Removal of phosphate from aqueous solution by thermally treated natural palygorskite

The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000 °C for 2 h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 43; no. 11; pp. 2907 - 2915
Main Authors Gan, Fangqun, Zhou, Jianmin, Wang, Huoyan, Du, Changwen, Chen, Xiaoqin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000 °C for 2 h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 °C. H700 (palygorskite heated at 700 °C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5–1000 mg/L) (25 °C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca–P species varied greatly, Ca 2–P was 87.7% in NPAL and 3.0% in H700, Ca 8–P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 °C, which promoted phosphorus sorption.
AbstractList The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption.The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption.
The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000@uoC for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700@uoC. H700 (palygorskite heated at 700@uoC) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25@uoC). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca@d2-P was 87.7% in NPAL and 3.0% in H700, Ca@d8-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700@uoC, which promoted phosphorus sorption.
The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 super(o)C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 super(o)C. H700 (palygorskite heated at 700 super(o)C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 super(o)C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca sub(2)-P was 87.7% in NPAL and 3.0% in H700, Ca sub(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 super(o)C, which promoted phosphorus sorption.
The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption.
The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000 °C for 2 h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 °C. H700 (palygorskite heated at 700 °C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5–1000 mg/L) (25 °C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca–P species varied greatly, Ca 2–P was 87.7% in NPAL and 3.0% in H700, Ca 8–P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 °C, which promoted phosphorus sorption.
Author Wang, Huoyan
Gan, Fangqun
Zhou, Jianmin
Chen, Xiaoqin
Du, Changwen
Author_xml – sequence: 1
  givenname: Fangqun
  surname: Gan
  fullname: Gan, Fangqun
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
– sequence: 2
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
  email: jmzhou@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
– sequence: 3
  givenname: Huoyan
  surname: Wang
  fullname: Wang, Huoyan
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
– sequence: 4
  givenname: Changwen
  surname: Du
  fullname: Du, Changwen
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
– sequence: 5
  givenname: Xiaoqin
  surname: Chen
  fullname: Chen, Xiaoqin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21631409$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19447464$$D View this record in MEDLINE/PubMed
BookMark eNqNkktvEzEUhS1URNPCP0AwG2CVcP0cDwskVPGSKiFBu7buOJ7GYWYcbKco_x6PErpgkbCyF9-59-iec0HOxjA6Qp5TWFCg6u168RtzdGnBAJoF8AVI-ojMqK6bORNCn5EZgOBzyqU4JxcprQGAMd48Iee0EaIWSszIzXc3hHvsq9BVm1VImxVmV3UxDBX-2rqwTVUK_Tb7MFbtrsorFwfs-_KLrpDLasS8jUW_wX53F2L66bN7Sh532Cf37PBekttPH2-uvsyvv33-evXhem4VV3kudCud466mxUvN6haQq4ZryWWr2FJD13ZSc40ctdRUMYvARKOg0bUFIfklebOfu4mhmE3ZDD5Z1_c4Ts5NA7ws0kIV8vVRUtWcM0XhJFhmlXsrfhLkopxYMXESZGWakkz_D0hrCayALw7gth3c0myiHzDuzN9UC_DqAGCy2HcRR-vTA8eo4lRAU7h3e87GkFJ0nbE-45R1juh7Q8FMVTNrs6-amapmgJtStSIW_4gffByXvdzLOgwG72LxdfuDAeVFIWsFUwTv94Qr1bn3LppkvRutW_robDbL4I-v-AMR5fZJ
CODEN WATRAG
CitedBy_id crossref_primary_10_1002_pc_24427
crossref_primary_10_1016_j_synthmet_2014_03_021
crossref_primary_10_1016_j_colsurfa_2024_134909
crossref_primary_10_5004_dwt_2017_20124
crossref_primary_10_1016_j_envpol_2016_06_011
crossref_primary_10_1016_j_desal_2014_07_029
crossref_primary_10_1080_19443994_2015_1133327
crossref_primary_10_1016_j_clay_2022_106729
crossref_primary_10_1002_wer_1495
crossref_primary_10_1016_j_molliq_2019_01_100
crossref_primary_10_5004_dwt_2023_30084
crossref_primary_10_1016_j_micrna_2024_207917
crossref_primary_10_1021_acs_jafc_3c00454
crossref_primary_10_1016_j_jclepro_2022_135649
crossref_primary_10_1016_j_cej_2024_156568
crossref_primary_10_1016_j_apgeochem_2022_105484
crossref_primary_10_5004_dwt_2022_28354
crossref_primary_10_1016_j_jenvman_2024_120291
crossref_primary_10_1007_s11356_018_1794_8
crossref_primary_10_1016_j_seppur_2022_120894
crossref_primary_10_1016_j_jclepro_2023_136451
crossref_primary_10_5004_dwt_2018_22409
crossref_primary_10_1016_j_cej_2011_08_062
crossref_primary_10_1080_08827508_2011_606342
crossref_primary_10_1016_j_envres_2024_120704
crossref_primary_10_1016_j_jclepro_2022_130763
crossref_primary_10_1016_j_jenvman_2022_116905
crossref_primary_10_1016_j_cej_2018_06_183
crossref_primary_10_1007_s11814_023_1436_9
crossref_primary_10_1021_ie3003304
crossref_primary_10_1016_j_chemosphere_2022_133898
crossref_primary_10_1016_j_seppur_2024_128377
crossref_primary_10_1016_j_jclepro_2022_131294
crossref_primary_10_1016_j_jece_2020_103850
crossref_primary_10_1016_j_jece_2022_107658
crossref_primary_10_1016_j_jece_2022_108748
crossref_primary_10_3390_su162310214
crossref_primary_10_1016_S1001_0742_12_60014_X
crossref_primary_10_1007_s11270_012_1325_z
crossref_primary_10_1016_j_resconrec_2019_06_017
crossref_primary_10_1080_19443994_2013_826335
crossref_primary_10_1016_j_cej_2019_04_136
crossref_primary_10_1016_j_cej_2019_123395
crossref_primary_10_1016_j_jwpe_2024_104925
crossref_primary_10_1016_j_talanta_2014_12_051
crossref_primary_10_1016_j_apgeochem_2020_104850
crossref_primary_10_1007_s13201_022_01821_1
crossref_primary_10_1016_j_jenvman_2023_118496
crossref_primary_10_1021_acs_iecr_4c02734
crossref_primary_10_2139_ssrn_4049564
crossref_primary_10_1016_j_clay_2016_06_028
crossref_primary_10_56093_ijas_v90i12_110309
crossref_primary_10_1021_ie301225g
crossref_primary_10_1080_09593330_2016_1213769
crossref_primary_10_1016_j_clay_2016_10_027
crossref_primary_10_1016_j_jcis_2012_03_002
crossref_primary_10_1039_D1RA04279C
crossref_primary_10_1016_j_jece_2018_08_008
crossref_primary_10_1016_j_chemosphere_2019_01_070
crossref_primary_10_1016_j_colsurfa_2024_134663
crossref_primary_10_1007_s11814_014_0266_1
crossref_primary_10_1016_j_resconrec_2020_105238
crossref_primary_10_4028_www_scientific_net_AMR_706_708_456
crossref_primary_10_1016_S1001_0742_13_60537_9
crossref_primary_10_1016_j_cej_2015_09_108
crossref_primary_10_1088_1742_6596_2152_1_012006
crossref_primary_10_1016_j_watres_2013_04_044
crossref_primary_10_1590_S1516_14392014005000057
crossref_primary_10_1007_s13762_024_05661_1
crossref_primary_10_1088_1755_1315_81_1_012023
crossref_primary_10_1016_j_jhazmat_2009_06_094
crossref_primary_10_1007_s11356_022_19662_5
crossref_primary_10_1007_s42860_023_00259_z
crossref_primary_10_1016_S1452_3981_23_12910_5
crossref_primary_10_1016_j_jhazmat_2011_10_072
crossref_primary_10_1016_j_jhazmat_2024_134859
crossref_primary_10_1002_sia_7349
crossref_primary_10_1016_j_ecoenv_2016_11_026
crossref_primary_10_1016_j_jenvman_2015_01_003
crossref_primary_10_1016_j_jtice_2013_12_023
crossref_primary_10_1016_j_jwpe_2014_10_004
crossref_primary_10_1016_j_cej_2023_141404
crossref_primary_10_1007_s11356_019_06351_z
crossref_primary_10_1260_0263_6174_30_6_533
crossref_primary_10_1016_j_scitotenv_2022_157120
crossref_primary_10_1016_j_jenvman_2021_111986
crossref_primary_10_2166_wst_2023_031
crossref_primary_10_1016_j_clay_2015_10_037
crossref_primary_10_1016_j_eti_2016_11_005
crossref_primary_10_1016_j_jece_2016_01_036
crossref_primary_10_1016_j_desal_2024_117505
crossref_primary_10_1080_10643389_2019_1663065
crossref_primary_10_3390_ma16134818
crossref_primary_10_1016_j_cej_2018_11_007
crossref_primary_10_1007_s11270_016_3084_8
crossref_primary_10_1002_wer_1122
crossref_primary_10_1021_acs_analchem_5b03478
crossref_primary_10_1016_j_cej_2017_06_099
crossref_primary_10_1016_j_cej_2022_136423
crossref_primary_10_1016_j_scitotenv_2017_07_243
crossref_primary_10_1007_s10452_016_9575_2
crossref_primary_10_1016_j_desal_2011_03_066
crossref_primary_10_1016_j_jclepro_2017_08_026
crossref_primary_10_1016_j_clay_2014_12_010
crossref_primary_10_4028_www_scientific_net_AMR_422_501
crossref_primary_10_3390_ma14195688
crossref_primary_10_1016_j_jece_2024_112172
crossref_primary_10_1016_j_ecohyd_2024_01_004
crossref_primary_10_1016_j_micromeso_2012_10_027
crossref_primary_10_1016_j_mineng_2023_108029
crossref_primary_10_1007_s00128_022_03565_9
crossref_primary_10_1007_s10967_018_6163_z
crossref_primary_10_1016_j_clay_2018_04_039
crossref_primary_10_1016_j_clay_2017_09_012
crossref_primary_10_1515_revic_2024_0041
crossref_primary_10_1016_j_clay_2024_107660
crossref_primary_10_1016_j_clay_2016_07_003
crossref_primary_10_1016_j_micromeso_2022_111765
crossref_primary_10_1016_j_clay_2018_07_005
crossref_primary_10_3390_agronomy12010133
crossref_primary_10_1016_j_seppur_2016_05_011
crossref_primary_10_1007_s10098_024_03086_5
crossref_primary_10_1016_j_jclepro_2021_126802
crossref_primary_10_1016_j_cej_2011_11_082
crossref_primary_10_1016_j_cej_2015_10_038
crossref_primary_10_1155_2013_496584
crossref_primary_10_1080_19443994_2014_915385
crossref_primary_10_1080_19443994_2014_976770
crossref_primary_10_1080_19443994_2013_821035
crossref_primary_10_1007_s11270_022_05897_y
crossref_primary_10_12677_aep_2025_152027
crossref_primary_10_1016_j_colsurfa_2024_133543
crossref_primary_10_1007_s11270_015_2691_0
crossref_primary_10_1016_j_scitotenv_2018_04_218
crossref_primary_10_1016_j_cej_2018_05_065
crossref_primary_10_1080_01496395_2013_818693
crossref_primary_10_1016_j_micromeso_2015_11_011
crossref_primary_10_1016_j_foodchem_2015_11_107
crossref_primary_10_1016_S1001_0742_12_60113_2
crossref_primary_10_1016_j_jes_2014_12_007
crossref_primary_10_1016_j_chemosphere_2023_138555
crossref_primary_10_1016_j_seppur_2024_127436
crossref_primary_10_1557_s43580_024_01027_4
crossref_primary_10_1016_j_renene_2019_06_037
crossref_primary_10_1007_s11270_023_06154_6
crossref_primary_10_1016_j_jclepro_2020_123933
crossref_primary_10_1016_j_chemosphere_2022_137390
crossref_primary_10_1016_j_cej_2012_04_040
crossref_primary_10_1016_j_jclepro_2019_05_003
crossref_primary_10_4028_www_scientific_net_MSF_913_907
crossref_primary_10_3390_min13020293
crossref_primary_10_1016_j_clay_2019_105219
crossref_primary_10_1016_j_jece_2017_01_028
crossref_primary_10_1007_s11356_019_07577_7
crossref_primary_10_1016_j_clay_2020_105498
crossref_primary_10_1021_acs_energyfuels_9b03997
crossref_primary_10_1021_es100787m
crossref_primary_10_1016_j_jenvman_2017_02_030
crossref_primary_10_1016_j_cej_2013_05_036
crossref_primary_10_1016_j_jenvman_2015_09_022
crossref_primary_10_2965_jwet_16_069
crossref_primary_10_1021_ie300702j
crossref_primary_10_1016_j_cej_2013_03_020
crossref_primary_10_1016_j_scitotenv_2016_11_037
crossref_primary_10_1016_j_cej_2010_12_082
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000529
crossref_primary_10_1016_j_conbuildmat_2022_130029
crossref_primary_10_1007_s11356_018_4049_9
crossref_primary_10_1016_j_jece_2023_111697
crossref_primary_10_2175_106143010X12780288628372
crossref_primary_10_1016_j_conbuildmat_2024_138829
crossref_primary_10_1016_j_cej_2011_06_078
crossref_primary_10_1016_j_cej_2018_08_003
crossref_primary_10_3799_dqkx_2024_137
crossref_primary_10_1016_j_conbuildmat_2021_123686
crossref_primary_10_1016_j_jmrt_2019_09_011
crossref_primary_10_5004_dwt_2011_2242
crossref_primary_10_1016_j_watres_2011_06_020
crossref_primary_10_1016_j_watres_2017_03_014
crossref_primary_10_1016_j_jclepro_2021_126878
crossref_primary_10_1080_09593330_2020_1774664
crossref_primary_10_1007_s11356_022_24087_1
crossref_primary_10_1007_s11356_021_15724_2
crossref_primary_10_1007_s11270_014_1916_y
crossref_primary_10_1007_s11356_020_07782_9
crossref_primary_10_1016_j_cej_2010_11_085
crossref_primary_10_1016_j_jclepro_2024_141425
crossref_primary_10_1016_j_jhazmat_2017_01_025
crossref_primary_10_1021_ie301520v
crossref_primary_10_1002_wer_1089
crossref_primary_10_1016_j_chemosphere_2020_127124
crossref_primary_10_1021_acs_iecr_9b05574
crossref_primary_10_5004_dwt_2017_21191
crossref_primary_10_1016_j_jhazmat_2017_12_042
crossref_primary_10_1016_j_clay_2016_07_012
Cites_doi 10.2166/wst.1996.0368
10.1016/S0021-9797(02)00008-5
10.1016/S0016-7061(97)00061-X
10.1016/j.jhazmat.2005.08.003
10.1097/00010694-195708000-00005
10.1346/CCMN.1985.0330304
10.1016/j.desal.2006.10.024
10.1016/S0955-2219(01)00514-3
10.1016/j.seppur.2005.12.004
10.1016/S0169-1317(00)00016-8
10.1016/j.fuel.2008.03.013
10.1346/CCMN.2004.0520409
10.1006/jcis.2002.8260
10.1016/S0040-6031(02)00094-1
10.1016/j.jhazmat.2007.10.071
10.1016/j.jcis.2005.12.054
10.1016/S0045-6535(02)00847-0
10.1021/ja01269a023
10.1016/j.jhazmat.2007.12.009
10.1016/0040-6031(75)80083-9
10.2136/sssaj1973.03615995003700060018x
10.2175/106143097X125759
10.1016/S0043-1354(01)00340-2
10.1016/j.clay.2003.09.005
10.1016/j.jcis.2004.08.015
10.1016/S0008-8846(02)00888-8
10.1016/0269-7491(88)90209-6
10.1016/j.jhazmat.2007.01.055
10.1016/j.jcis.2006.04.010
10.1016/j.biortech.2007.11.019
10.1016/j.nimb.2005.06.018
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2009 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
L.G
SOI
8FD
FR3
KR7
7S9
L.6
7X8
DOI 10.1016/j.watres.2009.03.051
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Chemistry
EISSN 1879-2448
EndPage 2915
ExternalDocumentID 19447464
21631409
10_1016_j_watres_2009_03_051
US201301657600
S0043135409002188
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACKIV
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
X7M
XOL
XPP
YHZ
YV5
ZCA
ZMT
ZXP
ZY4
~02
~A~
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
L.G
SOI
8FD
FR3
KR7
7S9
L.6
7X8
ID FETCH-LOGICAL-c636t-48b5ee3e71746727b0a36938535b62d80fbf5838a3a858162ca024960987c0453
IEDL.DBID .~1
ISSN 0043-1354
IngestDate Fri Jul 11 07:51:13 EDT 2025
Fri Jul 11 16:29:11 EDT 2025
Thu Jul 10 22:04:46 EDT 2025
Fri Jul 11 01:15:19 EDT 2025
Mon Jul 21 11:17:54 EDT 2025
Thu Jul 10 21:59:42 EDT 2025
Mon Jul 21 05:34:15 EDT 2025
Mon Jul 21 09:14:41 EDT 2025
Tue Jul 01 03:53:18 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Thu Apr 03 09:46:36 EDT 2025
Fri Feb 23 02:26:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Thermally treated palygorskite
Structure changes
Physico-chemical properties
Phosphate
Phosphates
Sorption
Adsorption isotherm
Phosphorus
Chemical properties
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c636t-48b5ee3e71746727b0a36938535b62d80fbf5838a3a858162ca024960987c0453
Notes http://dx.doi.org/10.1016/j.watres.2009.03.051
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19447464
PQID 20617502
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_903636846
proquest_miscellaneous_67332610
proquest_miscellaneous_46320063
proquest_miscellaneous_34447624
proquest_miscellaneous_20636528
proquest_miscellaneous_20617502
pubmed_primary_19447464
pascalfrancis_primary_21631409
crossref_citationtrail_10_1016_j_watres_2009_03_051
crossref_primary_10_1016_j_watres_2009_03_051
fao_agris_US201301657600
elsevier_sciencedirect_doi_10_1016_j_watres_2009_03_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Feng, Wu (bib11) 2006; 21
Özacar (bib24) 2003; 51
Kostantions, Maximos, Georgios (bib19) 2007; A139
Gu, Jiang (bib14) 1990; 22
Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu (bib8) 2006; 298
Karaca, Gurses, Ejder, Acìkyıldız (bib18) 2006; B128
Lookman, Grobet, Merckx, Van Riemsdijk (bib21) 1997; 80
Brunauer, Emmett, Teller (bib4) 1938; 60
Haron, Wasay, Tokunaga (bib15) 1997; 69
Sarikaya, Ada, Alemdaroglu, Bozdogan (bib29) 2002; 22
Van-Scoyoc, Serna, Ahlrichs (bib36) 1979; 64
Tanada, Kabayama, Kawasaki, Sakiyama, Nakamura, Araki, Tamura (bib34) 2003; 257
Chen, Kong, Wu, Hu, Wang, Wang (bib7) 2006; 300
Seida, Nakano (bib30) 2002; 36
Al-Futaisi, Jamrah, Al-Hanai (bib2) 2007; 214
Hirsiger, Muller-Vonmoos, Wiedemann (bib16) 1975; 13
Pengthamkeerati, Satapanajaru, Chularuengoaksorn (bib26) 2008; 87
Shin, Kim, Nam, Moon (bib31) 1996; 34
Demirbas, Kobya, Sulak (bib9) 2008; 99
Yeoman, Stephenson, Lester, Perry (bib38) 1988; 49
Sánchez del Río, Suárez, García Romero, Alianelli, Felici, Martinetto, Dooryhée, Reyes-Valerio, Borgatti, Doyle, Giglia, Mahne, Pedio, Nannarone (bib28) 2005; 238
Samtani, Dollimore, Alexander (bib27) 2002; 392–393
Soil Science Society of China (bib32) 2002
Álvarez-Ayuso, Garcíía-Sánchez (bib3) 2007; 147
Liu, Guo, Tang (bib20) 2002; 248
Namasivayam, Sangeetha (bib23) 2004; 280
Murray (bib22) 2000; 17
Takeshi, Yujiro, Hirohisa, Takashi (bib33) 2004; 25
Chang, Jackson (bib6) 1957; 84
Jha, Kameshima, Nakajima, Okada (bib17) 2008; 156
Tan (bib35) 1996
Bulut, Özacar, Şengil (bib5) 2008; 154
Pashley (bib25) 1985; 33
Agyei, Strydomb, Potgieter (bib1) 2002; 32
Dixon, Weed (bib10) 1989
García-Romero, Suárez Barrios, Bustillo Revuelta (bib12) 2004; 52
Griffin, Jurinak (bib13) 1973; 37
Ye, Chen, Sheng, Sheng, Fu (bib37) 2006; 50
Van-Scoyoc (10.1016/j.watres.2009.03.051_bib36) 1979; 64
Chitrakar (10.1016/j.watres.2009.03.051_bib8) 2006; 298
Dixon (10.1016/j.watres.2009.03.051_bib10) 1989
Pashley (10.1016/j.watres.2009.03.051_bib25) 1985; 33
Samtani (10.1016/j.watres.2009.03.051_bib27) 2002; 392–393
Liu (10.1016/j.watres.2009.03.051_bib20) 2002; 248
Hirsiger (10.1016/j.watres.2009.03.051_bib16) 1975; 13
Takeshi (10.1016/j.watres.2009.03.051_bib33) 2004; 25
Feng (10.1016/j.watres.2009.03.051_bib11) 2006; 21
Pengthamkeerati (10.1016/j.watres.2009.03.051_bib26) 2008; 87
Bulut (10.1016/j.watres.2009.03.051_bib5) 2008; 154
Tan (10.1016/j.watres.2009.03.051_bib35) 1996
Özacar (10.1016/j.watres.2009.03.051_bib24) 2003; 51
Shin (10.1016/j.watres.2009.03.051_bib31) 1996; 34
Ye (10.1016/j.watres.2009.03.051_bib37) 2006; 50
Haron (10.1016/j.watres.2009.03.051_bib15) 1997; 69
Tanada (10.1016/j.watres.2009.03.051_bib34) 2003; 257
Karaca (10.1016/j.watres.2009.03.051_bib18) 2006; B128
Yeoman (10.1016/j.watres.2009.03.051_bib38) 1988; 49
Agyei (10.1016/j.watres.2009.03.051_bib1) 2002; 32
Álvarez-Ayuso (10.1016/j.watres.2009.03.051_bib3) 2007; 147
Chang (10.1016/j.watres.2009.03.051_bib6) 1957; 84
Demirbas (10.1016/j.watres.2009.03.051_bib9) 2008; 99
Griffin (10.1016/j.watres.2009.03.051_bib13) 1973; 37
Gu (10.1016/j.watres.2009.03.051_bib14) 1990; 22
Namasivayam (10.1016/j.watres.2009.03.051_bib23) 2004; 280
Seida (10.1016/j.watres.2009.03.051_bib30) 2002; 36
Lookman (10.1016/j.watres.2009.03.051_bib21) 1997; 80
Chen (10.1016/j.watres.2009.03.051_bib7) 2006; 300
Brunauer (10.1016/j.watres.2009.03.051_bib4) 1938; 60
Jha (10.1016/j.watres.2009.03.051_bib17) 2008; 156
Kostantions (10.1016/j.watres.2009.03.051_bib19) 2007; A139
Soil Science Society of China (10.1016/j.watres.2009.03.051_bib32) 2002
Sánchez del Río (10.1016/j.watres.2009.03.051_bib28) 2005; 238
Al-Futaisi (10.1016/j.watres.2009.03.051_bib2) 2007; 214
Murray (10.1016/j.watres.2009.03.051_bib22) 2000; 17
Sarikaya (10.1016/j.watres.2009.03.051_bib29) 2002; 22
García-Romero (10.1016/j.watres.2009.03.051_bib12) 2004; 52
References_xml – volume: 25
  start-page: 167
  year: 2004
  end-page: 177
  ident: bib33
  article-title: Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH
  publication-title: Appl. Clay Sci.
– volume: 99
  start-page: 5368
  year: 2008
  end-page: 5373
  ident: bib9
  article-title: Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 183
  year: 1988
  end-page: 233
  ident: bib38
  article-title: The removal of phosphorus during wastewater treatment: a review
  publication-title: Environ. Pollut.
– volume: 238
  start-page: 55
  year: 2005
  end-page: 60
  ident: bib28
  article-title: Mg K-edge XANES of sepiolite and palygorskite
  publication-title: Nucl. Instrum. Methods
– volume: 280
  start-page: 359
  year: 2004
  end-page: 365
  ident: bib23
  article-title: Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 193
  year: 1985
  end-page: 199
  ident: bib25
  article-title: Electromobility of mica particles dispersed in aqueous solutions
  publication-title: Clay. Clay Miner.
– volume: 298
  start-page: 602
  year: 2006
  end-page: 608
  ident: bib8
  article-title: Phosphate adsorption on synthetic goethite and akaganeite
  publication-title: J. Colloid Interface Sci.
– volume: 51
  start-page: 321
  year: 2003
  end-page: 327
  ident: bib24
  article-title: Adsorption of phosphate from aqueous solution onto alunite
  publication-title: Chemosphere
– volume: 84
  start-page: 133
  year: 1957
  end-page: 144
  ident: bib6
  article-title: Fractionation of soil phosphorus
  publication-title: Soil Sci.
– year: 1989
  ident: bib10
  article-title: Minerals in Soil Environments
– volume: 64
  start-page: 215
  year: 1979
  end-page: 223
  ident: bib36
  article-title: Structural changes in palygorskite during dehydration and dehydroxylation
  publication-title: Am. Mineral.
– volume: 50
  start-page: 283
  year: 2006
  end-page: 290
  ident: bib37
  article-title: Adsorption of phosphate from aqueous solution onto modified palygorskites
  publication-title: Sep. Purif. Technol.
– volume: 60
  start-page: 308
  year: 1938
  end-page: 319
  ident: bib4
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 847
  year: 1973
  end-page: 850
  ident: bib13
  article-title: The interaction of phosphate with calcite
  publication-title: Soil Sci. Soc. Am. Proc.
– volume: 300
  start-page: 491
  year: 2006
  end-page: 497
  ident: bib7
  article-title: Removal of phosphate from aqueous solution by zeolite synthesized from fly ash
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 223
  year: 1975
  end-page: 230
  ident: bib16
  article-title: Thermal analysis of palygorskite
  publication-title: Thermochim. Acta
– volume: 248
  start-page: 268
  year: 2002
  end-page: 274
  ident: bib20
  article-title: Adsorption of fluoride, phosphate and arsenate ions on a new type of ion exchange fiber
  publication-title: J. Colloid Interface Sci.
– volume: 80
  start-page: 369
  year: 1997
  end-page: 388
  ident: bib21
  article-title: Application of P and Al MAS NMR for phosphate speciation studies in soil and aluminum hydroxides: promises and constraints
  publication-title: Geoderma
– volume: 156
  start-page: 156
  year: 2008
  end-page: 162
  ident: bib17
  article-title: Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 1306
  year: 2002
  end-page: 1312
  ident: bib30
  article-title: Removal of phosphate by layered double hydroxides containing iron
  publication-title: Water Res.
– volume: 154
  start-page: 613
  year: 2008
  end-page: 622
  ident: bib5
  article-title: Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite
  publication-title: J. Hazard. Mater.
– volume: 17
  start-page: 207
  year: 2000
  end-page: 221
  ident: bib22
  article-title: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview
  publication-title: Appl. Clay Sci.
– year: 2002
  ident: bib32
  article-title: Soil Agrochemistry Analysis Method
– volume: 257
  start-page: 135
  year: 2003
  end-page: 140
  ident: bib34
  article-title: Removal of phosphate by aluminum oxide hydroxide
  publication-title: J. Colloid Interface Sci.
– volume: 32
  start-page: 1889
  year: 2002
  end-page: 1897
  ident: bib1
  article-title: The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends
  publication-title: Cement Concrete Res.
– volume: 52
  start-page: 484
  year: 2004
  end-page: 494
  ident: bib12
  article-title: Characteristics of a Mg-palygorskite in Miocene rocks, Madrid basin (Spain)
  publication-title: Clay. Clay Miner.
– volume: 392–393
  start-page: 135
  year: 2002
  end-page: 145
  ident: bib27
  article-title: Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters
  publication-title: Thermochim. Acta
– volume: B128
  start-page: 273
  year: 2006
  end-page: 279
  ident: bib18
  article-title: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite
  publication-title: J. Hazard. Mater.
– volume: A139
  start-page: 447
  year: 2007
  end-page: 452
  ident: bib19
  article-title: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent
  publication-title: J. Hazard. Mater.
– volume: 21
  start-page: 8
  year: 2006
  end-page: 11
  ident: bib11
  article-title: Measures for the control of lake eutrophication at home and abroad
  publication-title: Guangzhou Environ. Sci.
– volume: 69
  start-page: 1047
  year: 1997
  end-page: 1051
  ident: bib15
  article-title: Preparation of basic yttrium carbonate for phosphate removal
  publication-title: Water Environ. Res.
– volume: 22
  start-page: 1905
  year: 2002
  end-page: 1910
  ident: bib29
  article-title: The effect of Al
  publication-title: J. Eur. Ceram. Soc.
– volume: 87
  start-page: 2469
  year: 2008
  end-page: 2476
  ident: bib26
  article-title: Chemical modification of coal fly ash for the removal of phosphate from aqueous solution
  publication-title: Fuel
– volume: 214
  start-page: 327
  year: 2007
  end-page: 342
  ident: bib2
  article-title: Aspects of cationic dye molecule adsorption to palygorskite
  publication-title: Desalination
– volume: 22
  start-page: 101
  year: 1990
  end-page: 102
  ident: bib14
  article-title: A method for fractionation of inorganic phosphorus of calcareous soils
  publication-title: Soils
– volume: 147
  start-page: 594
  year: 2007
  end-page: 600
  ident: bib3
  article-title: Removal of cadmium from aqueous solutions by palygorskite
  publication-title: J. Hazard. Mater.
– volume: 34
  start-page: 161
  year: 1996
  end-page: 168
  ident: bib31
  article-title: Phosphorus removal by hydrotalcite-like compounds (HTLcs)
  publication-title: Water Sci. Technol.
– year: 1996
  ident: bib35
  article-title: Soil Sampling, Preparation and Analysis
– year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib32
– year: 1989
  ident: 10.1016/j.watres.2009.03.051_bib10
– volume: A139
  start-page: 447
  year: 2007
  ident: 10.1016/j.watres.2009.03.051_bib19
  article-title: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent
  publication-title: J. Hazard. Mater.
– volume: 34
  start-page: 161
  year: 1996
  ident: 10.1016/j.watres.2009.03.051_bib31
  article-title: Phosphorus removal by hydrotalcite-like compounds (HTLcs)
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1996.0368
– volume: 257
  start-page: 135
  year: 2003
  ident: 10.1016/j.watres.2009.03.051_bib34
  article-title: Removal of phosphate by aluminum oxide hydroxide
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(02)00008-5
– volume: 80
  start-page: 369
  year: 1997
  ident: 10.1016/j.watres.2009.03.051_bib21
  article-title: Application of P and Al MAS NMR for phosphate speciation studies in soil and aluminum hydroxides: promises and constraints
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00061-X
– volume: B128
  start-page: 273
  year: 2006
  ident: 10.1016/j.watres.2009.03.051_bib18
  article-title: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.08.003
– volume: 84
  start-page: 133
  year: 1957
  ident: 10.1016/j.watres.2009.03.051_bib6
  article-title: Fractionation of soil phosphorus
  publication-title: Soil Sci.
  doi: 10.1097/00010694-195708000-00005
– volume: 33
  start-page: 193
  year: 1985
  ident: 10.1016/j.watres.2009.03.051_bib25
  article-title: Electromobility of mica particles dispersed in aqueous solutions
  publication-title: Clay. Clay Miner.
  doi: 10.1346/CCMN.1985.0330304
– volume: 214
  start-page: 327
  year: 2007
  ident: 10.1016/j.watres.2009.03.051_bib2
  article-title: Aspects of cationic dye molecule adsorption to palygorskite
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.10.024
– volume: 22
  start-page: 1905
  year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib29
  article-title: The effect of Al3+ concentration on the properties of alumina powders obtained by reaction between aluminium sulphate and urea in boiling aqueous solution
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(01)00514-3
– volume: 50
  start-page: 283
  year: 2006
  ident: 10.1016/j.watres.2009.03.051_bib37
  article-title: Adsorption of phosphate from aqueous solution onto modified palygorskites
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2005.12.004
– volume: 17
  start-page: 207
  year: 2000
  ident: 10.1016/j.watres.2009.03.051_bib22
  article-title: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview
  publication-title: Appl. Clay Sci.
  doi: 10.1016/S0169-1317(00)00016-8
– volume: 87
  start-page: 2469
  year: 2008
  ident: 10.1016/j.watres.2009.03.051_bib26
  article-title: Chemical modification of coal fly ash for the removal of phosphate from aqueous solution
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.03.013
– volume: 52
  start-page: 484
  year: 2004
  ident: 10.1016/j.watres.2009.03.051_bib12
  article-title: Characteristics of a Mg-palygorskite in Miocene rocks, Madrid basin (Spain)
  publication-title: Clay. Clay Miner.
  doi: 10.1346/CCMN.2004.0520409
– volume: 248
  start-page: 268
  year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib20
  article-title: Adsorption of fluoride, phosphate and arsenate ions on a new type of ion exchange fiber
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2002.8260
– volume: 392–393
  start-page: 135
  year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib27
  article-title: Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(02)00094-1
– year: 1996
  ident: 10.1016/j.watres.2009.03.051_bib35
– volume: 22
  start-page: 101
  year: 1990
  ident: 10.1016/j.watres.2009.03.051_bib14
  article-title: A method for fractionation of inorganic phosphorus of calcareous soils
  publication-title: Soils
– volume: 154
  start-page: 613
  year: 2008
  ident: 10.1016/j.watres.2009.03.051_bib5
  article-title: Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.071
– volume: 298
  start-page: 602
  year: 2006
  ident: 10.1016/j.watres.2009.03.051_bib8
  article-title: Phosphate adsorption on synthetic goethite and akaganeite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.12.054
– volume: 51
  start-page: 321
  year: 2003
  ident: 10.1016/j.watres.2009.03.051_bib24
  article-title: Adsorption of phosphate from aqueous solution onto alunite
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00847-0
– volume: 60
  start-page: 308
  year: 1938
  ident: 10.1016/j.watres.2009.03.051_bib4
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 156
  start-page: 156
  year: 2008
  ident: 10.1016/j.watres.2009.03.051_bib17
  article-title: Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.12.009
– volume: 13
  start-page: 223
  year: 1975
  ident: 10.1016/j.watres.2009.03.051_bib16
  article-title: Thermal analysis of palygorskite
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(75)80083-9
– volume: 37
  start-page: 847
  year: 1973
  ident: 10.1016/j.watres.2009.03.051_bib13
  article-title: The interaction of phosphate with calcite
  publication-title: Soil Sci. Soc. Am. Proc.
  doi: 10.2136/sssaj1973.03615995003700060018x
– volume: 69
  start-page: 1047
  year: 1997
  ident: 10.1016/j.watres.2009.03.051_bib15
  article-title: Preparation of basic yttrium carbonate for phosphate removal
  publication-title: Water Environ. Res.
  doi: 10.2175/106143097X125759
– volume: 36
  start-page: 1306
  year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib30
  article-title: Removal of phosphate by layered double hydroxides containing iron
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00340-2
– volume: 25
  start-page: 167
  year: 2004
  ident: 10.1016/j.watres.2009.03.051_bib33
  article-title: Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2003.09.005
– volume: 280
  start-page: 359
  year: 2004
  ident: 10.1016/j.watres.2009.03.051_bib23
  article-title: Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.015
– volume: 32
  start-page: 1889
  year: 2002
  ident: 10.1016/j.watres.2009.03.051_bib1
  article-title: The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends
  publication-title: Cement Concrete Res.
  doi: 10.1016/S0008-8846(02)00888-8
– volume: 49
  start-page: 183
  year: 1988
  ident: 10.1016/j.watres.2009.03.051_bib38
  article-title: The removal of phosphorus during wastewater treatment: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/0269-7491(88)90209-6
– volume: 147
  start-page: 594
  year: 2007
  ident: 10.1016/j.watres.2009.03.051_bib3
  article-title: Removal of cadmium from aqueous solutions by palygorskite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.01.055
– volume: 64
  start-page: 215
  year: 1979
  ident: 10.1016/j.watres.2009.03.051_bib36
  article-title: Structural changes in palygorskite during dehydration and dehydroxylation
  publication-title: Am. Mineral.
– volume: 300
  start-page: 491
  year: 2006
  ident: 10.1016/j.watres.2009.03.051_bib7
  article-title: Removal of phosphate from aqueous solution by zeolite synthesized from fly ash
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.04.010
– volume: 99
  start-page: 5368
  year: 2008
  ident: 10.1016/j.watres.2009.03.051_bib9
  article-title: Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.11.019
– volume: 238
  start-page: 55
  year: 2005
  ident: 10.1016/j.watres.2009.03.051_bib28
  article-title: Mg K-edge XANES of sepiolite and palygorskite
  publication-title: Nucl. Instrum. Methods
  doi: 10.1016/j.nimb.2005.06.018
– volume: 21
  start-page: 8
  year: 2006
  ident: 10.1016/j.watres.2009.03.051_bib11
  article-title: Measures for the control of lake eutrophication at home and abroad
  publication-title: Guangzhou Environ. Sci.
SSID ssj0002239
Score 2.4259064
Snippet The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2907
SubjectTerms aluminum
Applied sciences
aqueous solutions
calcium
chemistry
China
Exact sciences and technology
heat treatment
Hot Temperature
iron
Magnesium Compounds
Magnesium Compounds - chemistry
Microscopy, Electron, Scanning
Other industrial wastes. Sewage sludge
palygorskite
Phosphate
phosphates
Phosphates - chemistry
Physico-chemical properties
pollutants
Pollution
Silicon Compounds
Silicon Compounds - chemistry
sorption
sorption isotherms
Structure changes
Thermally treated palygorskite
Wastes
Water
Water - chemistry
Water Purification
Water treatment and pollution
X-Ray Diffraction
Title Removal of phosphate from aqueous solution by thermally treated natural palygorskite
URI https://dx.doi.org/10.1016/j.watres.2009.03.051
https://www.ncbi.nlm.nih.gov/pubmed/19447464
https://www.proquest.com/docview/20617502
https://www.proquest.com/docview/20636528
https://www.proquest.com/docview/34447624
https://www.proquest.com/docview/46320063
https://www.proquest.com/docview/67332610
https://www.proquest.com/docview/903636846
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoED4t3wWHzgmjbr19rHqqJaQPQAXak3y07stmi7ibpboV747czk0dJDqMQtWo0T78xk5ovnBfDReGGC8GVeWalyabzMjalSTuNDSm68DoaKk78d6flCfjlRJ1twMNTCUFplb_s7m95a6_6XvZ6be835OdX4ovOjYwvbOioq-JVyRlq--_s2zQPdnx2izEQ9lM-1OV6_PBVk9F0rxW6hpmPu6UHyNeVN-jWyLnUzL8ZBaeucDp_Ckx5Vsv1u489gK66ew-O_eg2-gOPv8aJGtWJ1Ys1ZvW7OEGUyqi5hHm9eX63ZoIYsXDPChRd-ucQrgpWxYm0LUFzf-OX1aX25pmPfl7A4_HR8MM_7kQp5qYXeoDCCilFE_IiTFIMNhRfaCvTZKmhemSKFRIFUL7xRZqp56amnoC6smZWI_sQr2F7Vq7gDDO-UUoUGwCLqkwG_-zhVydqKp6hjKTMQAydd2fcbp7EXSzcklv10Hf9pFKZ1hXDI_wzym1VN12_jHvrZICR3R28cuoR7Vu6gTJ0_RWPqFj84hXCnWlGgMoPJHUHf7IQjeqUOYRl8GCTv8HWkGItfkaTwAQgJVcH_SSG04macQkjSYy7HKaQWdBQkxin0TCAwn-JfYSMUlkL4GuFnBq873b1luMUNSC3f_Ddz38KjLuxGx1XvYHtzeRXfI3rbhEn7ek7g4f7nr_OjP2lFQnI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbQ9VH0T2oIPvQayfq19rFDRtgUO7a7EzbITh4eWTcQuqrj0tzOTB5RDitRbFI0TZ8ae-eJ5AXw2XpggfJ4WVqpUGi9TY4oypfYhOTdeB0PJyUfHejKT30_UyRrs97kwFFbZ6f5Wpzfauruz13Fzrz4_pxxfNH50bGEbQ2XW4YnE7UttDHb_3Md5oP2zvZuZyPv8uSbI67enjIyubKXYzdRoyD6tl76iwEm_RN6VbdOLYVTaWKeDl_Cig5XsSzvzV7AWF6_h-V_FBt_A9Ge8rHBdsapk9Vm1rM8QZjJKL2EeH15dL1m_Dlm4YQQML_18jleEK2PBmhqgOL7285vT6mpJ575vYXbwdbo_SbueCmmuhV6hNIKKUUT8i5PkhA2ZF9oKNNoqaF6YrAwleVK98EaZkea5p6KCOrNmnCP8E-9gY1Et4iYwfFJZFqgBLMI-GfDHj1OarC14GXXMZQKi56TLu4Lj1Pdi7vrIsgvX8p96YVqXCYf8TyC9G1W3BTceoR_3QnIPFo5Dm_DIyE2UqfOnqE3d7BcnH-5IK_JUJrD9QNB3M-EIX6lEWAI7veQd7kdysvgFSQpfgJhQZfyfFEIrboYphJQSjZQcppBa0FmQGKbQY4HIfISfwgYoLPnwNeLPBN63a_ee4RYnILXc-m_m7sDTyfTo0B1-O_7xAZ61Pjg6u_oIG6ur6_gJodwqbDdb9RZlMEQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+phosphate+from+aqueous+solution+by+thermally+treated+natural+palygorskite&rft.jtitle=Water+research+%28Oxford%29&rft.au=Gan%2C+F&rft.au=Zhou%2C+J&rft.au=Wang%2C+H&rft.au=Du%2C+C.&rft.date=2009-06-01&rft.issn=0043-1354&rft.volume=43&rft.issue=11&rft.spage=2907&rft.epage=2915&rft_id=info:doi/10.1016%2Fj.watres.2009.03.051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon