Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mecha...
Saved in:
Published in | Acta neuropathologica Vol. 126; no. 6; pp. 829 - 844 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2013
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of
C9ORF72
is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)
66
in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)
exp
RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)
66
is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the
C9ORF72
repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. |
---|---|
AbstractList | Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG) sub(66) in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG) sub(exp) RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG) sub(66) is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG) 66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG) exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG) 66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)^sub 66^ in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)^sub exp^ RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)^sub 66^ is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.[PUBLICATION ABSTRACT] Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes "c9FTD/ALS" are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of [(CCCCGG).sub.66] in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible [(CCCCGG).sub.exp] RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that [(CCCCGG).sub.66] is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies. Keywords Amyotrophic lateral sclerosis * Bidirectional transcription * C9ORF72 * Expanded repeat * Frontotemporal dementia * Repeat-associated non-ATG translation * RNA foci |
Audience | Academic |
Author | Rademakers, Rosa Bieniek, Kevin F. Lee, Wing C. Dickson, Dennis W. Caulfield, Thomas Gendron, Tania F. Dunmore, Judith H. van Blitterswijk, Marka Boylan, Kevin B. Petrucelli, Leonard Zhang, Yong-Jie Jansen-West, Karen Daughrity, Lillian Chew, Jeannie Ash, Peter E. A. Castanedes-Casey, Monica Cosio, Danielle M. |
Author_xml | – sequence: 1 givenname: Tania F. surname: Gendron fullname: Gendron, Tania F. organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 2 givenname: Kevin F. surname: Bieniek fullname: Bieniek, Kevin F. organization: Department of Neuroscience, Mayo Clinic Florida, Mayo Graduate School, Mayo Clinic College of Medicine – sequence: 3 givenname: Yong-Jie surname: Zhang fullname: Zhang, Yong-Jie organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 4 givenname: Karen surname: Jansen-West fullname: Jansen-West, Karen organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 5 givenname: Peter E. A. surname: Ash fullname: Ash, Peter E. A. organization: Department of Pharmacology, Boston University School of Medicine – sequence: 6 givenname: Thomas surname: Caulfield fullname: Caulfield, Thomas organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 7 givenname: Lillian surname: Daughrity fullname: Daughrity, Lillian organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 8 givenname: Judith H. surname: Dunmore fullname: Dunmore, Judith H. organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 9 givenname: Monica surname: Castanedes-Casey fullname: Castanedes-Casey, Monica organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 10 givenname: Jeannie surname: Chew fullname: Chew, Jeannie organization: Department of Neuroscience, Mayo Clinic Florida, Mayo Graduate School, Mayo Clinic College of Medicine – sequence: 11 givenname: Danielle M. surname: Cosio fullname: Cosio, Danielle M. organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 12 givenname: Marka surname: van Blitterswijk fullname: van Blitterswijk, Marka organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 13 givenname: Wing C. surname: Lee fullname: Lee, Wing C. organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 14 givenname: Rosa surname: Rademakers fullname: Rademakers, Rosa organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 15 givenname: Kevin B. surname: Boylan fullname: Boylan, Kevin B. organization: Department of Neurology, Mayo Clinic Florida – sequence: 16 givenname: Dennis W. surname: Dickson fullname: Dickson, Dennis W. email: dickson.dennis@mayo.edu organization: Department of Neuroscience, Mayo Clinic Florida – sequence: 17 givenname: Leonard surname: Petrucelli fullname: Petrucelli, Leonard email: petrucelli.leonard@mayo.edu organization: Department of Neuroscience, Mayo Clinic Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24129584$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uEzEUhUeoiKaFB2CDLLFhM61_5sezQRoFUpAiKpWwthzPdeJqYgd7BpU34XG5aVJoK0BoFtbc-51j-_qcZEc-eMiyl4yeMUrr80RpQVlOmcgZa3gun2QTVgie01KIo2xCKXYrwflxdpLSNf7xuiifZce8YLwpZTHJfrR-cAl8AjJE7ZOJbjskEiwZ1kDgZqt9Bx2ZNpdXs5qTNdxoP5oewuA6IBG2oAdiQ9yQ27KO5OpTiwXjCCrJiOq4Cgcw1ylhRw_oiFfJ28XFftdeDy544jwxzWzx7rydf36ePbW6T_DisJ5mX2bvF9MP-fzy4uO0neemEtWQS6Y7UVupNVC7NFJ2QtiqqTSl0jAol9qKGorOiCXQQgsuGyi4NdJwa0W5FKfZ273vdlxuoDPg8US92ka30fG7Ctqphx3v1moVvikhBa0LhgZvDgYxfB0hDWrjkoG-1x7CmBQrKimErCj9D7RsyopxKhB9_Qi9DmP0OIkdJWVJm7r5Ta10D8p5G_CIZmeqWlHyuhTIIXX2Bwq_DjbOYKSsw_oDwav7M_k1jLvYIFDvARNDShGsMm64fUN0dr1iVO0CqvYBVRhQtQuokqhkj5R35v_S8L0mIetXEO_N4q-in60H9ww |
CitedBy_id | crossref_primary_10_1007_s00401_015_1476_2 crossref_primary_10_1016_j_celrep_2023_112822 crossref_primary_10_1016_j_isci_2024_109303 crossref_primary_10_3389_fnmol_2019_00124 crossref_primary_10_26508_lsa_202402757 crossref_primary_10_1534_genetics_115_179457 crossref_primary_10_1016_j_jbc_2021_101120 crossref_primary_10_3389_fnmol_2024_1322720 crossref_primary_10_1016_j_brainres_2013_12_011 crossref_primary_10_1016_S0140_6736_16_00737_6 crossref_primary_10_1021_acschemneuro_6b00348 crossref_primary_10_1097_WCO_0000000000000984 crossref_primary_10_1038_s41467_024_55548_5 crossref_primary_10_1080_21541248_2016_1240495 crossref_primary_10_1093_hmg_ddx022 crossref_primary_10_1093_jnen_nlab029 crossref_primary_10_3390_ijms20246238 crossref_primary_10_15252_embj_2020106389 crossref_primary_10_1007_s00401_018_01955_0 crossref_primary_10_1093_brain_aww250 crossref_primary_10_1016_j_neuron_2015_09_015 crossref_primary_10_1039_D0CS00560F crossref_primary_10_1016_j_neuron_2015_10_027 crossref_primary_10_3390_biomedicines8100440 crossref_primary_10_3389_fnmol_2019_00262 crossref_primary_10_1002_glia_23771 crossref_primary_10_1016_j_celrep_2020_107616 crossref_primary_10_1016_j_neuron_2019_02_032 crossref_primary_10_1007_s12035_021_02475_x crossref_primary_10_3389_fnagi_2018_00045 crossref_primary_10_1074_jbc_M116_753913 crossref_primary_10_1063_1_5081867 crossref_primary_10_1007_s00401_014_1252_8 crossref_primary_10_1002_bies_202200008 crossref_primary_10_1042_EBC20200002 crossref_primary_10_1093_hmg_ddy018 crossref_primary_10_1186_s40478_019_0860_x crossref_primary_10_1021_acschemneuro_2c00732 crossref_primary_10_1371_journal_pone_0233247 crossref_primary_10_1038_s41582_018_0047_2 crossref_primary_10_1186_s40478_016_0306_7 crossref_primary_10_15252_embj_2018101112 crossref_primary_10_1186_s12929_020_00628_z crossref_primary_10_3389_fgene_2018_00712 crossref_primary_10_1073_pnas_1919197117 crossref_primary_10_1242_jcs_224303 crossref_primary_10_1146_annurev_pharmtox_010715_103910 crossref_primary_10_1016_j_arr_2020_101172 crossref_primary_10_3389_fnmol_2017_00035 crossref_primary_10_1007_s00401_015_1474_4 crossref_primary_10_1038_s41598_022_07746_8 crossref_primary_10_3390_cells13110888 crossref_primary_10_1042_BST20200143 crossref_primary_10_1016_j_neurobiolaging_2014_01_016 crossref_primary_10_1093_hmg_ddx233 crossref_primary_10_3390_antiox10040552 crossref_primary_10_1093_hmg_ddx350 crossref_primary_10_1080_17460441_2016_1196183 crossref_primary_10_1016_j_pneurobio_2019_101697 crossref_primary_10_7554_eLife_83189 crossref_primary_10_1007_s00401_017_1798_3 crossref_primary_10_1186_s13024_022_00525_z crossref_primary_10_1093_hmg_ddab089 crossref_primary_10_1038_s41467_021_26303_x crossref_primary_10_1186_s40478_015_0218_y crossref_primary_10_1093_hmg_ddv165 crossref_primary_10_1101_cshperspect_a026757 crossref_primary_10_1080_17460441_2023_2224960 crossref_primary_10_1126_science_1256800 crossref_primary_10_3390_biom11121789 crossref_primary_10_15252_emmm_201607486 crossref_primary_10_1016_j_semcdb_2019_06_003 crossref_primary_10_1038_s41467_021_21112_8 crossref_primary_10_1186_s40478_022_01408_6 crossref_primary_10_1007_s00401_019_01971_8 crossref_primary_10_15252_emmm_201910722 crossref_primary_10_7554_eLife_84043 crossref_primary_10_1016_j_neuron_2020_04_011 crossref_primary_10_1038_nrn_2016_38 crossref_primary_10_3390_ijms19082280 crossref_primary_10_7554_eLife_84338_3 crossref_primary_10_1007_s00401_023_02652_3 crossref_primary_10_1186_s40478_018_0564_7 crossref_primary_10_1093_hmg_ddac271 crossref_primary_10_1016_j_celrep_2016_09_032 crossref_primary_10_1038_s41418_024_01312_7 crossref_primary_10_1007_s13311_019_00797_2 crossref_primary_10_1186_s13148_020_0816_9 crossref_primary_10_1007_s12311_016_0800_2 crossref_primary_10_1016_j_omtn_2019_02_015 crossref_primary_10_3389_fnins_2017_00671 crossref_primary_10_3389_fneur_2021_750543 crossref_primary_10_1111_jnc_13622 crossref_primary_10_1111_jnc_13623 crossref_primary_10_1101_cshperspect_a033019 crossref_primary_10_4103_0028_3886_329593 crossref_primary_10_3390_ijms222111431 crossref_primary_10_1038_s41418_022_01074_0 crossref_primary_10_1016_j_neuron_2019_03_014 crossref_primary_10_15252_embr_201847498 crossref_primary_10_1016_j_neulet_2019_134523 crossref_primary_10_1038_s41380_021_01384_8 crossref_primary_10_1093_jb_mvad012 crossref_primary_10_3389_fnins_2019_00935 crossref_primary_10_1111_jnc_15255 crossref_primary_10_3389_fnins_2022_812222 crossref_primary_10_1016_j_chembiol_2016_12_018 crossref_primary_10_1093_brain_awab300 crossref_primary_10_1248_bpb_b22_00448 crossref_primary_10_1016_j_isci_2024_110937 crossref_primary_10_1016_S1474_4422_14_70233_9 crossref_primary_10_1007_s00401_018_1946_4 crossref_primary_10_3389_fcell_2023_1251551 crossref_primary_10_7554_eLife_62718 crossref_primary_10_15252_embj_201593350 crossref_primary_10_3390_brainsci11111543 crossref_primary_10_1016_j_ncl_2015_07_012 crossref_primary_10_1016_j_nbd_2019_104639 crossref_primary_10_1093_hmg_ddv005 crossref_primary_10_1093_nar_gkad403 crossref_primary_10_1073_pnas_2402847121 crossref_primary_10_1080_15548627_2020_1796292 crossref_primary_10_1016_j_nbd_2019_104515 crossref_primary_10_1016_j_neurobiolaging_2020_07_027 crossref_primary_10_1016_j_nbd_2018_05_009 crossref_primary_10_3390_biomedicines10051080 crossref_primary_10_3389_fncel_2023_1179796 crossref_primary_10_1186_s40478_019_0694_6 crossref_primary_10_1111_bpa_12355 crossref_primary_10_1016_j_gde_2014_03_002 crossref_primary_10_3389_fncel_2021_661447 crossref_primary_10_1007_s13311_015_0342_1 crossref_primary_10_1186_s40478_020_01036_y crossref_primary_10_1212_NXG_0000000000000161 crossref_primary_10_3390_ijms221910285 crossref_primary_10_1186_s40478_023_01544_7 crossref_primary_10_1016_j_neulet_2019_134621 crossref_primary_10_1126_science_aaf7791 crossref_primary_10_1016_j_molcel_2019_03_019 crossref_primary_10_1007_s00401_019_01964_7 crossref_primary_10_3390_ijms23147823 crossref_primary_10_1016_j_cmrp_2014_07_002 crossref_primary_10_1016_j_jgg_2014_08_003 crossref_primary_10_1093_nar_gkaa475 crossref_primary_10_1186_s40478_024_01852_6 crossref_primary_10_1186_s13024_016_0146_8 crossref_primary_10_3389_fcell_2021_809942 crossref_primary_10_1016_j_neurobiolaging_2014_09_012 crossref_primary_10_1038_nn_4065 crossref_primary_10_1242_dmm_028613 crossref_primary_10_1074_jbc_C113_502336 crossref_primary_10_1016_j_ymeth_2017_04_002 crossref_primary_10_1073_pnas_1621085114 crossref_primary_10_1007_s00018_024_05229_9 crossref_primary_10_3389_fnagi_2020_00191 crossref_primary_10_1007_s00441_018_2806_1 crossref_primary_10_1007_s00401_014_1245_7 crossref_primary_10_1146_annurev_neuro_070918_050501 crossref_primary_10_1126_scitranslmed_abb3774 crossref_primary_10_1007_s00401_018_1933_9 crossref_primary_10_1016_j_neuron_2014_12_010 crossref_primary_10_1172_JCI90607 crossref_primary_10_1016_j_bbadis_2014_08_010 crossref_primary_10_1126_scitranslmed_aai7866 crossref_primary_10_1016_j_molcel_2024_01_008 crossref_primary_10_3390_ijms241814182 crossref_primary_10_15252_embj_2020105026 crossref_primary_10_1002_mus_24979 crossref_primary_10_1007_s00018_016_2416_6 crossref_primary_10_1126_scitranslmed_abd5991 crossref_primary_10_1038_s41593_025_01889_3 crossref_primary_10_1093_brain_awy241 crossref_primary_10_15252_embr_202255895 crossref_primary_10_3390_genes11121418 crossref_primary_10_1007_s00401_018_1921_0 crossref_primary_10_1016_j_gene_2023_147167 crossref_primary_10_1038_s41593_023_01374_9 crossref_primary_10_1186_s13024_024_00790_0 crossref_primary_10_1016_j_cell_2020_12_025 crossref_primary_10_1038_s41467_023_44215_w crossref_primary_10_1016_j_celrep_2020_108538 crossref_primary_10_1038_s41374_019_0241_x crossref_primary_10_1007_s00401_020_02222_x crossref_primary_10_1038_nn_4272 crossref_primary_10_1016_j_ncl_2015_07_001 crossref_primary_10_1038_s41467_023_41511_3 crossref_primary_10_1016_j_neuron_2014_07_041 crossref_primary_10_1038_s41598_017_05864_2 crossref_primary_10_3233_JAD_181123 crossref_primary_10_1016_j_bbamcr_2021_119021 crossref_primary_10_1007_s00018_020_03565_0 crossref_primary_10_1038_nrn_2017_90 crossref_primary_10_1038_s41467_022_31098_6 crossref_primary_10_1111_nyas_12638 crossref_primary_10_1038_s41467_023_41339_x crossref_primary_10_3233_JAD_170362 crossref_primary_10_1007_s13311_022_01247_2 crossref_primary_10_1016_j_gde_2017_01_006 crossref_primary_10_1136_jnnp_2021_328710 crossref_primary_10_1016_j_nbd_2023_106218 crossref_primary_10_1186_s40478_020_01002_8 crossref_primary_10_1101_gad_313932_118 crossref_primary_10_3389_fncel_2021_637548 crossref_primary_10_3390_ijms22020904 crossref_primary_10_1080_15384101_2014_995490 crossref_primary_10_1093_hmg_ddu492 crossref_primary_10_1002_alz_12485 crossref_primary_10_1038_nature20413 crossref_primary_10_1093_brain_aww197 crossref_primary_10_3389_fnins_2021_648133 crossref_primary_10_1074_jbc_R118_003237 crossref_primary_10_1177_15353702211003511 crossref_primary_10_3389_fnins_2017_00711 crossref_primary_10_1073_pnas_2123487119 crossref_primary_10_1002_ana_24800 crossref_primary_10_1016_j_ijbiomac_2019_01_035 crossref_primary_10_1021_acs_biochem_6b00136 crossref_primary_10_1016_j_chembiol_2018_10_018 crossref_primary_10_1016_j_semcdb_2017_05_006 crossref_primary_10_1021_acschemneuro_2c00262 crossref_primary_10_1016_j_gde_2017_03_006 crossref_primary_10_1242_jcs_256602 crossref_primary_10_1038_s41583_022_00564_x crossref_primary_10_1016_j_bbamcr_2020_118674 crossref_primary_10_1021_acs_jpcb_4c04663 crossref_primary_10_1186_s40478_019_0711_9 crossref_primary_10_3389_fnins_2018_00574 crossref_primary_10_7717_peerj_4391 crossref_primary_10_1176_appi_neuropsych_16090168 crossref_primary_10_1016_j_omtn_2024_102291 crossref_primary_10_1093_brain_awac479 crossref_primary_10_1093_nar_gkac037 crossref_primary_10_3390_cells10020249 crossref_primary_10_1016_j_brainres_2014_03_039 crossref_primary_10_1007_s00401_024_02720_2 crossref_primary_10_1016_j_neurobiolaging_2014_04_015 crossref_primary_10_1134_S0026893320010136 crossref_primary_10_1186_s40478_017_0468_y crossref_primary_10_1007_s00401_013_1235_1 crossref_primary_10_3390_jpm11070671 crossref_primary_10_1073_pnas_2210532119 crossref_primary_10_1038_s41467_017_02495_z crossref_primary_10_3389_fnins_2018_00326 crossref_primary_10_1038_s41467_021_23691_y crossref_primary_10_1038_s41467_022_33332_7 crossref_primary_10_1038_s41419_018_1028_5 crossref_primary_10_1093_femsyr_foy024 crossref_primary_10_3109_01677063_2015_1085980 crossref_primary_10_15252_emmm_201707850 crossref_primary_10_1016_j_expneurol_2014_07_001 crossref_primary_10_1016_j_ncrna_2018_09_001 crossref_primary_10_1097_ICL_0000000000000469 crossref_primary_10_1111_nan_12157 crossref_primary_10_1038_s41582_018_0009_8 crossref_primary_10_3390_ijms22083977 crossref_primary_10_1016_j_bpj_2024_08_024 crossref_primary_10_1007_s40142_014_0063_5 crossref_primary_10_1016_j_neuron_2017_09_057 crossref_primary_10_1042_ETLS20190167 crossref_primary_10_1016_j_neuron_2020_08_022 crossref_primary_10_1002_jcb_30526 crossref_primary_10_1080_21541248_2016_1212688 crossref_primary_10_1093_braincomms_fcaa009 crossref_primary_10_1111_nan_12284 crossref_primary_10_1093_braincomms_fcaa124 crossref_primary_10_1007_s12264_020_00567_7 crossref_primary_10_1093_hmg_ddu576 crossref_primary_10_12688_f1000research_20330_1 crossref_primary_10_3390_cells13020178 crossref_primary_10_3389_fneur_2022_890203 crossref_primary_10_1016_j_molmed_2020_12_002 crossref_primary_10_1111_pcn_13375 crossref_primary_10_3390_cells11071223 crossref_primary_10_1016_j_isci_2024_111194 crossref_primary_10_1007_s00401_014_1336_5 crossref_primary_10_1186_s13148_021_01039_z crossref_primary_10_1038_s41598_023_50188_z crossref_primary_10_1093_nar_gku794 crossref_primary_10_1080_21678421_2016_1262423 crossref_primary_10_1126_science_abq7860 crossref_primary_10_5692_clinicalneurol_cn_001362 crossref_primary_10_15252_embr_201541724 crossref_primary_10_1016_j_brainres_2014_02_015 crossref_primary_10_1016_j_praneu_2017_01_024 crossref_primary_10_1002_wrna_1807 crossref_primary_10_1517_17460441_2015_1067197 crossref_primary_10_1016_j_bbrc_2020_03_108 crossref_primary_10_1038_s41467_024_55550_x crossref_primary_10_1186_s13024_020_00383_7 crossref_primary_10_1007_s00401_015_1448_6 crossref_primary_10_3389_fneur_2020_550140 crossref_primary_10_1016_j_ymeth_2015_11_017 crossref_primary_10_1371_journal_pone_0198418 crossref_primary_10_1093_nar_gkae137 crossref_primary_10_1016_j_neurol_2015_04_004 crossref_primary_10_1093_nar_gkae376 crossref_primary_10_1016_j_neuron_2015_06_012 crossref_primary_10_1007_s00439_017_1807_6 crossref_primary_10_1038_s41467_024_46412_7 crossref_primary_10_1016_j_brainres_2014_09_041 crossref_primary_10_1016_j_neulet_2015_12_018 crossref_primary_10_1002_ctm2_657 crossref_primary_10_1016_j_arr_2016_04_008 crossref_primary_10_3389_fncel_2021_664151 crossref_primary_10_1007_s12031_022_02029_3 crossref_primary_10_1016_S0140_6736_15_00461_4 crossref_primary_10_1002_wrna_1709 crossref_primary_10_1186_s40478_019_0812_5 crossref_primary_10_1016_j_ijbiomac_2023_128646 crossref_primary_10_1007_s00401_017_1725_7 crossref_primary_10_3389_fncel_2017_00195 crossref_primary_10_3389_fncel_2017_00196 crossref_primary_10_1016_j_febslet_2015_05_003 crossref_primary_10_1038_mp_2015_159 crossref_primary_10_1007_s00401_015_1401_8 crossref_primary_10_1093_jnen_nlad078 crossref_primary_10_3389_fnmol_2015_00009 crossref_primary_10_1016_j_neurobiolaging_2020_02_011 crossref_primary_10_1212_WNL_0000000000008359 crossref_primary_10_1007_s00401_013_1232_4 crossref_primary_10_1016_j_jmb_2016_08_031 crossref_primary_10_1038_s41591_018_0071_1 crossref_primary_10_3389_fncel_2014_00431 crossref_primary_10_1126_science_aaa9344 crossref_primary_10_1016_j_neurol_2021_01_008 crossref_primary_10_1016_j_celrep_2022_110913 crossref_primary_10_3389_fnagi_2014_00204 crossref_primary_10_1073_pnas_2307814121 crossref_primary_10_1016_j_mcn_2022_103756 crossref_primary_10_1007_s00401_014_1329_4 crossref_primary_10_1038_s41582_019_0157_5 crossref_primary_10_1007_s00401_015_1450_z crossref_primary_10_1016_j_neuron_2017_07_029 crossref_primary_10_1038_s41420_023_01547_2 crossref_primary_10_1038_s41582_020_0330_x crossref_primary_10_1016_j_mcn_2018_04_009 crossref_primary_10_1016_j_bbagrm_2019_07_006 crossref_primary_10_1093_nar_gky886 crossref_primary_10_1007_s13311_014_0292_z crossref_primary_10_1523_JNEUROSCI_1799_22_2023 crossref_primary_10_3389_fncel_2021_633668 crossref_primary_10_15252_embj_2018100574 crossref_primary_10_1093_brain_awu120 crossref_primary_10_1016_j_conb_2015_10_009 crossref_primary_10_3109_01677063_2013_876021 crossref_primary_10_1016_j_omtn_2019_01_010 crossref_primary_10_1186_s13024_023_00642_3 crossref_primary_10_3390_jpm13091396 crossref_primary_10_1016_j_mrl_2024_200133 crossref_primary_10_1007_s13311_022_01285_w crossref_primary_10_1042_BST20200690 crossref_primary_10_1172_JCI71601 crossref_primary_10_1016_S0140_6736_17_31287_4 crossref_primary_10_15252_emmm_202114163 crossref_primary_10_1038_s41434_023_00418_w crossref_primary_10_1038_s41598_022_25732_y crossref_primary_10_1016_j_neurobiolaging_2015_12_007 crossref_primary_10_3390_ijms22052598 crossref_primary_10_3390_molecules22122027 crossref_primary_10_1098_rstb_2013_0507 crossref_primary_10_3389_fncel_2021_708181 crossref_primary_10_1101_cshperspect_a024224 crossref_primary_10_1016_j_nbd_2020_105055 crossref_primary_10_4103_NRR_NRR_D_23_01568 crossref_primary_10_1016_j_ncrna_2018_11_004 crossref_primary_10_1371_journal_pone_0165084 crossref_primary_10_1242_dmm_049092 crossref_primary_10_1016_j_neurol_2024_03_008 crossref_primary_10_3390_cells8101233 crossref_primary_10_1101_sqb_2019_84_040329 crossref_primary_10_1016_j_jbc_2024_105703 crossref_primary_10_3389_fnins_2019_00171 crossref_primary_10_1186_s13024_019_0310_z crossref_primary_10_3389_fneur_2019_00291 crossref_primary_10_3389_fnins_2019_00175 crossref_primary_10_15252_embj_2019102700 crossref_primary_10_1016_j_neuron_2021_05_020 crossref_primary_10_1038_s41598_023_50667_3 crossref_primary_10_1016_j_neulet_2016_09_007 crossref_primary_10_1038_nature14974 crossref_primary_10_1111_jnc_15847 crossref_primary_10_1021_acschemneuro_7b00476 crossref_primary_10_1021_acs_jpcb_1c08149 crossref_primary_10_1016_j_csbj_2021_04_037 crossref_primary_10_1002_jnr_25100 crossref_primary_10_1038_s41593_019_0455_7 crossref_primary_10_3389_fnins_2019_01310 crossref_primary_10_1186_s40478_016_0289_4 crossref_primary_10_1155_2019_2909168 crossref_primary_10_1016_j_cell_2016_10_002 crossref_primary_10_3389_fnmol_2021_714768 crossref_primary_10_3390_cells14010047 crossref_primary_10_1126_scitranslmed_abq3215 crossref_primary_10_1007_s00401_015_1429_9 crossref_primary_10_1186_s40478_018_0545_x crossref_primary_10_1016_j_neuron_2016_04_006 crossref_primary_10_1016_j_bpj_2020_07_005 crossref_primary_10_1038_s41580_021_00382_6 crossref_primary_10_1074_jbc_REV119_007678 crossref_primary_10_1038_s41467_017_02643_5 crossref_primary_10_1186_s13024_020_00365_9 crossref_primary_10_1016_j_brainres_2016_05_022 crossref_primary_10_1016_j_neuron_2019_09_003 crossref_primary_10_3389_fncel_2021_784833 crossref_primary_10_1097_WCO_0000000000000130 crossref_primary_10_1007_s00401_014_1380_1 crossref_primary_10_1186_s40478_018_0555_8 crossref_primary_10_7554_eLife_84338 crossref_primary_10_1007_s12311_021_01320_0 crossref_primary_10_1016_j_bpj_2020_11_2258 crossref_primary_10_1186_s40478_024_01911_y crossref_primary_10_3389_fnins_2019_00486 crossref_primary_10_1186_s40035_023_00377_7 crossref_primary_10_1007_s00401_013_1237_z crossref_primary_10_1016_j_pbiomolbio_2022_06_001 crossref_primary_10_1186_s13024_020_0359_8 crossref_primary_10_1111_nan_12526 crossref_primary_10_2217_fnl_14_5 crossref_primary_10_1007_s00401_017_1793_8 crossref_primary_10_3389_fgene_2020_562758 crossref_primary_10_1159_000492963 crossref_primary_10_1515_revneuro_2023_0060 crossref_primary_10_1016_j_cell_2017_12_030 crossref_primary_10_3389_fnins_2023_1300705 crossref_primary_10_7554_eLife_51685 crossref_primary_10_1007_s12264_019_00395_4 crossref_primary_10_1242_dmm_044842 crossref_primary_10_1186_s40478_018_0579_0 crossref_primary_10_15252_embj_201797568 crossref_primary_10_1016_j_chembiol_2015_09_016 crossref_primary_10_1016_j_omtn_2022_04_007 crossref_primary_10_1093_hmg_ddy174 crossref_primary_10_1126_science_aav2606 crossref_primary_10_15252_embj_201694401 crossref_primary_10_1016_j_neuint_2016_08_008 crossref_primary_10_1111_nan_12536 crossref_primary_10_1038_s41598_024_72666_8 crossref_primary_10_3390_antiox12081593 crossref_primary_10_1080_15548627_2017_1384889 crossref_primary_10_1016_j_brainres_2016_04_003 crossref_primary_10_1016_j_brainres_2016_04_004 crossref_primary_10_1074_mcp_RA119_001888 crossref_primary_10_1016_j_mcn_2020_103553 crossref_primary_10_3390_ijms252212380 crossref_primary_10_3989_redc_2017_2_1372 crossref_primary_10_1111_jnc_13588 |
Cites_doi | 10.1093/hmg/ddt371 10.1073/pnas.1219643110 10.1073/pnas.0401799101 10.1007/s00401-011-0911-2 10.1007/s00401-012-1048-7 10.1007/s00401-012-0970-z 10.1083/jcb.128.6.995 10.1073/pnas.91.20.9218 10.1007/s00401-011-0907-y 10.1007/s00401-013-1149-y 10.1093/nar/29.5.1034 10.1212/01.WNL.0000055861.95202.8D 10.1016/j.neuron.2013.02.004 10.1016/j.mcn.2012.12.006 10.1007/s10072-010-0439-6 10.1074/jbc.C113.452532 10.1073/pnas.1013343108 10.1111/j.1440-1789.2009.01043.x 10.1017/S1355838298980116 10.1093/brain/aws001 10.1007/s00401-013-1088-7 10.1016/j.neuron.2011.09.011 10.1016/j.neuron.2011.09.010 10.1136/jnnp.2009.204081 10.1186/1750-1326-4-13 10.1016/S1097-2765(02)00563-4 10.1016/j.neuron.2013.03.026 10.1126/science.1232927 10.1021/ja308665g 10.1074/jbc.M410781200 10.1038/srep01016 10.1093/nar/gkg599 10.1007/BF00818163 10.1093/nar/gkg426 10.1093/nar/gkg766 10.1016/S1474-4422(11)70261-7 10.1016/S1474-4422(07)70265-X 10.1073/pnas.0505873102 10.1016/S1474-4422(13)70210-2 10.1007/978-94-011-4485-8_2 |
ContentType | Journal Article |
Copyright | The Author(s) 2013 COPYRIGHT 2013 Springer Springer-Verlag Berlin Heidelberg 2013 |
Copyright_xml | – notice: The Author(s) 2013 – notice: COPYRIGHT 2013 Springer – notice: Springer-Verlag Berlin Heidelberg 2013 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7U9 7X7 7XB 88E 88G 8AO 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ H94 K9. M0S M1P M2M PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1007/s00401-013-1192-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Psychology Database (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-0533 |
EndPage | 844 |
ExternalDocumentID | PMC3830741 3128370871 A352753509 24129584 10_1007_s00401_013_1192_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Florida United States--US |
GeographicLocations_xml | – name: Florida – name: United States--US |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS074121 – fundername: NIEHS NIH HHS grantid: R01 ES20395 – fundername: NINDS NIH HHS grantid: R01 NS077402 – fundername: NIA NIH HHS grantid: P50 AG016574 – fundername: NINDS NIH HHS grantid: R01 NS063964 – fundername: NINDS NIH HHS grantid: R21 NS084528 – fundername: NINDS NIH HHS grantid: R21 NS079807 – fundername: NIEHS NIH HHS grantid: R01 ES020395 – fundername: NINDS NIH HHS grantid: P50 NS072187 – fundername: NIA NIH HHS grantid: P01 AG003949 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH INR IPY ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 X7M YLTOR Z45 Z7U Z7V Z81 Z82 Z83 Z87 Z8O Z8P Z8U Z8V Z8W Z91 ZGI ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7TK 7U9 7XB 8FK ABRTQ H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c636t-81ad37f8aae0fbc88d33f696a008c1e5baf37e4dc3be04a3289e42fc8c2ff35b3 |
IEDL.DBID | 7X7 |
ISSN | 0001-6322 1432-0533 |
IngestDate | Thu Aug 21 18:37:12 EDT 2025 Fri Jul 11 03:11:42 EDT 2025 Tue Aug 05 11:36:18 EDT 2025 Fri Aug 15 23:02:22 EDT 2025 Tue Jun 17 21:47:16 EDT 2025 Tue Jun 10 20:40:58 EDT 2025 Thu Apr 03 07:06:36 EDT 2025 Tue Jul 01 03:38:09 EDT 2025 Thu Apr 24 23:02:36 EDT 2025 Fri Feb 21 02:35:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bidirectional transcription Expanded repeat Repeat-associated non-ATG translation Amyotrophic lateral sclerosis Frontotemporal dementia C9ORF72 RNA foci |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c636t-81ad37f8aae0fbc88d33f696a008c1e5baf37e4dc3be04a3289e42fc8c2ff35b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s00401-013-1192-8 |
PMID | 24129584 |
PQID | 1458850979 |
PQPubID | 49178 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3830741 proquest_miscellaneous_1468338600 proquest_miscellaneous_1459561203 proquest_journals_1458850979 gale_infotracmisc_A352753509 gale_infotracacademiconefile_A352753509 pubmed_primary_24129584 crossref_citationtrail_10_1007_s00401_013_1192_8 crossref_primary_10_1007_s00401_013_1192_8 springer_journals_10_1007_s00401_013_1192_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Pathology and Mechanisms of Neurological Disease |
PublicationTitle | Acta neuropathologica |
PublicationTitleAbbrev | Acta Neuropathol |
PublicationTitleAlternate | Acta Neuropathol |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Gijselinck, Van Langenhove, van der Zee, Sleegers, Philtjens, Kleinberger, Janssens, Bettens, Van Cauwenberghe, Pereson, Engelborghs, Sieben, De Jonghe, Vandenberghe, Santens, De Bleecker, Maes, Baumer, Dillen, Joris, Cuijt, Corsmit, Elinck, Van Dongen, Vermeulen, Van den Broeck, Vaerenberg, Mattheijssens, Peeters, Robberecht, Cras, Martin, De Deyn, Cruts, Van Broeckhoven (CR15) 2012; 11 Brettschneider, Van Deerlin, Robinson, Kwong, Lee, Ali, Safren, Monteiro, Toledo, Elman, McCluskey, Irwin, Grossman, Molina-Porcel, Lee, Trojanowski (CR7) 2012; 123 Ash, Bieniek, Gendron, Caulfield, Lin, Dejesus-Hernandez, van Blitterswijk, Jansen-West, Paul, Rademakers, Boylan, Dickson, Petrucelli (CR3) 2013; 77 Sobczak, de Mezer, Michlewski, Krol, Krzyzosiak (CR32) 2003; 31 Rouillard, Zuker, Gulari (CR31) 2003; 31 Al-Sarraj, King, Troakes, Smith, Maekawa, Bodi, Rogelj, Al-Chalabi, Hortobagyi, Shaw (CR1) 2011; 122 Dansithong, Paul, Comai, Reddy (CR10) 2005; 280 Lomen-Hoerth, Murphy, Langmore, Kramer, Olney, Miller (CR19) 2003; 60 Xu, Poidevin, Li, Li, Shu, Nelson, Li, Hales, Gearing, Wingo, Jin (CR38) 2013; 110 Hofacker, Fontana, Stadler, Bonhoeffer, Tacker, Schuster (CR18) 1994; 125 Renton, Majounie, Waite, Simon-Sanchez, Rollinson, Gibbs, Schymick, Laaksovirta, van Swieten, Myllykangas, Kalimo, Paetau, Abramzon, Remes, Kaganovich, Scholz, Duckworth, Ding, Harmer, Hernandez, Johnson, Mok, Ryten, Trabzuni, Guerreiro, Orrell, Neal, Murray, Pearson, Jansen, Sondervan, Seelaar, Blake, Young, Halliwell, Callister, Toulson, Richardson, Gerhard, Snowden, Mann, Neary, Nalls, Peuralinna, Jansson, Isoviita, Kaivorinne, Holtta-Vuori, Ikonen, Sulkava, Benatar, Wuu, Chio, Restagno, Borghero, Sabatelli, Heckerman, Rogaeva, Zinman, Rothstein, Sendtner, Drepper, Eichler, Alkan, Abdullaev, Pack, Dutra, Pak, Hardy, Singleton, Williams, Heutink, Pickering-Brown, Morris, Tienari, Traynor (CR30) 2011; 72 Todd, Oh, Krans, He, Sellier, Frazer, Renoux, Chen, Scaglione, Basrur, Elenitoba-Johnson, Vonsattel, Louis, Sutton, Taylor, Mills, Charlet-Berguerand, Paulson (CR34) 2013; 78 Mankodi, Takahashi, Jiang, Beck, Bowers, Moxley, Cannon, Thornton (CR20) 2002; 10 Mooers, Logue, Berglund (CR23) 2005; 102 Reddy, Zamiri, Stanley, Macgregor, Pearson (CR29) 2013; 288 Bieniek, Murray, Rutherford, Castanedes-Casey, Dejesus-Hernandez, Liesinger, Baker, Boylan, Rademakers, Dickson (CR5) 2013; 125 Mori, Weng, Arzberger, May, Rentzsch, Kremmer, Schmid, Kretzschmar, Cruts, Van Broeckhoven, Haass, Edbauer (CR25) 2013; 339 Walter, Turner, Kim, Lyttle, Muller, Mathews, Zuker (CR36) 1994; 91 Almeida, Gascon, Tran, Chou, Gendron, Degroot, Tapper, Sellier, Charlet-Berguerand, Karydas, Seeley, Boxer, Petrucelli, Miller, Gao (CR2) 2013; 126 Ding, Lawrence (CR12) 2001; 29 Belzil, Gendron, Petrucelli (CR4) 2012; 56 Pikkarainen, Hartikainen, Alafuzoff (CR28) 2010; 30 Mori, Lammich, Mackenzie, Forne, Zilow, Kretzschmar, Edbauer, Janssens, Kleinberger, Cruts, Herms, Neumann, Van Broeckhoven, Arzberger, Haass (CR24) 2013; 125 Zu, Gibbens, Doty, Gomes-Pereira, Huguet, Stone, Margolis, Peterson, Markowski, Ingram, Nan, Forster, Low, Schoser, Somia, Clark, Schmechel, Bitterman, Gourdon, Swanson, Moseley, Ranum (CR39) 2011; 108 Phukan, Pender, Hardiman (CR27) 2007; 6 Taneja, McCurrach, Schalling, Housman, Singer (CR33) 1995; 128 Zuker, Jacobson (CR40) 1998; 4 Hofacker (CR17) 2003; 31 Whitwell, Weigand, Boeve, Senjem, Gunter, Dejesus-Hernandez, Rutherford, Baker, Knopman, Wszolek, Parisi, Dickson, Petersen, Rademakers, Jack, Josephs (CR37) 2012; 135 Boxer, Mackenzie, Boeve, Baker, Seeley, Crook, Feldman, Hsiung, Rutherford, Laluz, Whitwell, Foti, McDade, Molano, Karydas, Wojtas, Goldman, Mirsky, Sengdy, Dearmond, Miller, Rademakers (CR6) 2011; 82 DeJesus-Hernandez, Mackenzie, Boeve, Boxer, Baker, Rutherford, Nicholson, Finch, Flynn, Adamson, Kouri, Wojtas, Sengdy, Hsiung, Karydas, Seeley, Josephs, Coppola, Geschwind, Wszolek, Feldman, Knopman, Petersen, Miller, Dickson, Boylan, Graff-Radford, Rademakers (CR11) 2011; 72 Giordana, Ferrero, Grifoni, Pellerino, Naldi, Montuschi (CR16) 2011; 32 Cleary, Ranum (CR9) 2013; 22 Mathews, Disney, Childs, Schroeder, Zuker, Turner (CR21) 2004; 101 CR41 van Blitterswijk, Dejesus-Hernandez, Niemantsverdriet, Murray, Heckman, Diehl, Brown, Baker, Finch, Bauer, Serrano, Beach, Josephs, Knopman, Petersen, Boeve, Graff-Radford, Boylan, Petrucelli, Dickson, Rademakers (CR35) 2013; 12 Mathews, Zuker, Baxevanis, Ouellette (CR22) 2004 Gendron, Petrucelli (CR14) 2009; 4 Bugaut, Murat, Balasubramanian (CR8) 2012; 134 Fratta, Mizielinska, Nicoll, Zloh, Fisher, Parkinson, Isaacs (CR13) 2012; 2 Murray, DeJesus-Hernandez, Rutherford, Baker, Duara, Graff-Radford, Wszolek, Ferman, Josephs, Boylan, Rademakers, Dickson (CR26) 2011; 122 K Sobczak (1192_CR32) 2003; 31 VV Belzil (1192_CR4) 2012; 56 A Mankodi (1192_CR20) 2002; 10 J Brettschneider (1192_CR7) 2012; 123 K Mori (1192_CR25) 2013; 339 P Fratta (1192_CR13) 2012; 2 J Phukan (1192_CR27) 2007; 6 AL Boxer (1192_CR6) 2011; 82 W Dansithong (1192_CR10) 2005; 280 DH Mathews (1192_CR22) 2004 M Blitterswijk van (1192_CR35) 2013; 12 1192_CR41 JL Whitwell (1192_CR37) 2012; 135 JM Rouillard (1192_CR31) 2003; 31 AE Renton (1192_CR30) 2011; 72 AE Walter (1192_CR36) 1994; 91 S Al-Sarraj (1192_CR1) 2011; 122 M Pikkarainen (1192_CR28) 2010; 30 TF Gendron (1192_CR14) 2009; 4 ME Murray (1192_CR26) 2011; 122 BH Mooers (1192_CR23) 2005; 102 K Reddy (1192_CR29) 2013; 288 T Zu (1192_CR39) 2011; 108 IL Hofacker (1192_CR18) 1994; 125 KL Taneja (1192_CR33) 1995; 128 I Gijselinck (1192_CR15) 2012; 11 PK Todd (1192_CR34) 2013; 78 S Almeida (1192_CR2) 2013; 126 M Zuker (1192_CR40) 1998; 4 A Bugaut (1192_CR8) 2012; 134 KF Bieniek (1192_CR5) 2013; 125 JD Cleary (1192_CR9) 2013; 22 K Mori (1192_CR24) 2013; 125 Y Ding (1192_CR12) 2001; 29 DH Mathews (1192_CR21) 2004; 101 MT Giordana (1192_CR16) 2011; 32 PE Ash (1192_CR3) 2013; 77 C Lomen-Hoerth (1192_CR19) 2003; 60 Z Xu (1192_CR38) 2013; 110 IL Hofacker (1192_CR17) 2003; 31 M DeJesus-Hernandez (1192_CR11) 2011; 72 23836290 - Acta Neuropathol. 2013 Sep;126(3):385-99 23264878 - Sci Rep. 2012;2:1016 23053135 - Acta Neuropathol. 2013 Feb;125(2):289-302 19284597 - Mol Neurodegener. 2009 Mar 11;4:13 21173221 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):260-5 15123812 - Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92 23918658 - Hum Mol Genet. 2013 Oct 15;22(R1):R45-51 21944778 - Neuron. 2011 Oct 20;72(2):245-56 22426854 - Acta Neuropathol. 2012 Jun;123(6):825-39 23393093 - Science. 2013 Mar 15;339(6125):1335-8 23553836 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7778-83 23602499 - Neuron. 2013 May 8;78(3):440-55 23423380 - J Biol Chem. 2013 Apr 5;288(14):9860-6 20562461 - J Neurol Neurosurg Psychiatry. 2011 Feb;82(2):196-203 12682312 - Neurology. 2003 Apr 8;60(7):1094-7 23280309 - Mol Cell Neurosci. 2013 Sep;56:406-19 12799432 - Nucleic Acids Res. 2003 Jun 15;31(12):3057-62 21944779 - Neuron. 2011 Oct 20;72(2):257-68 12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31 24011653 - Lancet Neurol. 2013 Oct;12(10):978-88 23190255 - J Am Chem Soc. 2012 Dec 12;134(49):19953-6 22083254 - Acta Neuropathol. 2011 Dec;122(6):673-90 17945153 - Lancet Neurol. 2007 Nov;6(11):994-1003 7896884 - J Cell Biol. 1995 Mar;128(6):995-1002 7524072 - Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218-22 23381195 - Acta Neuropathol. 2013 Mar;125(3):413-23 22154785 - Lancet Neurol. 2012 Jan;11(1):54-65 20953810 - Neurol Sci. 2011 Feb;32(1):9-16 14500809 - Nucleic Acids Res. 2003 Oct 1;31(19):5469-82 9622126 - RNA. 1998 Jun;4(6):669-79 12150905 - Mol Cell. 2002 Jul;10(1):35-44 22101323 - Acta Neuropathol. 2011 Dec;122(6):691-702 11222752 - Nucleic Acids Res. 2001 Mar 1;29(5):1034-46 23415312 - Neuron. 2013 Feb 20;77(4):639-46 19622109 - Neuropathology. 2010 Apr;30(2):197-9 22366795 - Brain. 2012 Mar;135(Pt 3):794-806 15546872 - J Biol Chem. 2005 Feb 18;280(7):5773-80 16269545 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16626-31 24178412 - Acta Neuropathol. 2013 Dec;126(6):785-7 |
References_xml | – volume: 22 start-page: R45 issue: R1 year: 2013 end-page: R51 ident: CR9 article-title: Repeat-associated non-ATG (RAN) translation in neurological disease publication-title: Hum Mol Genet doi: 10.1093/hmg/ddt371 – volume: 110 start-page: 7778 issue: 19 year: 2013 end-page: 7783 ident: CR38 article-title: Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1219643110 – volume: 101 start-page: 7287 issue: 19 year: 2004 end-page: 7292 ident: CR21 article-title: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0401799101 – volume: 122 start-page: 691 issue: 6 year: 2011 end-page: 702 ident: CR1 article-title: p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0911-2 – volume: 125 start-page: 289 issue: 2 year: 2013 end-page: 302 ident: CR5 article-title: Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion publication-title: Acta Neuropathol doi: 10.1007/s00401-012-1048-7 – volume: 123 start-page: 825 issue: 6 year: 2012 end-page: 839 ident: CR7 article-title: Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion publication-title: Acta Neuropathol doi: 10.1007/s00401-012-0970-z – volume: 128 start-page: 995 issue: 6 year: 1995 end-page: 1002 ident: CR33 article-title: Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues publication-title: J Cell Biol doi: 10.1083/jcb.128.6.995 – volume: 91 start-page: 9218 issue: 20 year: 1994 end-page: 9222 ident: CR36 article-title: Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.20.9218 – volume: 122 start-page: 673 issue: 6 year: 2011 end-page: 690 ident: CR26 article-title: Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0907-y – volume: 126 start-page: 385 issue: 3 year: 2013 end-page: 399 ident: CR2 article-title: Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons publication-title: Acta Neuropathol doi: 10.1007/s00401-013-1149-y – volume: 29 start-page: 1034 issue: 5 year: 2001 end-page: 1046 ident: CR12 article-title: Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond publication-title: Nucleic Acids Res doi: 10.1093/nar/29.5.1034 – volume: 60 start-page: 1094 issue: 7 year: 2003 end-page: 1097 ident: CR19 article-title: Are amyotrophic lateral sclerosis patients cognitively normal? publication-title: Neurology doi: 10.1212/01.WNL.0000055861.95202.8D – volume: 77 start-page: 639 issue: 4 year: 2013 end-page: 646 ident: CR3 article-title: Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS publication-title: Neuron doi: 10.1016/j.neuron.2013.02.004 – volume: 56 start-page: 406 year: 2012 end-page: 419 ident: CR4 article-title: RNA-mediated toxicity in neurodegenerative disease publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2012.12.006 – volume: 32 start-page: 9 issue: 1 year: 2011 end-page: 16 ident: CR16 article-title: Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review publication-title: Neurol Sci doi: 10.1007/s10072-010-0439-6 – volume: 288 start-page: 9860 issue: 14 year: 2013 end-page: 9866 ident: CR29 article-title: The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures publication-title: J Biol Chem doi: 10.1074/jbc.C113.452532 – volume: 108 start-page: 260 issue: 1 year: 2011 end-page: 265 ident: CR39 article-title: Non-ATG-initiated translation directed by microsatellite expansions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013343108 – volume: 30 start-page: 197 issue: 2 year: 2010 end-page: 199 ident: CR28 article-title: Ubiquitinated p62-positive, TDP-43-negative inclusions in cerebellum in frontotemporal lobar degeneration with TAR DNA binding protein 43 publication-title: Neuropathology doi: 10.1111/j.1440-1789.2009.01043.x – volume: 4 start-page: 669 issue: 6 year: 1998 end-page: 679 ident: CR40 article-title: Using reliability information to annotate RNA secondary structures publication-title: RNA doi: 10.1017/S1355838298980116 – volume: 135 start-page: 794 issue: Pt 3 year: 2012 end-page: 806 ident: CR37 article-title: Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics publication-title: Brain doi: 10.1093/brain/aws001 – volume: 125 start-page: 413 issue: 3 year: 2013 end-page: 423 ident: CR24 article-title: hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations publication-title: Acta Neuropathol doi: 10.1007/s00401-013-1088-7 – volume: 72 start-page: 245 issue: 2 year: 2011 end-page: 256 ident: CR11 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – volume: 72 start-page: 257 issue: 2 year: 2011 end-page: 268 ident: CR30 article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 82 start-page: 196 issue: 2 year: 2011 end-page: 203 ident: CR6 article-title: Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2009.204081 – volume: 4 start-page: 13 year: 2009 ident: CR14 article-title: The role of tau in neurodegeneration publication-title: Mol Neurodegener doi: 10.1186/1750-1326-4-13 – volume: 10 start-page: 35 issue: 1 year: 2002 end-page: 44 ident: CR20 article-title: Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00563-4 – volume: 78 start-page: 440 issue: 3 year: 2013 end-page: 455 ident: CR34 article-title: CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome publication-title: Neuron doi: 10.1016/j.neuron.2013.03.026 – volume: 339 start-page: 1335 issue: 6125 year: 2013 end-page: 1338 ident: CR25 article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS publication-title: Science doi: 10.1126/science.1232927 – start-page: 143 year: 2004 end-page: 170 ident: CR22 article-title: Predictive methods using RNA sequences publication-title: Bioinformatics: a practical guide to the analysis of genes and proteins – volume: 134 start-page: 19953 issue: 49 year: 2012 end-page: 19956 ident: CR8 article-title: An RNA hairpin to G-quadruplex conformational transition publication-title: J Am Chem Soc doi: 10.1021/ja308665g – volume: 280 start-page: 5773 issue: 7 year: 2005 end-page: 5780 ident: CR10 article-title: MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1 publication-title: J Biol Chem doi: 10.1074/jbc.M410781200 – volume: 2 start-page: 1016 year: 2012 ident: CR13 article-title: C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes publication-title: Sci Rep doi: 10.1038/srep01016 – volume: 31 start-page: 3429 issue: 13 year: 2003 end-page: 3431 ident: CR17 article-title: Vienna RNA secondary structure server publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg599 – volume: 125 start-page: 167 year: 1994 end-page: 188 ident: CR18 article-title: Fast folding and comparison of rna secondary structures publication-title: Monatsh Chem doi: 10.1007/BF00818163 – volume: 31 start-page: 3057 issue: 12 year: 2003 end-page: 3062 ident: CR31 article-title: OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg426 – volume: 31 start-page: 5469 issue: 19 year: 2003 end-page: 5482 ident: CR32 article-title: RNA structure of trinucleotide repeats associated with human neurological diseases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg766 – ident: CR41 – volume: 11 start-page: 54 issue: 1 year: 2012 end-page: 65 ident: CR15 article-title: A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70261-7 – volume: 6 start-page: 994 issue: 11 year: 2007 end-page: 1003 ident: CR27 article-title: Cognitive impairment in amyotrophic lateral sclerosis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70265-X – volume: 102 start-page: 16626 issue: 46 year: 2005 end-page: 16631 ident: CR23 article-title: The structural basis of myotonic dystrophy from the crystal structure of CUG repeats publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505873102 – volume: 12 start-page: 978 issue: 10 year: 2013 end-page: 988 ident: CR35 article-title: Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70210-2 – volume: 91 start-page: 9218 issue: 20 year: 1994 ident: 1192_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.20.9218 – volume: 4 start-page: 669 issue: 6 year: 1998 ident: 1192_CR40 publication-title: RNA doi: 10.1017/S1355838298980116 – volume: 78 start-page: 440 issue: 3 year: 2013 ident: 1192_CR34 publication-title: Neuron doi: 10.1016/j.neuron.2013.03.026 – volume: 4 start-page: 13 year: 2009 ident: 1192_CR14 publication-title: Mol Neurodegener doi: 10.1186/1750-1326-4-13 – volume: 10 start-page: 35 issue: 1 year: 2002 ident: 1192_CR20 publication-title: Mol Cell doi: 10.1016/S1097-2765(02)00563-4 – volume: 101 start-page: 7287 issue: 19 year: 2004 ident: 1192_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0401799101 – volume: 288 start-page: 9860 issue: 14 year: 2013 ident: 1192_CR29 publication-title: J Biol Chem doi: 10.1074/jbc.C113.452532 – volume: 2 start-page: 1016 year: 2012 ident: 1192_CR13 publication-title: Sci Rep doi: 10.1038/srep01016 – volume: 72 start-page: 257 issue: 2 year: 2011 ident: 1192_CR30 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.010 – volume: 22 start-page: R45 issue: R1 year: 2013 ident: 1192_CR9 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddt371 – ident: 1192_CR41 doi: 10.1007/978-94-011-4485-8_2 – volume: 126 start-page: 385 issue: 3 year: 2013 ident: 1192_CR2 publication-title: Acta Neuropathol doi: 10.1007/s00401-013-1149-y – volume: 280 start-page: 5773 issue: 7 year: 2005 ident: 1192_CR10 publication-title: J Biol Chem doi: 10.1074/jbc.M410781200 – volume: 102 start-page: 16626 issue: 46 year: 2005 ident: 1192_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505873102 – volume: 30 start-page: 197 issue: 2 year: 2010 ident: 1192_CR28 publication-title: Neuropathology doi: 10.1111/j.1440-1789.2009.01043.x – volume: 56 start-page: 406 year: 2012 ident: 1192_CR4 publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2012.12.006 – volume: 122 start-page: 691 issue: 6 year: 2011 ident: 1192_CR1 publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0911-2 – volume: 31 start-page: 5469 issue: 19 year: 2003 ident: 1192_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg766 – volume: 72 start-page: 245 issue: 2 year: 2011 ident: 1192_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – volume: 11 start-page: 54 issue: 1 year: 2012 ident: 1192_CR15 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70261-7 – volume: 122 start-page: 673 issue: 6 year: 2011 ident: 1192_CR26 publication-title: Acta Neuropathol doi: 10.1007/s00401-011-0907-y – volume: 125 start-page: 167 year: 1994 ident: 1192_CR18 publication-title: Monatsh Chem doi: 10.1007/BF00818163 – start-page: 143 volume-title: Bioinformatics: a practical guide to the analysis of genes and proteins year: 2004 ident: 1192_CR22 – volume: 125 start-page: 413 issue: 3 year: 2013 ident: 1192_CR24 publication-title: Acta Neuropathol doi: 10.1007/s00401-013-1088-7 – volume: 82 start-page: 196 issue: 2 year: 2011 ident: 1192_CR6 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2009.204081 – volume: 31 start-page: 3429 issue: 13 year: 2003 ident: 1192_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg599 – volume: 110 start-page: 7778 issue: 19 year: 2013 ident: 1192_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1219643110 – volume: 6 start-page: 994 issue: 11 year: 2007 ident: 1192_CR27 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70265-X – volume: 339 start-page: 1335 issue: 6125 year: 2013 ident: 1192_CR25 publication-title: Science doi: 10.1126/science.1232927 – volume: 12 start-page: 978 issue: 10 year: 2013 ident: 1192_CR35 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70210-2 – volume: 32 start-page: 9 issue: 1 year: 2011 ident: 1192_CR16 publication-title: Neurol Sci doi: 10.1007/s10072-010-0439-6 – volume: 29 start-page: 1034 issue: 5 year: 2001 ident: 1192_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.5.1034 – volume: 60 start-page: 1094 issue: 7 year: 2003 ident: 1192_CR19 publication-title: Neurology doi: 10.1212/01.WNL.0000055861.95202.8D – volume: 108 start-page: 260 issue: 1 year: 2011 ident: 1192_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013343108 – volume: 128 start-page: 995 issue: 6 year: 1995 ident: 1192_CR33 publication-title: J Cell Biol doi: 10.1083/jcb.128.6.995 – volume: 77 start-page: 639 issue: 4 year: 2013 ident: 1192_CR3 publication-title: Neuron doi: 10.1016/j.neuron.2013.02.004 – volume: 123 start-page: 825 issue: 6 year: 2012 ident: 1192_CR7 publication-title: Acta Neuropathol doi: 10.1007/s00401-012-0970-z – volume: 134 start-page: 19953 issue: 49 year: 2012 ident: 1192_CR8 publication-title: J Am Chem Soc doi: 10.1021/ja308665g – volume: 125 start-page: 289 issue: 2 year: 2013 ident: 1192_CR5 publication-title: Acta Neuropathol doi: 10.1007/s00401-012-1048-7 – volume: 135 start-page: 794 issue: Pt 3 year: 2012 ident: 1192_CR37 publication-title: Brain doi: 10.1093/brain/aws001 – volume: 31 start-page: 3057 issue: 12 year: 2003 ident: 1192_CR31 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg426 – reference: 12799432 - Nucleic Acids Res. 2003 Jun 15;31(12):3057-62 – reference: 23053135 - Acta Neuropathol. 2013 Feb;125(2):289-302 – reference: 23836290 - Acta Neuropathol. 2013 Sep;126(3):385-99 – reference: 23602499 - Neuron. 2013 May 8;78(3):440-55 – reference: 23423380 - J Biol Chem. 2013 Apr 5;288(14):9860-6 – reference: 23553836 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7778-83 – reference: 20562461 - J Neurol Neurosurg Psychiatry. 2011 Feb;82(2):196-203 – reference: 23918658 - Hum Mol Genet. 2013 Oct 15;22(R1):R45-51 – reference: 22083254 - Acta Neuropathol. 2011 Dec;122(6):673-90 – reference: 15546872 - J Biol Chem. 2005 Feb 18;280(7):5773-80 – reference: 22101323 - Acta Neuropathol. 2011 Dec;122(6):691-702 – reference: 11222752 - Nucleic Acids Res. 2001 Mar 1;29(5):1034-46 – reference: 12682312 - Neurology. 2003 Apr 8;60(7):1094-7 – reference: 20953810 - Neurol Sci. 2011 Feb;32(1):9-16 – reference: 22426854 - Acta Neuropathol. 2012 Jun;123(6):825-39 – reference: 7896884 - J Cell Biol. 1995 Mar;128(6):995-1002 – reference: 12150905 - Mol Cell. 2002 Jul;10(1):35-44 – reference: 22366795 - Brain. 2012 Mar;135(Pt 3):794-806 – reference: 23393093 - Science. 2013 Mar 15;339(6125):1335-8 – reference: 14500809 - Nucleic Acids Res. 2003 Oct 1;31(19):5469-82 – reference: 16269545 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16626-31 – reference: 19622109 - Neuropathology. 2010 Apr;30(2):197-9 – reference: 22154785 - Lancet Neurol. 2012 Jan;11(1):54-65 – reference: 9622126 - RNA. 1998 Jun;4(6):669-79 – reference: 23264878 - Sci Rep. 2012;2:1016 – reference: 21944779 - Neuron. 2011 Oct 20;72(2):257-68 – reference: 21173221 - Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):260-5 – reference: 23190255 - J Am Chem Soc. 2012 Dec 12;134(49):19953-6 – reference: 24011653 - Lancet Neurol. 2013 Oct;12(10):978-88 – reference: 23415312 - Neuron. 2013 Feb 20;77(4):639-46 – reference: 23381195 - Acta Neuropathol. 2013 Mar;125(3):413-23 – reference: 19284597 - Mol Neurodegener. 2009 Mar 11;4:13 – reference: 15123812 - Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92 – reference: 23280309 - Mol Cell Neurosci. 2013 Sep;56:406-19 – reference: 24178412 - Acta Neuropathol. 2013 Dec;126(6):785-7 – reference: 21944778 - Neuron. 2011 Oct 20;72(2):245-56 – reference: 12824340 - Nucleic Acids Res. 2003 Jul 1;31(13):3429-31 – reference: 17945153 - Lancet Neurol. 2007 Nov;6(11):994-1003 – reference: 7524072 - Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218-22 |
SSID | ssj0012745 |
Score | 2.584927 |
Snippet | Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 829 |
SubjectTerms | Aged Aged, 80 and over Amyotrophic lateral sclerosis Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - pathology Brain C9orf72 Protein Cerebellum - metabolism Cerebellum - pathology Dementia DNA Repeat Expansion Female Frontal Lobe - metabolism Frontal Lobe - pathology Frontotemporal Dementia - genetics Frontotemporal Dementia - metabolism Frontotemporal Dementia - pathology Genetic translation Health aspects HEK293 Cells Humans Male Medicine Medicine & Public Health Middle Aged Nervous system diseases Neuropathology Neurosciences Neurotoxicity Original Paper Pathology Physicians (General practice) Protein Structure, Secondary Proteins Proteins - genetics Proteins - metabolism RNA RNA, Nuclear - genetics RNA, Nuclear - metabolism Spinal Cord - metabolism Spinal Cord - pathology Toxicity |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifls9JYIgKME2adP0sZyuh3gnnLtwbyVNk7sFaZfdHvin-Oc6k6bluuiBr51J-jGTzG86HyHkrQKb5lTBGa9VysDiZUw7a1giaxlbk9S2QUfx5FQer9Kv59l5qOPejdnuY0jS79RTsRvqG7q-giUAS5i6Te5k6LqDEq94OYUOwM0aji0AZgnqOoYy_zbFzBjtb8nXbNJ-vuRe0NTbosUDcj-ASFoOUn9Ibtn2Ebl7EsLkj8nvssUzltudpT3aIr8z7GjnKMA9an9t8M9xQ4-K72eLnNNLrHHBvsZdv24s3doNbNAU0Sz1l_WWnp2WcMGsKYykWHe2vegCI9NBwjBj27WsXH4Z7jpk2dF1S02xWH76WH778YSsFp-XR8csHMHAjBSyZyrRjcid0trGrjZKNUI4WUgN0MEkNqu1E7lNGyNqG6dagPtmU-6MMtw5kdXiKTmAW9vnhMZJowA7FNigJs0LUySpAROaJtxi9W8TkXiURWVCf3I8JuNnNXVW9uKrQHwViq9SEXk_DdkMzTluYn6HAq5w4cK8Rof6A3g6bIFVlQBFwXcDABWRwxknLDgzJ48qUoUFvwMPKlMKiDmQ30xkHIlJbK3trjwPlhHzWNzEI5UQCmBoRJ4NWje9GoAtXgBgjEg-08eJAVuFzynt-tK3DBdKIHaMyIdRc689-r--2Iv_4n5J7nG_sjDV55Ac9Nsr-woAW1-_9gv0DydENgk priority: 102 providerName: Springer Nature |
Title | Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS |
URI | https://link.springer.com/article/10.1007/s00401-013-1192-8 https://www.ncbi.nlm.nih.gov/pubmed/24129584 https://www.proquest.com/docview/1458850979 https://www.proquest.com/docview/1459561203 https://www.proquest.com/docview/1468338600 https://pubmed.ncbi.nlm.nih.gov/PMC3830741 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw1IJNQrwg7gsbk5GQkEDWkjh1nCcUSrsJWEGllcpTlDg2q4SSrs0kPoXP5RzHCWsl-tJK9nFu526fCyGvJeg0I5OQhYWMGGi8AcuNViwQhfC1CgpdoqN4OREX8-jTYrBwG24bF1bZyUQrqMta4R75WYAplaDd4uT96pph1yg8XXUtNO6SQyxdhiFd8aJ3uALwuNoOBuAyC6Dc7lTTb4uIWkeaM1gJQmFLL-1K51vqaTd0cuf81Kql8UPywNmTNG0J4BG5o6vH5N6lOzF_Qv6kFbZbrjaaNqiWrJDY0NpQsPyo_r3CTeSSDpOv03Ec0itMd8ESx3WzLDVd6xXIaoqGLbXD-ZpOJykMqCWFlRRT0NY_awfIcodsuGJVVyydnbd3bQPu6LKiKhnPPp6lX74_JfPxaDa8YK4bA1OCi4bJIC95bGSea98USsqScyMSkYMVoQI9KHLDYx2Vihfaj3IOnpyOQqOkCo3hg4I_Iwdwa31EqB-UEsyIBGvVRHGikiBSoE2jINSYCFx6xO9wkSlXqhw7ZvzK-iLLFn0ZoC9D9GXSI2_7Jau2Tsc-4DeI4Ax5GK6rcpeKAE-H1bCyFKxScOOA2jxysgUJvKe2pzsSyRzvb7J_lOqRV_00rsR4tkrXNxYGM4pDn--DEZJzCRapR563VNe_GthdIdB75JF4ix57AKwavj1TLa9s9XAuOZqRHnnXUe6tR__fF3ux_0WPyf3QshKG-ZyQg2Z9o1-CsdYUp5YjT8lhev7j8wj-P4wm36YwOhRD-J2H6V-1Xz6y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEQgKtau869vqAkGkbUpoEFFKpN2Ov122kyg5JKuCf8Cv4jcz4RROJ3Hr1zq4fMzvfjHceAC8VYlqmAsFFolyOiNflcWY0d7zEs412EpOSozgcef1j99NJ92QL_jS5MBRW2ejEUlGnhaZ_5LsOpVQiuvnB-9l3Tl2j6HS1aaFRicWR-fUDXbbFu8N95O8rIXoHk70-r7sKcO1Jb8mVE6fSz1QcGztLtFKplJkXeDGioXZMN4kz6Rs31TIxthtL9EiMKzKttMgy2U0krnsNtl2JrkwHtj8cjL6M23ML9PGqngnopHu4V5pzVLsqW1q67pI7aFZxtYKE63hwCRDXgzXXTmxLIOzdhlu1BcvCSuTuwJbJ78L1YX1Gfw9-hzk1eM4Xhi0JCEu1tGBFxtDWZObnjH5bp2wv-Dzu-YKdUYINFVUultPUsLmZITowMqVZeTmes_EoxAt6ynAmo6S3-WlRE_K4Fi9cMS9yHk4-VnetQvzYNGc66E32d8PB1_twfCWcegAdvLV5BMx2UoWGS0DVcVw_0IHjasRv1xGGUo9TC-yGF5Gui6NTj47zqC3rXLIvQvZFxL5IWfCmnTKrKoNsIn5NDI5Ia-C6Oq6TH_DpqP5WFKIdjI4jyrcFOyuUuNv16nAjIlGtbRbRv71hwYt2mGZSBF1uiouShnKYhS030XhKSoU2sAUPK6lrXw0tPRGgtWqBvyKPLQHVKV8dyadnZb1yqSQZrha8bST30qP_74s93vyiz-FGfzIcRIPD0dETuCnKbUVBRjvQWc4vzFM0FZfJs3p_Mvh21SrhLw4WegU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIlW8IG4MBRYJhARaxet17PUDQlZDaGkbUEmlvLn2epdGQnZIUgH_hN_Cr2PGF00k8tZX7-Fjrm-8cwC8UGjTrIo87mXK52jx-jy1RnMRZIFrtMhMTo7i8SjYP_U_TvqTLfjT5sJQWGWrEytFnZea_pH3BKVUonULo55twiI-D4bvZt85dZCik9a2nUbNIofm1w903xZvDwZI65eeN3w_3tvnTYcBrgMZLLkSaS5Dq9LUuDbTSuVS2iAKUrSMWph-lloZGj_XMjOun0r0TozvWa20Z63sZxL3vQbXQ9kXJGPhpHP2BHp7dfcEdNcDlJr2RNWtC5hWTrzkAgEWVys2cd0yXDKN62Gba2e3lUkc3oKbDZZlcc18t2HLFHdg57g5rb8Lv-OCWj0XC8OWZBIrBbVgpWWIOpn5OaMf2Dnbiz6dDEOPnVOqDZVXLpfT3LC5maGdYASqWXU5nbOTUYwX9JThSkbpb_OvZTORpw2j4Y5FWfB4_KG-ax3sx6YF09FwPOjFR1_uwemV0Ok-bOOtzUNgrsgVQpiI6uT4YaQj4Wu05L7wDCUh5w64LS0S3ZRJp24d35KuwHNFvgTJlxD5EuXA627JrK4RsmnyKyJwQvoD99VpkwaBT0eVuJIYETG6kMjpDuyuzES516vDLYskjd5ZJP-kxIHn3TCtpFi6wpQX1RzKZvZcuWlOoKRUiIYdeFBzXfdqiPm8CHGrA-EKP3YTqGL56kgxPa8ql0slCcI68Kbl3EuP_r8v9mjziz6DHVQEydHB6PAx3PAqqaJoo13YXs4vzBPEjMvsaSWcDM6uWhv8BXaKfNU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antisense+transcripts+of+the+expanded+C9ORF72+hexanucleotide+repeat+form+nuclear+RNA+foci+and+undergo+repeat-associated+non-ATG+translation+in+c9FTD%2FALS&rft.jtitle=Acta+neuropathologica&rft.au=Gendron%2C+Tania+F&rft.au=Bieniek%2C+Kevin+F&rft.au=Zhang%2C+Yong-Jie&rft.au=Jansen-West%2C+Karen&rft.date=2013-12-01&rft.eissn=1432-0533&rft.volume=126&rft.issue=6&rft.spage=829&rft_id=info:doi/10.1007%2Fs00401-013-1192-8&rft_id=info%3Apmid%2F24129584&rft.externalDocID=24129584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-6322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-6322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-6322&client=summon |