary_10_1111_pce_12180
crossref_primary_10_2139_ssrn_4017452
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1021_acsearthspacechem_2c00105
crossref_primary_10_3389_fpls_2016_00848
crossref_primary_10_1111_tpj_16660
crossref_primary_10_1016_j_plaphy_2013_03_004
crossref_primary_10_1007_s11032_013_9851_y
crossref_primary_10_3390_horticulturae8060519
crossref_primary_10_5338_KJEA_2019_38_1_8
crossref_primary_10_1016_j_plantsci_2015_03_006
crossref_primary_10_1007_s13205_022_03136_z
crossref_primary_10_56150_tjhsl_1263608
crossref_primary_10_1186_s40659_020_00305_3
crossref_primary_10_1371_journal_pone_0060183
crossref_primary_10_1007_s00203_020_02038_z
crossref_primary_10_3390_agronomy14061259
crossref_primary_10_1093_aobpla_plab072
crossref_primary_10_1186_s12870_023_04558_4
crossref_primary_10_1080_01904167_2013_766210
crossref_primary_10_3389_fpls_2014_00631
crossref_primary_10_3390_ijms25179480
crossref_primary_10_1007_s11738_013_1325_7
crossref_primary_10_1016_j_plantsci_2017_07_006
crossref_primary_10_3389_fpls_2022_969896
crossref_primary_10_4081_ija_2022_2073
crossref_primary_10_1111_pce_14101
crossref_primary_10_1002_ird_2595
crossref_primary_10_3390_antiox13020221
crossref_primary_10_1007_s11270_019_4311_x
crossref_primary_10_1021_acsomega_0c02705
crossref_primary_10_1007_s00344_019_10004_3
crossref_primary_10_1073_pnas_2114347118
crossref_primary_10_1371_journal_pbio_3001772
crossref_primary_10_1016_j_ecoenv_2020_110374
crossref_primary_10_3389_ffgc_2019_00053
crossref_primary_10_1016_j_ecoenv_2025_118012
crossref_primary_10_1007_s11104_024_06770_z
crossref_primary_10_1093_pcp_pcz120
crossref_primary_10_1080_15226514_2024_2438772
crossref_primary_10_1016_j_gene_2023_147485
crossref_primary_10_1111_tpj_14580
crossref_primary_10_1007_s00468_015_1233_0
crossref_primary_10_3389_fpls_2019_01361
crossref_primary_10_3389_fpls_2019_00032
crossref_primary_10_1007_s11104_010_0395_1
crossref_primary_10_1007_s00425_014_2117_z
crossref_primary_10_1093_treephys_tpaa022
crossref_primary_10_3390_antiox10101605
crossref_primary_10_1007_s00344_022_10644_y
crossref_primary_10_1080_01904167_2021_2020828
crossref_primary_10_1016_j_plantsci_2016_08_009
crossref_primary_10_1016_j_plaphy_2017_12_032
crossref_primary_10_1016_j_envexpbot_2024_105797
crossref_primary_10_7717_peerj_4822
crossref_primary_10_1038_srep12516
crossref_primary_10_1016_j_indcrop_2022_116177
crossref_primary_10_1016_j_freeradbiomed_2017_04_009
crossref_primary_10_3390_agronomy15010148
crossref_primary_10_1016_j_micres_2015_11_004
crossref_primary_10_3390_ijms23031149
crossref_primary_10_1007_s00344_018_9780_4
crossref_primary_10_1016_j_envexpbot_2020_104123
crossref_primary_10_3390_plants11111497
crossref_primary_10_1007_s00425_019_03253_9
crossref_primary_10_3389_fsufs_2020_617978
crossref_primary_10_3390_ijms21010148
crossref_primary_10_1104_pp_113_216572
crossref_primary_10_1242_jcs_064352
crossref_primary_10_1186_s43897_023_00075_y
crossref_primary_10_3390_agronomy14020309
crossref_primary_10_1007_s11104_012_1366_5
crossref_primary_10_3389_fpls_2017_00187
crossref_primary_10_1556_018_68_2018_1_7
crossref_primary_10_1071_FP16187
crossref_primary_10_3390_microorganisms12122551
crossref_primary_10_3390_agronomy10020191
crossref_primary_10_1007_s00344_021_10399_y
crossref_primary_10_1094_MPMI_09_13_0265_R
crossref_primary_10_1111_pbi_13699
crossref_primary_10_1080_00103624_2020_1869768
crossref_primary_10_1016_j_scienta_2009_12_031
crossref_primary_10_1093_jxb_erv528
crossref_primary_10_3390_horticulturae9020228
crossref_primary_10_1007_s10725_014_9913_0
crossref_primary_10_1016_j_plantsci_2016_09_016
crossref_primary_10_1590_S1415_43662011000400012
crossref_primary_10_1186_s12870_022_03728_0
crossref_primary_10_3389_fpls_2019_01139
crossref_primary_10_1104_pp_110_164152
crossref_primary_10_1016_j_plaphy_2020_11_044
crossref_primary_10_3389_fpls_2021_750805
crossref_primary_10_1016_j_jenvman_2024_120524
crossref_primary_10_1093_jxb_eru004
crossref_primary_10_3390_plants12132422
crossref_primary_10_1016_j_pbi_2015_04_007
crossref_primary_10_1071_FP09229
crossref_primary_10_1007_s11104_012_1133_7
crossref_primary_10_1007_s11104_012_1179_6
crossref_primary_10_1016_j_jbiotec_2020_10_018
crossref_primary_10_1016_j_envexpbot_2020_104136
crossref_primary_10_3390_ijms25179404
crossref_primary_10_1016_j_envexpbot_2012_10_001
crossref_primary_10_1016_j_envexpbot_2012_10_004
crossref_primary_10_1016_j_semcdb_2017_08_005
crossref_primary_10_1007_s11104_015_2767_z
crossref_primary_10_1016_j_apsoil_2012_01_006
crossref_primary_10_1007_s11837_009_0048_0
crossref_primary_10_1155_2019_9530963
crossref_primary_10_1016_j_plaphy_2023_107858
crossref_primary_10_1007_s00344_017_9713_7
crossref_primary_10_1093_aob_mcu177
crossref_primary_10_3390_microorganisms11071687
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_1016_j_envexpbot_2023_105252
crossref_primary_10_1016_j_envexpbot_2020_104146
crossref_primary_10_1111_pbr_12934
crossref_primary_10_3389_fpls_2019_00080
crossref_primary_10_3390_ijms24065605
crossref_primary_10_1016_j_envexpbot_2024_105780
crossref_primary_10_3390_ijms24086988
crossref_primary_10_1080_01904167_2020_1739293
crossref_primary_10_1007_s00572_016_0704_5
crossref_primary_10_1186_s12870_019_1663_8
crossref_primary_10_3390_ijms24021141
crossref_primary_10_1016_j_plaphy_2020_11_055
crossref_primary_10_3389_fgene_2023_1274288
crossref_primary_10_1186_s12870_024_05625_0
crossref_primary_10_1016_j_postharvbio_2012_06_003
crossref_primary_10_2112_JCOASTRES_D_10_00013_1
crossref_primary_10_1016_j_scienta_2023_112130
crossref_primary_10_1038_s41598_024_55325_w
crossref_primary_10_1111_ppl_12976
crossref_primary_10_3923_jas_2019_48_55
crossref_primary_10_3390_agronomy15020341
crossref_primary_10_1002_jsfa_10822
crossref_primary_10_3390_ijms20030715
crossref_primary_10_1016_j_plantsci_2017_01_012
crossref_primary_10_3389_fpls_2023_1132877
crossref_primary_10_1016_j_jplph_2024_154322
crossref_primary_10_1080_01904167_2021_1881549
crossref_primary_10_3390_horticulturae8121149
crossref_primary_10_1007_s10681_015_1363_x
crossref_primary_10_1002_pld3_532
crossref_primary_10_1071_FP16120
crossref_primary_10_1007_s11356_024_33072_9
crossref_primary_10_1146_annurev_arplant_042809_112116
crossref_primary_10_1111_ppl_12342
crossref_primary_10_1080_00380768_2018_1492334
crossref_primary_10_1093_jxb_erw236
crossref_primary_10_1007_s00344_020_10291_1
crossref_primary_10_1016_j_envexpbot_2014_06_001
crossref_primary_10_3390_agronomy10050663
crossref_primary_10_3389_fpls_2023_1186036
crossref_primary_10_1080_03650340_2016_1204541
crossref_primary_10_1007_s11103_010_9612_9
crossref_primary_10_1071_FP15288
crossref_primary_10_1007_s13580_018_0057_4
crossref_primary_10_1111_ppl_13449
crossref_primary_10_1007_s11033_014_3539_1
crossref_primary_10_1007_s11738_022_03421_7
crossref_primary_10_1111_jipb_12159
crossref_primary_10_3390_agronomy8030031
crossref_primary_10_1007_s11738_011_0847_0
crossref_primary_10_1007_s11104_016_2922_1
crossref_primary_10_1007_s11032_016_0564_x
crossref_primary_10_1016_j_sajb_2022_10_027
crossref_primary_10_1016_j_envexpbot_2011_08_019
crossref_primary_10_1016_j_scienta_2011_08_018
crossref_primary_10_13080_z_a_2016_103_030
crossref_primary_10_1007_s11104_010_0616_7
crossref_primary_10_1007_s10725_016_0157_z
crossref_primary_10_3390_plants9060786
crossref_primary_10_3390_ijms242316682
crossref_primary_10_1093_aob_mcae152
crossref_primary_10_1016_j_envexpbot_2022_104954
crossref_primary_10_1111_j_1438_8677_2011_00526_x
crossref_primary_10_1016_j_scienta_2022_111182
crossref_primary_10_1071_FP13085
crossref_primary_10_1016_j_ncrops_2025_100067
crossref_primary_10_3389_fpls_2017_00593
crossref_primary_10_3389_fpls_2020_613936
crossref_primary_10_1080_00103624_2014_941855
crossref_primary_10_1016_j_envexpbot_2021_104427
crossref_primary_10_1371_journal_pone_0032124
crossref_primary_10_1038_cr_2010_74
crossref_primary_10_1111_jipb_13022
crossref_primary_10_1002_jpln_201700480
crossref_primary_10_3390_ijms21144862
crossref_primary_10_1016_j_hpj_2019_01_002
crossref_primary_10_3389_fpls_2025_1535943
crossref_primary_10_3389_fpls_2018_00249
crossref_primary_10_1007_s00344_017_9683_9
crossref_primary_10_1038_s41598_022_13150_z
crossref_primary_10_3389_fpls_2019_00217
crossref_primary_10_1093_jxb_erx127
crossref_primary_10_3390_f8060211
crossref_primary_10_1016_j_plantsci_2014_12_010
crossref_primary_10_1016_j_jplph_2014_02_001
crossref_primary_10_1016_j_envexpbot_2014_05_001
crossref_primary_10_3389_fpls_2017_02113
crossref_primary_10_3389_fpls_2017_01023
crossref_primary_10_1007_s40502_024_00782_8
crossref_primary_10_1093_aob_mcw191
crossref_primary_10_1093_jxb_ery461
crossref_primary_10_1016_j_envexpbot_2020_104301
crossref_primary_10_3390_ijms21144882
crossref_primary_10_1111_j_1365_3040_2011_02296_x
crossref_primary_10_3390_life14050595
crossref_primary_10_1007_s00299_010_0872_2
crossref_primary_10_1080_07352689_2011_605739
crossref_primary_10_1016_j_jplph_2016_06_010
crossref_primary_10_3389_fpls_2018_01366
crossref_primary_10_1007_s11738_017_2421_x
crossref_primary_10_1002_sae2_12065
crossref_primary_10_1111_ppl_12325
crossref_primary_10_1071_FP16385
crossref_primary_10_15835_nbha49212310
crossref_primary_10_1111_ppl_12320
crossref_primary_10_1093_jxb_eru072
crossref_primary_10_1016_j_indcrop_2013_12_041
crossref_primary_10_1038_srep34548
crossref_primary_10_1007_s00203_021_02226_5
crossref_primary_10_3390_agronomy10091358
crossref_primary_10_1111_pce_13926
crossref_primary_10_1111_plb_12012
crossref_primary_10_1016_j_cj_2024_03_001
crossref_primary_10_1111_ppl_12337
crossref_primary_10_1002_pld3_543
crossref_primary_10_3390_plants11212884
crossref_primary_10_1186_1471_2148_11_8
crossref_primary_10_3390_ijms14059267
crossref_primary_10_3390_plants10050948
crossref_primary_10_1093_pcp_pct134
crossref_primary_10_1042_BCJ20190435
crossref_primary_10_1007_s11738_018_2617_8
crossref_primary_10_1007_s00425_019_03194_3
crossref_primary_10_1007_s11816_018_0480_0
crossref_primary_10_1111_ajgw_12220
crossref_primary_10_1016_j_envexpbot_2014_08_006
crossref_primary_10_1007_s12011_011_9037_6
crossref_primary_10_1093_aobpla_plw055
crossref_primary_10_1093_jxb_erz462
crossref_primary_10_1016_j_ijbiomac_2025_142321
crossref_primary_10_3389_fmicb_2017_01945
crossref_primary_10_1007_s00344_022_10584_7
crossref_primary_10_1007_s00344_024_11551_0
crossref_primary_10_1146_annurev_arplant_050718_100005
crossref_primary_10_1002_cbf_3798
crossref_primary_10_1016_j_plaphy_2021_02_032
crossref_primary_10_3390_plants9040507
crossref_primary_10_1016_j_envexpbot_2009_05_008
crossref_primary_10_1038_s41598_018_31917_1
crossref_primary_10_1007_s11738_011_0747_3
crossref_primary_10_1016_j_envexpbot_2011_11_020
crossref_primary_10_2478_s11756_014_0412_6
crossref_primary_10_3390_plants11233347
crossref_primary_10_1134_S1995425524700392
crossref_primary_10_1111_jipb_13642
crossref_primary_10_1016_j_jplph_2015_03_014
crossref_primary_10_1016_j_plaphy_2018_10_025
crossref_primary_10_3390_agronomy6040054
crossref_primary_10_3389_fpls_2022_1089109
crossref_primary_10_3390_agronomy6040055
crossref_primary_10_1016_j_plantsci_2021_110844
crossref_primary_10_1007_s10535_017_0703_1
crossref_primary_10_1007_s10265_023_01487_z
crossref_primary_10_1007_s42729_021_00492_2
crossref_primary_10_1007_s11104_010_0520_1
crossref_primary_10_1371_journal_pone_0071543
crossref_primary_10_1038_s41598_018_37496_5
crossref_primary_10_3389_fpls_2016_02035
crossref_primary_10_1007_s00344_021_10338_x
crossref_primary_10_3390_genes13091507
crossref_primary_10_1093_pcp_pcs055
crossref_primary_10_1590_S1677_04202009000400002
crossref_primary_10_1002_jobm_202200361
crossref_primary_10_1016_j_sajb_2019_04_027
crossref_primary_10_1007_s40333_019_0002_0
crossref_primary_10_1016_j_plaphy_2015_12_010
crossref_primary_10_1007_s11738_012_1010_2
crossref_primary_10_1080_01904167_2016_1250910
crossref_primary_10_1111_aab_12364
crossref_primary_10_1016_j_plaphy_2025_109522
crossref_primary_10_1007_s11738_015_2009_2
crossref_primary_10_1016_j_jplph_2021_153432
crossref_primary_10_32615_ps_2020_070
crossref_primary_10_18006_2019_7_1__12_24
crossref_primary_10_3390_plants12203551
crossref_primary_10_3390_plants9010065
crossref_primary_10_1038_s41598_017_10022_9
crossref_primary_10_1371_journal_pone_0071328
crossref_primary_10_1111_ppl_13352
crossref_primary_10_1016_j_plaphy_2019_03_028
crossref_primary_10_18016_ksutarimdoga_vi_1278764
crossref_primary_10_1007_s42976_020_00102_4
crossref_primary_10_1016_j_jplph_2018_10_024
crossref_primary_10_1590_s2179_975x4716
crossref_primary_10_1016_j_chnaes_2014_05_002
crossref_primary_10_1016_j_envexpbot_2012_04_015
crossref_primary_10_3390_ma7043160
crossref_primary_10_1021_acsomega_0c01275
crossref_primary_10_7745_KJSSF_2018_51_4_482
crossref_primary_10_1080_01904167_2018_1459695
crossref_primary_10_3390_plants12051190
crossref_primary_10_1016_j_envexpbot_2017_07_018
crossref_primary_10_1016_S1002_0160_20_60029_7
crossref_primary_10_1111_nph_17937
crossref_primary_10_1016_j_jplph_2017_05_002
crossref_primary_10_1515_BMC_2011_032
crossref_primary_10_1016_j_plaphy_2019_03_019
crossref_primary_10_1080_01904167_2018_1459690
crossref_primary_10_1080_13102818_2018_1522972
crossref_primary_10_1016_j_plantsci_2016_03_003
crossref_primary_10_1080_03235408_2019_1648917
crossref_primary_10_1002_csc2_20249
crossref_primary_10_1016_j_indcrop_2024_118441
crossref_primary_10_3390_agronomy10050677
crossref_primary_10_1007_s00299_021_02731_3
crossref_primary_10_1111_nph_15740
crossref_primary_10_1007_s13580_017_1120_2
crossref_primary_10_1093_jxb_erq422
crossref_primary_10_1016_j_scitotenv_2019_01_214
crossref_primary_10_3390_ijms19010235
crossref_primary_10_3389_fpls_2016_02070
crossref_primary_10_1071_FP15330
crossref_primary_10_1111_ppl_12282
crossref_primary_10_1016_j_rsci_2017_10_002
crossref_primary_10_3390_ijms20040815
crossref_primary_10_3390_ijms23095006
crossref_primary_10_1007_s11738_013_1466_8
crossref_primary_10_1016_j_envexpbot_2021_104478
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_1080_23802359_2023_2275833
crossref_primary_10_1007_s00468_021_02246_0
crossref_primary_10_1093_aobpla_plv136
crossref_primary_10_1109_ACCESS_2018_2888507
crossref_primary_10_1080_03650340_2016_1144925
crossref_primary_10_1016_j_scienta_2019_05_013
crossref_primary_10_1111_ppl_12056
crossref_primary_10_1007_s11240_021_02094_3
crossref_primary_10_1080_17429145_2018_1424355
crossref_primary_10_1139_cjss_2017_0113
crossref_primary_10_1590_1807_1929_agriambi_v22n8p553_557
crossref_primary_10_12677_OJNS_2014_22003
crossref_primary_10_1016_j_rhisph_2020_100262
crossref_primary_10_3390_agronomy14123003
crossref_primary_10_3390_plants10112549
crossref_primary_10_1093_aobpla_plu039
crossref_primary_10_1007_s11104_017_3337_3
crossref_primary_10_3390_life13010154
crossref_primary_10_3389_fpls_2022_1053780
crossref_primary_10_1093_aob_mct205
crossref_primary_10_1093_jxb_erq257
crossref_primary_10_1111_j_1365_3040_2008_01914_x
crossref_primary_10_1016_j_ceca_2015_03_001
crossref_primary_10_1016_S2095_3119_13_60244_0
crossref_primary_10_1007_s00425_024_04548_2
crossref_primary_10_1016_j_cj_2021_03_005
crossref_primary_10_1021_acsomega_3c01039
crossref_primary_10_1016_j_envexpbot_2022_105034
crossref_primary_10_1016_j_scienta_2020_109441
crossref_primary_10_1093_aobpla_plu023
crossref_primary_10_1007_s11103_016_0488_1
crossref_primary_10_1007_s11738_013_1311_0
crossref_primary_10_3389_fpls_2014_00787
crossref_primary_10_1155_2014_467395
crossref_primary_10_1007_s00344_023_10992_3
crossref_primary_10_1007_s11738_016_2072_3
crossref_primary_10_1016_j_algal_2019_101526
crossref_primary_10_1155_2017_1537538
crossref_primary_10_3390_ijms24054762
crossref_primary_10_1007_s11738_021_03223_3
crossref_primary_10_3390_su142315514
crossref_primary_10_1093_jxb_eraa285
crossref_primary_10_1111_tpj_13080
crossref_primary_10_1071_FP21140
crossref_primary_10_1016_j_envpol_2019_03_051
crossref_primary_10_1016_j_plaphy_2023_108242
crossref_primary_10_1007_s10750_019_04119_7
crossref_primary_10_3390_plants10071392
crossref_primary_10_3934_biophy_2016_3_380
crossref_primary_10_1016_j_sajb_2022_06_015
crossref_primary_10_1080_00380768_2017_1323672
crossref_primary_10_1111_pce_12082
crossref_primary_10_1007_s10725_015_0028_z
crossref_primary_10_1016_j_envexpbot_2023_105518
crossref_primary_10_1371_journal_pone_0147625
crossref_primary_10_1007_s11099_012_0007_9
crossref_primary_10_1111_pce_13386
crossref_primary_10_2139_ssrn_4764708
crossref_primary_10_3389_fpls_2022_903954
crossref_primary_10_1038_s41598_021_84541_x
crossref_primary_10_1016_j_envexpbot_2022_105004
crossref_primary_10_1016_j_plantsci_2021_110819
crossref_primary_10_1111_nph_13173
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_1111_j_1365_3040_2009_02071_x
crossref_primary_10_1007_s11738_015_1846_3
crossref_primary_10_1007_s00344_020_10185_2
crossref_primary_10_1007_s11104_017_3192_2
crossref_primary_10_1071_FP22059
crossref_primary_10_3390_genes11070803
crossref_primary_10_1007_s10681_012_0782_1
crossref_primary_10_1038_srep36396
crossref_primary_10_1071_FP09051
crossref_primary_10_3389_fevo_2021_789371
crossref_primary_10_1016_S2095_3119_17_61749_0
crossref_primary_10_1071_CP11162
crossref_primary_10_1071_FP13106
crossref_primary_10_1007_s10725_021_00692_x
crossref_primary_10_1016_j_plaphy_2023_02_020
crossref_primary_10_1071_FP13308
crossref_primary_10_1111_j_1365_3040_2009_02060_x
crossref_primary_10_1016_j_cj_2023_06_001
crossref_primary_10_1016_j_fcr_2019_04_015
crossref_primary_10_1007_s11104_018_3643_4
crossref_primary_10_1007_s11104_019_04134_6
crossref_primary_10_1016_j_plantsci_2015_10_003
crossref_primary_10_3923_jps_2010_391_401
crossref_primary_10_1371_journal_pone_0229513
crossref_primary_10_29133_yyutbd_802653
crossref_primary_10_1371_journal_pone_0135419
crossref_primary_10_33581_2521_1722_2019_3_13_20
crossref_primary_10_1371_journal_pone_0236037
crossref_primary_10_1016_j_plantsci_2020_110736
crossref_primary_10_1111_j_1365_2494_2010_00768_x
crossref_primary_10_1007_s11104_018_3632_7
crossref_primary_10_3390_ijms23105732
crossref_primary_10_1007_s10725_016_0180_0
crossref_primary_10_1186_1471_2229_14_113
crossref_primary_10_1007_s13762_018_1657_3
Cites_doi 10.1007/BF00227318
10.1081/PLN-200067462
10.1046/j.1365-313X.2002.01260.x
10.1071/FP04111
10.1111/j.1365-3040.1991.tb01507.x
10.1111/j.1365-3040.2007.01637.x
10.1093/jxb/48.Special_Issue.459
10.1111/j.1399-3054.1991.tb02159.x
10.1006/anbo.1999.0912
10.1016/j.plantsci.2004.05.034
10.1002/j.1460-2075.1992.tb05392.x
10.1007/BF00201510
10.1093/pcp/pce008
10.1016/S1360-1385(97)82562-9
10.1016/S0065-2113(08)60477-0
10.1146/annurev.arplant.54.031902.134831
10.1105/tpc.006999
10.1111/j.1469-8137.1985.tb02816.x
10.1093/jxb/erj001
10.1007/BF02814074
10.1046/j.1365-3040.1997.d01-146.x
10.1046/j.1365-313X.2002.01410.x
10.1071/AR9830607
10.1016/j.febslet.2007.03.058
10.1046/j.1365-313X.1993.04020215.x
10.1046/j.1365-3040.2002.00754.x
10.1104/pp.122.4.1249
10.1111/j.1365-313X.2007.03048.x
10.1111/j.1399-3054.1991.tb02129.x
10.1007/s00425-006-0386-x
10.1046/j.1365-313x.2001.01077.x
10.1111/j.1365-3040.2005.01334.x
10.1016/S0304-4238(98)00195-2
10.1111/j.1365-3040.2005.01364.x
10.1038/ng1643
10.1016/S0981-9428(99)80068-0
10.1046/j.1365-3040.1998.00309.x
10.1016/S0168-9452(03)00282-6
10.1007/s10725-005-4825-7
10.1023/A:1022597102282
10.1093/jxb/erh028
10.1111/j.1365-3040.2007.01726.x
10.1111/j.1365-313X.2005.02595.x
10.1016/j.febslet.2007.03.050
10.1104/pp.125.1.406
10.1046/j.1365-313X.1999.00626.x
10.1093/jxb/erj098
10.1016/S1360-1385(03)00099-2
10.1046/j.1365-313X.2003.01764.x
10.1093/jxb/erg072
10.1093/jexbot/51.348.1243
10.1016/S0014-5793(01)03114-3
10.1046/j.0016-8025.2003.01116.x
10.1104/pp.104.042234
10.1104/pp.001149
10.1073/pnas.231476498
10.1104/pp.010502
10.1034/j.1399-3054.1999.106305.x
10.1111/j.1469-8137.2007.02128.x
10.1073/pnas.191389398
10.1016/j.febslet.2007.04.032
10.1016/S1369-5266(03)00085-2
10.1111/j.1439-037X.1997.tb00349.x
10.1104/pp.007781
10.1016/S1369-5266(02)00255-8
10.1023/A:1009660413133
10.1111/j.1469-8137.2005.01487.x
10.1271/bbb.60.366
10.1007/BF00269539
10.1016/S0176-1617(11)80075-1
10.1071/FP03016
10.1126/science.285.5431.1256
10.1007/BF00221141
10.1073/pnas.96.13.7581
10.1111/j.1399-3054.1991.tb02949.x
10.1093/pcp/pch071
10.1104/pp.106.082388
10.1034/j.1399-3054.1998.1020105.x
10.1093/jxb/50.332.291
10.1007/BF00223692
10.1104/pp.126.4.1646
10.1104/pp.010193
10.1046/j.1365-313X.2003.01871.x
10.1016/S0176-1617(97)80203-9
10.1007/BF00222098
10.1104/pp.84.1.106
10.1126/science.292.5521.1486b
10.1016/S0074-7696(08)62219-6
10.1093/pcp/pch014
10.1016/j.plantsci.2005.07.001
10.1016/S0955-0674(00)00227-1
10.1016/j.febslet.2007.04.014
10.1111/j.1439-0523.1997.tb00974.x
10.1093/jxb/47.1.25
10.1006/anbo.2000.1136
10.1104/pp.106.093476
10.1104/pp.020005
10.1016/j.febslet.2007.03.035
10.1016/S0005-2736(00)00135-8
10.1104/pp.125.4.1643
10.1093/jxb/erj108
10.1046/j.1365-313x.1999.00588.x
10.1007/s00425-005-0074-2
10.1104/pp.99.3.886
10.1111/j.1365-313X.2004.02177.x
10.1093/jxb/erj092
10.1023/A:1018453032336
10.1034/j.1399-3054.2000.100106.x
10.1016/S0014-5793(01)03273-2
10.1038/90824
10.1104/pp.126.3.1061
10.1126/science.280.5365.918
10.1126/science.270.5242.1660
10.1007/978-3-540-37843-3_13
10.1007/978-3-540-37843-3_3
10.1104/pp.104.049213
10.2307/3870060
10.1038/370655a0
10.1093/jxb/erj100
10.1104/pp.83.3.510
10.1046/j.0016-8025.2001.00808.x
10.1104/pp.113.3.795
10.1016/S0743-0167(99)00055-8
10.1093/jxb/eri138
10.1038/nbt766
10.1093/emboj/cdg207
10.1146/annurev.arplant.51.1.463
10.1071/AR99057
ContentType Journal Article
Conference Proceeding
Copyright Physiologia Plantarum 2008
2008 INIST-CNRS
Copyright_xml – notice: Physiologia Plantarum 2008
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7S9
L.6
7X8
DOI 10.1111/j.1399-3054.2007.01008.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

AGRICOLA

CrossRef
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1399-3054
EndPage 669
ExternalDocumentID 18724408
20592682
10_1111_j_1399_3054_2007_01008_x
PPL1008
ark_67375_WNG_T1K8J1DW_L
US201300913207
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c6378-76b8553de8b400d728c69f1810df3fd5390b7dd7a7bb856881ba110a4b9cc7da3
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Fri Jul 11 00:59:32 EDT 2025
Thu Jul 10 22:28:59 EDT 2025
Fri Jul 11 00:27:34 EDT 2025
Mon Jul 21 06:06:58 EDT 2025
Mon Jul 21 09:11:33 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Tue Jul 01 04:28:20 EDT 2025
Wed Jan 22 16:52:37 EST 2025
Wed Oct 30 10:05:32 EDT 2024
Wed Dec 27 19:29:15 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Tolerance
Salinity
Language English
License CC BY 4.0
LinkModel DirectLink
MeetingName Potassium and Magnesium Research
MergedId FETCHMERGED-LOGICAL-c6378-76b8553de8b400d728c69f1810df3fd5390b7dd7a7bb856881ba110a4b9cc7da3
Notes http://dx.doi.org/10.1111/j.1399-3054.2007.01008.x
ark:/67375/WNG-T1K8J1DW-L
ArticleID:PPL1008
istex:0B6548344B9BB3FF19D0E7F18A3B7052AF9CC772
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1399-3054.2007.01008.x
PMID 18724408
PQID 20892511
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_69459606
proquest_miscellaneous_47695520
proquest_miscellaneous_20892511
pubmed_primary_18724408
pascalfrancis_primary_20592682
crossref_primary_10_1111_j_1399_3054_2007_01008_x
crossref_citationtrail_10_1111_j_1399_3054_2007_01008_x
wiley_primary_10_1111_j_1399_3054_2007_01008_x_PPL1008
istex_primary_ark_67375_WNG_T1K8J1DW_L
fao_agris_US201300913207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: Denmark
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258
Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136: 2548-2555
Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223
Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43: 107-153
Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663
Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445
Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007a) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162
Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumomoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155
Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J Exp Bot 56: 1369-1378
Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63-73
Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51: 1243-1253
Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96: 7581-7586
Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043
Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243-252
Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57: 1201-1210
Ashraf M, McNeilly T, Bradshaw AD (1986) Heritability of NaCl tolerance in seven grass species. Euphytica 35: 935-940
Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225: 753-761
Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57: 1097-1107
Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109: 34-43
Zingarelli L, Marre MT, Massardi F, Lado P (1999) Effects of hyper-osmotic stress on K+ fluxes, H+ extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin. Physiol Plant 106: 287-295
Espinosa-Ruiz A, Bellés JM, Serrano R, Culiáñez-Maciă FA (1999) Arabidopsis thaliana AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J 20: 529-539
Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51: 773-787
Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nutr 28: 1365-1374
Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129: 1482-1493
Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50: 291-302
Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514
Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101: 25-77
Chandler SF, Thorpe TA (1987) Characterization of growth, water relations, and proline accumulation in sodium-sulfate tolerant callus of Brassica napus L cv Westar (Canola). Plant Physiol 84: 106-111
Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain. Plant Physiol 126: 1061-1071
Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46: 1924-1933
Ding L, Zhu JK (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113: 795-799
Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98: 2917-2921
Vallejo AJ, Peralta ML, Santa-María GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ 28: 850-862
Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379
Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39: 834-846
Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57: 1137-1147
Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85
Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance. Transgenic Res 6: 41-50
Haw M, Cocklin C, Mercer D (2000) A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia. J Rural Stud 16: 155-169
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 571: 2204-2214
Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25: 333-341
Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82: 575-581
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250
Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663
Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. doi:10.1111/j.1365-3040.2007.01726.x
Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19: 99-109
Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97: 6896-6901
Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928-938
Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86: 333-338
Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667
Davenport R (2002) Glutamate receptors in plants. Ann Bot 90: 549-557
Saqib M, Zorb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in wheat (Triticum aestivum L.) Plant Sci 169: 959-965
Gierth M, Mäser P (2007) Potassium transporters in plant - involvement in K+ acquisition. Redistribution and homeostasis. FEBS Lett 581: 2348-2356
Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34: 788-801
Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37: 65-71
Babourina O, Leonova T, Shabala S, Newman I (2000) Effect of sudden salt stress on ion fluxes in intact wheat suspension cells. Ann Bot 85: 759-767
Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127: 1617-1625
Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229-239
Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107
Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454
Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12: 837-851
Ashraf M, Khanum A (1997) Relationship between ion accumulation and growth in two spring wheat lines differing in salt t
2004; 167
2007; 225
1998; 280
1991; 14
1997; 150
1997; 48
1997; 47
2007; 581
2000; 85
1994; 370
1999; 285
1997; 2
1997; 6
2003; 51
1997; 9
2003; 54
2001; 42
1991; 186
2004; 31
1990; 43
2000; 16
2000; 12
2004; 39
1995; 22
1991; 83
2007; 175
2007; 571
2000; 97
1996; 60
2002; 90
1998; 94
1999; 51
2000; 122
1999; 50
1998; 10
2000; 1465
2003; 165
2006; 57
1997; 20
2002; 130
2002; 5
2004; 45
2002; 7
1997; 178
1991; 81
2003; 36
1991; 82
1996; 93
1995
1999; 20
2001; 27
1996; 92
1999; 106
2003; 30
1995; 270
1994; 87
1995; 7
2003; 34
2004; 55
1995; 44
1999; 37
2006; 48
2000; 109
2002; 128
2002; 129
2003; 27
2003; 21
2003; 22
1997; 113
1997; 114
1997; 116
2002; 53
2007; 143
1986; 35
2000; 51
2003; 15
2002; 511
2001; 508
2003; 19
1999; 84
2007; 30
2005b; 56
1992; 99
2005; 28
1992; 11
1993; 4
1987; 84
2004; 136
2003; 91
1990; 137
1987; 83
2001; 292
2005a; 222
2003; 6
1991; 42
2003; 8
2007a; 34
2001; 19
1999; 96
1994; 39
2005; 37
2001; 13
2001; 98
2000; 27
1993; 86
2002; 32
1985; 101
2007
2006
2007; 50
1996; 165
1998; 21
1999; 5
2001; 126
2005; 44
2001; 125
2005; 46
2001; 127
1983; 34
2002; 25
2002; 29
2007b
2005; 167
2005; 169
1988; 7
2006; 141
1999; 78
1996; 47
1998; 102
2005; 56
e_1_2_9_52_1
e_1_2_9_79_1
Hassan NS (e_1_2_9_77_1) 1988; 7
e_1_2_9_94_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Serrano R (e_1_2_9_126_1) 1996; 165
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
Marschner H (e_1_2_9_99_1) 1995
e_1_2_9_14_1
e_1_2_9_141_1
Bajaj S (e_1_2_9_12_1) 1999; 5
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Cuin TA (e_1_2_9_38_1) 2006
Golldack D (e_1_2_9_70_1) 1997; 114
e_1_2_9_6_1
Chen ZH (e_1_2_9_30_1) 2007
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
Chandler SF (e_1_2_9_26_1) 1987; 84
Dennison KL (e_1_2_9_48_1) 2001; 127
e_1_2_9_138_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
Ding L (e_1_2_9_49_1) 1997; 113
e_1_2_9_130_1
e_1_2_9_153_1
Reid RJ (e_1_2_9_113_1) 2000; 27
Harinasut P (e_1_2_9_75_1) 1996; 60
e_1_2_9_53_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Fooland MR (e_1_2_9_57_1) 1997; 116
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_140_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
Babourina O (e_1_2_9_11_1) 2000; 85
e_1_2_9_80_1
e_1_2_9_5_1
Fu HH (e_1_2_9_58_1) 1998; 10
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_152_1
Volkov V (e_1_2_9_149_1) 2003; 27
e_1_2_9_27_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
Ayala F (e_1_2_9_9_1) 1996; 47
e_1_2_9_96_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Shabala S (e_1_2_9_128_1) 2006
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_143_1
Golldack D (e_1_2_9_69_1) 2001; 125
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
Bertl A (e_1_2_9_17_1) 1994; 39
e_1_2_9_81_1
e_1_2_9_4_1
Lacombe B (e_1_2_9_87_1) 2000; 12
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
Cramer GR (e_1_2_9_35_1) 1987; 83
e_1_2_9_47_1
Qi Z (e_1_2_9_111_1) 2004; 136
e_1_2_9_132_1
Santa‐María GE (e_1_2_9_121_1) 1997; 9
e_1_2_9_74_1
e_1_2_9_51_1
Genc Y (e_1_2_9_67_1) 2007
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_97_1
Mano Y (e_1_2_9_98_1) 1997; 47
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_127_1
e_1_2_9_100_1
Gregorio GB (e_1_2_9_72_1) 1993; 86
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
Bordas M (e_1_2_9_21_1) 1997; 6
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
Azaizeh H (e_1_2_9_10_1) 1992; 99
e_1_2_9_112_1
e_1_2_9_139_1
Flowers TJ (e_1_2_9_55_1) 1995; 22
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_29_1
e_1_2_9_150_1
Munns R (e_1_2_9_105_1) 1999; 51
References_xml – reference: Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39: 834-846
– reference: Shabala L, Cuin TA, Newman IA, Shabala S (2005a) Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants. Planta 222: 1041-1050
– reference: Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229-239
– reference: Garthwaite AJ, Von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl− into the shoots. J Exp Bot 56: 2365-2378
– reference: Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8: 286-293
– reference: Cuin TA, Shabala S (2007) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225: 753-761
– reference: Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42: 74-84
– reference: Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655-658
– reference: Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379
– reference: Rus A, Lee BH, Munoz-Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136: 2500-2511
– reference: Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10: 63-73
– reference: Saqib M, Zorb C, Rengel Z, Schubert S (2005) The expression of the endogenous vacuolar Na+/H+ antiporters in wheat (Triticum aestivum L.) Plant Sci 169: 959-965
– reference: Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54: 575-603
– reference: Schönknecht G, Spoormaker P, Steinmeyer R, Bruggeman L, Ache P, Dutta R, Reintanz B, Godde M, Hedrich R, Palme K (2002) KCO1 is a component of the slow-vacuolar (SV) ion channel. FEBS Lett 511: 28-32
– reference: Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress. Plant Physiol 136: 2548-2555
– reference: Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Müller-Röber B (2002) Vacuolar membrane localization of the Arabidopsis 'two-pore' K+ channel KCO1. Plant J 29: 809-820
– reference: Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22: 2004-2014
– reference: Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54: 657-661
– reference: Dvořák J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87: 872-877
– reference: Marten I, Hoth S, Deeken R, Ache P, Ketchum KA, Hoshi T, Hedrich R (1999) AKT3, a phloem-localized K+ channel, is blocked by protons. Proc Natl Acad Sci USA 96: 7581-7586
– reference: Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31: 1105-1114
– reference: Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223
– reference: Wu YY, Chen GD, Meng QW, Cheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45: 600-607
– reference: Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43: 107-153
– reference: Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12: 837-851
– reference: Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57: 1017-1023
– reference: Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51: 773-787
– reference: Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165: 1-52
– reference: Serrano R, Rodríguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13: 399-404
– reference: Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98: 2917-2921
– reference: Gierth M, Mäser P (2007) Potassium transporters in plant - involvement in K+ acquisition. Redistribution and homeostasis. FEBS Lett 581: 2348-2356
– reference: Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7: 168-175
– reference: Gaxiola R, Delarrinoa IF, Villalba JM, Serrano R (1992) A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J 11: 3157-3164
– reference: Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78: 237-260
– reference: Chandler SF, Thorpe TA (1987) Characterization of growth, water relations, and proline accumulation in sodium-sulfate tolerant callus of Brassica napus L cv Westar (Canola). Plant Physiol 84: 106-111
– reference: Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28: 1230-1246
– reference: Chérel I (2004) Regulation of K+ channel activities in plants: from physiological to molecular aspects. J Exp Bot 55: 337-351
– reference: Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98: 12832-12836
– reference: Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5: 250-257
– reference: Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141-1146
– reference: Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663
– reference: Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30: 507-514
– reference: Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97: 6896-6901
– reference: Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765-768
– reference: Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465: 140-151
– reference: Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou MX, Palmgren MG, Newman IA, Shabala S. 2007b).Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol Doi:10.1104/pp.107.110262
– reference: Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581: 2247-2254
– reference: Teodoro AE, Zingarelli L, Lado P (1998) Early changes of Cl− efflux and H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiol Plant 102: 29-37
– reference: Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508: 463-469
– reference: Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27: 129-138
– reference: Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175: 387-404
– reference: Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127: 1012-1019
– reference: Lebaudy A, Véry A-A, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581: 2357-2366
– reference: Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243-252
– reference: Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32: 139-149
– reference: Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127: 1617-1625
– reference: Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128: 379-387
– reference: Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6: 441-445
– reference: Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25: 333-341
– reference: Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7: 1099-1111
– reference: Morgan JM (1983) Osmoregulation as a selection criterion for drought tolerance in wheat. Aust J Agric Res 34: 607-614
– reference: Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. doi:10.1111/j.1365-3040.2007.01726.x
– reference: Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34: 788-801
– reference: Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37: 65-71
– reference: Ashraf M, Khanum A (1997) Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. J Agron Crop Sci 178: 39-51
– reference: Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921
– reference: Colmenero-Flores JM, Martinez G, Gamba G, Vazquez N, Iglesias DJ, Brumos J, Talon M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50: 278-292
– reference: Shabala S, Babourina O, Newman I (2000) Ion-specific mechanisms of osmoregulation in bean mesophyll cells. J Exp Bot 51: 1243-1253
– reference: Gaxiola RA, Li JS, Undurranga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants results from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98: 11444-11449
– reference: Cramer GR, Epstein E, Läuchli A (1991) Effects of sodium, potassium and calcium on salt-stressed barley. 2. Elemental analysis. Physiol Plant 81: 197-202
– reference: Botella MA, Martinez V, Pardines J, Cerda A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150: 200-205
– reference: Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122: 1249-1259
– reference: Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143: 1918-1928
– reference: Basu R, Ghosh B (1991) Polyamines in various rice (Oryza sativa) genotypes with respect to sodium-chloride salinity. Physiol Plant 82: 575-581
– reference: Haw M, Cocklin C, Mercer D (2000) A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia. J Rural Stud 16: 155-169
– reference: Fooland MR (1997) Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed 116: 53-58
– reference: Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci Biotechnol Biochem 60: 366-368
– reference: Santa-María GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9: 2281-2289
– reference: Gregorio GB, Senadhira D (1993) Genetic analysis of salinity tolerance in rice (Oryza sativa L.). Theor Appl Genet 86: 333-338
– reference: Ding L, Zhu JK (1997) Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana. Plant Physiol 113: 795-799
– reference: Ashraf M, McNeilly T, Bradshaw AD (1986) Heritability of NaCl tolerance in seven grass species. Euphytica 35: 935-940
– reference: Ndayiragije A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48: 51-63
– reference: Su H, Golldack D, Zhao CS, Bohnert HJ (2002) The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 129: 1482-1493
– reference: Gorham J, Bristol A, Young EM, Jones RGW (1991) The presence of the enhanced K/Na discrimination trait in diploid triticum species. Theor Appl Genet 82: 729-736
– reference: Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+ and Cl− into protoplasts derived from the cortex of wheat roots. J Exp Bot 48: 459-480
– reference: Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ (1991) Short-term and long-term effects of salinity on leaf growth in rice (Oryza sativa L). J Exp Bot 42: 881-889
– reference: Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21: 535-553
– reference: Garcia A, Rizzo CA, UdDin J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ 20: 1167-1174
– reference: Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5: 493-503
– reference: Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250
– reference: Erdei L, Trivedi S, Takeda K, Matsumoto H (1990) Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat-varieties differing in salt and drought tolerance. J Plant Physiol 137: 165-168
– reference: Vallejo AJ, Peralta ML, Santa-María GE (2005) Expression of potassium-transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis. Plant Cell Environ 28: 850-862
– reference: Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain. Plant Physiol 126: 1061-1071
– reference: Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2003) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27: 1-14
– reference: Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45: 146-159
– reference: Munns R, Hare RA, James RA, Rebetzke GJ (1999) Genetic variation for improving the salt tolerance of durum wheat. Austr J Agric Res 51: 69-74
– reference: Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57: 1137-1147
– reference: Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50: 291-302
– reference: Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57: 1059-1078
– reference: Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109: 34-43
– reference: Golldack D, Kamasani UR, Quigley F, Bennett J, Bohnert HJ (1997) Salt stress-dependent expression of a HKT1-type high affinity potassium transporter in rice. Plant Physiol 114: 529-529
– reference: Babourina O, Leonova T, Shabala S, Newman I (2000) Effect of sudden salt stress on ion fluxes in intact wheat suspension cells. Ann Bot 85: 759-767
– reference: Bertl A, Anderson JA, Slayman CL, Sentenac H, Gaber RF (1994) Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterologously expressed ion channels. Folia Microbiol (Praha) 39: 507-509
– reference: Mano Y, Takeda K (1997) Diallel analysis of salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Breed Sci 47: 203-209
– reference: Marschner H (1995) The Mineral Nutrition of Higher Plants. Academic Press, London
– reference: Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043
– reference: Xue ZY, Zhi DY, Xue GL, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum sativum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167: 849-859
– reference: Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30: 497-507
– reference: Palmgren MG (1991) Regulation of plasma membrane H+-ATPase activity. Physiol Plant 83: 314-323
– reference: Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107
– reference: Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499
– reference: Jacobsen SE, Mujica A, Jensen CR (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev Int 19: 99-109
– reference: Reid RJ, Smith FA (2000) The limits of sodium/calcium interactions in plant growth. Aust J Plant Physiol 27: 709-715
– reference: Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258
– reference: Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655
– reference: Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci 165: 837-844
– reference: Shabala S, Shabala L, Van Volkenburgh E, Newman I (2005b) Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves. J Exp Bot 56: 1369-1378
– reference: Zingarelli L, Marre MT, Massardi F, Lado P (1999) Effects of hyper-osmotic stress on K+ fluxes, H+ extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin. Physiol Plant 106: 287-295
– reference: Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57: 1201-1210
– reference: Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93: 10510-10514
– reference: Ayala F, Oleary JW, Schumaker KS (1996) Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl. J Exp Bot 47: 25-32
– reference: Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128: 400-410
– reference: Bordas M, Montesinos C, Dabauza M, Salvador A, Roig LA, Serrano R, Moreno V (1997) Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance. Transgenic Res 6: 41-50
– reference: Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319
– reference: Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292: 1486-1487
– reference: Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20: 171-182
– reference: Shabala S, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129: 290-299
– reference: Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663
– reference: Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928-938
– reference: Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130: 784-795
– reference: Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 571: 2204-2214
– reference: Hassan NS, Wilkins DA (1988) In vitro selection for salt tolerant lines in Lycopersicon peruvianum. Plant Cell Rep 7: 463-466
– reference: Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48-54
– reference: Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46: 1924-1933
– reference: Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumomoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98: 14150-14155
– reference: Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101: 25-77
– reference: Azaizeh H, Gunne B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99: 886-894
– reference: Espinosa-Ruiz A, Bellés JM, Serrano R, Culiáñez-Maciă FA (1999) Arabidopsis thaliana AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J 20: 529-539
– reference: Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527
– reference: Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125: 406-422
– reference: Davenport R (2002) Glutamate receptors in plants. Ann Bot 90: 549-557
– reference: Khan MA, Ungar IA, Showalter AM (2005) Salt stimulation and tolerance in an intertidal stem-succulent halophyte. J Plant Nutr 28: 1365-1374
– reference: Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186: 143-153
– reference: Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126: 1646-1667
– reference: Dubcovsky J, Maria GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92: 448-454
– reference: Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84: 123-133
– reference: Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants - where next? Aust J Plant Physiol 22: 875-884
– reference: Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125: 1643-1654
– reference: Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81-85
– reference: Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141: 1653-1665
– reference: Ma SS, Gong QQ, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57: 1097-1107
– reference: Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007a) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34: 150-162
– reference: Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14: 319-325
– reference: Cramer GR, Lynch J, Läuchli A, Epstein E (1987) Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings. Effects of supplemental Ca2+. Plant Physiol 83: 510-516
– reference: Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581: 1993-1999
– volume: 280
  start-page: 918
  year: 1998
  end-page: 921
  article-title: A role for the AKT1 potassium channel in plant nutrition
  publication-title: Science
– volume: 1465
  start-page: 140
  year: 2000
  end-page: 151
  article-title: Sodium transport in plant cells
  publication-title: Biochim Biophys Acta
– volume: 109
  start-page: 34
  year: 2000
  end-page: 43
  article-title: Cloning of and barley cDNAs encoding HAK potassium transporters in root and shoot cells
  publication-title: Physiol Plant
– volume: 25
  start-page: 333
  year: 2002
  end-page: 341
  article-title: Osmolyte accumulation: can it really help increase crop yield under drought conditions?
  publication-title: Plant Cell Environ
– volume: 5
  start-page: 493
  year: 1999
  end-page: 503
  article-title: Transgenic approaches to increase dehydration‐stress tolerance in plants
  publication-title: Mol Breed
– volume: 99
  start-page: 886
  year: 1992
  end-page: 894
  article-title: Effects of NaCl and CaCl on water transport across root cells of maize (Zea mays L.) seedlings
  publication-title: Plant Physiol
– volume: 113
  start-page: 795
  year: 1997
  end-page: 799
  article-title: Reduced Na uptake in the NaCl‐hypersensitive mutant of
  publication-title: Plant Physiol
– volume: 57
  start-page: 1059
  year: 2006
  end-page: 1078
  article-title: Use of wild relatives to improve salt tolerance in wheat
  publication-title: J Exp Bot
– volume: 20
  start-page: 171
  year: 1999
  end-page: 182
  article-title: A tobacco plasma membrane calmodulin‐binding transporter confers Ni tolerance and Pb hypersensitivity in transgenic plants
  publication-title: Plant J
– volume: 167
  start-page: 645
  year: 2005
  end-page: 663
  article-title: Genes and salt tolerance: bringing them together
  publication-title: New Phytol
– volume: 51
  start-page: 773
  year: 2003
  end-page: 787
  article-title: Regulated expression of Shaker K channel genes involved in K uptake and distribution in the plant
  publication-title: Plant Mol Biol
– volume: 125
  start-page: 406
  year: 2001
  end-page: 422
  article-title: Quantitative trait loci for component physiological traits determining salt tolerance in rice
  publication-title: Plant Physiol
– volume: 129
  start-page: 290
  year: 2002
  end-page: 299
  article-title: Turgor regulation in osmotically stressed epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements
  publication-title: Plant Physiol
– volume: 4
  start-page: 215
  year: 1993
  end-page: 223
  article-title: Proline biosynthesis and osmoregulation in plants
  publication-title: Plant J
– volume: 42
  start-page: 74
  year: 2001
  end-page: 84
  article-title: Overexpression of the AtGluR2 gene encoding an homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants
  publication-title: Plant Cell Physiol
– volume: 39
  start-page: 507
  year: 1994
  end-page: 509
  article-title: Inward and outward rectifying potassium currents in mediated by endogenous and heterologously expressed ion channels
  publication-title: Folia Microbiol (Praha)
– volume: 11
  start-page: 3157
  year: 1992
  end-page: 3164
  article-title: A novel and conserved salt‐induced protein is an important determinant of salt tolerance in yeast
  publication-title: EMBO J
– volume: 222
  start-page: 1041
  year: 2005a
  end-page: 1050
  article-title: Salinity‐induced ion flux patterns from the excised roots of Arabidopsis sos mutants
  publication-title: Planta
– volume: 8
  start-page: 286
  year: 2003
  end-page: 293
  article-title: CNGCs: prime targets of plant cyclic nucleotide signalling?
  publication-title: Trends Plant Sci
– volume: 22
  start-page: 875
  year: 1995
  end-page: 884
  article-title: Breeding for salinity resistance in crop plants – where next?
  publication-title: Aust J Plant Physiol
– volume: 87
  start-page: 872
  year: 1994
  end-page: 877
  article-title: Enhancement of the salt tolerance of L. by the locus transferred from the L. chromosome 4D by homoeologous recombination
  publication-title: Theor Appl Genet
– volume: 581
  start-page: 2357
  year: 2007
  end-page: 2366
  article-title: K channel activity in plants: genes, regulations and functions
  publication-title: FEBS Lett
– volume: 51
  start-page: 1243
  year: 2000
  end-page: 1253
  article-title: Ion‐specific mechanisms of osmoregulation in bean mesophyll cells
  publication-title: J Exp Bot
– volume: 106
  start-page: 287
  year: 1999
  end-page: 295
  article-title: Effects of hyper‐osmotic stress on K fluxes, H extrusion, transmembrane electric potential difference and comparison with the effects of fusicoccin
  publication-title: Physiol Plant
– volume: 27
  start-page: 129
  year: 2001
  end-page: 138
  article-title: Two types of HKT transporters with different properties of Na and K transport in
  publication-title: Plant J
– volume: 581
  start-page: 1993
  year: 2007
  end-page: 1999
  article-title: Polyamines prevent NaCl‐induced K efflux from pea mesophyll by blocking non‐selective cation channels
  publication-title: FEBS Lett
– volume: 86
  start-page: 333
  year: 1993
  end-page: 338
  article-title: Genetic analysis of salinity tolerance in rice ( L.)
  publication-title: Theor Appl Genet
– volume: 186
  start-page: 143
  year: 1991
  end-page: 153
  article-title: Stretch‐activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of L
  publication-title: Planta
– volume: 34
  start-page: 607
  year: 1983
  end-page: 614
  article-title: Osmoregulation as a selection criterion for drought tolerance in wheat
  publication-title: Aust J Agric Res
– volume: 57
  start-page: 1201
  year: 2006
  end-page: 1210
  article-title: Functional analysis of CHX21: a putative sodium transporter in Arabidopsis
  publication-title: J Exp Bot
– volume: 225
  start-page: 753
  year: 2007
  end-page: 761
  article-title: Amino acids regulate salinity‐induced potassium efflux in barley root epidermis
  publication-title: Planta
– volume: 125
  start-page: 1643
  year: 2001
  end-page: 1654
  article-title: Salt‐induced expression of the vacuolar H ‐ATPase in the common ice plant is developmentally controlled and tissue specific
  publication-title: Plant Physiol
– volume: 82
  start-page: 729
  year: 1991
  end-page: 736
  article-title: The presence of the enhanced K/Na discrimination trait in diploid triticum species
  publication-title: Theor Appl Genet
– volume: 44
  start-page: 243
  year: 1995
  end-page: 252
  article-title: The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen‐evolving photosystem II complex
  publication-title: Photosynth Res
– volume: 54
  start-page: 575
  year: 2003
  end-page: 603
  article-title: Molecular mechanisms and regulation of K transport in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 83
  start-page: 510
  year: 1987
  end-page: 516
  article-title: Influx of Na , K , and Ca into roots of salt‐stressed cotton seedlings. Effects of supplemental Ca
  publication-title: Plant Physiol
– volume: 98
  start-page: 14150
  year: 2001
  end-page: 14155
  article-title: AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots
  publication-title: Proc Natl Acad Sci USA
– volume: 150
  start-page: 200
  year: 1997
  end-page: 205
  article-title: Salinity induced potassium deficiency in maize plants
  publication-title: J Plant Physiol
– volume: 30
  start-page: 497
  year: 2007
  end-page: 507
  article-title: The Na transporter AtHKT1;1 controls retrieval of Na from the xylem in Arabidopsis
  publication-title: Plant Cell Environ
– volume: 127
  start-page: 1012
  year: 2001
  end-page: 1019
  article-title: Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of
  publication-title: Plant Physiol
– volume: 126
  start-page: 1646
  year: 2001
  end-page: 1667
  article-title: Phylogenetic relationships within cation transporter families of
  publication-title: Plant Physiol
– volume: 7
  start-page: 1099
  year: 1995
  end-page: 1111
  article-title: Adaptation to environmental stresses
  publication-title: Plant Cell
– volume: 51
  start-page: 69
  year: 1999
  end-page: 74
  article-title: Genetic variation for improving the salt tolerance of durum wheat
  publication-title: Austr J Agric Res
– volume: 285
  start-page: 1256
  year: 1999
  end-page: 1258
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na /H antiport in
  publication-title: Science
– volume: 16
  start-page: 155
  year: 2000
  end-page: 169
  article-title: A pinch of salt: landowner perception and adjustment to the salinity hazard in Victoria, Australia
  publication-title: J Rural Stud
– volume: 130
  start-page: 784
  year: 2002
  end-page: 795
  article-title: Inventory and functional characterization of the HAK potassium transporters of rice
  publication-title: Plant Physiol
– volume: 581
  start-page: 2247
  year: 2007
  end-page: 2254
  article-title: Na transport in plants
  publication-title: FEBS Lett
– volume: 45
  start-page: 146
  year: 2004
  end-page: 159
  article-title: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na /H antiporter from rice
  publication-title: Plant Cell Physiol
– volume: 60
  start-page: 366
  year: 1996
  end-page: 368
  article-title: Exogenous glycinebetaine accumulation and increased salt‐tolerance in rice seedlings
  publication-title: Biosci Biotechnol Biochem
– volume: 101
  start-page: 25
  year: 1985
  end-page: 77
  article-title: Regulation of pH and generation of osmolarity in vascular plants: a cost‐benefit analysis in relation to efficiency of use of energy, nitrogen and water
  publication-title: New Phytol
– volume: 39
  start-page: 834
  year: 2004
  end-page: 846
  article-title: Characterization of AtCHX17, a member of the cation/H exchangers, CHX family, from suggests a role in K homeostasis
  publication-title: Plant J
– volume: 292
  start-page: 1486
  year: 2001
  end-page: 1487
  article-title: The identity of plant glutamate receptors
  publication-title: Science
– volume: 92
  start-page: 448
  year: 1996
  end-page: 454
  article-title: Mapping of the K /Na discrimination locus in wheat
  publication-title: Theor Appl Genet
– volume: 34
  start-page: 788
  year: 2003
  end-page: 801
  article-title: Sodium transport and HKT transporters: the rice model
  publication-title: Plant J
– volume: 37
  start-page: 65
  year: 1999
  end-page: 71
  article-title: Short‐term salt tolerance mechanisms in differentially salt tolerant tomato species
  publication-title: Plant Physiol Biochem
– volume: 165
  start-page: 1
  year: 1996
  end-page: 52
  article-title: Salt tolerance in plants and microorganisms: toxicity targets and defense responses
  publication-title: Int Rev Cytol
– volume: 141
  start-page: 1653
  year: 2006
  end-page: 1665
  article-title: Extracellular Ca ameliorates NaCl‐induced K loss from Arabidopsis root and leaf cells by controlling plasma membrane K ‐permeable channels
  publication-title: Plant Physiol
– volume: 5
  start-page: 250
  year: 2002
  end-page: 257
  article-title: Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes
  publication-title: Curr Opin Plant Biol
– volume: 126
  start-page: 1061
  year: 2001
  end-page: 1071
  article-title: The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt sensitive yeast strain
  publication-title: Plant Physiol
– volume: 56
  start-page: 1369
  year: 2005b
  end-page: 1378
  article-title: Effect of divalent cations on ion fluxes and leaf photochemistry in salinised barley leaves
  publication-title: J Exp Bot
– volume: 7
  start-page: 168
  year: 2002
  end-page: 175
  article-title: Cation channels in the plasma membrane
  publication-title: Trends Plant Sci
– volume: 98
  start-page: 12832
  year: 2001
  end-page: 12836
  article-title: Engineering salt tolerant plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 81
  year: 2003
  end-page: 85
  article-title: Overexpression of a plasma membrane Na /H antiporter gene improves salt tolerance in
  publication-title: Nat Biotechnol
– volume: 34
  start-page: 150
  year: 2007a
  end-page: 162
  article-title: Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance
  publication-title: Funct Plant Biol
– volume: 136
  start-page: 2500
  year: 2004
  end-page: 2511
  article-title: AtHKT1 facilitates Na homeostasis and K nutrition in planta
  publication-title: Plant Physiol
– volume: 30
  start-page: 507
  year: 2003
  end-page: 514
  article-title: Effect of calcium on root development and root ion fluxes in salinised barley seedlings
  publication-title: Funct Plant Biol
– volume: 6
  start-page: 41
  year: 1997
  end-page: 50
  article-title: Transfer of the yeast salt tolerance gene HAL1 to L. cultivats and in vitro evaluation of salt tolerance
  publication-title: Transgenic Res
– volume: 102
  start-page: 29
  year: 1998
  end-page: 37
  article-title: Early changes of Cl efflux and H extrusion induced by osmotic stress in cells
  publication-title: Physiol Plant
– volume: 78
  start-page: 237
  year: 1999
  end-page: 260
  article-title: Transformation and compatible solutes
  publication-title: Sci Hortic
– volume: 42
  start-page: 881
  year: 1991
  end-page: 889
  article-title: Short‐term and long‐term effects of salinity on leaf growth in rice ( L)
  publication-title: J Exp Bot
– volume: 43
  start-page: 107
  year: 1990
  end-page: 153
  article-title: A critical‐evaluation of traits for improving crop yields in water‐limited environments
  publication-title: Adv Agron
– volume: 55
  start-page: 307
  year: 2004
  end-page: 319
  article-title: Improving crop salt tolerance
  publication-title: J Exp Bot
– volume: 35
  start-page: 935
  year: 1986
  end-page: 940
  article-title: Heritability of NaCl tolerance in seven grass species
  publication-title: Euphytica
– year: 1995
– volume: 44
  start-page: 928
  year: 2005
  end-page: 938
  article-title: Enhanced salt tolerance mediated by AtHKT1 transporter‐induced Na unloading from xylem vessels to xylem parenchyma cells
  publication-title: Plant J
– volume: 19
  start-page: 765
  year: 2001
  end-page: 768
  article-title: Transgenic salt‐tolerant tomato plants accumulate salt in foliage but not in fruit
  publication-title: Nat Biotechnol
– volume: 581
  start-page: 2348
  year: 2007
  end-page: 2356
  article-title: Potassium transporters in plant – involvement in K acquisition. Redistribution and homeostasis
  publication-title: FEBS Lett
– volume: 20
  start-page: 529
  year: 1999
  end-page: 539
  article-title: AAtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth
  publication-title: Plant J
– volume: 127
  start-page: 1617
  year: 2001
  end-page: 1625
  article-title: Sodium uptake in roots is regulated by cyclic nucleotides
  publication-title: Plant Physiol
– volume: 51
  start-page: 463
  year: 2000
  end-page: 499
  article-title: Plant cellular and molecular responses to high salinity
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 98
  start-page: 2917
  year: 2001
  end-page: 2921
  article-title: KAT1 is not essential for stomatal opening
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 1
  year: 2003
  end-page: 14
  article-title: , a salt‐tolerant relative of , possesses effective mechanisms to discriminate between potassium and sodium
  publication-title: Plant Cell Environ
– volume: 28
  start-page: 850
  year: 2005
  end-page: 862
  article-title: Expression of potassium‐transporter coding genes, and kinetics of rubidium uptake, along a longitudinal root axis
  publication-title: Plant Cell Environ
– volume: 32
  start-page: 139
  year: 2002
  end-page: 149
  article-title: A role for HKT1 in sodium uptake by wheat roots
  publication-title: Plant J
– volume: 28
  start-page: 1230
  year: 2005
  end-page: 1246
  article-title: Screening plants for salt tolerance by measuring K flux: a case study for barley
  publication-title: Plant Cell Environ
– volume: 94
  start-page: 647
  year: 1998
  end-page: 655
  article-title: Identification and disruption of a plant shaker‐like outward channel involved in K release into the xylem sap
  publication-title: Cell
– start-page: 35
  year: 2006
  end-page: 71
– volume: 19
  start-page: 99
  year: 2003
  end-page: 109
  article-title: The resistance of quinoa ( Willd.) to adverse abiotic factors
  publication-title: Food Rev Int
– volume: 53
  start-page: 67
  year: 2002
  end-page: 107
  article-title: Nonselective cation channels in plants
  publication-title: Annu Rev Plant Biol
– volume: 370
  start-page: 655
  year: 1994
  end-page: 658
  article-title: Structure and transport mechanism of a high‐affinity potassium uptake transporter from higher plants
  publication-title: Nature
– volume: 571
  start-page: 2204
  year: 2007
  end-page: 2214
  article-title: Plant proton pumps
  publication-title: FEBS Lett
– volume: 47
  start-page: 203
  year: 1997
  end-page: 209
  article-title: Diallel analysis of salt tolerance at germination and the seedling stage in barley ( L.)
  publication-title: Breed Sci
– volume: 37
  start-page: 1141
  year: 2005
  end-page: 1146
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nat Genet
– volume: 48
  start-page: 51
  year: 2006
  end-page: 63
  article-title: Exogenous putrescine reduces sodium and chloride accumulation in NaCl‐treated calli of the salt‐sensitive rice cultivar I Kong Pao
  publication-title: Plant Growth Regul
– volume: 36
  start-page: 229
  year: 2003
  end-page: 239
  article-title: Vacuolar cation/H exchange, ion homeostasis, and leaf development are altered in a T‐DNA insertional mutant of AtNHX1, the vacuolar Na /H antiporter
  publication-title: Plant J
– volume: 10
  start-page: 63
  year: 1998
  end-page: 73
  article-title: AtKUP1: a dual‐affinity K transporter from
  publication-title: Plant Cell
– volume: 22
  start-page: 2004
  year: 2003
  end-page: 2014
  article-title: Functional analysis of AtHKT1 in shows that Na recirculation by the phloem is crucial for salt tolerance
  publication-title: EMBO J
– volume: 55
  start-page: 337
  year: 2004
  end-page: 351
  article-title: Regulation of K channel activities in plants: from physiological to molecular aspects
  publication-title: J Exp Bot
– volume: 85
  start-page: 759
  year: 2000
  end-page: 767
  article-title: Effect of sudden salt stress on ion fluxes in intact wheat suspension cells
  publication-title: Ann Bot
– volume: 508
  start-page: 463
  year: 2001
  end-page: 469
  article-title: K channel profile and electrical properties of root hairs
  publication-title: FEBS Lett
– volume: 2
  start-page: 48
  year: 1997
  end-page: 54
  article-title: Plant responses to water deficit
  publication-title: Trends Plant Sci
– volume: 165
  start-page: 837
  year: 2003
  end-page: 844
  article-title: Study on the salt and drought tolerance of and under iso‐osmotic salt and water stress
  publication-title: Plant Sci
– volume: 98
  start-page: 11444
  year: 2001
  end-page: 11449
  article-title: Drought‐ and salt‐tolerant plants results from overexpression of the AVP1 H ‐pump
  publication-title: Proc Natl Acad Sci USA
– volume: 114
  start-page: 529
  year: 1997
  end-page: 529
  article-title: Salt stress‐dependent expression of a HKT1‐type high affinity potassium transporter in rice
  publication-title: Plant Physiol
– volume: 122
  start-page: 1249
  year: 2000
  end-page: 1259
  article-title: The Arabidopsis HKT1 gene homolog mediates inward Na currents in oocytes and Na uptake in
  publication-title: Plant Physiol
– year: 2007
  article-title: Reassessment of tissue Na concentration as a criterion for salinity tolerance in bread wheat
  publication-title: Plant Cell Environ
– volume: 90
  start-page: 549
  year: 2002
  end-page: 557
  article-title: Glutamate receptors in plants
  publication-title: Ann Bot
– volume: 178
  start-page: 39
  year: 1997
  end-page: 51
  article-title: Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages
  publication-title: J Agron Crop Sci
– volume: 13
  start-page: 399
  year: 2001
  end-page: 404
  article-title: Ion homeostasis during salt stress in plants
  publication-title: Curr Opin Cell Biol
– volume: 175
  start-page: 387
  year: 2007
  end-page: 404
  article-title: Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development
  publication-title: New Phytol
– volume: 511
  start-page: 28
  year: 2002
  end-page: 32
  article-title: KCO1 is a component of the slow‐vacuolar (SV) ion channel
  publication-title: FEBS Lett
– volume: 84
  start-page: 123
  year: 1999
  end-page: 133
  article-title: K nutrition and Na toxicity: the basis of cellular K /Na ratios
  publication-title: Ann Bot
– volume: 45
  start-page: 600
  year: 2004
  end-page: 607
  article-title: The cotton gene encoding a novel putative tonoplast Na /H antiporter plays an important role in salt stress
  publication-title: Plant Cell Physiol
– volume: 82
  start-page: 575
  year: 1991
  end-page: 581
  article-title: Polyamines in various rice ( ) genotypes with respect to sodium‐chloride salinity
  publication-title: Physiol Plant
– volume: 57
  start-page: 1097
  year: 2006
  end-page: 1107
  article-title: Dissecting salt stress pathways
  publication-title: J Exp Bot
– volume: 31
  start-page: 1105
  year: 2004
  end-page: 1114
  article-title: A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat
  publication-title: Funct Plant Biol
– volume: 28
  start-page: 1365
  year: 2005
  end-page: 1374
  article-title: Salt stimulation and tolerance in an intertidal stem‐succulent halophyte
  publication-title: J Plant Nutr
– volume: 25
  start-page: 239
  year: 2002
  end-page: 250
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant Cell Environ
– volume: 7
  start-page: 463
  year: 1988
  end-page: 466
  article-title: selection for salt tolerant lines in
  publication-title: Plant Cell Rep
– volume: 129
  start-page: 1482
  year: 2002
  end-page: 1493
  article-title: The expression of HAK‐type K transporters is regulated in response to salinity stress in common ice plant
  publication-title: Plant Physiol
– year: 2007b
  article-title: Root plasma membrane transporters controlling K /Na homeostasis in salt stressed barley
  publication-title: Plant Physiol
– volume: 81
  start-page: 197
  year: 1991
  end-page: 202
  article-title: Effects of sodium, potassium and calcium on salt‐stressed barley. 2. Elemental analysis
  publication-title: Physiol Plant
– volume: 128
  start-page: 400
  year: 2002
  end-page: 410
  article-title: Electrophysiological analysis of cloned cyclic nucleotide‐gated ion channels
  publication-title: Plant Physiol
– volume: 57
  start-page: 1017
  year: 2006
  end-page: 1023
  article-title: World salinization with emphasis on Australia
  publication-title: J Exp Bot
– volume: 97
  start-page: 6896
  year: 2000
  end-page: 6901
  article-title: The salt tolerance gene SOS1 encodes a putative Na /H antiporter
  publication-title: Proc Natl Acad Sci USA
– volume: 137
  start-page: 165
  year: 1990
  end-page: 168
  article-title: Effects of osmotic and salt stresses on the accumulation of polyamines in leaf segments from wheat‐varieties differing in salt and drought tolerance
  publication-title: J Plant Physiol
– volume: 20
  start-page: 1167
  year: 1997
  end-page: 1174
  article-title: Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat
  publication-title: Plant Cell Environ
– volume: 9
  start-page: 2281
  year: 1997
  end-page: 2289
  article-title: The HAK1 gene of barley is a member of a large gene family and encodes a high‐affinity potassium transporter
  publication-title: Plant Cell
– volume: 27
  start-page: 709
  year: 2000
  end-page: 715
  article-title: The limits of sodium/calcium interactions in plant growth
  publication-title: Aust J Plant Physiol
– start-page: 287
  year: 2006
  end-page: 317
– volume: 54
  start-page: 657
  year: 2003
  end-page: 661
  article-title: Potassium activities in cell compartments of salt‐grown barley leaves
  publication-title: J Exp Bot
– volume: 143
  start-page: 1918
  year: 2007
  end-page: 1928
  article-title: HKT1;5‐like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1
  publication-title: Plant Physiol
– volume: 15
  start-page: 365
  year: 2003
  end-page: 379
  article-title: HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide‐gated channel ion channel family
  publication-title: Plant Cell
– volume: 21
  start-page: 535
  year: 1998
  end-page: 553
  article-title: Dissecting the roles of osmolyte accumulation during stress
  publication-title: Plant Cell Environ
– volume: 128
  start-page: 379
  year: 2002
  end-page: 387
  article-title: Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from roots
  publication-title: Plant Physiol
– volume: 169
  start-page: 959
  year: 2005
  end-page: 965
  article-title: The expression of the endogenous vacuolar Na /H antiporters in wheat ( L
  publication-title: Plant Sci
– volume: 12
  start-page: 837
  year: 2000
  end-page: 851
  article-title: A shaker‐like K channel with weak rectification is expressed in both source and sink phloem tissues of
  publication-title: Plant Cell
– volume: 14
  start-page: 319
  year: 1991
  end-page: 325
  article-title: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis
  publication-title: Plant Cell Environ
– volume: 56
  start-page: 2365
  year: 2005
  end-page: 2378
  article-title: Salt tolerance in wild species is associated with restricted entry of Na and Cl into the shoots
  publication-title: J Exp Bot
– volume: 46
  start-page: 1924
  year: 2005
  end-page: 1933
  article-title: Exogenously supplied compatible solutes rapidly ameliorate NaCl‐induced potassium efflux from barley roots
  publication-title: Plant Cell Physiol
– volume: 57
  start-page: 1137
  year: 2006
  end-page: 1147
  article-title: The role of monovalent cation transporters in plant responses to salinity
  publication-title: J Exp Bot
– volume: 136
  start-page: 2548
  year: 2004
  end-page: 2555
  article-title: Protection of plasma membrane K transport by the Na /H antiporter during salinity stress
  publication-title: Plant Physiol
– volume: 116
  start-page: 53
  year: 1997
  end-page: 58
  article-title: Genetic basis of physiological traits related to salt tolerance in tomato, Mill
  publication-title: Plant Breed
– volume: 47
  start-page: 25
  year: 1996
  end-page: 32
  article-title: Increased vacuolar and plasma membrane H ‐ATPase activities in Torr in response to NaCl
  publication-title: J Exp Bot
– volume: 270
  start-page: 1660
  year: 1995
  end-page: 1663
  article-title: Sodium‐driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance
  publication-title: Science
– volume: 50
  start-page: 291
  year: 1999
  end-page: 302
  article-title: Genetic analysis of osmotic adjustment in crop plants
  publication-title: J Exp Bot
– volume: 50
  start-page: 278
  year: 2007
  end-page: 292
  article-title: Identification and functional characterization of cation‐chloride cotransporters in plants
  publication-title: Plant J
– volume: 29
  start-page: 809
  year: 2002
  end-page: 820
  article-title: Vacuolar membrane localization of the Arabidopsis ‘two‐pore’ K channel KCO1
  publication-title: Plant J
– volume: 93
  start-page: 10510
  year: 1996
  end-page: 10514
  article-title: Potassium homeostasis in vacuolate plant cells
  publication-title: Proc Natl Acad Sci USA
– volume: 96
  start-page: 7581
  year: 1999
  end-page: 7586
  article-title: AKT3, a phloem‐localized K channel, is blocked by protons
  publication-title: Proc Natl Acad Sci USA
– volume: 57
  start-page: 1025
  year: 2006
  end-page: 1043
  article-title: Approaches to increasing the salt tolerance of wheat and other cereals
  publication-title: J Exp Bot
– volume: 48
  start-page: 459
  year: 1997
  end-page: 480
  article-title: Pathways for the permeation of Na and Cl into protoplasts derived from the cortex of wheat roots
  publication-title: J Exp Bot
– volume: 91
  start-page: 503
  year: 2003
  end-page: 527
  article-title: Na tolerance and Na transport in higher plants
  publication-title: Ann Bot
– volume: 84
  start-page: 106
  year: 1987
  end-page: 111
  article-title: Characterization of growth, water relations, and proline accumulation in sodium‐sulfate tolerant callus of L cv Westar (Canola)
  publication-title: Plant Physiol
– volume: 83
  start-page: 314
  year: 1991
  end-page: 323
  article-title: Regulation of plasma membrane H ‐ATPase activity
  publication-title: Physiol Plant
– volume: 6
  start-page: 441
  year: 2003
  end-page: 445
  article-title: Regulation of ion homeostasis under salt stress
  publication-title: Curr Opin Plant Biol
– volume: 167
  start-page: 849
  year: 2004
  end-page: 859
  article-title: Enhanced salt tolerance of transgenic wheat ( L.) expressing a vacuolar Na /H antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na
  publication-title: Plant Sci
– ident: e_1_2_9_71_1
  doi: 10.1007/BF00227318
– ident: e_1_2_9_84_1
  doi: 10.1081/PLN-200067462
– volume: 12
  start-page: 837
  year: 2000
  ident: e_1_2_9_87_1
  article-title: A shaker‐like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis
  publication-title: Plant Cell
– ident: e_1_2_9_42_1
  doi: 10.1046/j.1365-313X.2002.01260.x
– ident: e_1_2_9_92_1
  doi: 10.1071/FP04111
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1365-3040.1991.tb01507.x
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1365-3040.2007.01637.x
– ident: e_1_2_9_144_1
  doi: 10.1093/jxb/48.Special_Issue.459
– volume: 47
  start-page: 203
  year: 1997
  ident: e_1_2_9_98_1
  article-title: Diallel analysis of salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.)
  publication-title: Breed Sci
– ident: e_1_2_9_109_1
  doi: 10.1111/j.1399-3054.1991.tb02159.x
– ident: e_1_2_9_96_1
  doi: 10.1006/anbo.1999.0912
– ident: e_1_2_9_153_1
  doi: 10.1016/j.plantsci.2004.05.034
– ident: e_1_2_9_63_1
  doi: 10.1002/j.1460-2075.1992.tb05392.x
– ident: e_1_2_9_34_1
  doi: 10.1007/BF00201510
– ident: e_1_2_9_85_1
  doi: 10.1093/pcp/pce008
– ident: e_1_2_9_23_1
  doi: 10.1016/S1360-1385(97)82562-9
– ident: e_1_2_9_93_1
  doi: 10.1016/S0065-2113(08)60477-0
– volume-title: The Mineral Nutrition of Higher Plants
  year: 1995
  ident: e_1_2_9_99_1
– ident: e_1_2_9_148_1
  doi: 10.1146/annurev.arplant.54.031902.134831
– ident: e_1_2_9_13_1
  doi: 10.1105/tpc.006999
– ident: e_1_2_9_112_1
  doi: 10.1111/j.1469-8137.1985.tb02816.x
– ident: e_1_2_9_95_1
  doi: 10.1093/jxb/erj001
– volume: 39
  start-page: 507
  year: 1994
  ident: e_1_2_9_17_1
  article-title: Inward and outward rectifying potassium currents in Saccharomyces cerevisiae mediated by endogenous and heterologously expressed ion channels
  publication-title: Folia Microbiol (Praha)
  doi: 10.1007/BF02814074
– ident: e_1_2_9_60_1
  doi: 10.1046/j.1365-3040.1997.d01-146.x
– ident: e_1_2_9_89_1
  doi: 10.1046/j.1365-313X.2002.01410.x
– ident: e_1_2_9_102_1
  doi: 10.1071/AR9830607
– ident: e_1_2_9_91_1
  doi: 10.1016/j.febslet.2007.03.058
– ident: e_1_2_9_45_1
  doi: 10.1046/j.1365-313X.1993.04020215.x
– ident: e_1_2_9_125_1
  doi: 10.1046/j.1365-3040.2002.00754.x
– ident: e_1_2_9_145_1
  doi: 10.1104/pp.122.4.1249
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-313X.2007.03048.x
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1399-3054.1991.tb02129.x
– ident: e_1_2_9_39_1
  doi: 10.1007/s00425-006-0386-x
– ident: e_1_2_9_80_1
  doi: 10.1046/j.1365-313x.2001.01077.x
– volume: 114
  start-page: 529
  year: 1997
  ident: e_1_2_9_70_1
  article-title: Salt stress‐dependent expression of a HKT1‐type high affinity potassium transporter in rice
  publication-title: Plant Physiol
– ident: e_1_2_9_146_1
  doi: 10.1111/j.1365-3040.2005.01334.x
– ident: e_1_2_9_19_1
  doi: 10.1016/S0304-4238(98)00195-2
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-3040.2005.01364.x
– ident: e_1_2_9_114_1
  doi: 10.1038/ng1643
– ident: e_1_2_9_44_1
  doi: 10.1046/j.1365-313X.1993.04020215.x
– ident: e_1_2_9_120_1
  doi: 10.1016/S0981-9428(99)80068-0
– ident: e_1_2_9_74_1
  doi: 10.1046/j.1365-3040.1998.00309.x
– ident: e_1_2_9_83_1
  doi: 10.1016/S0168-9452(03)00282-6
– year: 2007
  ident: e_1_2_9_30_1
  article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley
  publication-title: Plant Physiol
– volume: 27
  start-page: 709
  year: 2000
  ident: e_1_2_9_113_1
  article-title: The limits of sodium/calcium interactions in plant growth
  publication-title: Aust J Plant Physiol
– ident: e_1_2_9_107_1
  doi: 10.1007/s10725-005-4825-7
– ident: e_1_2_9_110_1
  doi: 10.1023/A:1022597102282
– ident: e_1_2_9_31_1
  doi: 10.1093/jxb/erh028
– volume: 22
  start-page: 875
  year: 1995
  ident: e_1_2_9_55_1
  article-title: Breeding for salinity resistance in crop plants – where next?
  publication-title: Aust J Plant Physiol
– ident: e_1_2_9_41_1
  doi: 10.1046/j.1365-313X.2002.01260.x
– ident: e_1_2_9_108_1
  doi: 10.1111/j.1399-3054.1991.tb02159.x
– year: 2007
  ident: e_1_2_9_67_1
  article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2007.01726.x
– ident: e_1_2_9_139_1
  doi: 10.1111/j.1365-313X.2005.02595.x
– ident: e_1_2_9_66_1
  doi: 10.1016/j.febslet.2007.03.050
– ident: e_1_2_9_86_1
  doi: 10.1104/pp.125.1.406
– ident: e_1_2_9_54_1
  doi: 10.1046/j.1365-313X.1999.00626.x
– ident: e_1_2_9_94_1
  doi: 10.1093/jxb/erj098
– ident: e_1_2_9_141_1
  doi: 10.1016/S1360-1385(03)00099-2
– ident: e_1_2_9_61_1
  doi: 10.1046/j.1365-313X.2003.01764.x
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1365-313X.2007.03048.x
– ident: e_1_2_9_40_1
  doi: 10.1093/jxb/erg072
– ident: e_1_2_9_130_1
  doi: 10.1093/jexbot/51.348.1243
– ident: e_1_2_9_81_1
  doi: 10.1016/S0014-5793(01)03114-3
– ident: e_1_2_9_150_1
  doi: 10.1046/j.0016-8025.2003.01116.x
– ident: e_1_2_9_119_1
  doi: 10.1104/pp.104.042234
– ident: e_1_2_9_138_1
  doi: 10.1104/pp.001149
– ident: e_1_2_9_156_1
  doi: 10.1073/pnas.231476498
– ident: e_1_2_9_97_1
  doi: 10.1104/pp.010502
– ident: e_1_2_9_8_1
  doi: 10.1034/j.1399-3054.1999.106305.x
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1469-8137.2007.02128.x
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.191389398
– ident: e_1_2_9_135_1
  doi: 10.1016/j.febslet.2007.04.032
– ident: e_1_2_9_157_1
  doi: 10.1016/S1369-5266(03)00085-2
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1439-037X.1997.tb00349.x
– ident: e_1_2_9_14_1
  doi: 10.1104/pp.007781
– ident: e_1_2_9_27_1
  doi: 10.1016/S1369-5266(02)00255-8
– volume: 5
  start-page: 493
  year: 1999
  ident: e_1_2_9_12_1
  article-title: Transgenic approaches to increase dehydration‐stress tolerance in plants
  publication-title: Mol Breed
  doi: 10.1023/A:1009660413133
– ident: e_1_2_9_104_1
  doi: 10.1111/j.1469-8137.2005.01487.x
– volume: 60
  start-page: 366
  year: 1996
  ident: e_1_2_9_75_1
  article-title: Exogenous glycinebetaine accumulation and increased salt‐tolerance in rice seedlings
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.60.366
– volume: 7
  start-page: 463
  year: 1988
  ident: e_1_2_9_77_1
  article-title: In vitro selection for salt tolerant lines in Lycopersicon peruvianum
  publication-title: Plant Cell Rep
  doi: 10.1007/BF00269539
– ident: e_1_2_9_52_1
  doi: 10.1016/S0176-1617(11)80075-1
– ident: e_1_2_9_131_1
  doi: 10.1071/FP03016
– ident: e_1_2_9_4_1
  doi: 10.1126/science.285.5431.1256
– ident: e_1_2_9_53_1
  doi: 10.1046/j.1365-313X.1999.00626.x
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1469-8137.2007.02128.x
– ident: e_1_2_9_51_1
  doi: 10.1007/BF00221141
– ident: e_1_2_9_100_1
  doi: 10.1073/pnas.96.13.7581
– volume: 27
  start-page: 1
  year: 2003
  ident: e_1_2_9_149_1
  article-title: Thellungiella halophila, a salt‐tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium
  publication-title: Plant Cell Environ
  doi: 10.1046/j.0016-8025.2003.01116.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1399-3054.1991.tb02949.x
– ident: e_1_2_9_151_1
  doi: 10.1093/pcp/pch071
– ident: e_1_2_9_134_1
  doi: 10.1104/pp.106.082388
– ident: e_1_2_9_142_1
  doi: 10.1034/j.1399-3054.1998.1020105.x
– ident: e_1_2_9_155_1
  doi: 10.1093/jxb/50.332.291
– ident: e_1_2_9_50_1
  doi: 10.1007/BF00223692
– ident: e_1_2_9_101_1
  doi: 10.1104/pp.126.4.1646
– volume: 127
  start-page: 1012
  year: 2001
  ident: e_1_2_9_48_1
  article-title: Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.010193
– ident: e_1_2_9_158_1
  doi: 10.1034/j.1399-3054.1999.106305.x
– ident: e_1_2_9_5_1
  doi: 10.1046/j.1365-313X.2003.01871.x
– ident: e_1_2_9_140_1
  doi: 10.1111/j.1365-313X.2005.02595.x
– ident: e_1_2_9_22_1
  doi: 10.1016/S0176-1617(97)80203-9
– volume: 86
  start-page: 333
  year: 1993
  ident: e_1_2_9_72_1
  article-title: Genetic analysis of salinity tolerance in rice (Oryza sativa L.)
  publication-title: Theor Appl Genet
  doi: 10.1007/BF00222098
– volume: 84
  start-page: 106
  year: 1987
  ident: e_1_2_9_26_1
  article-title: Characterization of growth, water relations, and proline accumulation in sodium‐sulfate tolerant callus of Brassica napus L cv Westar (Canola)
  publication-title: Plant Physiol
  doi: 10.1104/pp.84.1.106
– ident: e_1_2_9_152_1
  doi: 10.1016/j.plantsci.2004.05.034
– ident: e_1_2_9_88_1
  doi: 10.1126/science.292.5521.1486b
– volume: 10
  start-page: 63
  year: 1998
  ident: e_1_2_9_58_1
  article-title: AtKUP1: a dual‐affinity K+ transporter from Arabidopsis
  publication-title: Plant Cell
– volume: 165
  start-page: 1
  year: 1996
  ident: e_1_2_9_126_1
  article-title: Salt tolerance in plants and microorganisms: toxicity targets and defense responses
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(08)62219-6
– ident: e_1_2_9_59_1
  doi: 10.1093/pcp/pch014
– ident: e_1_2_9_122_1
  doi: 10.1016/j.plantsci.2005.07.001
– ident: e_1_2_9_127_1
  doi: 10.1016/S0955-0674(00)00227-1
– ident: e_1_2_9_3_1
  doi: 10.1016/j.febslet.2007.04.014
– ident: e_1_2_9_82_1
  doi: 10.1016/S0014-5793(01)03114-3
– volume: 116
  start-page: 53
  year: 1997
  ident: e_1_2_9_57_1
  article-title: Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill
  publication-title: Plant Breed
  doi: 10.1111/j.1439-0523.1997.tb00974.x
– ident: e_1_2_9_90_1
  doi: 10.1016/j.febslet.2007.03.058
– volume: 47
  start-page: 25
  year: 1996
  ident: e_1_2_9_9_1
  article-title: Increased vacuolar and plasma membrane H+‐ATPase activities in Salicornia bigelovii Torr in response to NaCl
  publication-title: J Exp Bot
  doi: 10.1093/jxb/47.1.25
– volume: 85
  start-page: 759
  year: 2000
  ident: e_1_2_9_11_1
  article-title: Effect of sudden salt stress on ion fluxes in intact wheat suspension cells
  publication-title: Ann Bot
  doi: 10.1006/anbo.2000.1136
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.106.093476
– ident: e_1_2_9_129_1
  doi: 10.1104/pp.020005
– ident: e_1_2_9_65_1
  doi: 10.1073/pnas.191389398
– ident: e_1_2_9_62_1
  doi: 10.1046/j.1365-313X.2003.01764.x
– ident: e_1_2_9_68_1
  doi: 10.1016/j.febslet.2007.03.035
– ident: e_1_2_9_18_1
  doi: 10.1016/S0005-2736(00)00135-8
– volume: 125
  start-page: 1643
  year: 2001
  ident: e_1_2_9_69_1
  article-title: Salt‐induced expression of the vacuolar H+‐ATPase in the common ice plant is developmentally controlled and tissue specific
  publication-title: Plant Physiol
  doi: 10.1104/pp.125.4.1643
– ident: e_1_2_9_115_1
  doi: 10.1093/jxb/erj108
– ident: e_1_2_9_6_1
  doi: 10.1046/j.1365-313x.1999.00588.x
– ident: e_1_2_9_143_1
  doi: 10.1034/j.1399-3054.1998.1020105.x
– ident: e_1_2_9_147_1
  doi: 10.1111/j.1365-3040.2005.01334.x
– ident: e_1_2_9_132_1
  doi: 10.1007/s00425-005-0074-2
– volume: 99
  start-page: 886
  year: 1992
  ident: e_1_2_9_10_1
  article-title: Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings
  publication-title: Plant Physiol
  doi: 10.1104/pp.99.3.886
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1365-313X.2004.02177.x
– ident: e_1_2_9_73_1
  doi: 10.1093/jxb/erj092
– volume: 6
  start-page: 41
  year: 1997
  ident: e_1_2_9_21_1
  article-title: Transfer of the yeast salt tolerance gene HAL1 to Cumcumis melo L. cultivats and in vitro evaluation of salt tolerance
  publication-title: Transgenic Res
  doi: 10.1023/A:1018453032336
– ident: e_1_2_9_117_1
  doi: 10.1034/j.1399-3054.2000.100106.x
– ident: e_1_2_9_124_1
  doi: 10.1016/S0014-5793(01)03273-2
– ident: e_1_2_9_154_1
  doi: 10.1038/90824
– ident: e_1_2_9_2_1
  doi: 10.1104/pp.126.3.1061
– ident: e_1_2_9_79_1
  doi: 10.1126/science.280.5365.918
– ident: e_1_2_9_116_1
  doi: 10.1126/science.270.5242.1660
– start-page: 287
  volume-title: Plant Electrophysiology – Theory and Methods
  year: 2006
  ident: e_1_2_9_38_1
  doi: 10.1007/978-3-540-37843-3_13
– start-page: 35
  volume-title: Plant Electrophysiology – Theory and Methods
  year: 2006
  ident: e_1_2_9_128_1
  doi: 10.1007/978-3-540-37843-3_3
– volume: 136
  start-page: 2548
  year: 2004
  ident: e_1_2_9_111_1
  article-title: Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+/H+ antiporter during salinity stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.049213
– ident: e_1_2_9_20_1
  doi: 10.2307/3870060
– ident: e_1_2_9_123_1
  doi: 10.1038/370655a0
– ident: e_1_2_9_106_1
  doi: 10.1093/jxb/erj100
– volume: 83
  start-page: 510
  year: 1987
  ident: e_1_2_9_35_1
  article-title: Influx of Na+, K+, and Ca2+ into roots of salt‐stressed cotton seedlings. Effects of supplemental Ca2+
  publication-title: Plant Physiol
  doi: 10.1104/pp.83.3.510
– ident: e_1_2_9_103_1
  doi: 10.1046/j.0016-8025.2001.00808.x
– volume: 113
  start-page: 795
  year: 1997
  ident: e_1_2_9_49_1
  article-title: Reduced Na+ uptake in the NaCl‐hypersensitive sos1 mutant of Arabidopsis thaliana
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.3.795
– ident: e_1_2_9_78_1
  doi: 10.1016/S0743-0167(99)00055-8
– ident: e_1_2_9_133_1
  doi: 10.1093/jxb/eri138
– ident: e_1_2_9_136_1
  doi: 10.1016/j.febslet.2007.04.032
– ident: e_1_2_9_137_1
  doi: 10.1038/nbt766
– ident: e_1_2_9_16_1
  doi: 10.1093/emboj/cdg207
– ident: e_1_2_9_76_1
  doi: 10.1146/annurev.arplant.51.1.463
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-3040.2005.01364.x
– volume: 51
  start-page: 69
  year: 1999
  ident: e_1_2_9_105_1
  article-title: Genetic variation for improving the salt tolerance of durum wheat
  publication-title: Austr J Agric Res
  doi: 10.1071/AR99057
– ident: e_1_2_9_118_1
  doi: 10.1034/j.1399-3054.2000.100106.x
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1399-3054.1991.tb02129.x
– volume: 9
  start-page: 2281
  year: 1997
  ident: e_1_2_9_121_1
  article-title: The HAK1 gene of barley is a member of a large gene family and encodes a high‐affinity potassium transporter
  publication-title: Plant Cell
SSID ssj0016612
Score 2.5016854
SecondaryResourceType review_article
Snippet Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the...
Salinity is a major abiotic stress affecting approximately 7% of the world’s total land area resulting in billion dollar losses in crop production around the...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 651
SubjectTerms abiotic stress
Adaptation to environment and cultivation conditions
Adaptation, Physiological
Adaptation, Physiological - drug effects
Agronomy. Soil science and plant productions
Biological and medical sciences
calcium
crop losses
crop production
drug effects
electrophysiology
Fundamental and applied biological sciences. Psychology
genes
genetic traits
genetics
Genetics and breeding of economic plants
homeostasis
Homeostasis - drug effects
Homeostasis - genetics
inheritance (genetics)
Ion Transport
Ion Transport - drug effects
metabolism
molecular genetics
pharmacology
plant breeders
plant genetics
plant tissues
planting
Plants
Plants - drug effects
Plants - genetics
Plants - metabolism
polyamines
potassium
Potassium - metabolism
salinity
salt tolerance
Sodium Chloride
Sodium Chloride - pharmacology
solutes
transporters
Varietal selection. Specialized plant breeding, plant breeding aims
Title Potassium transport and plant salt tolerance
URI https://api.istex.fr/ark:/67375/WNG-T1K8J1DW-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1399-3054.2007.01008.x
https://www.ncbi.nlm.nih.gov/pubmed/18724408
https://www.proquest.com/docview/20892511
https://www.proquest.com/docview/47695520
https://www.proquest.com/docview/69459606
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sCFUl5NoSUHxImsEsfx48irVKWqVtBVe7Ps2OGwS1J1s1LbX8-Mkw0EtVKFuPlgW_J4xvNN_OUzIW8qSg2UsnkiKiYS5pxJIM_nCS_LjBrpU-sCy_eYH8zY4Vlx1vOf8F-YTh9i-OCGkRHOawxwY5fjIIfkmoC_sl6JEHVqJognkbqF-OjboCSVQRrqhMPzLFGQM8eknhsnGmWq-5VpAL-i6S-RP2mWYMKqe_viJnA6xrohWe1vkvl6mR1HZT5ZtXZSXv-lAPl_7PCYPOoxbfy-c8Itcs_XT8iDDw3gzqun5N0UGhB5q59xu1ZSj03t4vMF7Gq8NIs2bpuFx1X6Z2S2__nk40HSv9GQlDyHAlRwK4sid15aOA2coLLkqgLYkLoqr1yRq9QK54QRFjpyCSjZAOIwzKqyFM7kz8lG3dR-G_bDK2l5mfEgQ6iUZZQGEeXCUc9SGRGx3g9d9gLm-I7GQv9RyIApNJoCn9cUOphCX0YkG0aedyIedxizDVuuzQ84a_XsO8UbXtRQpamIyNvgB8Nc5mKO_DhR6NPjL_ok-yoPs0-n-igieyNHGQZQALWUSxqR12vP0RDWeFdjat-sltBDKqz-bu_BBFdFQdPbe3DFCixQI_Kic8rfi5eCsmBSHlzrzlbR0-kRtnb-deBL8rBj3CCF8hXZaC9WfhdgXWv3QsD-Ar7aNt4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQku5U3Do80BOJFV4iS2c-AALGXbXVYr2FV7c53Y4dBtUnWzYstf46_wYxjnBUGtVCH1wC0HO0rG3_ibiSffALxICZGYyvoOSwPmBEpJB3ned2iSeERy7caqrPId08Es2D8MD9fgR_MvTKUP0X5wM55R7tfGwc0H6a6XI7s6CNigliI0QjW9VV1hOdTn3zB_W7zZ6-NivyRk98P0_cCpWww4CfUxf2I05mHoK81jBLNihCc0SpH1XJX6qQr9yI2ZUkyyGAdSjkGeRMKUQRwlCVPSx_uuww3TUNwI9_c_t9pVHhJfJVXue06ELN0tI7rwyTvcuJ7KHCNms9grU7EpF7hoadVt46JwuBtdl_S4ewd-NoatqmKOe8si7iXf_9Kc_E8tfxc267Ddflv52T1Y09l9uPkux9D6_AG8nuAFbi7LE7toxOJtmSn7dI7AtRdyXthFPtfGrPohzK7lSR_BRpZnegsBoCMe08SjpdJiFMUBIaVOdKiIDlxuAWsAIJJao920CpmLP3I1NL0wpjcdRJkoTS9WFnjtzNNKp-QKc7YQY0J-RToRsy_EHGIbmVjiMgtelcBr7yXPjk0JIAvFwfijmHpDvu_1D8TIgu0OMtsJBON2QjmxYKeBqsCdyxxHyUznywWO4JFJcC8fETAahSFxLx9BoyA0ObgFjysv-P3ynJGgNCktsXxlq4jJZGSunvzrxB24NZh-GonR3nj4FG5XBUamYvQZbBRnS_0co9gi3i53CxuOrttJfgGHpJTP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BSEuvKHm0foAnHBkr9f7OHAAQmibKIqgUXtb1t41h4YkahyR8tP4K_wZZv0IGLVShdQDNx92V-t57DfjHX8D8DwnRGMqGwc8pzygxugAcT4OWJZFRAsbpqas8h2yvTE9OE6ON-BH8y9MxQ-x_uDmPKM8r52Dz03ednIE1wDtldZMhI6nprOqCyz79uwbpm-L1_td1PULQnrvD9_tBXWHgSBjMaZPnKUiSWJjRYq2bDgRGZM5gl5o8jg3SSzDlBvDNU9xIBMY42nES01TmWXc6BjX3YRrlIXStY3oflxTV0WIexVTeRwFEkG6XUV07s5b0LiZ6xkGzE7XK1ewqReos7xqtnFeNNwOrkt07N2Gn41cq6KYk86ySDvZ978oJ_9Pwd-BW3XQ7r-pvOwubNjpPbj-doaB9dl9eDXCBzxall_9oqGK9_XU-PMJmq2_0JPCL2YT66RqH8D4Snb6ELams6ndRv1bKVKWRazkWZQypYSULNGJIZaGwgPe6F9lNUO7axQyUX9kaih65UTv-odyVYperTyI1jPnFUvJJeZso4kp_QXBRI0_EXeF7UhiScg9eFna3XotfXriCgB5oo6GH9Rh1BcHUfdIDTzYaRnmegLBqJ0wQTzYbSxV4bnlLqP01M6WCxwhpEtvLx5BOZNJQsKLRzBJE5eBe_CocoLfLy84oaVIWWnKl5aKGo0G7unxv07chRujbk8N9of9J3Czqi5y5aJPYas4XdpnGMIW6U55Vvjw-ap95BcAoJN-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Physiologia+plantarum&rft.atitle=Potassium+transport+and+plant+salt+tolerance&rft.au=SHABALA%2C+Sergey&rft.au=CUIN%2C+Tracey+A&rft.date=2008-08-01&rft.pub=Blackwell&rft.issn=0031-9317&rft.volume=133&rft.issue=4&rft.spage=651&rft.epage=669&rft_id=info:doi/10.1111%2Fj.1399-3054.2007.01008.x&rft.externalDBID=n%2Fa&rft.externalDocID=20592682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon