A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo
SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the...
Saved in:
Published in | Communications Biology Vol. 6; no. 1; pp. 513 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Science and Business Media LLC
12.05.2023
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,
FLIF
, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.
FLIF
displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against
FLIF
. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like
FLIF
may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
A computational design strategy is used to develop an affinity-enhanced ACE2 decoy, which is shown to be effective at neutralizing omicron subvariants in vitro and in vivo. |
---|---|
AbstractList | SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,
FLIF
, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.
FLIF
displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against
FLIF
. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like
FLIF
may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.
A computational design strategy is used to develop an affinity-enhanced ACE2 decoy, which is shown to be effective at neutralizing omicron subvariants in vitro and in vivo. SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF , that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF . A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a 'decoy' to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy, FLIF, that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments. FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) against FLIF. A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys like FLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants.A computational design strategy is used to develop an affinity-enhanced ACE2 decoy, which is shown to be effective at neutralizing omicron subvariants in vitro and in vivo. |
ArticleNumber | 513 |
Author | Brandon Havranek Graeme Walker Lindsey Toru Okamoto Yumi Itoh Shahidul M. Islam Atsushi Hoshino Erik Procko Yusuke Higuchi Tatsuya Suzuki |
Author_xml | – sequence: 1 givenname: Brandon orcidid: 0000-0003-4397-684X surname: Havranek fullname: Havranek, Brandon organization: Department of Chemistry, University of Illinois at Chicago, Sidney Kimmel Medical College at Thomas Jefferson University, ComputePharma, LLC – sequence: 2 givenname: Graeme Walker surname: Lindsey fullname: Lindsey, Graeme Walker organization: Department of Biochemistry, University of Illinois – sequence: 3 givenname: Yusuke surname: Higuchi fullname: Higuchi, Yusuke organization: Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine – sequence: 4 givenname: Yumi surname: Itoh fullname: Itoh, Yumi organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University – sequence: 5 givenname: Tatsuya surname: Suzuki fullname: Suzuki, Tatsuya organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University – sequence: 6 givenname: Toru orcidid: 0000-0003-4000-3102 surname: Okamoto fullname: Okamoto, Toru organization: Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University – sequence: 7 givenname: Atsushi orcidid: 0000-0002-4015-1319 surname: Hoshino fullname: Hoshino, Atsushi organization: Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine – sequence: 8 givenname: Erik orcidid: 0000-0002-0028-490X surname: Procko fullname: Procko, Erik organization: Department of Biochemistry, University of Illinois, Cyrus Biotechnology, Inc – sequence: 9 givenname: Shahidul M. orcidid: 0000-0001-5769-6844 surname: Islam fullname: Islam, Shahidul M. email: sislam@desu.edu organization: Department of Chemistry, University of Illinois at Chicago, ComputePharma, LLC., Department of Chemistry, Delaware State University |
BackLink | https://cir.nii.ac.jp/crid/1871709542673354880$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37173421$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJZggWbgF-J7RUajQpUqoREga117ThTjzJ2sZOR5gP4bzyTUtouuvDznnPute95WR2FGFxVvSb4A8FMfsycYsxqTMvgssW1eladUKZUzVpOj-7tj6uznNcYY6KUahl_UR0zQQTjlJxUfxbIxs3NNMLoY4Bh2KHOZb8KrkOL5TktJxt36BoyMilCh1zfewt2h2AFPuQRXS2-X9XL-KumKG68TTGgLSQPYcwIQoeSG2Asalufpuwy8iXuxxQPwcNhG19Vz3sYsju7XU-rn5_Pfyy_1pffvlwsF5e1bVk71oZBCxiMaYyyICnF0PDeKgOtoRx410npHOVEcGYMCOWkIVwIVX6qFx1jp9XFrNtFWOub5DeQdjqC14eLmFYa0ujt4LTqW-wkdW1Dey4YKN5YjA2TTPa0MbZofZq1biazcZ11YUwwPBB9GAn-Wq_iVhNMhCjfXxTe3yqk-HtyedQbn60bBgguTllTSVjTEqH2hb99BF3HKZV-HVBUkZYSUlBv7pd0V8u_dhcAnQGlTTkn199BCNZ7W-nZVrrYSh9spVUhyUck62e7lGf54Wkqm6m55Akrl_6X_STr3cwK3pdc-5nI8gSsGk5bwVjDpcTsL6Eo6uw |
CitedBy_id | crossref_primary_10_3390_ijms251910802 crossref_primary_10_3390_ijms25189919 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1021_acs_chemrev_4c00595 crossref_primary_10_1021_acs_jcim_3c01269 crossref_primary_10_1021_acs_jpcb_3c04542 crossref_primary_10_3390_v16060878 crossref_primary_10_3390_ijms252212319 |
Cites_doi | 10.1101/gr.849004 10.1038/s41591-021-01678-y 10.1021/acs.jcim.1c00269 10.1371/journal.pcbi.1004335 10.1038/s41467-022-28528-w 10.3389/fmolb.2021.671633 10.1038/s41467-021-21972-0 10.1073/pnas.1708727114 10.1016/j.csbj.2023.01.014 10.1073/pnas.2016093117 10.1038/s42003-021-01736-8 10.15252/emmm.202216109 10.1021/jz501780a 10.1038/s41586-021-03398-2 10.1021/ar300087y 10.1002/jcc.20290 10.1126/sciadv.abn4188 10.1038/s41586-021-04386-2 10.1371/journal.ppat.1009501 10.1016/j.clim.2020.108634 10.1038/s41467-021-27097-8 10.1021/acs.jpcb.7b11367 10.1016/j.isci.2021.103670 10.1038/s41421-021-00302-0 10.1038/s41586-022-04474-x 10.1371/journal.ppat.1009328 10.1021/ct3008099 10.1126/science.abn7760 10.1517/17460441.2015.1032936 10.1016/j.bpj.2021.11.664 10.1126/science.abo7896 10.1128/mBio.02451-20 10.1093/glycob/cwaa101 10.1038/s41586-020-2180-5 10.1021/acs.jpcb.1c00869 10.1186/s12929-022-00852-9 10.1038/s41589-021-00965-6 10.1038/s41586-021-03777-9 10.1038/s41392-021-00756-4 10.1021/acs.jctc.9b00725 10.3389/fmolb.2022.1080964 10.1063/1.432526 10.1002/jcc.20289 10.1371/journal.ppat.1010022 10.1016/j.tmaid.2020.101830 10.1038/s41598-021-91809-9 10.1021/acs.jctc.9b00591 10.1126/scitranslmed.abn7737 10.1016/j.cell.2022.01.001 10.1063/1.470117 10.1038/s41591-021-01294-w 10.1126/science.abn8863 10.1021/acs.jpcb.2c01048 10.1038/s42003-020-01470-7 10.1038/d41586-022-03445-6 10.1038/s41586-022-04441-6 10.1186/s12916-022-02312-5 10.1073/pnas.0409005102 10.1016/j.cell.2022.05.014 10.1002/jcc.20945 10.1016/S1473-3099(20)30120-1 10.1073/pnas.1517719113 10.1038/s41467-020-16048-4 10.1038/s41586-022-04594-4 10.1038/s41586-022-05053-w 10.1038/s41586-022-04980-y 10.1021/acs.jcim.1c00783 10.1038/s41467-021-24013-y 10.1021/acs.chemrev.9b00055 10.1126/sciadv.abf1738 10.1371/journal.ppat.1009544 10.2147/IDR.S307374 10.1002/prot.20033 10.3390/vaccines10050743 10.7554/eLife.73641 10.3389/fpubh.2021.632043 10.1126/science.abn8939 10.1038/s41392-021-00863-2 10.1038/s41422-022-00644-8 10.3390/clinpract11040093 10.1002/(SICI)1096-987X(199808)19:11<1278::AID-JCC7>3.0.CO;2-H 10.1038/s41586-020-2169-0 10.1016/j.cell.2020.08.012 10.1038/nmeth.4067 10.1021/acs.jctc.2c00604 10.1038/s41586-021-03720-y 10.1021/jp003020w 10.1016/0263-7855(96)00018-5 10.1101/2022.03.28.486075 10.1021/acs.jpclett.2c01490 10.1021/ja9738539 10.1101/2022.09.15.507787 10.1056/NEJMc2206576 10.1016/j.cell.2022.06.005 10.1101/2020.08.12.247940 10.1126/science.abd9909 10.1101/2022.02.14.480335 10.1101/2022.05.21.492554 10.1101/2021.12.22.473804 10.1021/jacs.1c11554 10.1126/science.abc0870 10.2210/pdb7xnr/pdb |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s42003-023-04860-9 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2399-3642 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_9f60e82e652f473a945c00b3838f25bc PMC10177734 37173421 10_1038_s42003_023_04860_9 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: COVID 19 High Performance Computing (HPC) allocation CHE210078 University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003 DE-INBRE program (P20GM103446) – fundername: NIMHD NIH HHS grantid: U54 MD015959 – fundername: NCATS NIH HHS grantid: UL1 TR002003 – fundername: NIGMS NIH HHS grantid: P20 GM103446 – fundername: ; |
GroupedDBID | 0R~ 53G 88I AAJSJ AASML ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PHGZM PHGZT PIMPY RNT RPM RYH SNYQT ACSMW AJTQC AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK AARCD COVID LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c636t-b3a6a0abb5b9ca8220a54fc9ba6b24a4dd88ee241743bba79e8b14779003f7d33 |
IEDL.DBID | DOA |
ISSN | 2399-3642 |
IngestDate | Wed Aug 27 01:25:17 EDT 2025 Thu Aug 21 18:37:29 EDT 2025 Sun Aug 24 02:50:57 EDT 2025 Wed Aug 13 10:08:20 EDT 2025 Thu Apr 03 06:57:42 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Tue Jul 01 03:01:47 EDT 2025 Fri Feb 21 02:38:36 EST 2025 Thu Jun 26 23:01:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c636t-b3a6a0abb5b9ca8220a54fc9ba6b24a4dd88ee241743bba79e8b14779003f7d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4015-1319 0000-0001-5769-6844 0000-0002-0028-490X 0000-0003-4397-684x 0000-0003-4397-684X 0000-0003-4000-3102 |
OpenAccessLink | https://doaj.org/article/9f60e82e652f473a945c00b3838f25bc |
PMID | 37173421 |
PQID | 2812916211 |
PQPubID | 4669726 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f60e82e652f473a945c00b3838f25bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_10177734 proquest_miscellaneous_2813561793 proquest_journals_2812916211 pubmed_primary_37173421 crossref_primary_10_1038_s42003_023_04860_9 crossref_citationtrail_10_1038_s42003_023_04860_9 springer_journals_10_1038_s42003_023_04860_9 nii_cinii_1871709542673354880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-12 |
PublicationDateYYYYMMDD | 2023-05-12 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications Biology |
PublicationTitleAbbrev | Commun Biol |
PublicationTitleAlternate | Commun Biol |
PublicationYear | 2023 |
Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Starr (CR69) 2022; 377 Coderc de Lacam, Blazhynska, Chen, Gumbart, Chipot (CR66) 2022; 18 Wettstein (CR47) 2021; 12 CR38 Cao (CR65) 2022; 608 CR36 Izadi, Anandakrishnan, Onufriev (CR96) 2014; 5 Mark, Nilsson (CR104) 2001; 105 CR34 CR31 Wang (CR55) 2022; 13 Islam, Havranek, Procko, Chan (CR30) 2022; 121 Iwanaga (CR81) 2022; 25 Shang, Li, Zhang (CR2) 2021; 9 Chen (CR76) 2022; 8 Wang (CR43) 2019; 119 Woo, Roux (CR48) 2005; 102 Essmann (CR99) 1995; 103 Zhang (CR82) 2021; 7 Lam (CR72) 2020; 583 Karoyan (CR24) 2021; 4 Onufriev, Bashford, Case (CR101) 2004; 55 Lan (CR59) 2022; 32 Shiehzadegan, Alaghemand, Fox, Venketaraman (CR10) 2021; 11 Mou (CR78) 2021; 17 Barlow (CR41) 2018; 122 Iketani (CR15) 2022; 604 Glasgow (CR33) 2020; 117 Nutalai (CR93) 2022; 185 Curreli (CR23) 2020; 11 Meng (CR60) 2022; 603 Phillips (CR102) 2005; 26 CR56 Starr (CR73) 2020; 182 Han (CR51) 2022; 185 Yamaguchi (CR86) 2021; 12 CR50 Axelsen, Li (CR98) 1998 Tanaka (CR39) 2021; 11 Maschietto (CR87) 2023; 21 Chatterjee (CR22) 2020; 3 Fu, Chen, Cai, Shao, Chipot (CR64) 2021; 61 Ye (CR79) 2021; 6 Fredericks (CR88) 2022; 9 Ollikainen, de Jong, Kortemme (CR40) 2015; 11 CR68 CR67 CR63 Izda, Jeffries, Sawalha (CR3) 2021; 222 Yao (CR26) 2021; 17 Wu (CR57) 2022; 7 Capraz (CR77) 2021; 10 Chan, Tan, Narayanan, Procko (CR35) 2021; 7 Dong (CR1) 2020; 20 Humphrey, Dalke, Schulten (CR100) 1996; 14 Min, Sun (CR25) 2021; 8 Davis (CR12) 2021; 17 Jo, Kim, Iyer, Im (CR92) 2008; 29 Nguyen, Thai, Nguyen, Li (CR46) 2022; 126 CR74 Higuchi (CR32) 2021; 12 Lan (CR62) 2020; 581 Gumbart, Roux, Chipot (CR49) 2013; 9 Menachery (CR71) 2016; 113 Mannar (CR53) 2022; 375 Zhang (CR37) 2022; 18 Genheden, Ryde (CR44) 2015; 10 Ikemura (CR13) 2022; 14 CR9 Crooks, Hon, Chandonia, Brenner (CR105) 2004; 14 Yin (CR61) 2022; 375 Williams, Zhan (CR28) 2021; 125 Wang (CR70) 2022; 608 Kumari (CR4) 2022; 29 Case (CR91) 2005; 26 Cameroni (CR52) 2022; 602 Vogt (CR54) 2022; 10 Lei (CR85) 2020; 11 Jo, Kim, Iyer, Im (CR94) 2008; 29 Huang (CR103) 2016; 14 CR16 CR14 Kelta Wabalo, Dukessa Dubiwak, Welde Senbetu, Sime Gizaw (CR5) 2021; 14 Adelman, Doll (CR97) 1976; 64 VanBlargan (CR7) 2022; 28 Havranek, Chan, Wu, Procko, Islam (CR29) 2021; 61 Yuan (CR83) 2022; 377 Sims (CR75) 2021; 17 CR90 Planas (CR11) 2021; 596 Chen (CR6) 2021; 596 Chen (CR8) 2021; 27 Dhama (CR18) 2020; 37 Zondlo (CR42) 2013; 46 Wang (CR27) 2021; 593 Tian (CR95) 2020; 16 Callaway (CR17) 2022; 611 CR21 Halfmann (CR84) 2022; 603 CR20 Ruiz-Blanco, Sanchez-Garcia (CR45) 2020; 16 Schubert (CR58) 2022; 20 Walls (CR19) 2017; 114 Zhang (CR80) 2022; 14 Shajahan (CR89) 2021; 31 JJ Sims (4860_CR75) 2021; 17 F Maschietto (4860_CR87) 2023; 21 RE Chen (4860_CR8) 2021; 27 JC Phillips (4860_CR102) 2005; 26 KA Barlow (4860_CR41) 2018; 122 Q Wang (4860_CR70) 2022; 608 Z Zhang (4860_CR82) 2021; 7 J Lan (4860_CR59) 2022; 32 R Nutalai (4860_CR93) 2022; 185 L Zhang (4860_CR37) 2022; 18 4860_CR74 U Essmann (4860_CR99) 1995; 103 W Yin (4860_CR61) 2022; 375 TN Starr (4860_CR73) 2020; 182 PH Axelsen (4860_CR98) 1998 AH Williams (4860_CR28) 2021; 125 4860_CR68 4860_CR67 Y Higuchi (4860_CR32) 2021; 12 E Cameroni (4860_CR52) 2022; 602 AM Fredericks (4860_CR88) 2022; 9 S Jo (4860_CR94) 2008; 29 F Curreli (4860_CR23) 2020; 11 L Min (4860_CR25) 2021; 8 4860_CR63 4860_CR9 A Shajahan (4860_CR89) 2021; 31 DA Case (4860_CR91) 2005; 26 RE Chen (4860_CR6) 2021; 596 SA Adelman (4860_CR97) 1976; 64 B Havranek (4860_CR29) 2021; 61 E Wang (4860_CR43) 2019; 119 TN Starr (4860_CR69) 2022; 377 4860_CR56 E Callaway (4860_CR17) 2022; 611 J Lan (4860_CR62) 2020; 581 M Schubert (4860_CR58) 2022; 20 4860_CR50 Y Wang (4860_CR55) 2022; 13 S Yuan (4860_CR83) 2022; 377 YB Ruiz-Blanco (4860_CR45) 2020; 16 C Lei (4860_CR85) 2020; 11 A-CS Vogt (4860_CR54) 2022; 10 T Yamaguchi (4860_CR86) 2021; 12 N Ikemura (4860_CR13) 2022; 14 EG Coderc de Lacam (4860_CR66) 2022; 18 PJ Halfmann (4860_CR84) 2022; 603 S Genheden (4860_CR44) 2015; 10 H-J Woo (4860_CR48) 2005; 102 LA VanBlargan (4860_CR7) 2022; 28 H Yao (4860_CR26) 2021; 17 NJ Zondlo (4860_CR42) 2013; 46 V Izda (4860_CR3) 2021; 222 D Planas (4860_CR11) 2021; 596 S Jo (4860_CR92) 2008; 29 HL Nguyen (4860_CR46) 2022; 126 P Mark (4860_CR104) 2001; 105 S Iketani (4860_CR15) 2022; 604 GE Crooks (4860_CR105) 2004; 14 4860_CR36 4860_CR34 KK Chan (4860_CR35) 2021; 7 T Capraz (4860_CR77) 2021; 10 4860_CR38 Y Chen (4860_CR76) 2022; 8 4860_CR31 N Iwanaga (4860_CR81) 2022; 25 E Kelta Wabalo (4860_CR5) 2021; 14 C Tian (4860_CR95) 2020; 16 P Wang (4860_CR27) 2021; 593 L Zhang (4860_CR80) 2022; 14 A Glasgow (4860_CR33) 2020; 117 M Kumari (4860_CR4) 2022; 29 VD Menachery (4860_CR71) 2016; 113 Y Shang (4860_CR2) 2021; 9 4860_CR21 4860_CR20 H Fu (4860_CR64) 2021; 61 H Mou (4860_CR78) 2021; 17 E Dong (4860_CR1) 2020; 20 AC Walls (4860_CR19) 2017; 114 P Han (4860_CR51) 2022; 185 L Wu (4860_CR57) 2022; 7 L Wettstein (4860_CR47) 2021; 12 S Izadi (4860_CR96) 2014; 5 4860_CR14 MS Islam (4860_CR30) 2022; 121 A Onufriev (4860_CR101) 2004; 55 F Ye (4860_CR79) 2021; 6 4860_CR16 N Ollikainen (4860_CR40) 2015; 11 W Humphrey (4860_CR100) 1996; 14 B Meng (4860_CR60) 2022; 603 TT-Y Lam (4860_CR72) 2020; 583 S Shiehzadegan (4860_CR10) 2021; 11 P Karoyan (4860_CR24) 2021; 4 K Dhama (4860_CR18) 2020; 37 J Huang (4860_CR103) 2016; 14 4860_CR90 Y Cao (4860_CR65) 2022; 608 P Chatterjee (4860_CR22) 2020; 3 C Davis (4860_CR12) 2021; 17 S Tanaka (4860_CR39) 2021; 11 D Mannar (4860_CR53) 2022; 375 JC Gumbart (4860_CR49) 2013; 9 |
References_xml | – ident: CR68 – ident: CR74 – volume: 14 start-page: 1188 year: 2004 end-page: 1190 ident: CR105 article-title: WebLogo: a sequence logo generator: Fig. 1 publication-title: Genome Res. doi: 10.1101/gr.849004 – ident: CR16 – volume: 28 start-page: 490 year: 2022 end-page: 495 ident: CR7 article-title: An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01678-y – volume: 61 start-page: 2116 year: 2021 end-page: 2123 ident: CR64 article-title: BFEE2: automated, streamlined, and accurate absolute binding free-energy calculations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00269 – volume: 11 start-page: e1004335 year: 2015 ident: CR40 article-title: Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004335 – volume: 13 year: 2022 ident: CR55 article-title: Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies publication-title: Nat. Commun. doi: 10.1038/s41467-022-28528-w – volume: 8 start-page: 671633 year: 2021 ident: CR25 article-title: Antibodies and vaccines target RBD of SARS-CoV-2 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.671633 – volume: 12 year: 2021 ident: CR47 article-title: Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection publication-title: Nat. Commun. doi: 10.1038/s41467-021-21972-0 – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: CR19 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 21 start-page: 1066 year: 2023 end-page: 1076 ident: CR87 article-title: Valproate-coenzyme A conjugate blocks opening of receptor binding domains in the spike trimer of SARS-CoV-2 through an allosteric mechanism publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.01.014 – volume: 117 start-page: 28046 year: 2020 end-page: 28055 ident: CR33 article-title: Engineered ACE2 receptor traps potently neutralize SARS-CoV-2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016093117 – volume: 4 start-page: 197 year: 2021 ident: CR24 article-title: Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection publication-title: Commun. Biol. doi: 10.1038/s42003-021-01736-8 – volume: 14 start-page: e16109 year: 2022 ident: CR80 article-title: An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS‐CoV‐2 publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202216109 – volume: 5 start-page: 3863 year: 2014 end-page: 3871 ident: CR96 article-title: Building water models: a different approach publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501780a – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: CR27 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 46 start-page: 1039 year: 2013 end-page: 1049 ident: CR42 article-title: Aromatic–proline interactions: electronically tunable CH/π interactions publication-title: Acc. Chem. Res. doi: 10.1021/ar300087y – volume: 26 start-page: 1668 year: 2005 end-page: 1688 ident: CR91 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 8 start-page: eabn4188 year: 2022 ident: CR76 article-title: Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities publication-title: Sci. Adv. doi: 10.1126/sciadv.abn4188 – ident: CR36 – volume: 602 start-page: 664 year: 2022 end-page: 670 ident: CR52 article-title: Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 17 start-page: e1009501 year: 2021 ident: CR78 article-title: Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009501 – volume: 222 start-page: 108634 year: 2021 ident: CR3 article-title: COVID-19: a review of therapeutic strategies and vaccine candidates publication-title: Clin. Immunol. doi: 10.1016/j.clim.2020.108634 – volume: 12 year: 2021 ident: CR86 article-title: ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury publication-title: Nat. Commun. doi: 10.1038/s41467-021-27097-8 – volume: 122 start-page: 5389 year: 2018 end-page: 5399 ident: CR41 article-title: Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b11367 – volume: 25 start-page: 103670 year: 2022 ident: CR81 article-title: ACE2-IgG1 fusions with improved in vitro and in vivo activity against SARS-CoV-2 publication-title: iScience doi: 10.1016/j.isci.2021.103670 – volume: 7 start-page: 65 year: 2021 ident: CR82 article-title: Potent prophylactic and therapeutic efficacy of recombinant human ACE2-Fc against SARS-CoV-2 infection in vivo publication-title: Cell Discov. doi: 10.1038/s41421-021-00302-0 – volume: 603 start-page: 706 year: 2022 end-page: 714 ident: CR60 article-title: Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 17 start-page: e1009328 year: 2021 ident: CR26 article-title: A high-affinity RBD-targeting nanobody improves fusion partner’s potency against SARS-CoV-2 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009328 – volume: 9 start-page: 794 year: 2013 end-page: 802 ident: CR49 article-title: Standard binding free energies from computer simulations: what is the best strategy? publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3008099 – ident: CR63 – volume: 375 start-page: 760 year: 2022 end-page: 764 ident: CR53 article-title: SARS-CoV-2 Omicron variant: antibody evasion and cryo-EM structure of spike protein–ACE2 complex publication-title: Science doi: 10.1126/science.abn7760 – volume: 10 start-page: 449 year: 2015 end-page: 461 ident: CR44 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2015.1032936 – volume: 121 start-page: 422a year: 2022 ident: CR30 article-title: Computationally engineered ACE2 decoy binds with nanomolar affinity with the SARS-CoV-2 spike protein publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.11.664 – volume: 377 start-page: 420 year: 2022 end-page: 424 ident: CR69 article-title: Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution publication-title: Science doi: 10.1126/science.abo7896 – volume: 11 start-page: e02451 year: 2020 end-page: 20 ident: CR23 article-title: Stapled peptides based on human angiotensin-converting enzyme 2 (ACE2) potently Inhibit SARS-CoV-2 infection in vitro publication-title: MBio doi: 10.1128/mBio.02451-20 – ident: CR38 – volume: 31 start-page: 410 year: 2021 end-page: 424 ident: CR89 article-title: Comprehensive characterization of N- and O- glycosylation of SARS-CoV-2 human receptor angiotensin converting enzyme 2 publication-title: Glycobiology doi: 10.1093/glycob/cwaa101 – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR62 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 125 start-page: 4330 year: 2021 end-page: 4336 ident: CR28 article-title: Fast prediction of binding affinities of the SARS-CoV-2 spike protein mutant N501Y (UK Variant) with ACE2 and miniprotein drug candidates publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.1c00869 – volume: 29 start-page: 68 year: 2022 ident: CR4 article-title: A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies publication-title: J. Biomed. Sci. doi: 10.1186/s12929-022-00852-9 – volume: 18 start-page: 342 year: 2022 end-page: 351 ident: CR37 article-title: Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-021-00965-6 – volume: 596 start-page: 276 year: 2021 end-page: 280 ident: CR11 article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization publication-title: Nature doi: 10.1038/s41586-021-03777-9 – volume: 6 start-page: 343 year: 2021 ident: CR79 article-title: S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00756-4 – volume: 16 start-page: 1396 year: 2020 end-page: 1410 ident: CR45 article-title: CL-FEP: an end-state free energy perturbation approach publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00725 – volume: 9 start-page: 1080964 year: 2022 ident: CR88 article-title: Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2022.1080964 – volume: 64 start-page: 2375 year: 1976 ident: CR97 article-title: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids publication-title: J. Chem. Phys. doi: 10.1063/1.432526 – volume: 26 start-page: 1781 year: 2005 end-page: 1802 ident: CR102 article-title: Scalable molecular dynamics with NAMD publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 17 start-page: e1010022 year: 2021 ident: CR12 article-title: Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1010022 – volume: 37 start-page: 101830 year: 2020 ident: CR18 article-title: SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101830 – volume: 11 year: 2021 ident: CR39 article-title: An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants publication-title: Sci. Rep. doi: 10.1038/s41598-021-91809-9 – volume: 16 start-page: 528 year: 2020 end-page: 552 ident: CR95 article-title: ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00591 – volume: 14 start-page: eabn7737 year: 2022 ident: CR13 article-title: An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abn7737 – volume: 185 start-page: 630 year: 2022 end-page: 640.e10 ident: CR51 article-title: Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2022.01.001 – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: CR99 article-title: A smooth particle mesh Ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: CR8 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 375 start-page: 1048 year: 2022 end-page: 1053 ident: CR61 article-title: Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody publication-title: Science doi: 10.1126/science.abn8863 – volume: 126 start-page: 4669 year: 2022 end-page: 4678 ident: CR46 article-title: SARS-CoV-2 Omicron variant binds to human cells more strongly than the wild type: evidence from molecular dynamics simulation publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c01048 – ident: CR21 – volume: 3 start-page: 715 year: 2020 ident: CR22 article-title: Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions publication-title: Commun. Biol. doi: 10.1038/s42003-020-01470-7 – volume: 611 start-page: 213 year: 2022 end-page: 214 ident: CR17 article-title: COVID ‘variant soup’ is making winter surges hard to predict publication-title: Nature doi: 10.1038/d41586-022-03445-6 – ident: CR67 – volume: 603 start-page: 687 year: 2022 end-page: 692 ident: CR84 article-title: SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters publication-title: Nature doi: 10.1038/s41586-022-04441-6 – volume: 20 year: 2022 ident: CR58 article-title: Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV-2 Omicron variant publication-title: BMC Med. doi: 10.1186/s12916-022-02312-5 – ident: CR50 – volume: 102 start-page: 6825 year: 2005 end-page: 6830 ident: CR48 article-title: Calculation of absolute protein–ligand binding free energy from computer simulations publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0409005102 – volume: 185 start-page: 2116 year: 2022 end-page: 2131.e18 ident: CR93 article-title: Potent cross-reactive antibodies following Omicron breakthrough in vaccinees publication-title: Cell doi: 10.1016/j.cell.2022.05.014 – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: CR92 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 20 start-page: 533 year: 2020 end-page: 534 ident: CR1 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – ident: CR9 – volume: 113 start-page: 3048 year: 2016 end-page: 3053 ident: CR71 article-title: SARS-like WIV1-CoV poised for human emergence publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1517719113 – volume: 11 year: 2020 ident: CR85 article-title: Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig publication-title: Nat. Commun. doi: 10.1038/s41467-020-16048-4 – volume: 604 start-page: 553 year: 2022 end-page: 556 ident: CR15 article-title: Antibody evasion properties of SARS-CoV-2 Omicron sublineages publication-title: Nature doi: 10.1038/s41586-022-04594-4 – volume: 608 start-page: 603 year: 2022 end-page: 608 ident: CR70 article-title: Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 608 start-page: 593 year: 2022 end-page: 602 ident: CR65 article-title: BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection publication-title: Nature doi: 10.1038/s41586-022-04980-y – volume: 61 start-page: 4656 year: 2021 end-page: 4669 ident: CR29 article-title: Computationally designed ACE2 decoy receptor binds SARS-CoV-2 spike (S) protein with tight nanomolar affinity publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00783 – volume: 12 year: 2021 ident: CR32 article-title: Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24013-y – volume: 119 start-page: 9478 year: 2019 end-page: 9508 ident: CR43 article-title: End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00055 – volume: 7 start-page: eabf1738 year: 2021 ident: CR35 article-title: An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants publication-title: Sci. Adv. doi: 10.1126/sciadv.abf1738 – volume: 17 start-page: e1009544 year: 2021 ident: CR75 article-title: Intranasal gene therapy to prevent infection by SARS-CoV-2 variants publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009544 – volume: 14 start-page: 2187 year: 2021 end-page: 2192 ident: CR5 article-title: Effect of genomic and amino acid sequence mutation on virulence and therapeutic target of severe acute respiratory syndrome coronavirus-2 (SARS COV-2) publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S307374 – volume: 55 start-page: 383 year: 2004 end-page: 394 ident: CR101 article-title: Exploring protein native states and large-scale conformational changes with a modified generalized born model publication-title: Proteins Struct. Funct. Genet. doi: 10.1002/prot.20033 – ident: CR14 – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: CR94 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 10 start-page: 743 year: 2022 ident: CR54 article-title: Increased receptor affinity and reduced recognition by specific antibodies contribute to immune escape of SARS-CoV-2 variant Omicron publication-title: Vaccines doi: 10.3390/vaccines10050743 – volume: 10 start-page: e73641 year: 2021 ident: CR77 article-title: Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor publication-title: Elife doi: 10.7554/eLife.73641 – volume: 9 start-page: 632043 year: 2021 ident: CR2 article-title: Effects of pandemic outbreak on economies: evidence from business history context publication-title: Front. Public Heal. doi: 10.3389/fpubh.2021.632043 – ident: CR56 – volume: 377 start-page: 428 year: 2022 end-page: 433 ident: CR83 article-title: Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters publication-title: Science doi: 10.1126/science.abn8939 – volume: 7 start-page: 8 year: 2022 ident: CR57 article-title: SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00863-2 – volume: 32 start-page: 593 year: 2022 end-page: 595 ident: CR59 article-title: Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction publication-title: Cell Res. doi: 10.1038/s41422-022-00644-8 – volume: 11 start-page: 778 year: 2021 end-page: 784 ident: CR10 article-title: Analysis of the Delta variant B.1.617.2 COVID-19 publication-title: Clin. Pract. doi: 10.3390/clinpract11040093 – year: 1998 ident: CR98 article-title: Improved convergence in dual-topology free energy calculations through use of harmonic restraints publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199808)19:11<1278::AID-JCC7>3.0.CO;2-H – volume: 583 start-page: 282 year: 2020 end-page: 285 ident: CR72 article-title: Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2169-0 – ident: CR90 – volume: 182 start-page: 1295 year: 2020 end-page: 1310.e20 ident: CR73 article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – ident: CR31 – volume: 14 start-page: 71 year: 2016 end-page: 73 ident: CR103 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat. Methods doi: 10.1038/nmeth.4067 – ident: CR34 – volume: 18 start-page: 5890 year: 2022 end-page: 5900 ident: CR66 article-title: When the dust has settled: calculation of binding affinities from first principles for SARS-CoV-2 variants with quantitative accuracy publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00604 – volume: 596 start-page: 103 year: 2021 end-page: 108 ident: CR6 article-title: In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 105 start-page: 9954 year: 2001 end-page: 9960 ident: CR104 article-title: Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K publication-title: J. Phys. Chem. A doi: 10.1021/jp003020w – ident: CR20 – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR100 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – ident: 4860_CR90 – volume: 20 start-page: 533 year: 2020 ident: 4860_CR1 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30120-1 – volume: 32 start-page: 593 year: 2022 ident: 4860_CR59 publication-title: Cell Res. doi: 10.1038/s41422-022-00644-8 – volume: 583 start-page: 282 year: 2020 ident: 4860_CR72 publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 11 year: 2021 ident: 4860_CR39 publication-title: Sci. Rep. doi: 10.1038/s41598-021-91809-9 – volume: 26 start-page: 1668 year: 2005 ident: 4860_CR91 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 18 start-page: 5890 year: 2022 ident: 4860_CR66 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00604 – volume: 11 start-page: 778 year: 2021 ident: 4860_CR10 publication-title: Clin. Pract. doi: 10.3390/clinpract11040093 – ident: 4860_CR38 doi: 10.1101/2022.03.28.486075 – volume: 596 start-page: 103 year: 2021 ident: 4860_CR6 publication-title: Nature doi: 10.1038/s41586-021-03720-y – volume: 10 start-page: 449 year: 2015 ident: 4860_CR44 publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2015.1032936 – volume: 9 start-page: 1080964 year: 2022 ident: 4860_CR88 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2022.1080964 – volume: 611 start-page: 213 year: 2022 ident: 4860_CR17 publication-title: Nature doi: 10.1038/d41586-022-03445-6 – volume: 14 start-page: 1188 year: 2004 ident: 4860_CR105 publication-title: Genome Res. doi: 10.1101/gr.849004 – volume: 121 start-page: 422a year: 2022 ident: 4860_CR30 publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.11.664 – volume: 5 start-page: 3863 year: 2014 ident: 4860_CR96 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501780a – volume: 603 start-page: 706 year: 2022 ident: 4860_CR60 publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 8 start-page: 671633 year: 2021 ident: 4860_CR25 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.671633 – volume: 3 start-page: 715 year: 2020 ident: 4860_CR22 publication-title: Commun. Biol. doi: 10.1038/s42003-020-01470-7 – ident: 4860_CR9 – volume: 26 start-page: 1781 year: 2005 ident: 4860_CR102 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20289 – volume: 61 start-page: 2116 year: 2021 ident: 4860_CR64 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00269 – ident: 4860_CR63 doi: 10.1021/acs.jpclett.2c01490 – volume: 113 start-page: 3048 year: 2016 ident: 4860_CR71 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1517719113 – volume: 7 start-page: 8 year: 2022 ident: 4860_CR57 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00863-2 – ident: 4860_CR50 doi: 10.1021/ja9738539 – volume: 608 start-page: 603 year: 2022 ident: 4860_CR70 publication-title: Nature doi: 10.1038/s41586-022-05053-w – volume: 114 start-page: 11157 year: 2017 ident: 4860_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 9 start-page: 794 year: 2013 ident: 4860_CR49 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3008099 – volume: 122 start-page: 5389 year: 2018 ident: 4860_CR41 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b11367 – volume: 102 start-page: 6825 year: 2005 ident: 4860_CR48 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0409005102 – volume: 16 start-page: 528 year: 2020 ident: 4860_CR95 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00591 – volume: 596 start-page: 276 year: 2021 ident: 4860_CR11 publication-title: Nature doi: 10.1038/s41586-021-03777-9 – volume: 27 start-page: 717 year: 2021 ident: 4860_CR8 publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – volume: 12 year: 2021 ident: 4860_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24013-y – ident: 4860_CR16 doi: 10.1101/2022.09.15.507787 – volume: 608 start-page: 593 year: 2022 ident: 4860_CR65 publication-title: Nature doi: 10.1038/s41586-022-04980-y – volume: 25 start-page: 103670 year: 2022 ident: 4860_CR81 publication-title: iScience doi: 10.1016/j.isci.2021.103670 – volume: 16 start-page: 1396 year: 2020 ident: 4860_CR45 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00725 – volume: 21 start-page: 1066 year: 2023 ident: 4860_CR87 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.01.014 – volume: 12 year: 2021 ident: 4860_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21972-0 – volume: 377 start-page: 420 year: 2022 ident: 4860_CR69 publication-title: Science doi: 10.1126/science.abo7896 – volume: 593 start-page: 130 year: 2021 ident: 4860_CR27 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 185 start-page: 2116 year: 2022 ident: 4860_CR93 publication-title: Cell doi: 10.1016/j.cell.2022.05.014 – ident: 4860_CR68 doi: 10.1056/NEJMc2206576 – volume: 375 start-page: 760 year: 2022 ident: 4860_CR53 publication-title: Science doi: 10.1126/science.abn7760 – volume: 46 start-page: 1039 year: 2013 ident: 4860_CR42 publication-title: Acc. Chem. Res. doi: 10.1021/ar300087y – volume: 29 start-page: 68 year: 2022 ident: 4860_CR4 publication-title: J. Biomed. Sci. doi: 10.1186/s12929-022-00852-9 – volume: 13 year: 2022 ident: 4860_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28528-w – ident: 4860_CR67 doi: 10.1016/j.cell.2022.06.005 – volume: 222 start-page: 108634 year: 2021 ident: 4860_CR3 publication-title: Clin. Immunol. doi: 10.1016/j.clim.2020.108634 – volume: 10 start-page: 743 year: 2022 ident: 4860_CR54 publication-title: Vaccines doi: 10.3390/vaccines10050743 – volume: 602 start-page: 664 year: 2022 ident: 4860_CR52 publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 17 start-page: e1010022 year: 2021 ident: 4860_CR12 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1010022 – volume: 126 start-page: 4669 year: 2022 ident: 4860_CR46 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c01048 – volume: 11 start-page: e02451 year: 2020 ident: 4860_CR23 publication-title: MBio doi: 10.1128/mBio.02451-20 – volume: 64 start-page: 2375 year: 1976 ident: 4860_CR97 publication-title: J. Chem. Phys. doi: 10.1063/1.432526 – volume: 28 start-page: 490 year: 2022 ident: 4860_CR7 publication-title: Nat. Med. doi: 10.1038/s41591-021-01678-y – volume: 117 start-page: 28046 year: 2020 ident: 4860_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016093117 – volume: 12 year: 2021 ident: 4860_CR86 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27097-8 – volume: 14 start-page: 2187 year: 2021 ident: 4860_CR5 publication-title: Infect. Drug Resist. doi: 10.2147/IDR.S307374 – volume: 29 start-page: 1859 year: 2008 ident: 4860_CR92 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 125 start-page: 4330 year: 2021 ident: 4860_CR28 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.1c00869 – volume: 17 start-page: e1009501 year: 2021 ident: 4860_CR78 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009501 – volume: 581 start-page: 215 year: 2020 ident: 4860_CR62 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 11 start-page: e1004335 year: 2015 ident: 4860_CR40 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004335 – volume: 37 start-page: 101830 year: 2020 ident: 4860_CR18 publication-title: Travel Med. Infect. Dis. doi: 10.1016/j.tmaid.2020.101830 – volume: 375 start-page: 1048 year: 2022 ident: 4860_CR61 publication-title: Science doi: 10.1126/science.abn8863 – volume: 17 start-page: e1009544 year: 2021 ident: 4860_CR75 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009544 – volume: 14 start-page: 71 year: 2016 ident: 4860_CR103 publication-title: Nat. Methods doi: 10.1038/nmeth.4067 – volume: 8 start-page: eabn4188 year: 2022 ident: 4860_CR76 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn4188 – volume: 4 start-page: 197 year: 2021 ident: 4860_CR24 publication-title: Commun. Biol. doi: 10.1038/s42003-021-01736-8 – volume: 11 year: 2020 ident: 4860_CR85 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16048-4 – ident: 4860_CR34 doi: 10.1101/2020.08.12.247940 – volume: 377 start-page: 428 year: 2022 ident: 4860_CR83 publication-title: Science doi: 10.1126/science.abn8939 – volume: 603 start-page: 687 year: 2022 ident: 4860_CR84 publication-title: Nature doi: 10.1038/s41586-022-04441-6 – ident: 4860_CR20 doi: 10.1126/science.abd9909 – volume: 119 start-page: 9478 year: 2019 ident: 4860_CR43 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00055 – volume: 105 start-page: 9954 year: 2001 ident: 4860_CR104 publication-title: J. Phys. Chem. A doi: 10.1021/jp003020w – ident: 4860_CR14 doi: 10.1101/2022.02.14.480335 – volume: 185 start-page: 630 year: 2022 ident: 4860_CR51 publication-title: Cell doi: 10.1016/j.cell.2022.01.001 – ident: 4860_CR74 doi: 10.1101/2022.05.21.492554 – ident: 4860_CR36 doi: 10.1101/2021.12.22.473804 – volume: 31 start-page: 410 year: 2021 ident: 4860_CR89 publication-title: Glycobiology doi: 10.1093/glycob/cwaa101 – volume: 604 start-page: 553 year: 2022 ident: 4860_CR15 publication-title: Nature doi: 10.1038/s41586-022-04594-4 – volume: 10 start-page: e73641 year: 2021 ident: 4860_CR77 publication-title: Elife doi: 10.7554/eLife.73641 – volume: 103 start-page: 8577 year: 1995 ident: 4860_CR99 publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 9 start-page: 632043 year: 2021 ident: 4860_CR2 publication-title: Front. Public Heal. doi: 10.3389/fpubh.2021.632043 – volume: 14 start-page: eabn7737 year: 2022 ident: 4860_CR13 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abn7737 – volume: 55 start-page: 383 year: 2004 ident: 4860_CR101 publication-title: Proteins Struct. Funct. Genet. doi: 10.1002/prot.20033 – volume: 61 start-page: 4656 year: 2021 ident: 4860_CR29 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00783 – volume: 17 start-page: e1009328 year: 2021 ident: 4860_CR26 publication-title: PLOS Pathog. doi: 10.1371/journal.ppat.1009328 – volume: 6 start-page: 343 year: 2021 ident: 4860_CR79 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00756-4 – ident: 4860_CR21 doi: 10.1021/jacs.1c11554 – volume: 7 start-page: 65 year: 2021 ident: 4860_CR82 publication-title: Cell Discov. doi: 10.1038/s41421-021-00302-0 – volume: 20 year: 2022 ident: 4860_CR58 publication-title: BMC Med. doi: 10.1186/s12916-022-02312-5 – volume: 7 start-page: eabf1738 year: 2021 ident: 4860_CR35 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf1738 – year: 1998 ident: 4860_CR98 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199808)19:11<1278::AID-JCC7>3.0.CO;2-H – volume: 29 start-page: 1859 year: 2008 ident: 4860_CR94 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 18 start-page: 342 year: 2022 ident: 4860_CR37 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-021-00965-6 – ident: 4860_CR31 doi: 10.1126/science.abc0870 – volume: 182 start-page: 1295 year: 2020 ident: 4860_CR73 publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 14 start-page: 33 year: 1996 ident: 4860_CR100 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 14 start-page: e16109 year: 2022 ident: 4860_CR80 publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202216109 – ident: 4860_CR56 doi: 10.2210/pdb7xnr/pdb |
SSID | ssj0001999634 |
Score | 2.3070796 |
Snippet | SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination.... Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 513 |
SubjectTerms | 631/114/469 631/154/51/2314 631/57/2266 82 82/80 82/81 82/83 96 96/31 ACE2 Affinity Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - genetics Angiotensin-Converting Enzyme 2 - therapeutic use antibodies Antibodies, Monoclonal Biology Biology (General) Biomedical and Life Sciences Computer applications COVID-19 Design Humans Life Sciences Medical Biochemistry Medical Sciences Medicine and Health Sciences monoclonal Monoclonal antibodies Protein Engineering QH301-705.5 SARS-CoV-2 SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Vaccination |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtQqGX0nfdJkWF3loRWw_bOpXNsiH0EErSlNyMJMuJIVipvbuwP6D_uyNZu8v2kcuCV5KRpXl8MxrNIPSRN7womqIB_paGcJ1posGOIJY1ImVayUaFKN-z_PSSf70SV9HhNsSwyrVMDIK6dsb7yI8oaCKAMmCvfLn7SXzVKH-6GktoPET7IIJLML72j2dn3863XhaP5xmPt2VSVh4NPIRjgaoioQATkTsaKSTuBz3Tte2_MOffoZN_nJ8GtXTyFD2JeBJPRgJ4hh7Y7jl6NFaYXL1AvybYhLoN0ed3u8J1iNmwNZ5MZxSejFvhGzVg3TtVY-tTSiizwupatQAd8cXk_IJM3Q9Csb_A3LsOL8G-9uEzWHU1Dpdh4G3Ltl8MdsAttLfz3oXG8LB0L9Hlyez79JTEygvE5CyfE81UrlKltdDSKMAQqRK8MVKrXFOueF2XpbWg_AF_aK0KaUudcZ-6MGVNUTP2Cu11rrNvEJaF4ZqCGacE5UJ4RxNAyAbEgOd9JhOUrVe_MjEtua-OcVuF43FWVuOOVbBjVdixCsZ82oy5G5Ny3Nv72G_qpqdPqB3-cP11Ffmzkk2e2pLaXFCgXqYkFyZNNdjvZUOFNgk6BJKAGfrfDKzMArApoJuCMeFlYIIO1sRSRSkwVFuaTdCHTTPwrz-UUZ11i9AHVsSLyQS9HmlrM1PmQyQ4hdHlDtXtfMpuS9fehBzhXtIWMDhBn9cEup3X_9fq7f2f8Q49poFzBMnoAdqb9wt7CKBsrt9HzvsN7SsvyQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJv0gYzEDSwSP5L4uEStKg4cKEW9WbZjt5GqpEp2V9ofwP9m7CRbLRQkLpEceyLHnvF8Y49nEHrPPS8KX3iQb2kJN5khBuwI4pgXKTNaeh29fL_mZxf8y6W43EN0vgsTnfZjSMu4TM_eYZ8GHr2oQMOQmDeJyAfoYQjdHri6yqu7fZWA4Bmf7sekrLyHdEcHxVD9oFnaprkPZf7pLPnbiWlURKdP0ZMJQeLF2OdnaM-1z9GjMafk5gX6ucA2ZmqYdvluNriOXhquxovqhELJdht8rQds-k7X2IUgEtpusL7SDYBFfL74dk6q7gehOFxZ7rsWr8GiDg4zWLc1jtdf4Gvrpl8NbsAN1DfLvouVsbDuXqKL05Pv1RmZci0Qm7N8SQzTuU61McJIqwE1pFpwb6XRuaFc87ouS-dA3QPiMEYX0pUm4yFYYcp8UTP2Cu23XeveICwLyw0Fw00LyoUIW0sAGj0IfpB2JhOUzaOv7BSIPOTDuFHxQJyVapwxBTOm4owpoPmwpbkdw3D8s_XnMKnbliGEdnzR9VdqYiklfZ66krpcUOBXpiUXNk0NWOylp8LYBB0DS0APwzMDu7IANAp4pmBMhFUvQUczs6hJ7gdFAS8B4AarOkHvttUgseEYRreuW8U2MCJhYUzQ65G3tj1lwSmCU6Aud7hu51d2a9rmOkYFD2trAcQJ-jgz6F2__j5WB__X_BA9plGSBMnoEdpf9it3DLBsad5GOfwFd4IsKw priority: 102 providerName: Springer Nature |
Title | A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo |
URI | https://cir.nii.ac.jp/crid/1871709542673354880 https://link.springer.com/article/10.1038/s42003-023-04860-9 https://www.ncbi.nlm.nih.gov/pubmed/37173421 https://www.proquest.com/docview/2812916211 https://www.proquest.com/docview/2813561793 https://pubmed.ncbi.nlm.nih.gov/PMC10177734 https://doaj.org/article/9f60e82e652f473a945c00b3838f25bc |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0nfcJosKvbUiXj1s6-iYDWEPoWSbkpuQZLkxBLvYuwv7A_q_O5K922yfl15sbElGHs1ovpFGMwi94xVP0yqtQL6lJdxMDTFgRxDHKhEzo2Wlg5fvRXJ-xefX4vpOqi_vEzaEBx4IdyKrJHYZdYmg8FmmJRc2jg0YVllFhbF-9gWdd8eYCqsrHsczPp6SiVl20vPghgUqioTES0TuaaIQsB_0S1PXv8Oav7pM_rRvGtTR2RP0eMSROB_6_xTdc80z9HDILLl5jr7l2IZ8DeNa3-0Gl8FXw5U4L2YUnmy7wTe6x6ZrdYmdDyWh7QbrL7oGyIgX-eWCFO1nQrE_uNy1DV6DXe3dZrBuShwOwcDX1nW36l2Payivl10bCsPDun2Brs5mn4pzMmZcIDZhyZIYphMda2OEkVYDdoi14JWVRieGcs3LMsucA6UPuMMYnUqXmSn3IQtjVqUlYy_RQdM27hBhmVpuKJhvWlAuhF9gAuhYgfh7mWcyQtMt9ZUdw5H7rBi3KmyLs0wNI6ZgxFQYMQVt3u_afB2Ccfy19qkf1F1NH0g7vAD2UiN7qX-xV4SOgSWgh_46BesyBUwKqCZlTPi5L0JHW2ZRo_T3igJqAtgNtnWE3u6KQW79ZoxuXLsKdYAifnqM0KuBt3Y9Zd41glNone1x3d6v7Jc09U2IDe5n2BQaR-jDlkF_9OvPtHr9P2j1Bj2iQb4EmdIjdLDsVu4YINvSTNCDPJ8v5nA_nV18vJyg-0VSTILMfgfA6Dph |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgheEN8ENjASPIG11B_5eECoK506Niq0D7S3YDvOFmlKRtIW9Q_g3-Fv5OwkrcrH3vZSKbUdOb67393Z5zuEXvOMh2EWZiDfsSZc9RVR4EcQwzLhMyXjTLoo30kwPuWfzsTZBvrV3YWxYZUdJjqgTktt98h3KGgiMGXAX_lw9Z3YqlH2dLUrodGwxYFZ_ACXrX6__xHo-4bSvdHJcEzaqgJEByyYEsVkIH2plFCxlqAffSl4pmMlA0W55GkaRcaAYgPdqpQMYxOpPrdp-XyWhandAAXI3-QMXJke2twdTb4crXZ1rP_AeHs7x2fRTs1d-BeoRuIKPpF4TQO6QgGg14o8_5eN-3eo5h_ntU4N7t1Dd1v7FQ8ahruPNkzxAN1qKlouHqKfA6xdnYh2j_FygVMXI2JSPBiOKDzpcoEvZI1VVcoUG5vCQuoFlucyB1MVHw-Ojsmw_Eoothemq7LAc_DnbbgOlkWK3eUbeNs8r2a1qXEO7fm0Kl2je5iXj9DpjdDkMeoVZWGeIhyHmisKbqMUlAthN7bAZM0AdizWsNhD_W71E92mQbfVOC4TdxzPoqShWAIUSxzFEhjzdjnmqkkCcm3vXUvUZU-bwNv9UVbnSYsHSZwFvomoCQQFaWEy5kL7vmIRizIqlPbQNrAEzND-9sGrDcEWBmsqZExYzPXQVscsSYs6dbKSEQ-9WjYDXthDIFmYcub6wIpYWPbQk4a3ljNlNiSDUxgdrXHd2qestxT5hctJbpE9hMEeetcx6Gpe_1-rZ9d_xkt0e3zy-TA53J8cPEd3qJMiQfp0C_Wm1cxsg0E4VS9aKcTo200L_m_oSm1s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEYhLxZtAC0biBqaJH3kcl9BVeahClKLeLNux20hVUiW7K-0P6P9m7E22WihIXCI59kSOPeP5xh7PIPSGO55lLnMg34UhXCeaaLAjiGVOxEyrwqng5XuUHp7wz6fidAul412Y4LQfQlqGZXr0DtvvefCiAg1DQt4kUry_rNwtdBvwduyNrjItr_dWPIpnfLgjE7P8BvINPRTC9YN2aer6JqT5p8Pkb6emQRlN76OdAUXiyarfD9CWbR6iO6u8kstH6GqCTcjWMOz0XSxxFTw1bIUn5QGFkmmX-Fz1WHetqrD1gSSUWWJ1pmoAjPh48v2YlO1PQrG_tty1DV6AVe2dZrBqKhyuwMDXFnU3722Pa6ivZ10bKkNh0T5GJ9ODH-UhGfItEJOydEY0U6mKldZCF0YBcoiV4M4UWqWacsWrKs-tBZUPqENrlRU21wn3AQtj5rKKsSdou2kb-wzhIjNcUzDelKBcCL-9BMDRgfB7iWdFhJJx9KUZgpH7nBgXMhyKs1yuZkzCjMkwYxJo3q5pLlehOP7Z-oOf1HVLH0Y7vGi7MzmwlSxcGtuc2lRQ4FmmCi5MHGuw2nNHhTYR2gOWgB76ZwK2ZQaIFDBNxpjwK1-EdkdmkYPs95ICZgLQDZZ1hF6vq0Fq_VGMamw7D21gRPziGKGnK95a95R5xwhOgTrf4LqNX9msaerzEBncr68ZEEfo3cig1_36-1g9_7_mr9Ddbx-n8uunoy8v0D0ahEqQhO6i7Vk3t3uA0mb6ZRDJXxAvMCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computationally+designed+ACE2+decoy+has+broad+efficacy+against+SARS-CoV-2+omicron+variants+and+related+viruses+in+vitro+and+in+vivo&rft.jtitle=Communications+biology&rft.au=Havranek%2C+Brandon&rft.au=Lindsey%2C+Graeme+Walker&rft.au=Higuchi%2C+Yusuke&rft.au=Itoh%2C+Yumi&rft.date=2023-05-12&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-023-04860-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s42003_023_04860_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |