kuenm: an R package for detailed development of ecological niche models using Maxent

Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 7; p. e6281
Main Authors Cobos, Marlon E., Peterson, A. Townsend, Barve, Narayani, Osorio-Olvera, Luis
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 06.02.2019
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.
AbstractList Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. Results This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Discussion Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.
Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.
Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.
Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way.BACKGROUNDEcological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way.This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric.RESULTSThis package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric.Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.DISCUSSIONUse of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.
ArticleNumber e6281
Audience Academic
Author Peterson, A. Townsend
Osorio-Olvera, Luis
Barve, Narayani
Cobos, Marlon E.
Author_xml – sequence: 1
  givenname: Marlon E.
  surname: Cobos
  fullname: Cobos, Marlon E.
  organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
– sequence: 2
  givenname: A. Townsend
  surname: Peterson
  fullname: Peterson, A. Townsend
  organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America
– sequence: 3
  givenname: Narayani
  surname: Barve
  fullname: Barve, Narayani
  organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
– sequence: 4
  givenname: Luis
  surname: Osorio-Olvera
  fullname: Osorio-Olvera, Luis
  organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico, Centro del Cambio Global y la Sustentabilidad A.C., Villahermosa, Tabasco, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30755826$$D View this record in MEDLINE/PubMed
BookMark eNptkm1r1TAUx4tM3Jx74weQgiAi3GuStnnwhTCGD4OJIPN1SNOT3tylSU3aod_e3Hs3vXcshfQ0-Z1_ek7-z4sjHzwUxUuMloxh9n4EiOslJRw_KU4IpmzBq0Yc7cXHxVlKa5QHJxTx6llxXCHWNPnrpLi-mcEPH0rlyx_lqPSN6qE0IZYdTMo66HJwCy6MA_ipDKYEHVzorVau9FavoBxCBy6Vc7K-L7-p35l7UTw1yiU4u3ufFj8_f7q--Lq4-v7l8uL8aqFpRacFQVqZltccUcoxgVaQtqkE72qhEUaK8loACNbmiBhSdwxaxHQtBFXaYFWdFpc73S6otRyjHVT8I4OycrsQYi9VnKx2IGnXYqKafEjHa4SZMC1G2phKoBoJRrLWx53WOLcDdDqXEZU7ED3c8XYl-3ArcymcVzgLvL0TiOHXDGmSg00anFMewpwkIUQgLsgWff0AXYc5-twqSTCjNE-Y_Kd6lQuw3oR8rt6IyvOGEVYRgkSmlo9Q-elgsDp7xeRbPEx4s5ewAuWmVQpunmzw6RB8td-Rf624N08G0A7QMaQUwUhtJ7XRyb9gncRIbiwqtxaVG4vmlHcPUu5VH4H_AowH5Ic
CitedBy_id crossref_primary_10_1007_s10530_024_03389_0
crossref_primary_10_1002_ece3_70908
crossref_primary_10_1007_s13127_020_00464_x
crossref_primary_10_1093_zoolinnean_zlad143
crossref_primary_10_3390_plants14050743
crossref_primary_10_1670_19_055
crossref_primary_10_3389_fvets_2024_1399772
crossref_primary_10_3390_agriculture15030320
crossref_primary_10_1016_j_ecoinf_2022_101675
crossref_primary_10_1016_j_ecss_2024_108891
crossref_primary_10_1080_17550874_2024_2396285
crossref_primary_10_1093_condor_duz012
crossref_primary_10_3390_tropicalmed8040187
crossref_primary_10_53516_ajfr_1374398
crossref_primary_10_1016_j_ocecoaman_2022_106204
crossref_primary_10_51847_dSKxbALGsz
crossref_primary_10_3389_fpls_2024_1471653
crossref_primary_10_1002_ece3_10848
crossref_primary_10_1002_ldr_5592
crossref_primary_10_3390_plants13223175
crossref_primary_10_1177_19400829211030834
crossref_primary_10_1002_lno_12168
crossref_primary_10_1016_j_ecolmodel_2023_110604
crossref_primary_10_1093_isd_ixac019
crossref_primary_10_1371_journal_pone_0304427
crossref_primary_10_3390_rs15041047
crossref_primary_10_1016_j_jcz_2023_07_006
crossref_primary_10_1038_s41598_023_35658_8
crossref_primary_10_1007_s10530_024_03268_8
crossref_primary_10_3897_aiep_53_112183
crossref_primary_10_1007_s10452_023_10042_w
crossref_primary_10_7717_peerj_15222
crossref_primary_10_1017_S0031182023000689
crossref_primary_10_1016_j_gecco_2025_e03414
crossref_primary_10_1111_gcb_70122
crossref_primary_10_1016_j_jnc_2023_126393
crossref_primary_10_2139_ssrn_4193547
crossref_primary_10_1016_j_actatropica_2024_107179
crossref_primary_10_1515_mammalia_2022_0114
crossref_primary_10_1016_j_scitotenv_2023_167211
crossref_primary_10_1111_ibi_12982
crossref_primary_10_21829_myb_2021_2732117
crossref_primary_10_1007_s00436_020_06924_9
crossref_primary_10_1002_ece3_11710
crossref_primary_10_1002_ps_8243
crossref_primary_10_7717_peerj_13279
crossref_primary_10_1371_journal_pone_0306832
crossref_primary_10_3390_ani14172477
crossref_primary_10_3390_su141912422
crossref_primary_10_1371_journal_pone_0293312
crossref_primary_10_17129_botsci_3467
crossref_primary_10_3390_d15030404
crossref_primary_10_7717_peerj_12181
crossref_primary_10_1038_s41597_022_01323_4
crossref_primary_10_3390_f16030462
crossref_primary_10_1016_j_jclepro_2024_144225
crossref_primary_10_1016_j_soh_2025_100107
crossref_primary_10_3389_fevo_2024_1347066
crossref_primary_10_1016_j_ecolind_2021_108339
crossref_primary_10_1016_j_gecco_2024_e03126
crossref_primary_10_1016_j_compag_2024_109035
crossref_primary_10_3390_plants12061313
crossref_primary_10_1371_journal_pone_0273750
crossref_primary_10_1111_2041_210X_13452
crossref_primary_10_1894_0038_4909_66_2_157
crossref_primary_10_1007_s10584_021_03240_8
crossref_primary_10_3390_jof10010038
crossref_primary_10_1016_j_sste_2025_100710
crossref_primary_10_3390_conservation2030031
crossref_primary_10_1002_wlb3_01051
crossref_primary_10_1016_j_actatropica_2021_106123
crossref_primary_10_1016_j_eiar_2022_106988
crossref_primary_10_3389_fvets_2020_00419
crossref_primary_10_1038_s41598_021_94793_2
crossref_primary_10_1111_cobi_14255
crossref_primary_10_1007_s43388_023_00124_6
crossref_primary_10_1007_s13744_024_01148_3
crossref_primary_10_1016_j_jclepro_2024_142021
crossref_primary_10_1111_ecog_05811
crossref_primary_10_1002_ece3_6735
crossref_primary_10_1111_jbi_14626
crossref_primary_10_1111_jbi_14989
crossref_primary_10_7717_peerj_18787
crossref_primary_10_1111_ecog_04960
crossref_primary_10_1111_jbi_13664
crossref_primary_10_1111_2041_210X_14209
crossref_primary_10_1007_s10914_020_09510_z
crossref_primary_10_1371_journal_pone_0283967
crossref_primary_10_1016_j_biocon_2023_110426
crossref_primary_10_1007_s42965_023_00294_w
crossref_primary_10_1371_journal_pone_0303413
crossref_primary_10_56124_yaku_v7i13_002
crossref_primary_10_1007_s10530_023_03229_7
crossref_primary_10_1016_j_ecolmodel_2023_110409
crossref_primary_10_3390_f12020119
crossref_primary_10_1093_biolinnean_blaa220
crossref_primary_10_1111_ddi_13627
crossref_primary_10_1038_s41598_022_26443_0
crossref_primary_10_3390_insects14060531
crossref_primary_10_1016_j_gecco_2021_e01794
crossref_primary_10_1590_0001_3765202320210519
crossref_primary_10_1016_j_ecss_2021_107502
crossref_primary_10_1016_j_pecon_2021_07_001
crossref_primary_10_3389_fpls_2025_1563070
crossref_primary_10_1371_journal_pone_0215860
crossref_primary_10_1007_s10584_022_03447_3
crossref_primary_10_1016_j_envsoft_2024_106255
crossref_primary_10_1016_j_gecco_2024_e03293
crossref_primary_10_3390_biology13120973
crossref_primary_10_1186_s13071_020_04077_3
crossref_primary_10_1007_s11756_023_01497_1
crossref_primary_10_1016_j_envsoft_2019_104615
crossref_primary_10_1016_j_jnc_2021_125981
crossref_primary_10_1111_1749_4877_12805
crossref_primary_10_3389_fpls_2024_1365264
crossref_primary_10_1007_s10530_021_02554_z
crossref_primary_10_1016_j_gloplacha_2022_103756
crossref_primary_10_1007_s00227_023_04174_8
crossref_primary_10_1111_1440_1703_12410
crossref_primary_10_3390_horticulturae8121202
crossref_primary_10_1016_j_biocon_2023_110207
crossref_primary_10_1007_s10531_024_02995_7
crossref_primary_10_1186_s12917_024_04383_3
crossref_primary_10_1016_j_ecoinf_2019_100983
crossref_primary_10_1007_s12524_023_01771_4
crossref_primary_10_1002_ece3_70814
crossref_primary_10_1093_biolinnean_blaa202
crossref_primary_10_1002_aqc_4044
crossref_primary_10_1093_biolinnean_blaa200
crossref_primary_10_1111_ddi_13767
crossref_primary_10_1111_jbi_14834
crossref_primary_10_1674_0003_0031_188_2_137
crossref_primary_10_3390_f15071209
crossref_primary_10_3390_biology11081219
crossref_primary_10_1002_ece3_5555
crossref_primary_10_1371_journal_pone_0237527
crossref_primary_10_3390_f15112022
crossref_primary_10_7717_peerj_9216
crossref_primary_10_3897_oneeco_6_e70919
crossref_primary_10_3390_pathogens10050592
crossref_primary_10_1007_s10750_020_04447_z
crossref_primary_10_3390_land13020186
crossref_primary_10_3390_insects15110901
crossref_primary_10_3389_feart_2023_1128824
crossref_primary_10_1016_j_ecolind_2021_108152
crossref_primary_10_1089_vbz_2023_0097
crossref_primary_10_1080_16583655_2024_2378548
crossref_primary_10_1371_journal_pntd_0012923
crossref_primary_10_21829_abm129_2022_2048
crossref_primary_10_1007_s10980_022_01502_z
crossref_primary_10_1017_S0959270923000072
crossref_primary_10_1007_s00300_023_03143_7
crossref_primary_10_1007_s40415_022_00817_0
crossref_primary_10_1016_j_biocon_2022_109742
crossref_primary_10_1016_j_ecolind_2022_109408
crossref_primary_10_1186_s13071_022_05284_w
crossref_primary_10_1111_jbi_14704
crossref_primary_10_1016_j_jclepro_2024_143552
crossref_primary_10_3389_fpls_2024_1360190
crossref_primary_10_1111_jbi_13863
crossref_primary_10_1038_s41598_023_41778_y
crossref_primary_10_3390_insects11080479
crossref_primary_10_1016_j_pecon_2020_03_002
crossref_primary_10_1007_s11295_022_01578_3
crossref_primary_10_1007_s13744_021_00929_4
crossref_primary_10_1016_j_ttbdis_2021_101812
crossref_primary_10_1002_ece3_8288
crossref_primary_10_3389_fvets_2020_519059
crossref_primary_10_1371_journal_pntd_0010855
crossref_primary_10_1002_lno_12441
crossref_primary_10_3390_f15081301
crossref_primary_10_1111_jbi_14820
crossref_primary_10_1177_19400829231205019
crossref_primary_10_1111_ecog_07346
crossref_primary_10_3390_insects12020143
crossref_primary_10_1111_jbi_13975
crossref_primary_10_1007_s10531_021_02221_8
crossref_primary_10_3390_f14112177
crossref_primary_10_1515_mammalia_2022_0070
crossref_primary_10_5852_ejt_2023_897_2293
crossref_primary_10_3390_insects13080687
crossref_primary_10_1017_S003118202400132X
crossref_primary_10_1007_s12038_023_00333_7
crossref_primary_10_3390_f15020283
crossref_primary_10_3390_f13020189
crossref_primary_10_1007_s10531_024_02831_y
crossref_primary_10_1007_s11056_021_09900_y
crossref_primary_10_1016_j_ecolind_2022_109669
crossref_primary_10_1139_cjfas_2020_0036
crossref_primary_10_3390_insects15090675
crossref_primary_10_1088_1748_9326_ac2527
crossref_primary_10_29298_rmcf_v16i87_1510
crossref_primary_10_3390_f15081313
crossref_primary_10_1111_ecog_07499
crossref_primary_10_1007_s10530_023_03128_x
crossref_primary_10_1016_j_rsase_2025_101491
crossref_primary_10_1007_s10452_023_10023_z
crossref_primary_10_1016_j_compag_2023_107970
crossref_primary_10_1111_mve_12615
crossref_primary_10_1007_s10113_019_01556_x
crossref_primary_10_1093_aob_mcae030
crossref_primary_10_1007_s00027_023_01036_9
crossref_primary_10_1016_j_rama_2022_12_003
crossref_primary_10_1016_j_scitotenv_2024_176723
crossref_primary_10_3390_biology11040588
crossref_primary_10_3390_su13063147
crossref_primary_10_1016_j_ecolind_2022_109311
crossref_primary_10_1016_j_jnc_2025_126886
crossref_primary_10_1111_jbi_13827
crossref_primary_10_7717_peerj_18799
crossref_primary_10_1007_s10531_023_02580_4
crossref_primary_10_3389_fevo_2023_1186627
crossref_primary_10_3390_f15081321
crossref_primary_10_1016_j_ecoleng_2024_107411
crossref_primary_10_1016_j_scitotenv_2022_159513
crossref_primary_10_1038_s41467_023_38329_4
crossref_primary_10_1111_geb_13639
crossref_primary_10_3389_fpls_2023_1279019
crossref_primary_10_1007_s10113_024_02303_7
crossref_primary_10_3389_fmars_2022_1079590
crossref_primary_10_3390_f12081106
crossref_primary_10_1371_journal_pone_0307989
crossref_primary_10_1016_j_jenvman_2023_119892
crossref_primary_10_1186_s40249_023_01091_2
crossref_primary_10_1016_j_pecon_2020_10_005
crossref_primary_10_1007_s10584_023_03514_3
crossref_primary_10_29059_cienciauat_v19i2_1918
crossref_primary_10_3724_ahr_2095_0357_2022_0046
crossref_primary_10_1093_ornithapp_duaf002
crossref_primary_10_1111_fwb_70014
crossref_primary_10_1016_j_pocean_2021_102672
crossref_primary_10_3390_land11060802
crossref_primary_10_3390_tropicalmed8060307
crossref_primary_10_1017_S0007485324000440
crossref_primary_10_1111_plb_13683
crossref_primary_10_1186_s13567_020_00802_z
crossref_primary_10_1371_journal_pone_0237701
crossref_primary_10_3389_ffgc_2024_1370365
crossref_primary_10_1038_s41598_025_87977_7
crossref_primary_10_1111_tbed_14398
crossref_primary_10_1007_s11258_024_01458_x
crossref_primary_10_7717_peerj_11614
crossref_primary_10_1007_s13744_020_00840_4
crossref_primary_10_1111_aje_12845
crossref_primary_10_3389_fmars_2021_688248
crossref_primary_10_1016_j_vetpar_2024_110172
crossref_primary_10_1038_s41558_024_01941_3
crossref_primary_10_1038_s41598_022_21548_y
crossref_primary_10_1186_s12889_023_16071_2
crossref_primary_10_1111_njb_04502
crossref_primary_10_1016_j_rsase_2021_100554
crossref_primary_10_3390_agronomy13081985
crossref_primary_10_1111_csp2_375
crossref_primary_10_3390_f15010162
crossref_primary_10_1016_j_cropro_2023_106378
crossref_primary_10_1371_journal_pone_0277107
crossref_primary_10_1016_j_jaridenv_2021_104481
crossref_primary_10_1371_journal_pone_0308931
crossref_primary_10_3390_plants11060731
crossref_primary_10_1016_j_ecochg_2024_100084
crossref_primary_10_1111_cla_12514
crossref_primary_10_22201_fc_25942158e_2023_2_581
crossref_primary_10_1371_journal_pone_0257502
crossref_primary_10_3390_su17062664
crossref_primary_10_3390_plants13060839
crossref_primary_10_1016_j_ympev_2022_107445
crossref_primary_10_3390_f12121710
crossref_primary_10_1002_ecs2_4519
crossref_primary_10_1071_CP20458
crossref_primary_10_3390_plants11141874
crossref_primary_10_3390_su141912114
crossref_primary_10_1016_j_jia_2023_06_022
crossref_primary_10_3390_su15065604
crossref_primary_10_1515_mammalia_2022_0129
crossref_primary_10_1016_j_mambio_2019_08_002
crossref_primary_10_1038_s41559_019_0972_5
crossref_primary_10_3390_insects16030262
crossref_primary_10_1111_jbi_15098
crossref_primary_10_1007_s10531_024_02988_6
crossref_primary_10_1016_j_ecoinf_2023_102393
crossref_primary_10_1093_biolinnean_blz147
crossref_primary_10_3389_fpls_2024_1362020
crossref_primary_10_1016_j_heliyon_2024_e32696
crossref_primary_10_3390_d15101035
crossref_primary_10_1002_ece3_11010
crossref_primary_10_1093_iob_obae036
crossref_primary_10_1111_eea_13302
crossref_primary_10_36253_a_h_15232
crossref_primary_10_1002_ece3_70107
crossref_primary_10_1016_j_biocon_2023_110181
crossref_primary_10_1093_jme_tjae077
crossref_primary_10_1371_journal_pone_0285271
crossref_primary_10_1002_ece3_11132
crossref_primary_10_1007_s10336_022_02008_w
crossref_primary_10_1007_s10336_020_01828_y
crossref_primary_10_1111_aje_13103
crossref_primary_10_1007_s10113_024_02185_9
crossref_primary_10_1007_s10841_024_00611_1
crossref_primary_10_1093_biolinnean_blad004
crossref_primary_10_1111_ecog_05450
crossref_primary_10_7717_peerj_13847
crossref_primary_10_5253_arde_v108i1_a8
crossref_primary_10_1016_j_indcrop_2022_114545
crossref_primary_10_3390_insects12030225
crossref_primary_10_1371_journal_pone_0237191
crossref_primary_10_3390_su15010631
crossref_primary_10_1038_s41598_021_84910_6
crossref_primary_10_1111_1365_2656_14080
crossref_primary_10_3390_su15054557
crossref_primary_10_7717_peerj_10690
crossref_primary_10_1371_journal_pntd_0008131
crossref_primary_10_1371_journal_pone_0251027
crossref_primary_10_1016_j_jas_2024_106071
crossref_primary_10_1111_mec_15584
crossref_primary_10_3390_su15065349
crossref_primary_10_1002_ece3_70236
crossref_primary_10_1002_ece3_70235
crossref_primary_10_1111_tbed_14113
crossref_primary_10_1002_ece3_70354
crossref_primary_10_3389_fevo_2022_1051454
crossref_primary_10_1371_journal_pone_0310456
crossref_primary_10_3390_insects15080558
crossref_primary_10_1002_ps_7943
crossref_primary_10_1093_evolut_qpac043
crossref_primary_10_3390_biology12091179
crossref_primary_10_1016_j_scitotenv_2022_156867
crossref_primary_10_1038_s41598_020_62382_4
crossref_primary_10_3390_insects12030213
crossref_primary_10_1111_syen_12537
crossref_primary_10_1007_s10336_023_02133_0
crossref_primary_10_1093_sysbio_syae001
crossref_primary_10_1111_mec_16420
crossref_primary_10_1016_j_jhydrol_2024_131356
crossref_primary_10_1038_s41561_024_01578_z
crossref_primary_10_1016_j_sajb_2022_04_036
crossref_primary_10_3390_insects13060550
crossref_primary_10_1002_widm_1394
crossref_primary_10_1111_mve_12695
crossref_primary_10_1007_s11295_023_01592_z
crossref_primary_10_3897_herpetozoa_36_e107947
crossref_primary_10_1016_j_jaridenv_2024_105139
crossref_primary_10_4039_tce_2020_3
crossref_primary_10_1016_j_ympev_2022_107527
crossref_primary_10_1016_j_gecco_2023_e02438
crossref_primary_10_1111_jbi_14092
crossref_primary_10_3389_fpls_2022_827497
crossref_primary_10_3390_insects13111069
crossref_primary_10_1016_j_gecco_2021_e01817
crossref_primary_10_5253_arde_v109i3_a5
crossref_primary_10_1016_j_foreco_2024_122048
crossref_primary_10_1111_afe_12462
crossref_primary_10_3897_BDJ_10_e90146
crossref_primary_10_1007_s10933_021_00178_w
crossref_primary_10_1016_j_ympev_2023_107959
crossref_primary_10_1111_mve_12680
crossref_primary_10_3390_plants11233248
crossref_primary_10_1016_j_gecco_2023_e02668
crossref_primary_10_1016_j_ympev_2023_107955
crossref_primary_10_3390_f15111894
crossref_primary_10_1007_s10493_022_00765_0
crossref_primary_10_1186_s40657_019_0160_y
crossref_primary_10_3390_atmos13111773
crossref_primary_10_3390_su16114689
crossref_primary_10_3390_d13050212
crossref_primary_10_1111_jzs_12541
crossref_primary_10_1371_journal_pone_0305168
crossref_primary_10_3389_fenvs_2022_993920
crossref_primary_10_1016_j_agee_2022_108341
crossref_primary_10_1007_s10336_020_01762_z
crossref_primary_10_1002_ajb2_16140
crossref_primary_10_3390_su15043112
crossref_primary_10_3389_fpls_2023_1184556
crossref_primary_10_1007_s10530_024_03285_7
crossref_primary_10_1002_aqc_3663
crossref_primary_10_3390_land11091438
crossref_primary_10_1111_ibi_13249
crossref_primary_10_1016_j_rsma_2023_103333
crossref_primary_10_1371_journal_pone_0264660
crossref_primary_10_22201_ib_20078706e_2024_95_5323
crossref_primary_10_1016_j_pecon_2021_02_010
crossref_primary_10_3354_meps14146
crossref_primary_10_1007_s10764_024_00457_z
crossref_primary_10_1016_j_pocean_2023_103001
crossref_primary_10_1111_eea_13353
crossref_primary_10_1002_ece3_70277
crossref_primary_10_1186_s12870_024_05191_5
crossref_primary_10_1093_jmammal_gyab108
crossref_primary_10_1002_ps_6932
crossref_primary_10_1016_j_ecolind_2023_111518
crossref_primary_10_3390_d13060250
crossref_primary_10_3390_plants11202669
crossref_primary_10_1002_ecs2_3714
crossref_primary_10_1007_s10340_022_01479_3
crossref_primary_10_1186_s12862_023_02132_y
crossref_primary_10_1071_ZO23016
crossref_primary_10_3390_insects11070454
crossref_primary_10_1016_j_marenvres_2022_105696
crossref_primary_10_1002_ece3_9228
crossref_primary_10_1016_j_ecolmodel_2019_108837
crossref_primary_10_1038_s41598_024_68611_4
crossref_primary_10_1186_s12862_024_02234_1
crossref_primary_10_1038_s41598_025_87617_0
crossref_primary_10_1134_S2079086421030087
crossref_primary_10_3390_insects12090831
crossref_primary_10_1007_s11258_023_01312_6
crossref_primary_10_52707_1081_1710_47_1_88
crossref_primary_10_3389_fmicb_2024_1519560
crossref_primary_10_3389_fmars_2024_1375641
crossref_primary_10_1093_jee_toae255
crossref_primary_10_1016_j_actatropica_2020_105607
crossref_primary_10_1016_j_jaridenv_2024_105285
crossref_primary_10_3897_zookeys_1173_107204
crossref_primary_10_1016_j_ijppaw_2024_100907
crossref_primary_10_1111_jbi_15017
crossref_primary_10_1038_s43247_023_01062_3
crossref_primary_10_3390_insects13010079
crossref_primary_10_3390_insects15020081
crossref_primary_10_1134_S2079086421030075
crossref_primary_10_1111_jfb_14727
crossref_primary_10_3390_f13091504
crossref_primary_10_1515_mammalia_2022_0095
crossref_primary_10_3390_insects15080575
crossref_primary_10_1002_ece3_10565
crossref_primary_10_1002_ece3_11653
crossref_primary_10_1007_s10764_024_00481_z
crossref_primary_10_1007_s10531_025_03030_z
crossref_primary_10_1002_aqc_70071
crossref_primary_10_3390_f15122179
crossref_primary_10_3390_d16060322
crossref_primary_10_1111_aje_13064
crossref_primary_10_1016_j_avrs_2024_100160
crossref_primary_10_3390_d14100813
crossref_primary_10_1016_j_ecolmodel_2022_110040
crossref_primary_10_1007_s00704_023_04627_6
crossref_primary_10_1007_s11356_024_32935_5
crossref_primary_10_3389_fcosc_2025_1470223
crossref_primary_10_1371_journal_pone_0317356
crossref_primary_10_1007_s11258_023_01374_6
crossref_primary_10_1371_journal_pone_0260382
crossref_primary_10_1186_s12870_024_05355_3
crossref_primary_10_3390_insects15121012
crossref_primary_10_1002_ece3_6786
crossref_primary_10_1038_s41598_024_69889_0
crossref_primary_10_1186_s12862_020_01671_y
crossref_primary_10_1038_s44185_022_00008_w
crossref_primary_10_1186_s12870_023_04471_w
crossref_primary_10_21829_myb_2020_2622002
crossref_primary_10_7717_peerj_15741
crossref_primary_10_1093_jmammal_gyab152
crossref_primary_10_3390_plants13213097
crossref_primary_10_1371_journal_pone_0276951
crossref_primary_10_1111_jbi_14021
crossref_primary_10_3390_f15071195
crossref_primary_10_1111_tbed_13306
crossref_primary_10_1371_journal_pone_0241710
crossref_primary_10_3390_f12111464
crossref_primary_10_1371_journal_pone_0262451
crossref_primary_10_3390_ani13203251
crossref_primary_10_3389_fevo_2024_1358914
crossref_primary_10_3390_ani14192840
crossref_primary_10_1007_s11692_023_09613_4
crossref_primary_10_3390_biology11060849
crossref_primary_10_1093_biolinnean_blaa230
crossref_primary_10_3390_rs14174334
crossref_primary_10_1111_mec_17118
crossref_primary_10_1007_s10914_022_09627_3
crossref_primary_10_3897_natureconservation_55_120594
crossref_primary_10_1111_jbi_14018
crossref_primary_10_3390_insects15060411
crossref_primary_10_1016_j_ecolind_2025_113088
crossref_primary_10_3390_data8090144
crossref_primary_10_3389_fevo_2023_1260857
crossref_primary_10_3389_fevo_2023_1277058
crossref_primary_10_1002_ece3_11325
crossref_primary_10_1002_evl3_191
crossref_primary_10_3390_ijms26020574
crossref_primary_10_7717_peerj_16814
crossref_primary_10_1111_ecog_06714
crossref_primary_10_1371_journal_pone_0237208
crossref_primary_10_1002_wll2_12020
crossref_primary_10_1038_s41598_025_85587_x
crossref_primary_10_3356_JRR_20_114
crossref_primary_10_5194_we_22_33_2022
crossref_primary_10_1002_ece3_8629
crossref_primary_10_1007_s40808_020_00790_1
crossref_primary_10_3390_d14110937
crossref_primary_10_1111_jbi_14245
crossref_primary_10_1111_fog_12555
crossref_primary_10_3390_su16167071
crossref_primary_10_1016_j_ecolmodel_2022_110139
crossref_primary_10_3389_fmars_2021_745501
crossref_primary_10_1111_2041_210X_14034
crossref_primary_10_1016_j_ympev_2024_108146
crossref_primary_10_1016_j_ecolmodel_2021_109804
crossref_primary_10_1093_biolinnean_blab149
crossref_primary_10_1007_s10530_020_02372_9
crossref_primary_10_3390_ani13111764
crossref_primary_10_1002_ece3_11454
crossref_primary_10_1016_j_quascirev_2020_106766
crossref_primary_10_3390_v15040892
crossref_primary_10_1080_09397140_2024_2314338
crossref_primary_10_1071_WR24116
crossref_primary_10_3390_f13122112
crossref_primary_10_1016_j_ocecoaman_2024_107213
crossref_primary_10_1002_ece3_7429
crossref_primary_10_1111_mve_12591
crossref_primary_10_3390_f11111159
crossref_primary_10_1007_s10531_021_02250_3
crossref_primary_10_3389_feart_2023_1111878
crossref_primary_10_1016_j_dsr2_2022_105077
crossref_primary_10_1007_s00606_021_01773_0
crossref_primary_10_1080_09670262_2023_2214184
crossref_primary_10_3390_jof9070739
crossref_primary_10_3390_f13071067
crossref_primary_10_3390_insects15050324
crossref_primary_10_1093_biolinnean_blac129
crossref_primary_10_3390_insects12050450
crossref_primary_10_1016_j_ecocom_2023_101041
crossref_primary_10_1111_jbi_14219
crossref_primary_10_1002_ece3_10374
crossref_primary_10_1007_s10530_021_02579_4
crossref_primary_10_1016_j_avrs_2025_100243
crossref_primary_10_1093_biolinnean_blab153
crossref_primary_10_1111_mec_17207
crossref_primary_10_1007_s11258_024_01473_y
crossref_primary_10_1111_1749_4877_12618
crossref_primary_10_1111_ecog_05642
crossref_primary_10_1111_ecog_06852
crossref_primary_10_3389_fpls_2023_1302417
crossref_primary_10_1038_s41598_024_57125_8
crossref_primary_10_1007_s10980_020_01185_4
crossref_primary_10_1016_j_actatropica_2024_107135
crossref_primary_10_1016_j_actatropica_2024_107497
crossref_primary_10_1016_j_ecolmodel_2022_110073
crossref_primary_10_3389_ffgc_2024_1293366
crossref_primary_10_1051_parasite_2021030
crossref_primary_10_3389_fvets_2024_1352236
crossref_primary_10_3390_su15043181
crossref_primary_10_1111_csp2_12749
crossref_primary_10_3390_su132011486
crossref_primary_10_1007_s10393_021_01519_x
crossref_primary_10_1016_j_marenvres_2022_105730
crossref_primary_10_1002_ece3_11477
crossref_primary_10_1007_s42991_021_00151_0
crossref_primary_10_1186_s12936_021_04036_y
crossref_primary_10_3390_d16020094
crossref_primary_10_1002_ece3_70528
crossref_primary_10_1080_23766808_2022_2087282
crossref_primary_10_1016_j_flora_2022_152103
crossref_primary_10_3390_f15030525
crossref_primary_10_1007_s10526_021_10100_y
crossref_primary_10_1007_s13364_023_00707_0
crossref_primary_10_3390_d16120736
crossref_primary_10_1002_ajb2_16322
crossref_primary_10_3389_fevo_2023_1112962
crossref_primary_10_3390_f12040385
crossref_primary_10_1016_j_geosus_2024_05_004
crossref_primary_10_1016_j_scitotenv_2023_161782
crossref_primary_10_1038_s41598_022_24309_z
crossref_primary_10_1111_jen_13181
crossref_primary_10_1016_j_marenvres_2023_105926
crossref_primary_10_3390_biology11010110
crossref_primary_10_1093_ornithology_ukae022
crossref_primary_10_3161_00016454AO2019_54_2_007
crossref_primary_10_3390_plants13071027
crossref_primary_10_1016_j_funbio_2024_07_010
crossref_primary_10_1007_s10531_021_02176_w
crossref_primary_10_3897_vz_74_e123485
crossref_primary_10_1002_ece3_11241
crossref_primary_10_1007_s10531_021_02198_4
crossref_primary_10_1007_s11676_022_01513_1
crossref_primary_10_1111_icad_12807
crossref_primary_10_3390_d16070429
crossref_primary_10_1016_j_indcrop_2025_120555
crossref_primary_10_1038_s41598_021_84805_6
crossref_primary_10_1093_gbe_evaa104
crossref_primary_10_1002_ece3_11121
crossref_primary_10_3389_fpls_2024_1393663
crossref_primary_10_1016_j_ecolmodel_2024_110893
crossref_primary_10_3389_fenvs_2022_846243
crossref_primary_10_52707_1081_1710_46_2_155
crossref_primary_10_1111_gcb_17282
crossref_primary_10_3354_meps13486
crossref_primary_10_1111_ecog_06992
crossref_primary_10_3390_ani14050672
crossref_primary_10_1111_mve_12488
Cites_doi 10.1111/j.1600-0587.2009.06142.x
10.1016/S0304-3800(02)00349-6
10.1016/j.ecolmodel.2013.04.011
10.1016/j.ecolmodel.2005.03.026
10.1086/685387
10.1007/s10530-011-9963-4
10.1016/S1364-8152(97)00014-5
10.1111/j.1600-0587.2013.07872.x
10.1111/j.1466-8238.2011.00683.x
10.4081/gh.2014.19
10.1111/ddi.12125
10.1371/journal.pone.0209082
10.1111/j.1472-4642.2010.00725.x
10.1002/joc.1276
10.1111/2041-210X.12261
10.1111/ecog.01132
10.1111/j.2041-210X.2010.00036.x
10.1016/j.ecolmodel.2012.04.001
10.17161/bi.v2i0.4
10.1890/10-1171.1
10.1111/j.0906-7590.2007.05102.x
10.1111/ddi.12160
10.1353/book.36167
10.1111/2041-210X.12998
10.1016/j.ecolmodel.2007.11.008
10.1111/nyas.13873
10.1111/j.1466-8238.2007.00347.x
10.1093/bjps/axs036
10.1111/2041-210X.12945
10.23943/princeton/9780691136868.001.0001
10.1111/j.1466-8238.2007.00358.x
ContentType Journal Article
Copyright COPYRIGHT 2019 PeerJ. Ltd.
2019 Cobos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Cobos et al. 2019 Cobos et al.
Copyright_xml – notice: COPYRIGHT 2019 PeerJ. Ltd.
– notice: 2019 Cobos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Cobos et al. 2019 Cobos et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.6281
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Ecology
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_6db12a52ebd840179fb10cff39040972
PMC6368831
A572732209
30755826
10_7717_peerj_6281
Genre Journal Article
GeographicLocations United States--US
Mexico
GeographicLocations_xml – name: Mexico
– name: United States--US
GrantInformation_xml – fundername: PAPIIT UNAM
  grantid: IN116018
– fundername: CONACyT-FORDECyT
  grantid: 273646
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
W2D
YAO
NPM
PMFND
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c636t-20cafb848066812eb92b5398d49c010a6849ee97ba682f24d7eb07c4996acf1a3
IEDL.DBID M48
ISSN 2167-8359
IngestDate Wed Aug 27 01:28:51 EDT 2025
Thu Aug 21 14:02:35 EDT 2025
Thu Jul 10 23:37:18 EDT 2025
Fri Jul 25 11:55:19 EDT 2025
Tue Jun 17 21:24:11 EDT 2025
Tue Jun 10 20:41:43 EDT 2025
Thu May 22 21:22:11 EDT 2025
Thu Apr 03 07:07:23 EDT 2025
Tue Jul 01 01:10:50 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extrapolation risks
Species distribution models
Model projections
Model calibration
Model selection
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c636t-20cafb848066812eb92b5398d49c010a6849ee97ba682f24d7eb07c4996acf1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.6281
PMID 30755826
PQID 2176621712
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_6db12a52ebd840179fb10cff39040972
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6368831
proquest_miscellaneous_2229089231
proquest_journals_2176621712
gale_infotracmisc_A572732209
gale_infotracacademiconefile_A572732209
gale_healthsolutions_A572732209
pubmed_primary_30755826
crossref_citationtrail_10_7717_peerj_6281
crossref_primary_10_7717_peerj_6281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-06
PublicationDateYYYYMMDD 2019-02-06
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2019
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Peterson (10.7717/peerj.6281/ref-21) 2008; 213
R Core Team (10.7717/peerj.6281/ref-24) 2018
Warren (10.7717/peerj.6281/ref-33) 2011; 21
Peterson (10.7717/peerj.6281/ref-17) 2014
Nylander (10.7717/peerj.6281/ref-15) 2004
Escobar (10.7717/peerj.6281/ref-6) 2014; 9
Peterson (10.7717/peerj.6281/ref-18) 2018; 1429
Warren (10.7717/peerj.6281/ref-34) 2014; 20
Jiménez-Valverde (10.7717/peerj.6281/ref-10) 2011; 13
Owens (10.7717/peerj.6281/ref-16) 2013; 263
Raghavan (10.7717/peerj.6281/ref-25) 2019; 14
Elith (10.7717/peerj.6281/ref-5) 2011; 17
Hijmans (10.7717/peerj.6281/ref-8) 2005; 25
Jiménez-Valverde (10.7717/peerj.6281/ref-9) 2012; 21
Phillips (10.7717/peerj.6281/ref-23) 2006; 190
Elith (10.7717/peerj.6281/ref-4) 2010; 1
Anderson (10.7717/peerj.6281/ref-3) 2003; 162
Searcy (10.7717/peerj.6281/ref-27) 2016; 187
Spear (10.7717/peerj.6281/ref-30) 1997; 12
Kass (10.7717/peerj.6281/ref-11) 2018
Soberón (10.7717/peerj.6281/ref-29) 2005; 2
Lobo (10.7717/peerj.6281/ref-12) 2007; 17
Saupe (10.7717/peerj.6281/ref-26) 2012; 237–238
Peterson (10.7717/peerj.6281/ref-19) 2008; 17
Warren (10.7717/peerj.6281/ref-32) 2010; 33
Aiello-Lammens (10.7717/peerj.6281/ref-1) 2015; 38
Alonso Bosch (10.7717/peerj.6281/ref-2) 2011
Franklin (10.7717/peerj.6281/ref-7) 2013; 19
Muscarella (10.7717/peerj.6281/ref-14) 2014; 5
Steele (10.7717/peerj.6281/ref-31) 2013; 64
Merow (10.7717/peerj.6281/ref-13) 2013; 36
Peterson (10.7717/peerj.6281/ref-20) 2007; 30
Peterson (10.7717/peerj.6281/ref-22) 2011
Sequeira (10.7717/peerj.6281/ref-28) 2018; 9
References_xml – volume: 33
  start-page: 607
  year: 2010
  ident: 10.7717/peerj.6281/ref-32
  article-title: ENMTools: a toolbox for comparative studies of environmental niche models
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2009.06142.x
– volume: 162
  start-page: 211
  year: 2003
  ident: 10.7717/peerj.6281/ref-3
  article-title: Evaluating predictive models of species’ distributions: criteria for selecting optimal models
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(02)00349-6
– volume: 263
  start-page: 10
  year: 2013
  ident: 10.7717/peerj.6281/ref-16
  article-title: Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2013.04.011
– volume: 190
  start-page: 231
  year: 2006
  ident: 10.7717/peerj.6281/ref-23
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume: 187
  start-page: 423
  year: 2016
  ident: 10.7717/peerj.6281/ref-27
  article-title: Do ecological niche models accurately identify climatic determinants of species ranges?
  publication-title: American Naturalist
  doi: 10.1086/685387
– volume: 13
  start-page: 2785
  year: 2011
  ident: 10.7717/peerj.6281/ref-10
  article-title: Use of niche models in invasive species risk assessments
  publication-title: Biological Invasions
  doi: 10.1007/s10530-011-9963-4
– volume: 12
  start-page: 219
  year: 1997
  ident: 10.7717/peerj.6281/ref-30
  article-title: Large simulation models: calibration, uniqueness and goodness of fit
  publication-title: Environmental Modelling & Software
  doi: 10.1016/S1364-8152(97)00014-5
– volume: 36
  start-page: 1058
  year: 2013
  ident: 10.7717/peerj.6281/ref-13
  article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.07872.x
– volume: 21
  start-page: 498
  year: 2012
  ident: 10.7717/peerj.6281/ref-9
  article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2011.00683.x
– volume: 9
  start-page: 221
  year: 2014
  ident: 10.7717/peerj.6281/ref-6
  article-title: Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference
  publication-title: Geospatial Health
  doi: 10.4081/gh.2014.19
– volume: 19
  start-page: 1217
  year: 2013
  ident: 10.7717/peerj.6281/ref-7
  article-title: Species distribution models in conservation biogeography: developments and challenges
  publication-title: Diversity and Distributions
  doi: 10.1111/ddi.12125
– volume: 14
  start-page: e0209082
  year: 2019
  ident: 10.7717/peerj.6281/ref-25
  article-title: Current and future distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0209082
– volume: 17
  start-page: 43
  year: 2011
  ident: 10.7717/peerj.6281/ref-5
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Diversity and Distributions
  doi: 10.1111/j.1472-4642.2010.00725.x
– volume: 25
  start-page: 1965
  year: 2005
  ident: 10.7717/peerj.6281/ref-8
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.1276
– volume: 5
  start-page: 1198
  year: 2014
  ident: 10.7717/peerj.6281/ref-14
  article-title: ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12261
– volume: 38
  start-page: 541
  year: 2015
  ident: 10.7717/peerj.6281/ref-1
  article-title: spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models
  publication-title: Ecography
  doi: 10.1111/ecog.01132
– volume: 1
  start-page: 330
  year: 2010
  ident: 10.7717/peerj.6281/ref-4
  article-title: The art of modelling range-shifting species
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2010.00036.x
– volume: 237–238
  start-page: 11
  year: 2012
  ident: 10.7717/peerj.6281/ref-26
  article-title: Variation in niche and distribution model performance: the need for a priori assessment of key causal factors
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2012.04.001
– volume-title: MrModeltest v2
  year: 2004
  ident: 10.7717/peerj.6281/ref-15
– volume: 2
  start-page: 1
  year: 2005
  ident: 10.7717/peerj.6281/ref-29
  article-title: Interpretation of models of fundamental ecological niches and species’ distributional areas
  publication-title: Biodiversity Informatics
  doi: 10.17161/bi.v2i0.4
– volume: 21
  start-page: 335
  year: 2011
  ident: 10.7717/peerj.6281/ref-33
  article-title: Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria
  publication-title: Ecological Applications
  doi: 10.1890/10-1171.1
– volume: 30
  start-page: 550
  year: 2007
  ident: 10.7717/peerj.6281/ref-20
  article-title: Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2007.05102.x
– volume: 20
  start-page: 334
  year: 2014
  ident: 10.7717/peerj.6281/ref-34
  article-title: Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern
  publication-title: Diversity and Distributions
  doi: 10.1111/ddi.12160
– volume-title: Mapping disease transmission risk
  year: 2014
  ident: 10.7717/peerj.6281/ref-17
  doi: 10.1353/book.36167
– year: 2011
  ident: 10.7717/peerj.6281/ref-2
  article-title: Origen y diversificación del género Peltophryne (Amphibia: Anura: Bufonidae) en Cuba
  publication-title: Doctoral thesis
– volume: 9
  start-page: 1250
  year: 2018
  ident: 10.7717/peerj.6281/ref-28
  article-title: Transferring biodiversity models for conservation: opportunities and challenges
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12998
– year: 2018
  ident: 10.7717/peerj.6281/ref-24
  article-title: R: a language and environment for statistical computing
– volume: 213
  start-page: 63
  year: 2008
  ident: 10.7717/peerj.6281/ref-21
  article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modeling
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2007.11.008
– volume: 1429
  start-page: 66
  issue: 1
  year: 2018
  ident: 10.7717/peerj.6281/ref-18
  article-title: Major challenges for correlational ecological niche model projections to future climate conditions
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1111/nyas.13873
– volume: 17
  start-page: 135
  year: 2008
  ident: 10.7717/peerj.6281/ref-19
  article-title: Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2007.00347.x
– volume: 64
  start-page: 609
  year: 2013
  ident: 10.7717/peerj.6281/ref-31
  article-title: Climate models, calibration, and confirmation
  publication-title: British Journal for the Philosophy of Science
  doi: 10.1093/bjps/axs036
– year: 2018
  ident: 10.7717/peerj.6281/ref-11
  article-title: Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12945
– volume-title: Ecological niches and geographic distributions
  year: 2011
  ident: 10.7717/peerj.6281/ref-22
  doi: 10.23943/princeton/9780691136868.001.0001
– volume: 17
  start-page: 145
  year: 2007
  ident: 10.7717/peerj.6281/ref-12
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2007.00358.x
SSID ssj0000826083
Score 2.636718
Snippet Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging...
Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e6281
SubjectTerms Automation
Biodiversity
Biogeography
Bioinformatics
Calibration
Climate change
Computational Biology
Disease transmission
Ecology
Extrapolation risks
Model calibration
Model projections
Model selection
Niches (Ecology)
Software
Species distribution models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VPaBeEIUCoQVcFQlxCE0cx7G5FURVVVoOqJV6s2zHhn6QrdpdiZ_PjJMNG4HEhcsqWk8kZ_Jm_EYZPwO8ETwWuvFlXvsi5kKqMneu0LmqXax8lNalHd6zL_LkXJxe1BdrR31RT1gvD9w77lC2ruS25sG1WIsgfKIrCx8j1uok1ZSyL655a8VUysHImpFc9HqkDZYsh7ch3F29l1yVkxUoCfX_mY7X1qNpr-Ta4nP8CB4OrJEd9bPdho3QPYYHs-G7-BM4u16G7scHZjv2lWEVfI1ZgiEdZX2HaGhZ-7s5iM0jC36V9FhHzaAsnYhzz6gN_hub2Z9otwPnx5_PPp3kw3kJuZeVXCDgvY1OCYU0Atft4DR3daVVK7THsstKJXQIunF4xSMXbRNc0XiseaT1sbTVU9js5l14Dqzxvi205U47KUg1DmmIKKLj2omqiVUG71Y-NH4QE6czLW4MFhXkb5P8bcjfGRyMtre9hMZfrT7SqxgtSPY6_YFgMAMYzL_AkMFrepGm30M6Bq85qommcQRKBm-TBYUvTtjbYRcCPjYJYU0s9yaWGHZ-OrwCixnC_t5wktvEnxJnsj8O053UytaF-RJtSGFfEa_O4FmPrfGhMeHWNUI3g2aCuolXpiPd5fckCo4IUKoqX_wPN-7CFvJCnZrT5R5sLu6W4SVyr4V7lcLsF5ANLGk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oHYovovOrOjWiID50a9M2TXyRTe4Ywh0yNthbaNJk6rS93g_Q_95z2txuRfHlUm5OITk5n-nJ7wC8yblPVGnTuLCJj3Mh09iYRMWyMD6zXlSmu-E9OxZHZ_mn8-I8HLgtQ1nlxiZ2hrpuLZ2R73FCMsSflH-Y_4ypaxR9XQ0tNG7CFppgKSewdTA9_nwynLKggxMYZPS4pCWmLntz5xbfdgWX6cgTdYD9f5vla35pXDN5zQkd3oO7IXpk-_1234cbrtmGW9MOefr3NtyehS_lD-D0cu2aH-9Z1bAThnnxJdoNhgEq62tGXc3qq3Ih1nrm7MYMsobKQ1nXI2fJqDD-gs2qX0j3EM4Op6cfj-LQQSG2IhMrVAFbeSNziYEFenJnFDdFpmSdK4uJWCVkrpxTpcEn7nlel84kpcUsSFTWp1X2CCZN27gnwEpr60RV3CgjcsKRw8AkT7zhyuRZ6bMI3m24qW2AF6cuF981phnEed1xXhPnI3g90M57UI1_Uh3QpgwUBITd_dEuLnTQKy1qk_KqwKXVOB2cljdpYr3PVEJIXjyCl7Slur9VOqiz3i8ocOM8URG87ShIoXHCtgr3EnDZBI01otwZUaIi2vHwRmx0MARLfSW2EbwahulNKm5rXLtGGsLclxRpR_C4l7Jh0WiCiwKFOIJyJH8jroxHmq9fOphwlAAps_Tp_6f1DO5gDKi6QnSxA5PVYu2eY5y1Mi-CMv0BOjAohw
  priority: 102
  providerName: ProQuest
Title kuenm: an R package for detailed development of ecological niche models using Maxent
URI https://www.ncbi.nlm.nih.gov/pubmed/30755826
https://www.proquest.com/docview/2176621712
https://www.proquest.com/docview/2229089231
https://pubmed.ncbi.nlm.nih.gov/PMC6368831
https://doaj.org/article/6db12a52ebd840179fb10cff39040972
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBelhbGX0e7TXZdpbDD24MyWZdnay2hHuzJIGaWBvAlJlrr1w-nSBNr_fnfyx-qtj3sxITqDdLo7_S45_Y6Qd5z5RBY2jXOb-JiLMo2NSWRc5sZn1gttwg3vyZE4nPJvs3y2Rrr-na0Cr-9N7bCf1HRxMb75dfsZHB7w67iAbOTjlXOLs7FgeAN7A06kAjsZTFqYHyIyYGiAGg076V-vDM6jQNv_b3C-czoNKyfvHEUHm-RRiyHpbrPpW2TN1Y_Jg0n7L_kTcnK-cvXlJ6prekwhJz6HmEEBnNKmXtRVtPpTKkTnnjrbhUBaY2koDf1xrikWxZ_Sib4BuadkerB_8uUwbrsnxFZkYgnmb7U3JS8BVMAp7oxkJs9kWXFpIQnTouTSOVkY-MQ841XhTFJYyICEtj7V2TOyXs9r94LQwtoqkZoZaQRHDjkAJTzxhknDs8JnEfnQ6VDZllocO1xcKEgxUN8q6FuhviPytpe9agg17pXaw63oJZAEO3wxX5yq1qeUqEzKdA5Lq2A6MC1v0sR6n8kEWbxYRF7jRqrmRmnvymo3R9DGWCIj8j5IoHnBhK1u7yTAspEWayC5M5AEJ7TD4c5YVGfDiiH5JjxSmMmbfhjfxMK22s1XIIN8-yWi7Ig8b2yrXzSE3zwH041IMbC6gVaGI_XPH4EiHCygLLN0-3-o8SV5CChRhlJ1sUPWl4uVewVIbGlGZGNv_-j78Sj8kgHPr7N0FFzvNxdoNw8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrTheEJQrUKgRINSH0MRxnBgJoRa22tLuClVbqW8mduwCheyyh6B_it_IOFcbgXjryypaTyJ7PGcy_gbgOaM2EIkO_VgH1mc8DX2lAuGnsbKRtjxT5Qnv4YgPjtiH4_h4BX43Z2FcWWVjE0tDnU-0e0e-RR2SIf6E9O30h--6Rrmvq00LjUos9s3ZT0zZ5m_23uP-vqB0tz9-N_DrrgK-5hFfoFjozKqUpehs0bsZJaiKI5HmTGhMTjKeMmGMSBReUUtZnhgVJBozA55pG2YRPvcKrLKIB7QHqzv90cfD9q0OOlSOQU2Fg5pgqrQ1NWb29RWnadjxfGWDgL_dwAU_2K3RvOD0dm_BzTpaJduVeN2GFVOswdV-iXR9tgbXhvWX-TswPl2a4vtrkhXkkGAefop2imBATKoaVZOT_Lw8iUwsMboxu6Rw5aik7MkzJ64Q_4QMs19IdxeOLoW396BXTArzAEiidR6IjCqhOHO4dRgIscAqKhSLEht5sNlwU-oaztx11fgmMa1xnJcl56XjvAfPWtppBeLxT6odtykthQPeLv-YzE5krceS5yqkWYxLy3E6OC2rwkBbG4nAIYdRDzbclsrqFGtrPuR27AJFSgPhwcuSwhkQnLDO6nMQuGwHxdWhXO9QouLr7nAjNrI2PHN5riYePG2H3Z2umK4wkyXSOIz_1EX2HtyvpKxdNJr8OEYh9iDpyF-HK92R4svnEpYcJSBNo_Dh_6e1AdcH4-GBPNgb7T-CGxh_irIInq9DbzFbmscY4y3Uk1qxCHy6bF3-A34NZO4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6Vrai4ICivQKFGgBCHsImTODESQi3dVUvZVVW1Um8hduwCheyyD0H_Gr-OmbzaCMStl1W0nkT2eJ7J-BuA5yG3noy170bas24oEt9VypNuEikbaCsyVZ7wHo3F7nH44SQ6WYHfzVkYKqtsbGJpqPOJpnfkfU5Ihvjj876tyyIOdobvpj9c6iBFX1qbdhqViOyb85-Yvs3f7u3gXr_gfDg4er_r1h0GXC0CsUAR0ZlVSZig40VPZ5TkKgpkkodSY6KSiSSUxshY4RW3PMxjo7xYY5YgMm39LMDnXoPVmLKiHqxuD8YHh-0bHnSuAgOcChM1xrSpPzVm9vW14Inf8YJls4C_XcIln9it17zkAIe34GYdubKtStRuw4op1uH6oES9Pl-HtVH9lf4OHJ0tTfH9DcsKdsgwJz9Dm8UwOGZVvarJWX5RqsQmlhndmGBWUGkqK_vzzBkV5Z-yUfYL6e7C8ZXw9h70iklhHgCLtc49mXEllQgJww6DotCziksVBrENHHjVcDPVNbQ5ddj4lmKKQ5xPS86nxHkHnrW00wrQ459U27QpLQWBcJd_TGanaa3TqciVz7MIl5bjdHBaVvmetjaQHqGIcQc2aUvT6kRra0rSrYiCRs496cDLkoKMCU5YZ_WZCFw2wXJ1KDc6lGgEdHe4EZu0NkLz9EJlHHjaDtOdVFhXmMkSaQjvP6Eo34H7lZS1i0bzH0UoxA7EHfnrcKU7Unz5XEKUowQkSeA__P-0NmENdTj9uDfefwQ3MBSVZT282IDeYrY0jzHcW6gntV4x-HTVqvwHHq1pIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=kuenm%3A+an+R+package+for+detailed+development+of+ecological+niche+models+using+Maxent&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Marlon+E.+Cobos&rft.au=A.+Townsend+Peterson&rft.au=Narayani+Barve&rft.au=Luis+Osorio-Olvera&rft.date=2019-02-06&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=7&rft.spage=e6281&rft_id=info:doi/10.7717%2Fpeerj.6281&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6db12a52ebd840179fb10cff39040972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon