Removal of phosphate from aqueous solution by thermally treated natural palygorskite
The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000 °C for 2 h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity...
Saved in:
Published in | Water research (Oxford) Vol. 43; no. 11; pp. 2907 - 2915 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000
°C for 2
h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700
°C. H700 (palygorskite heated at 700
°C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5–1000
mg/L) (25
°C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca–P species varied greatly, Ca
2–P was 87.7% in NPAL and 3.0% in H700, Ca
8–P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700
°C, which promoted phosphorus sorption. |
---|---|
AbstractList | The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption.The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption. The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000@uoC for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700@uoC. H700 (palygorskite heated at 700@uoC) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25@uoC). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca@d2-P was 87.7% in NPAL and 3.0% in H700, Ca@d8-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700@uoC, which promoted phosphorus sorption. The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 super(o)C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 super(o)C. H700 (palygorskite heated at 700 super(o)C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 super(o)C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca sub(2)-P was 87.7% in NPAL and 3.0% in H700, Ca sub(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 super(o)C, which promoted phosphorus sorption. The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100-1000 degrees C for 2h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 degrees C. H700 (palygorskite heated at 700 degrees C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5-1000mg/L) (25 degrees C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca-P species varied greatly, Ca(2)-P was 87.7% in NPAL and 3.0% in H700, Ca(8)-P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 degrees C, which promoted phosphorus sorption. The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal activation over 100–1000 °C for 2 h. The thermal activation increased the phosphate sorption capacity and the highest phosphate sorption capacity occurred at 700 °C. H700 (palygorskite heated at 700 °C) showed higher sorption rate than natural palygorskite (NPAL), and the removal was favorable in acidic media. The sorption data were described using Freundlich isotherm equation over the concentration range (5–1000 mg/L) (25 °C). Calcium bound phosphorus was the main fraction of the adsorbed phosphorus, about 98.0% in NPAL and 58.2% in H700, but the extractive Ca–P species varied greatly, Ca 2–P was 87.7% in NPAL and 3.0% in H700, Ca 8–P was 10.1% in NPAL and 54.5% in H700, and metal bound phosphorus was less than 2% in NPAL but more than 41.4% in H700, respectively. The dependence of the phosphate sorption capacity in the heating samples on thermal activation appears to be related to major changes in the crystal structure of palygorskite, and more calcium, iron and aluminum were released from the crystal matrix at 700 °C, which promoted phosphorus sorption. |
Author | Wang, Huoyan Gan, Fangqun Zhou, Jianmin Chen, Xiaoqin Du, Changwen |
Author_xml | – sequence: 1 givenname: Fangqun surname: Gan fullname: Gan, Fangqun organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China – sequence: 2 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin email: jmzhou@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China – sequence: 3 givenname: Huoyan surname: Wang fullname: Wang, Huoyan organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China – sequence: 4 givenname: Changwen surname: Du fullname: Du, Changwen organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China – sequence: 5 givenname: Xiaoqin surname: Chen fullname: Chen, Xiaoqin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21631409$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19447464$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktvEzEUhS1URNPCP0AwG2CVcP0cDwskVPGSKiFBu7buOJ7GYWYcbKco_x6PErpgkbCyF9-59-iec0HOxjA6Qp5TWFCg6u168RtzdGnBAJoF8AVI-ojMqK6bORNCn5EZgOBzyqU4JxcprQGAMd48Iee0EaIWSszIzXc3hHvsq9BVm1VImxVmV3UxDBX-2rqwTVUK_Tb7MFbtrsorFwfs-_KLrpDLasS8jUW_wX53F2L66bN7Sh532Cf37PBekttPH2-uvsyvv33-evXhem4VV3kudCud466mxUvN6haQq4ZryWWr2FJD13ZSc40ctdRUMYvARKOg0bUFIfklebOfu4mhmE3ZDD5Z1_c4Ts5NA7ws0kIV8vVRUtWcM0XhJFhmlXsrfhLkopxYMXESZGWakkz_D0hrCayALw7gth3c0myiHzDuzN9UC_DqAGCy2HcRR-vTA8eo4lRAU7h3e87GkFJ0nbE-45R1juh7Q8FMVTNrs6-amapmgJtStSIW_4gffByXvdzLOgwG72LxdfuDAeVFIWsFUwTv94Qr1bn3LppkvRutW_robDbL4I-v-AMR5fZJ |
CODEN | WATRAG |
CitedBy_id | crossref_primary_10_1002_pc_24427 crossref_primary_10_1016_j_synthmet_2014_03_021 crossref_primary_10_1016_j_colsurfa_2024_134909 crossref_primary_10_5004_dwt_2017_20124 crossref_primary_10_1016_j_envpol_2016_06_011 crossref_primary_10_1016_j_desal_2014_07_029 crossref_primary_10_1080_19443994_2015_1133327 crossref_primary_10_1016_j_clay_2022_106729 crossref_primary_10_1002_wer_1495 crossref_primary_10_1016_j_molliq_2019_01_100 crossref_primary_10_5004_dwt_2023_30084 crossref_primary_10_1016_j_micrna_2024_207917 crossref_primary_10_1021_acs_jafc_3c00454 crossref_primary_10_1016_j_jclepro_2022_135649 crossref_primary_10_1016_j_cej_2024_156568 crossref_primary_10_1016_j_apgeochem_2022_105484 crossref_primary_10_5004_dwt_2022_28354 crossref_primary_10_1016_j_jenvman_2024_120291 crossref_primary_10_1007_s11356_018_1794_8 crossref_primary_10_1016_j_seppur_2022_120894 crossref_primary_10_1016_j_jclepro_2023_136451 crossref_primary_10_5004_dwt_2018_22409 crossref_primary_10_1016_j_cej_2011_08_062 crossref_primary_10_1080_08827508_2011_606342 crossref_primary_10_1016_j_envres_2024_120704 crossref_primary_10_1016_j_jclepro_2022_130763 crossref_primary_10_1016_j_jenvman_2022_116905 crossref_primary_10_1016_j_cej_2018_06_183 crossref_primary_10_1007_s11814_023_1436_9 crossref_primary_10_1021_ie3003304 crossref_primary_10_1016_j_chemosphere_2022_133898 crossref_primary_10_1016_j_seppur_2024_128377 crossref_primary_10_1016_j_jclepro_2022_131294 crossref_primary_10_1016_j_jece_2020_103850 crossref_primary_10_1016_j_jece_2022_107658 crossref_primary_10_1016_j_jece_2022_108748 crossref_primary_10_3390_su162310214 crossref_primary_10_1016_S1001_0742_12_60014_X crossref_primary_10_1007_s11270_012_1325_z crossref_primary_10_1016_j_resconrec_2019_06_017 crossref_primary_10_1080_19443994_2013_826335 crossref_primary_10_1016_j_cej_2019_04_136 crossref_primary_10_1016_j_cej_2019_123395 crossref_primary_10_1016_j_jwpe_2024_104925 crossref_primary_10_1016_j_talanta_2014_12_051 crossref_primary_10_1016_j_apgeochem_2020_104850 crossref_primary_10_1007_s13201_022_01821_1 crossref_primary_10_1016_j_jenvman_2023_118496 crossref_primary_10_1021_acs_iecr_4c02734 crossref_primary_10_2139_ssrn_4049564 crossref_primary_10_1016_j_clay_2016_06_028 crossref_primary_10_56093_ijas_v90i12_110309 crossref_primary_10_1021_ie301225g crossref_primary_10_1080_09593330_2016_1213769 crossref_primary_10_1016_j_clay_2016_10_027 crossref_primary_10_1016_j_jcis_2012_03_002 crossref_primary_10_1039_D1RA04279C crossref_primary_10_1016_j_jece_2018_08_008 crossref_primary_10_1016_j_chemosphere_2019_01_070 crossref_primary_10_1016_j_colsurfa_2024_134663 crossref_primary_10_1007_s11814_014_0266_1 crossref_primary_10_1016_j_resconrec_2020_105238 crossref_primary_10_4028_www_scientific_net_AMR_706_708_456 crossref_primary_10_1016_S1001_0742_13_60537_9 crossref_primary_10_1016_j_cej_2015_09_108 crossref_primary_10_1088_1742_6596_2152_1_012006 crossref_primary_10_1016_j_watres_2013_04_044 crossref_primary_10_1590_S1516_14392014005000057 crossref_primary_10_1007_s13762_024_05661_1 crossref_primary_10_1088_1755_1315_81_1_012023 crossref_primary_10_1016_j_jhazmat_2009_06_094 crossref_primary_10_1007_s11356_022_19662_5 crossref_primary_10_1007_s42860_023_00259_z crossref_primary_10_1016_S1452_3981_23_12910_5 crossref_primary_10_1016_j_jhazmat_2011_10_072 crossref_primary_10_1016_j_jhazmat_2024_134859 crossref_primary_10_1002_sia_7349 crossref_primary_10_1016_j_ecoenv_2016_11_026 crossref_primary_10_1016_j_jenvman_2015_01_003 crossref_primary_10_1016_j_jtice_2013_12_023 crossref_primary_10_1016_j_jwpe_2014_10_004 crossref_primary_10_1016_j_cej_2023_141404 crossref_primary_10_1007_s11356_019_06351_z crossref_primary_10_1260_0263_6174_30_6_533 crossref_primary_10_1016_j_scitotenv_2022_157120 crossref_primary_10_1016_j_jenvman_2021_111986 crossref_primary_10_2166_wst_2023_031 crossref_primary_10_1016_j_clay_2015_10_037 crossref_primary_10_1016_j_eti_2016_11_005 crossref_primary_10_1016_j_jece_2016_01_036 crossref_primary_10_1016_j_desal_2024_117505 crossref_primary_10_1080_10643389_2019_1663065 crossref_primary_10_3390_ma16134818 crossref_primary_10_1016_j_cej_2018_11_007 crossref_primary_10_1007_s11270_016_3084_8 crossref_primary_10_1002_wer_1122 crossref_primary_10_1021_acs_analchem_5b03478 crossref_primary_10_1016_j_cej_2017_06_099 crossref_primary_10_1016_j_cej_2022_136423 crossref_primary_10_1016_j_scitotenv_2017_07_243 crossref_primary_10_1007_s10452_016_9575_2 crossref_primary_10_1016_j_desal_2011_03_066 crossref_primary_10_1016_j_jclepro_2017_08_026 crossref_primary_10_1016_j_clay_2014_12_010 crossref_primary_10_4028_www_scientific_net_AMR_422_501 crossref_primary_10_3390_ma14195688 crossref_primary_10_1016_j_jece_2024_112172 crossref_primary_10_1016_j_ecohyd_2024_01_004 crossref_primary_10_1016_j_micromeso_2012_10_027 crossref_primary_10_1016_j_mineng_2023_108029 crossref_primary_10_1007_s00128_022_03565_9 crossref_primary_10_1007_s10967_018_6163_z crossref_primary_10_1016_j_clay_2018_04_039 crossref_primary_10_1016_j_clay_2017_09_012 crossref_primary_10_1515_revic_2024_0041 crossref_primary_10_1016_j_clay_2024_107660 crossref_primary_10_1016_j_clay_2016_07_003 crossref_primary_10_1016_j_micromeso_2022_111765 crossref_primary_10_1016_j_clay_2018_07_005 crossref_primary_10_3390_agronomy12010133 crossref_primary_10_1016_j_seppur_2016_05_011 crossref_primary_10_1007_s10098_024_03086_5 crossref_primary_10_1016_j_jclepro_2021_126802 crossref_primary_10_1016_j_cej_2011_11_082 crossref_primary_10_1016_j_cej_2015_10_038 crossref_primary_10_1155_2013_496584 crossref_primary_10_1080_19443994_2014_915385 crossref_primary_10_1080_19443994_2014_976770 crossref_primary_10_1080_19443994_2013_821035 crossref_primary_10_1007_s11270_022_05897_y crossref_primary_10_12677_aep_2025_152027 crossref_primary_10_1016_j_colsurfa_2024_133543 crossref_primary_10_1007_s11270_015_2691_0 crossref_primary_10_1016_j_scitotenv_2018_04_218 crossref_primary_10_1016_j_cej_2018_05_065 crossref_primary_10_1080_01496395_2013_818693 crossref_primary_10_1016_j_micromeso_2015_11_011 crossref_primary_10_1016_j_foodchem_2015_11_107 crossref_primary_10_1016_S1001_0742_12_60113_2 crossref_primary_10_1016_j_jes_2014_12_007 crossref_primary_10_1016_j_chemosphere_2023_138555 crossref_primary_10_1016_j_seppur_2024_127436 crossref_primary_10_1557_s43580_024_01027_4 crossref_primary_10_1016_j_renene_2019_06_037 crossref_primary_10_1007_s11270_023_06154_6 crossref_primary_10_1016_j_jclepro_2020_123933 crossref_primary_10_1016_j_chemosphere_2022_137390 crossref_primary_10_1016_j_cej_2012_04_040 crossref_primary_10_1016_j_jclepro_2019_05_003 crossref_primary_10_4028_www_scientific_net_MSF_913_907 crossref_primary_10_3390_min13020293 crossref_primary_10_1016_j_clay_2019_105219 crossref_primary_10_1016_j_jece_2017_01_028 crossref_primary_10_1007_s11356_019_07577_7 crossref_primary_10_1016_j_clay_2020_105498 crossref_primary_10_1021_acs_energyfuels_9b03997 crossref_primary_10_1021_es100787m crossref_primary_10_1016_j_jenvman_2017_02_030 crossref_primary_10_1016_j_cej_2013_05_036 crossref_primary_10_1016_j_jenvman_2015_09_022 crossref_primary_10_2965_jwet_16_069 crossref_primary_10_1021_ie300702j crossref_primary_10_1016_j_cej_2013_03_020 crossref_primary_10_1016_j_scitotenv_2016_11_037 crossref_primary_10_1016_j_cej_2010_12_082 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000529 crossref_primary_10_1016_j_conbuildmat_2022_130029 crossref_primary_10_1007_s11356_018_4049_9 crossref_primary_10_1016_j_jece_2023_111697 crossref_primary_10_2175_106143010X12780288628372 crossref_primary_10_1016_j_conbuildmat_2024_138829 crossref_primary_10_1016_j_cej_2011_06_078 crossref_primary_10_1016_j_cej_2018_08_003 crossref_primary_10_3799_dqkx_2024_137 crossref_primary_10_1016_j_conbuildmat_2021_123686 crossref_primary_10_1016_j_jmrt_2019_09_011 crossref_primary_10_5004_dwt_2011_2242 crossref_primary_10_1016_j_watres_2011_06_020 crossref_primary_10_1016_j_watres_2017_03_014 crossref_primary_10_1016_j_jclepro_2021_126878 crossref_primary_10_1080_09593330_2020_1774664 crossref_primary_10_1007_s11356_022_24087_1 crossref_primary_10_1007_s11356_021_15724_2 crossref_primary_10_1007_s11270_014_1916_y crossref_primary_10_1007_s11356_020_07782_9 crossref_primary_10_1016_j_cej_2010_11_085 crossref_primary_10_1016_j_jclepro_2024_141425 crossref_primary_10_1016_j_jhazmat_2017_01_025 crossref_primary_10_1021_ie301520v crossref_primary_10_1002_wer_1089 crossref_primary_10_1016_j_chemosphere_2020_127124 crossref_primary_10_1021_acs_iecr_9b05574 crossref_primary_10_5004_dwt_2017_21191 crossref_primary_10_1016_j_jhazmat_2017_12_042 crossref_primary_10_1016_j_clay_2016_07_012 |
Cites_doi | 10.2166/wst.1996.0368 10.1016/S0021-9797(02)00008-5 10.1016/S0016-7061(97)00061-X 10.1016/j.jhazmat.2005.08.003 10.1097/00010694-195708000-00005 10.1346/CCMN.1985.0330304 10.1016/j.desal.2006.10.024 10.1016/S0955-2219(01)00514-3 10.1016/j.seppur.2005.12.004 10.1016/S0169-1317(00)00016-8 10.1016/j.fuel.2008.03.013 10.1346/CCMN.2004.0520409 10.1006/jcis.2002.8260 10.1016/S0040-6031(02)00094-1 10.1016/j.jhazmat.2007.10.071 10.1016/j.jcis.2005.12.054 10.1016/S0045-6535(02)00847-0 10.1021/ja01269a023 10.1016/j.jhazmat.2007.12.009 10.1016/0040-6031(75)80083-9 10.2136/sssaj1973.03615995003700060018x 10.2175/106143097X125759 10.1016/S0043-1354(01)00340-2 10.1016/j.clay.2003.09.005 10.1016/j.jcis.2004.08.015 10.1016/S0008-8846(02)00888-8 10.1016/0269-7491(88)90209-6 10.1016/j.jhazmat.2007.01.055 10.1016/j.jcis.2006.04.010 10.1016/j.biortech.2007.11.019 10.1016/j.nimb.2005.06.018 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2009 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 L.G SOI 8FD FR3 KR7 7S9 L.6 7X8 |
DOI | 10.1016/j.watres.2009.03.051 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Chemistry |
EISSN | 1879-2448 |
EndPage | 2915 |
ExternalDocumentID | 19447464 21631409 10_1016_j_watres_2009_03_051 US201301657600 S0043135409002188 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -DZ -~X .55 .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACKIV ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 WUQ X7M XOL XPP YHZ YV5 ZCA ZMT ZXP ZY4 ~02 ~A~ ~G- ~KM AAHBH AATTM AAXKI ABWVN ACRPL ADNMO AEGFY AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 L.G SOI 8FD FR3 KR7 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c636t-48b5ee3e71746727b0a36938535b62d80fbf5838a3a858162ca024960987c0453 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 |
IngestDate | Fri Jul 11 07:51:13 EDT 2025 Fri Jul 11 16:29:11 EDT 2025 Thu Jul 10 22:04:46 EDT 2025 Fri Jul 11 01:15:19 EDT 2025 Mon Jul 21 11:17:54 EDT 2025 Thu Jul 10 21:59:42 EDT 2025 Mon Jul 21 05:34:15 EDT 2025 Mon Jul 21 09:14:41 EDT 2025 Tue Jul 01 03:53:18 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Thu Apr 03 09:46:36 EDT 2025 Fri Feb 23 02:26:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Thermally treated palygorskite Structure changes Physico-chemical properties Phosphate Phosphates Sorption Adsorption isotherm Phosphorus Chemical properties |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c636t-48b5ee3e71746727b0a36938535b62d80fbf5838a3a858162ca024960987c0453 |
Notes | http://dx.doi.org/10.1016/j.watres.2009.03.051 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 19447464 |
PQID | 20617502 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_903636846 proquest_miscellaneous_67332610 proquest_miscellaneous_46320063 proquest_miscellaneous_34447624 proquest_miscellaneous_20636528 proquest_miscellaneous_20617502 pubmed_primary_19447464 pascalfrancis_primary_21631409 crossref_citationtrail_10_1016_j_watres_2009_03_051 crossref_primary_10_1016_j_watres_2009_03_051 fao_agris_US201301657600 elsevier_sciencedirect_doi_10_1016_j_watres_2009_03_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-06-01 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2009 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Feng, Wu (bib11) 2006; 21 Özacar (bib24) 2003; 51 Kostantions, Maximos, Georgios (bib19) 2007; A139 Gu, Jiang (bib14) 1990; 22 Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu (bib8) 2006; 298 Karaca, Gurses, Ejder, Acìkyıldız (bib18) 2006; B128 Lookman, Grobet, Merckx, Van Riemsdijk (bib21) 1997; 80 Brunauer, Emmett, Teller (bib4) 1938; 60 Haron, Wasay, Tokunaga (bib15) 1997; 69 Sarikaya, Ada, Alemdaroglu, Bozdogan (bib29) 2002; 22 Van-Scoyoc, Serna, Ahlrichs (bib36) 1979; 64 Tanada, Kabayama, Kawasaki, Sakiyama, Nakamura, Araki, Tamura (bib34) 2003; 257 Chen, Kong, Wu, Hu, Wang, Wang (bib7) 2006; 300 Seida, Nakano (bib30) 2002; 36 Al-Futaisi, Jamrah, Al-Hanai (bib2) 2007; 214 Hirsiger, Muller-Vonmoos, Wiedemann (bib16) 1975; 13 Pengthamkeerati, Satapanajaru, Chularuengoaksorn (bib26) 2008; 87 Shin, Kim, Nam, Moon (bib31) 1996; 34 Demirbas, Kobya, Sulak (bib9) 2008; 99 Yeoman, Stephenson, Lester, Perry (bib38) 1988; 49 Sánchez del Río, Suárez, García Romero, Alianelli, Felici, Martinetto, Dooryhée, Reyes-Valerio, Borgatti, Doyle, Giglia, Mahne, Pedio, Nannarone (bib28) 2005; 238 Samtani, Dollimore, Alexander (bib27) 2002; 392–393 Soil Science Society of China (bib32) 2002 Álvarez-Ayuso, Garcíía-Sánchez (bib3) 2007; 147 Liu, Guo, Tang (bib20) 2002; 248 Namasivayam, Sangeetha (bib23) 2004; 280 Murray (bib22) 2000; 17 Takeshi, Yujiro, Hirohisa, Takashi (bib33) 2004; 25 Chang, Jackson (bib6) 1957; 84 Jha, Kameshima, Nakajima, Okada (bib17) 2008; 156 Tan (bib35) 1996 Bulut, Özacar, Şengil (bib5) 2008; 154 Pashley (bib25) 1985; 33 Agyei, Strydomb, Potgieter (bib1) 2002; 32 Dixon, Weed (bib10) 1989 García-Romero, Suárez Barrios, Bustillo Revuelta (bib12) 2004; 52 Griffin, Jurinak (bib13) 1973; 37 Ye, Chen, Sheng, Sheng, Fu (bib37) 2006; 50 Van-Scoyoc (10.1016/j.watres.2009.03.051_bib36) 1979; 64 Chitrakar (10.1016/j.watres.2009.03.051_bib8) 2006; 298 Dixon (10.1016/j.watres.2009.03.051_bib10) 1989 Pashley (10.1016/j.watres.2009.03.051_bib25) 1985; 33 Samtani (10.1016/j.watres.2009.03.051_bib27) 2002; 392–393 Liu (10.1016/j.watres.2009.03.051_bib20) 2002; 248 Hirsiger (10.1016/j.watres.2009.03.051_bib16) 1975; 13 Takeshi (10.1016/j.watres.2009.03.051_bib33) 2004; 25 Feng (10.1016/j.watres.2009.03.051_bib11) 2006; 21 Pengthamkeerati (10.1016/j.watres.2009.03.051_bib26) 2008; 87 Bulut (10.1016/j.watres.2009.03.051_bib5) 2008; 154 Tan (10.1016/j.watres.2009.03.051_bib35) 1996 Özacar (10.1016/j.watres.2009.03.051_bib24) 2003; 51 Shin (10.1016/j.watres.2009.03.051_bib31) 1996; 34 Ye (10.1016/j.watres.2009.03.051_bib37) 2006; 50 Haron (10.1016/j.watres.2009.03.051_bib15) 1997; 69 Tanada (10.1016/j.watres.2009.03.051_bib34) 2003; 257 Karaca (10.1016/j.watres.2009.03.051_bib18) 2006; B128 Yeoman (10.1016/j.watres.2009.03.051_bib38) 1988; 49 Agyei (10.1016/j.watres.2009.03.051_bib1) 2002; 32 Álvarez-Ayuso (10.1016/j.watres.2009.03.051_bib3) 2007; 147 Chang (10.1016/j.watres.2009.03.051_bib6) 1957; 84 Demirbas (10.1016/j.watres.2009.03.051_bib9) 2008; 99 Griffin (10.1016/j.watres.2009.03.051_bib13) 1973; 37 Gu (10.1016/j.watres.2009.03.051_bib14) 1990; 22 Namasivayam (10.1016/j.watres.2009.03.051_bib23) 2004; 280 Seida (10.1016/j.watres.2009.03.051_bib30) 2002; 36 Lookman (10.1016/j.watres.2009.03.051_bib21) 1997; 80 Chen (10.1016/j.watres.2009.03.051_bib7) 2006; 300 Brunauer (10.1016/j.watres.2009.03.051_bib4) 1938; 60 Jha (10.1016/j.watres.2009.03.051_bib17) 2008; 156 Kostantions (10.1016/j.watres.2009.03.051_bib19) 2007; A139 Soil Science Society of China (10.1016/j.watres.2009.03.051_bib32) 2002 Sánchez del Río (10.1016/j.watres.2009.03.051_bib28) 2005; 238 Al-Futaisi (10.1016/j.watres.2009.03.051_bib2) 2007; 214 Murray (10.1016/j.watres.2009.03.051_bib22) 2000; 17 Sarikaya (10.1016/j.watres.2009.03.051_bib29) 2002; 22 García-Romero (10.1016/j.watres.2009.03.051_bib12) 2004; 52 |
References_xml | – volume: 25 start-page: 167 year: 2004 end-page: 177 ident: bib33 article-title: Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH publication-title: Appl. Clay Sci. – volume: 99 start-page: 5368 year: 2008 end-page: 5373 ident: bib9 article-title: Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon publication-title: Bioresour. Technol. – volume: 49 start-page: 183 year: 1988 end-page: 233 ident: bib38 article-title: The removal of phosphorus during wastewater treatment: a review publication-title: Environ. Pollut. – volume: 238 start-page: 55 year: 2005 end-page: 60 ident: bib28 article-title: Mg K-edge XANES of sepiolite and palygorskite publication-title: Nucl. Instrum. Methods – volume: 280 start-page: 359 year: 2004 end-page: 365 ident: bib23 article-title: Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 193 year: 1985 end-page: 199 ident: bib25 article-title: Electromobility of mica particles dispersed in aqueous solutions publication-title: Clay. Clay Miner. – volume: 298 start-page: 602 year: 2006 end-page: 608 ident: bib8 article-title: Phosphate adsorption on synthetic goethite and akaganeite publication-title: J. Colloid Interface Sci. – volume: 51 start-page: 321 year: 2003 end-page: 327 ident: bib24 article-title: Adsorption of phosphate from aqueous solution onto alunite publication-title: Chemosphere – volume: 84 start-page: 133 year: 1957 end-page: 144 ident: bib6 article-title: Fractionation of soil phosphorus publication-title: Soil Sci. – year: 1989 ident: bib10 article-title: Minerals in Soil Environments – volume: 64 start-page: 215 year: 1979 end-page: 223 ident: bib36 article-title: Structural changes in palygorskite during dehydration and dehydroxylation publication-title: Am. Mineral. – volume: 50 start-page: 283 year: 2006 end-page: 290 ident: bib37 article-title: Adsorption of phosphate from aqueous solution onto modified palygorskites publication-title: Sep. Purif. Technol. – volume: 60 start-page: 308 year: 1938 end-page: 319 ident: bib4 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 847 year: 1973 end-page: 850 ident: bib13 article-title: The interaction of phosphate with calcite publication-title: Soil Sci. Soc. Am. Proc. – volume: 300 start-page: 491 year: 2006 end-page: 497 ident: bib7 article-title: Removal of phosphate from aqueous solution by zeolite synthesized from fly ash publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 223 year: 1975 end-page: 230 ident: bib16 article-title: Thermal analysis of palygorskite publication-title: Thermochim. Acta – volume: 248 start-page: 268 year: 2002 end-page: 274 ident: bib20 article-title: Adsorption of fluoride, phosphate and arsenate ions on a new type of ion exchange fiber publication-title: J. Colloid Interface Sci. – volume: 80 start-page: 369 year: 1997 end-page: 388 ident: bib21 article-title: Application of P and Al MAS NMR for phosphate speciation studies in soil and aluminum hydroxides: promises and constraints publication-title: Geoderma – volume: 156 start-page: 156 year: 2008 end-page: 162 ident: bib17 article-title: Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution publication-title: J. Hazard. Mater. – volume: 36 start-page: 1306 year: 2002 end-page: 1312 ident: bib30 article-title: Removal of phosphate by layered double hydroxides containing iron publication-title: Water Res. – volume: 154 start-page: 613 year: 2008 end-page: 622 ident: bib5 article-title: Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite publication-title: J. Hazard. Mater. – volume: 17 start-page: 207 year: 2000 end-page: 221 ident: bib22 article-title: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview publication-title: Appl. Clay Sci. – year: 2002 ident: bib32 article-title: Soil Agrochemistry Analysis Method – volume: 257 start-page: 135 year: 2003 end-page: 140 ident: bib34 article-title: Removal of phosphate by aluminum oxide hydroxide publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 1889 year: 2002 end-page: 1897 ident: bib1 article-title: The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends publication-title: Cement Concrete Res. – volume: 52 start-page: 484 year: 2004 end-page: 494 ident: bib12 article-title: Characteristics of a Mg-palygorskite in Miocene rocks, Madrid basin (Spain) publication-title: Clay. Clay Miner. – volume: 392–393 start-page: 135 year: 2002 end-page: 145 ident: bib27 article-title: Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters publication-title: Thermochim. Acta – volume: B128 start-page: 273 year: 2006 end-page: 279 ident: bib18 article-title: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite publication-title: J. Hazard. Mater. – volume: A139 start-page: 447 year: 2007 end-page: 452 ident: bib19 article-title: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent publication-title: J. Hazard. Mater. – volume: 21 start-page: 8 year: 2006 end-page: 11 ident: bib11 article-title: Measures for the control of lake eutrophication at home and abroad publication-title: Guangzhou Environ. Sci. – volume: 69 start-page: 1047 year: 1997 end-page: 1051 ident: bib15 article-title: Preparation of basic yttrium carbonate for phosphate removal publication-title: Water Environ. Res. – volume: 22 start-page: 1905 year: 2002 end-page: 1910 ident: bib29 article-title: The effect of Al publication-title: J. Eur. Ceram. Soc. – volume: 87 start-page: 2469 year: 2008 end-page: 2476 ident: bib26 article-title: Chemical modification of coal fly ash for the removal of phosphate from aqueous solution publication-title: Fuel – volume: 214 start-page: 327 year: 2007 end-page: 342 ident: bib2 article-title: Aspects of cationic dye molecule adsorption to palygorskite publication-title: Desalination – volume: 22 start-page: 101 year: 1990 end-page: 102 ident: bib14 article-title: A method for fractionation of inorganic phosphorus of calcareous soils publication-title: Soils – volume: 147 start-page: 594 year: 2007 end-page: 600 ident: bib3 article-title: Removal of cadmium from aqueous solutions by palygorskite publication-title: J. Hazard. Mater. – volume: 34 start-page: 161 year: 1996 end-page: 168 ident: bib31 article-title: Phosphorus removal by hydrotalcite-like compounds (HTLcs) publication-title: Water Sci. Technol. – year: 1996 ident: bib35 article-title: Soil Sampling, Preparation and Analysis – year: 2002 ident: 10.1016/j.watres.2009.03.051_bib32 – year: 1989 ident: 10.1016/j.watres.2009.03.051_bib10 – volume: A139 start-page: 447 year: 2007 ident: 10.1016/j.watres.2009.03.051_bib19 article-title: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent publication-title: J. Hazard. Mater. – volume: 34 start-page: 161 year: 1996 ident: 10.1016/j.watres.2009.03.051_bib31 article-title: Phosphorus removal by hydrotalcite-like compounds (HTLcs) publication-title: Water Sci. Technol. doi: 10.2166/wst.1996.0368 – volume: 257 start-page: 135 year: 2003 ident: 10.1016/j.watres.2009.03.051_bib34 article-title: Removal of phosphate by aluminum oxide hydroxide publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(02)00008-5 – volume: 80 start-page: 369 year: 1997 ident: 10.1016/j.watres.2009.03.051_bib21 article-title: Application of P and Al MAS NMR for phosphate speciation studies in soil and aluminum hydroxides: promises and constraints publication-title: Geoderma doi: 10.1016/S0016-7061(97)00061-X – volume: B128 start-page: 273 year: 2006 ident: 10.1016/j.watres.2009.03.051_bib18 article-title: Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.08.003 – volume: 84 start-page: 133 year: 1957 ident: 10.1016/j.watres.2009.03.051_bib6 article-title: Fractionation of soil phosphorus publication-title: Soil Sci. doi: 10.1097/00010694-195708000-00005 – volume: 33 start-page: 193 year: 1985 ident: 10.1016/j.watres.2009.03.051_bib25 article-title: Electromobility of mica particles dispersed in aqueous solutions publication-title: Clay. Clay Miner. doi: 10.1346/CCMN.1985.0330304 – volume: 214 start-page: 327 year: 2007 ident: 10.1016/j.watres.2009.03.051_bib2 article-title: Aspects of cationic dye molecule adsorption to palygorskite publication-title: Desalination doi: 10.1016/j.desal.2006.10.024 – volume: 22 start-page: 1905 year: 2002 ident: 10.1016/j.watres.2009.03.051_bib29 article-title: The effect of Al3+ concentration on the properties of alumina powders obtained by reaction between aluminium sulphate and urea in boiling aqueous solution publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(01)00514-3 – volume: 50 start-page: 283 year: 2006 ident: 10.1016/j.watres.2009.03.051_bib37 article-title: Adsorption of phosphate from aqueous solution onto modified palygorskites publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2005.12.004 – volume: 17 start-page: 207 year: 2000 ident: 10.1016/j.watres.2009.03.051_bib22 article-title: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview publication-title: Appl. Clay Sci. doi: 10.1016/S0169-1317(00)00016-8 – volume: 87 start-page: 2469 year: 2008 ident: 10.1016/j.watres.2009.03.051_bib26 article-title: Chemical modification of coal fly ash for the removal of phosphate from aqueous solution publication-title: Fuel doi: 10.1016/j.fuel.2008.03.013 – volume: 52 start-page: 484 year: 2004 ident: 10.1016/j.watres.2009.03.051_bib12 article-title: Characteristics of a Mg-palygorskite in Miocene rocks, Madrid basin (Spain) publication-title: Clay. Clay Miner. doi: 10.1346/CCMN.2004.0520409 – volume: 248 start-page: 268 year: 2002 ident: 10.1016/j.watres.2009.03.051_bib20 article-title: Adsorption of fluoride, phosphate and arsenate ions on a new type of ion exchange fiber publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8260 – volume: 392–393 start-page: 135 year: 2002 ident: 10.1016/j.watres.2009.03.051_bib27 article-title: Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00094-1 – year: 1996 ident: 10.1016/j.watres.2009.03.051_bib35 – volume: 22 start-page: 101 year: 1990 ident: 10.1016/j.watres.2009.03.051_bib14 article-title: A method for fractionation of inorganic phosphorus of calcareous soils publication-title: Soils – volume: 154 start-page: 613 year: 2008 ident: 10.1016/j.watres.2009.03.051_bib5 article-title: Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.071 – volume: 298 start-page: 602 year: 2006 ident: 10.1016/j.watres.2009.03.051_bib8 article-title: Phosphate adsorption on synthetic goethite and akaganeite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.12.054 – volume: 51 start-page: 321 year: 2003 ident: 10.1016/j.watres.2009.03.051_bib24 article-title: Adsorption of phosphate from aqueous solution onto alunite publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00847-0 – volume: 60 start-page: 308 year: 1938 ident: 10.1016/j.watres.2009.03.051_bib4 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 156 start-page: 156 year: 2008 ident: 10.1016/j.watres.2009.03.051_bib17 article-title: Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.12.009 – volume: 13 start-page: 223 year: 1975 ident: 10.1016/j.watres.2009.03.051_bib16 article-title: Thermal analysis of palygorskite publication-title: Thermochim. Acta doi: 10.1016/0040-6031(75)80083-9 – volume: 37 start-page: 847 year: 1973 ident: 10.1016/j.watres.2009.03.051_bib13 article-title: The interaction of phosphate with calcite publication-title: Soil Sci. Soc. Am. Proc. doi: 10.2136/sssaj1973.03615995003700060018x – volume: 69 start-page: 1047 year: 1997 ident: 10.1016/j.watres.2009.03.051_bib15 article-title: Preparation of basic yttrium carbonate for phosphate removal publication-title: Water Environ. Res. doi: 10.2175/106143097X125759 – volume: 36 start-page: 1306 year: 2002 ident: 10.1016/j.watres.2009.03.051_bib30 article-title: Removal of phosphate by layered double hydroxides containing iron publication-title: Water Res. doi: 10.1016/S0043-1354(01)00340-2 – volume: 25 start-page: 167 year: 2004 ident: 10.1016/j.watres.2009.03.051_bib33 article-title: Sorption of phosphates on Al-pillared smectites and mica at acidic to neutral pH publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2003.09.005 – volume: 280 start-page: 359 year: 2004 ident: 10.1016/j.watres.2009.03.051_bib23 article-title: Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.015 – volume: 32 start-page: 1889 year: 2002 ident: 10.1016/j.watres.2009.03.051_bib1 article-title: The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends publication-title: Cement Concrete Res. doi: 10.1016/S0008-8846(02)00888-8 – volume: 49 start-page: 183 year: 1988 ident: 10.1016/j.watres.2009.03.051_bib38 article-title: The removal of phosphorus during wastewater treatment: a review publication-title: Environ. Pollut. doi: 10.1016/0269-7491(88)90209-6 – volume: 147 start-page: 594 year: 2007 ident: 10.1016/j.watres.2009.03.051_bib3 article-title: Removal of cadmium from aqueous solutions by palygorskite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.055 – volume: 64 start-page: 215 year: 1979 ident: 10.1016/j.watres.2009.03.051_bib36 article-title: Structural changes in palygorskite during dehydration and dehydroxylation publication-title: Am. Mineral. – volume: 300 start-page: 491 year: 2006 ident: 10.1016/j.watres.2009.03.051_bib7 article-title: Removal of phosphate from aqueous solution by zeolite synthesized from fly ash publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.04.010 – volume: 99 start-page: 5368 year: 2008 ident: 10.1016/j.watres.2009.03.051_bib9 article-title: Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.11.019 – volume: 238 start-page: 55 year: 2005 ident: 10.1016/j.watres.2009.03.051_bib28 article-title: Mg K-edge XANES of sepiolite and palygorskite publication-title: Nucl. Instrum. Methods doi: 10.1016/j.nimb.2005.06.018 – volume: 21 start-page: 8 year: 2006 ident: 10.1016/j.watres.2009.03.051_bib11 article-title: Measures for the control of lake eutrophication at home and abroad publication-title: Guangzhou Environ. Sci. |
SSID | ssj0002239 |
Score | 2.4259064 |
Snippet | The potential of activated palygorskite was assessed for sorption of phosphate from aqueous solution. The natural palygorskite used was treated by thermal... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2907 |
SubjectTerms | aluminum Applied sciences aqueous solutions calcium chemistry China Exact sciences and technology heat treatment Hot Temperature iron Magnesium Compounds Magnesium Compounds - chemistry Microscopy, Electron, Scanning Other industrial wastes. Sewage sludge palygorskite Phosphate phosphates Phosphates - chemistry Physico-chemical properties pollutants Pollution Silicon Compounds Silicon Compounds - chemistry sorption sorption isotherms Structure changes Thermally treated palygorskite Wastes Water Water - chemistry Water Purification Water treatment and pollution X-Ray Diffraction |
Title | Removal of phosphate from aqueous solution by thermally treated natural palygorskite |
URI | https://dx.doi.org/10.1016/j.watres.2009.03.051 https://www.ncbi.nlm.nih.gov/pubmed/19447464 https://www.proquest.com/docview/20617502 https://www.proquest.com/docview/20636528 https://www.proquest.com/docview/34447624 https://www.proquest.com/docview/46320063 https://www.proquest.com/docview/67332610 https://www.proquest.com/docview/903636846 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoED4t3wWHzgmjbr19rHqqJaQPQAXak3y07stmi7ibpboV747czk0dJDqMQtWo0T78xk5ovnBfDReGGC8GVeWalyabzMjalSTuNDSm68DoaKk78d6flCfjlRJ1twMNTCUFplb_s7m95a6_6XvZ6be835OdX4ovOjYwvbOioq-JVyRlq--_s2zQPdnx2izEQ9lM-1OV6_PBVk9F0rxW6hpmPu6UHyNeVN-jWyLnUzL8ZBaeucDp_Ckx5Vsv1u489gK66ew-O_eg2-gOPv8aJGtWJ1Ys1ZvW7OEGUyqi5hHm9eX63ZoIYsXDPChRd-ucQrgpWxYm0LUFzf-OX1aX25pmPfl7A4_HR8MM_7kQp5qYXeoDCCilFE_IiTFIMNhRfaCvTZKmhemSKFRIFUL7xRZqp56amnoC6smZWI_sQr2F7Vq7gDDO-UUoUGwCLqkwG_-zhVydqKp6hjKTMQAydd2fcbp7EXSzcklv10Hf9pFKZ1hXDI_wzym1VN12_jHvrZICR3R28cuoR7Vu6gTJ0_RWPqFj84hXCnWlGgMoPJHUHf7IQjeqUOYRl8GCTv8HWkGItfkaTwAQgJVcH_SSG04macQkjSYy7HKaQWdBQkxin0TCAwn-JfYSMUlkL4GuFnBq873b1luMUNSC3f_Ddz38KjLuxGx1XvYHtzeRXfI3rbhEn7ek7g4f7nr_OjP2lFQnI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPbQ9VH0T2oIPvQayfq19rFDRtgUO7a7EzbITh4eWTcQuqrj0tzOTB5RDitRbFI0TZ8ae-eJ5AXw2XpggfJ4WVqpUGi9TY4oypfYhOTdeB0PJyUfHejKT30_UyRrs97kwFFbZ6f5Wpzfauruz13Fzrz4_pxxfNH50bGEbQ2XW4YnE7UttDHb_3Md5oP2zvZuZyPv8uSbI67enjIyubKXYzdRoyD6tl76iwEm_RN6VbdOLYVTaWKeDl_Cig5XsSzvzV7AWF6_h-V_FBt_A9Ge8rHBdsapk9Vm1rM8QZjJKL2EeH15dL1m_Dlm4YQQML_18jleEK2PBmhqgOL7285vT6mpJ575vYXbwdbo_SbueCmmuhV6hNIKKUUT8i5PkhA2ZF9oKNNoqaF6YrAwleVK98EaZkea5p6KCOrNmnCP8E-9gY1Et4iYwfFJZFqgBLMI-GfDHj1OarC14GXXMZQKi56TLu4Lj1Pdi7vrIsgvX8p96YVqXCYf8TyC9G1W3BTceoR_3QnIPFo5Dm_DIyE2UqfOnqE3d7BcnH-5IK_JUJrD9QNB3M-EIX6lEWAI7veQd7kdysvgFSQpfgJhQZfyfFEIrboYphJQSjZQcppBa0FmQGKbQY4HIfISfwgYoLPnwNeLPBN63a_ee4RYnILXc-m_m7sDTyfTo0B1-O_7xAZ61Pjg6u_oIG6ur6_gJodwqbDdb9RZlMEQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+phosphate+from+aqueous+solution+by+thermally+treated+natural+palygorskite&rft.jtitle=Water+research+%28Oxford%29&rft.au=Gan%2C+F&rft.au=Zhou%2C+J&rft.au=Wang%2C+H&rft.au=Du%2C+C.&rft.date=2009-06-01&rft.issn=0043-1354&rft.volume=43&rft.issue=11&rft.spage=2907&rft.epage=2915&rft_id=info:doi/10.1016%2Fj.watres.2009.03.051&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |