kuenm: an R package for detailed development of ecological niche models using Maxent
Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail...
Saved in:
Published in | PeerJ (San Francisco, CA) Vol. 7; p. e6281 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
06.02.2019
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way.
This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric.
Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes. |
---|---|
AbstractList | Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. Results This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Discussion Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes. Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes. Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way. This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric. Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes. Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way.BACKGROUNDEcological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging task. The calibration phase of these models is critical, but despite recent attempts at providing tools for performing this step, adequate detail is still missing. Here, we present the kuenm R package, a new set of tools for performing detailed development of ecological niche models using the platform Maxent in a reproducible way.This package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric.RESULTSThis package takes advantage of the versatility of R and Maxent to enable detailed model calibration and selection, final model creation and evaluation, and extrapolation risk analysis. Best parameters for modeling are selected considering (1) statistical significance, (2) predictive power, and (3) model complexity. For final models, we enable multiple parameter sets and model transfers, making processing simpler. Users can also evaluate extrapolation risk in model transfers via mobility-oriented parity (MOP) metric.Use of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes.DISCUSSIONUse of this package allows robust processes of model calibration, facilitating creation of final models based on model significance, performance, and simplicity. Model transfers to multiple scenarios, also facilitated in this package, significantly reduce time invested in performing these tasks. Finally, efficient assessments of strict-extrapolation risks in model transfers via the MOP and MESS metrics help to prevent overinterpretation in model outcomes. |
ArticleNumber | e6281 |
Audience | Academic |
Author | Peterson, A. Townsend Osorio-Olvera, Luis Barve, Narayani Cobos, Marlon E. |
Author_xml | – sequence: 1 givenname: Marlon E. surname: Cobos fullname: Cobos, Marlon E. organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America – sequence: 2 givenname: A. Townsend surname: Peterson fullname: Peterson, A. Townsend organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America – sequence: 3 givenname: Narayani surname: Barve fullname: Barve, Narayani organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America, Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America – sequence: 4 givenname: Luis surname: Osorio-Olvera fullname: Osorio-Olvera, Luis organization: Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States of America, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México, Mexico, Centro del Cambio Global y la Sustentabilidad A.C., Villahermosa, Tabasco, Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30755826$$D View this record in MEDLINE/PubMed |
BookMark | eNptkm1r1TAUx4tM3Jx74weQgiAi3GuStnnwhTCGD4OJIPN1SNOT3tylSU3aod_e3Hs3vXcshfQ0-Z1_ek7-z4sjHzwUxUuMloxh9n4EiOslJRw_KU4IpmzBq0Yc7cXHxVlKa5QHJxTx6llxXCHWNPnrpLi-mcEPH0rlyx_lqPSN6qE0IZYdTMo66HJwCy6MA_ipDKYEHVzorVau9FavoBxCBy6Vc7K-L7-p35l7UTw1yiU4u3ufFj8_f7q--Lq4-v7l8uL8aqFpRacFQVqZltccUcoxgVaQtqkE72qhEUaK8loACNbmiBhSdwxaxHQtBFXaYFWdFpc73S6otRyjHVT8I4OycrsQYi9VnKx2IGnXYqKafEjHa4SZMC1G2phKoBoJRrLWx53WOLcDdDqXEZU7ED3c8XYl-3ArcymcVzgLvL0TiOHXDGmSg00anFMewpwkIUQgLsgWff0AXYc5-twqSTCjNE-Y_Kd6lQuw3oR8rt6IyvOGEVYRgkSmlo9Q-elgsDp7xeRbPEx4s5ewAuWmVQpunmzw6RB8td-Rf624N08G0A7QMaQUwUhtJ7XRyb9gncRIbiwqtxaVG4vmlHcPUu5VH4H_AowH5Ic |
CitedBy_id | crossref_primary_10_1007_s10530_024_03389_0 crossref_primary_10_1002_ece3_70908 crossref_primary_10_1007_s13127_020_00464_x crossref_primary_10_1093_zoolinnean_zlad143 crossref_primary_10_3390_plants14050743 crossref_primary_10_1670_19_055 crossref_primary_10_3389_fvets_2024_1399772 crossref_primary_10_3390_agriculture15030320 crossref_primary_10_1016_j_ecoinf_2022_101675 crossref_primary_10_1016_j_ecss_2024_108891 crossref_primary_10_1080_17550874_2024_2396285 crossref_primary_10_1093_condor_duz012 crossref_primary_10_3390_tropicalmed8040187 crossref_primary_10_53516_ajfr_1374398 crossref_primary_10_1016_j_ocecoaman_2022_106204 crossref_primary_10_51847_dSKxbALGsz crossref_primary_10_3389_fpls_2024_1471653 crossref_primary_10_1002_ece3_10848 crossref_primary_10_1002_ldr_5592 crossref_primary_10_3390_plants13223175 crossref_primary_10_1177_19400829211030834 crossref_primary_10_1002_lno_12168 crossref_primary_10_1016_j_ecolmodel_2023_110604 crossref_primary_10_1093_isd_ixac019 crossref_primary_10_1371_journal_pone_0304427 crossref_primary_10_3390_rs15041047 crossref_primary_10_1016_j_jcz_2023_07_006 crossref_primary_10_1038_s41598_023_35658_8 crossref_primary_10_1007_s10530_024_03268_8 crossref_primary_10_3897_aiep_53_112183 crossref_primary_10_1007_s10452_023_10042_w crossref_primary_10_7717_peerj_15222 crossref_primary_10_1017_S0031182023000689 crossref_primary_10_1016_j_gecco_2025_e03414 crossref_primary_10_1111_gcb_70122 crossref_primary_10_1016_j_jnc_2023_126393 crossref_primary_10_2139_ssrn_4193547 crossref_primary_10_1016_j_actatropica_2024_107179 crossref_primary_10_1515_mammalia_2022_0114 crossref_primary_10_1016_j_scitotenv_2023_167211 crossref_primary_10_1111_ibi_12982 crossref_primary_10_21829_myb_2021_2732117 crossref_primary_10_1007_s00436_020_06924_9 crossref_primary_10_1002_ece3_11710 crossref_primary_10_1002_ps_8243 crossref_primary_10_7717_peerj_13279 crossref_primary_10_1371_journal_pone_0306832 crossref_primary_10_3390_ani14172477 crossref_primary_10_3390_su141912422 crossref_primary_10_1371_journal_pone_0293312 crossref_primary_10_17129_botsci_3467 crossref_primary_10_3390_d15030404 crossref_primary_10_7717_peerj_12181 crossref_primary_10_1038_s41597_022_01323_4 crossref_primary_10_3390_f16030462 crossref_primary_10_1016_j_jclepro_2024_144225 crossref_primary_10_1016_j_soh_2025_100107 crossref_primary_10_3389_fevo_2024_1347066 crossref_primary_10_1016_j_ecolind_2021_108339 crossref_primary_10_1016_j_gecco_2024_e03126 crossref_primary_10_1016_j_compag_2024_109035 crossref_primary_10_3390_plants12061313 crossref_primary_10_1371_journal_pone_0273750 crossref_primary_10_1111_2041_210X_13452 crossref_primary_10_1894_0038_4909_66_2_157 crossref_primary_10_1007_s10584_021_03240_8 crossref_primary_10_3390_jof10010038 crossref_primary_10_1016_j_sste_2025_100710 crossref_primary_10_3390_conservation2030031 crossref_primary_10_1002_wlb3_01051 crossref_primary_10_1016_j_actatropica_2021_106123 crossref_primary_10_1016_j_eiar_2022_106988 crossref_primary_10_3389_fvets_2020_00419 crossref_primary_10_1038_s41598_021_94793_2 crossref_primary_10_1111_cobi_14255 crossref_primary_10_1007_s43388_023_00124_6 crossref_primary_10_1007_s13744_024_01148_3 crossref_primary_10_1016_j_jclepro_2024_142021 crossref_primary_10_1111_ecog_05811 crossref_primary_10_1002_ece3_6735 crossref_primary_10_1111_jbi_14626 crossref_primary_10_1111_jbi_14989 crossref_primary_10_7717_peerj_18787 crossref_primary_10_1111_ecog_04960 crossref_primary_10_1111_jbi_13664 crossref_primary_10_1111_2041_210X_14209 crossref_primary_10_1007_s10914_020_09510_z crossref_primary_10_1371_journal_pone_0283967 crossref_primary_10_1016_j_biocon_2023_110426 crossref_primary_10_1007_s42965_023_00294_w crossref_primary_10_1371_journal_pone_0303413 crossref_primary_10_56124_yaku_v7i13_002 crossref_primary_10_1007_s10530_023_03229_7 crossref_primary_10_1016_j_ecolmodel_2023_110409 crossref_primary_10_3390_f12020119 crossref_primary_10_1093_biolinnean_blaa220 crossref_primary_10_1111_ddi_13627 crossref_primary_10_1038_s41598_022_26443_0 crossref_primary_10_3390_insects14060531 crossref_primary_10_1016_j_gecco_2021_e01794 crossref_primary_10_1590_0001_3765202320210519 crossref_primary_10_1016_j_ecss_2021_107502 crossref_primary_10_1016_j_pecon_2021_07_001 crossref_primary_10_3389_fpls_2025_1563070 crossref_primary_10_1371_journal_pone_0215860 crossref_primary_10_1007_s10584_022_03447_3 crossref_primary_10_1016_j_envsoft_2024_106255 crossref_primary_10_1016_j_gecco_2024_e03293 crossref_primary_10_3390_biology13120973 crossref_primary_10_1186_s13071_020_04077_3 crossref_primary_10_1007_s11756_023_01497_1 crossref_primary_10_1016_j_envsoft_2019_104615 crossref_primary_10_1016_j_jnc_2021_125981 crossref_primary_10_1111_1749_4877_12805 crossref_primary_10_3389_fpls_2024_1365264 crossref_primary_10_1007_s10530_021_02554_z crossref_primary_10_1016_j_gloplacha_2022_103756 crossref_primary_10_1007_s00227_023_04174_8 crossref_primary_10_1111_1440_1703_12410 crossref_primary_10_3390_horticulturae8121202 crossref_primary_10_1016_j_biocon_2023_110207 crossref_primary_10_1007_s10531_024_02995_7 crossref_primary_10_1186_s12917_024_04383_3 crossref_primary_10_1016_j_ecoinf_2019_100983 crossref_primary_10_1007_s12524_023_01771_4 crossref_primary_10_1002_ece3_70814 crossref_primary_10_1093_biolinnean_blaa202 crossref_primary_10_1002_aqc_4044 crossref_primary_10_1093_biolinnean_blaa200 crossref_primary_10_1111_ddi_13767 crossref_primary_10_1111_jbi_14834 crossref_primary_10_1674_0003_0031_188_2_137 crossref_primary_10_3390_f15071209 crossref_primary_10_3390_biology11081219 crossref_primary_10_1002_ece3_5555 crossref_primary_10_1371_journal_pone_0237527 crossref_primary_10_3390_f15112022 crossref_primary_10_7717_peerj_9216 crossref_primary_10_3897_oneeco_6_e70919 crossref_primary_10_3390_pathogens10050592 crossref_primary_10_1007_s10750_020_04447_z crossref_primary_10_3390_land13020186 crossref_primary_10_3390_insects15110901 crossref_primary_10_3389_feart_2023_1128824 crossref_primary_10_1016_j_ecolind_2021_108152 crossref_primary_10_1089_vbz_2023_0097 crossref_primary_10_1080_16583655_2024_2378548 crossref_primary_10_1371_journal_pntd_0012923 crossref_primary_10_21829_abm129_2022_2048 crossref_primary_10_1007_s10980_022_01502_z crossref_primary_10_1017_S0959270923000072 crossref_primary_10_1007_s00300_023_03143_7 crossref_primary_10_1007_s40415_022_00817_0 crossref_primary_10_1016_j_biocon_2022_109742 crossref_primary_10_1016_j_ecolind_2022_109408 crossref_primary_10_1186_s13071_022_05284_w crossref_primary_10_1111_jbi_14704 crossref_primary_10_1016_j_jclepro_2024_143552 crossref_primary_10_3389_fpls_2024_1360190 crossref_primary_10_1111_jbi_13863 crossref_primary_10_1038_s41598_023_41778_y crossref_primary_10_3390_insects11080479 crossref_primary_10_1016_j_pecon_2020_03_002 crossref_primary_10_1007_s11295_022_01578_3 crossref_primary_10_1007_s13744_021_00929_4 crossref_primary_10_1016_j_ttbdis_2021_101812 crossref_primary_10_1002_ece3_8288 crossref_primary_10_3389_fvets_2020_519059 crossref_primary_10_1371_journal_pntd_0010855 crossref_primary_10_1002_lno_12441 crossref_primary_10_3390_f15081301 crossref_primary_10_1111_jbi_14820 crossref_primary_10_1177_19400829231205019 crossref_primary_10_1111_ecog_07346 crossref_primary_10_3390_insects12020143 crossref_primary_10_1111_jbi_13975 crossref_primary_10_1007_s10531_021_02221_8 crossref_primary_10_3390_f14112177 crossref_primary_10_1515_mammalia_2022_0070 crossref_primary_10_5852_ejt_2023_897_2293 crossref_primary_10_3390_insects13080687 crossref_primary_10_1017_S003118202400132X crossref_primary_10_1007_s12038_023_00333_7 crossref_primary_10_3390_f15020283 crossref_primary_10_3390_f13020189 crossref_primary_10_1007_s10531_024_02831_y crossref_primary_10_1007_s11056_021_09900_y crossref_primary_10_1016_j_ecolind_2022_109669 crossref_primary_10_1139_cjfas_2020_0036 crossref_primary_10_3390_insects15090675 crossref_primary_10_1088_1748_9326_ac2527 crossref_primary_10_29298_rmcf_v16i87_1510 crossref_primary_10_3390_f15081313 crossref_primary_10_1111_ecog_07499 crossref_primary_10_1007_s10530_023_03128_x crossref_primary_10_1016_j_rsase_2025_101491 crossref_primary_10_1007_s10452_023_10023_z crossref_primary_10_1016_j_compag_2023_107970 crossref_primary_10_1111_mve_12615 crossref_primary_10_1007_s10113_019_01556_x crossref_primary_10_1093_aob_mcae030 crossref_primary_10_1007_s00027_023_01036_9 crossref_primary_10_1016_j_rama_2022_12_003 crossref_primary_10_1016_j_scitotenv_2024_176723 crossref_primary_10_3390_biology11040588 crossref_primary_10_3390_su13063147 crossref_primary_10_1016_j_ecolind_2022_109311 crossref_primary_10_1016_j_jnc_2025_126886 crossref_primary_10_1111_jbi_13827 crossref_primary_10_7717_peerj_18799 crossref_primary_10_1007_s10531_023_02580_4 crossref_primary_10_3389_fevo_2023_1186627 crossref_primary_10_3390_f15081321 crossref_primary_10_1016_j_ecoleng_2024_107411 crossref_primary_10_1016_j_scitotenv_2022_159513 crossref_primary_10_1038_s41467_023_38329_4 crossref_primary_10_1111_geb_13639 crossref_primary_10_3389_fpls_2023_1279019 crossref_primary_10_1007_s10113_024_02303_7 crossref_primary_10_3389_fmars_2022_1079590 crossref_primary_10_3390_f12081106 crossref_primary_10_1371_journal_pone_0307989 crossref_primary_10_1016_j_jenvman_2023_119892 crossref_primary_10_1186_s40249_023_01091_2 crossref_primary_10_1016_j_pecon_2020_10_005 crossref_primary_10_1007_s10584_023_03514_3 crossref_primary_10_29059_cienciauat_v19i2_1918 crossref_primary_10_3724_ahr_2095_0357_2022_0046 crossref_primary_10_1093_ornithapp_duaf002 crossref_primary_10_1111_fwb_70014 crossref_primary_10_1016_j_pocean_2021_102672 crossref_primary_10_3390_land11060802 crossref_primary_10_3390_tropicalmed8060307 crossref_primary_10_1017_S0007485324000440 crossref_primary_10_1111_plb_13683 crossref_primary_10_1186_s13567_020_00802_z crossref_primary_10_1371_journal_pone_0237701 crossref_primary_10_3389_ffgc_2024_1370365 crossref_primary_10_1038_s41598_025_87977_7 crossref_primary_10_1111_tbed_14398 crossref_primary_10_1007_s11258_024_01458_x crossref_primary_10_7717_peerj_11614 crossref_primary_10_1007_s13744_020_00840_4 crossref_primary_10_1111_aje_12845 crossref_primary_10_3389_fmars_2021_688248 crossref_primary_10_1016_j_vetpar_2024_110172 crossref_primary_10_1038_s41558_024_01941_3 crossref_primary_10_1038_s41598_022_21548_y crossref_primary_10_1186_s12889_023_16071_2 crossref_primary_10_1111_njb_04502 crossref_primary_10_1016_j_rsase_2021_100554 crossref_primary_10_3390_agronomy13081985 crossref_primary_10_1111_csp2_375 crossref_primary_10_3390_f15010162 crossref_primary_10_1016_j_cropro_2023_106378 crossref_primary_10_1371_journal_pone_0277107 crossref_primary_10_1016_j_jaridenv_2021_104481 crossref_primary_10_1371_journal_pone_0308931 crossref_primary_10_3390_plants11060731 crossref_primary_10_1016_j_ecochg_2024_100084 crossref_primary_10_1111_cla_12514 crossref_primary_10_22201_fc_25942158e_2023_2_581 crossref_primary_10_1371_journal_pone_0257502 crossref_primary_10_3390_su17062664 crossref_primary_10_3390_plants13060839 crossref_primary_10_1016_j_ympev_2022_107445 crossref_primary_10_3390_f12121710 crossref_primary_10_1002_ecs2_4519 crossref_primary_10_1071_CP20458 crossref_primary_10_3390_plants11141874 crossref_primary_10_3390_su141912114 crossref_primary_10_1016_j_jia_2023_06_022 crossref_primary_10_3390_su15065604 crossref_primary_10_1515_mammalia_2022_0129 crossref_primary_10_1016_j_mambio_2019_08_002 crossref_primary_10_1038_s41559_019_0972_5 crossref_primary_10_3390_insects16030262 crossref_primary_10_1111_jbi_15098 crossref_primary_10_1007_s10531_024_02988_6 crossref_primary_10_1016_j_ecoinf_2023_102393 crossref_primary_10_1093_biolinnean_blz147 crossref_primary_10_3389_fpls_2024_1362020 crossref_primary_10_1016_j_heliyon_2024_e32696 crossref_primary_10_3390_d15101035 crossref_primary_10_1002_ece3_11010 crossref_primary_10_1093_iob_obae036 crossref_primary_10_1111_eea_13302 crossref_primary_10_36253_a_h_15232 crossref_primary_10_1002_ece3_70107 crossref_primary_10_1016_j_biocon_2023_110181 crossref_primary_10_1093_jme_tjae077 crossref_primary_10_1371_journal_pone_0285271 crossref_primary_10_1002_ece3_11132 crossref_primary_10_1007_s10336_022_02008_w crossref_primary_10_1007_s10336_020_01828_y crossref_primary_10_1111_aje_13103 crossref_primary_10_1007_s10113_024_02185_9 crossref_primary_10_1007_s10841_024_00611_1 crossref_primary_10_1093_biolinnean_blad004 crossref_primary_10_1111_ecog_05450 crossref_primary_10_7717_peerj_13847 crossref_primary_10_5253_arde_v108i1_a8 crossref_primary_10_1016_j_indcrop_2022_114545 crossref_primary_10_3390_insects12030225 crossref_primary_10_1371_journal_pone_0237191 crossref_primary_10_3390_su15010631 crossref_primary_10_1038_s41598_021_84910_6 crossref_primary_10_1111_1365_2656_14080 crossref_primary_10_3390_su15054557 crossref_primary_10_7717_peerj_10690 crossref_primary_10_1371_journal_pntd_0008131 crossref_primary_10_1371_journal_pone_0251027 crossref_primary_10_1016_j_jas_2024_106071 crossref_primary_10_1111_mec_15584 crossref_primary_10_3390_su15065349 crossref_primary_10_1002_ece3_70236 crossref_primary_10_1002_ece3_70235 crossref_primary_10_1111_tbed_14113 crossref_primary_10_1002_ece3_70354 crossref_primary_10_3389_fevo_2022_1051454 crossref_primary_10_1371_journal_pone_0310456 crossref_primary_10_3390_insects15080558 crossref_primary_10_1002_ps_7943 crossref_primary_10_1093_evolut_qpac043 crossref_primary_10_3390_biology12091179 crossref_primary_10_1016_j_scitotenv_2022_156867 crossref_primary_10_1038_s41598_020_62382_4 crossref_primary_10_3390_insects12030213 crossref_primary_10_1111_syen_12537 crossref_primary_10_1007_s10336_023_02133_0 crossref_primary_10_1093_sysbio_syae001 crossref_primary_10_1111_mec_16420 crossref_primary_10_1016_j_jhydrol_2024_131356 crossref_primary_10_1038_s41561_024_01578_z crossref_primary_10_1016_j_sajb_2022_04_036 crossref_primary_10_3390_insects13060550 crossref_primary_10_1002_widm_1394 crossref_primary_10_1111_mve_12695 crossref_primary_10_1007_s11295_023_01592_z crossref_primary_10_3897_herpetozoa_36_e107947 crossref_primary_10_1016_j_jaridenv_2024_105139 crossref_primary_10_4039_tce_2020_3 crossref_primary_10_1016_j_ympev_2022_107527 crossref_primary_10_1016_j_gecco_2023_e02438 crossref_primary_10_1111_jbi_14092 crossref_primary_10_3389_fpls_2022_827497 crossref_primary_10_3390_insects13111069 crossref_primary_10_1016_j_gecco_2021_e01817 crossref_primary_10_5253_arde_v109i3_a5 crossref_primary_10_1016_j_foreco_2024_122048 crossref_primary_10_1111_afe_12462 crossref_primary_10_3897_BDJ_10_e90146 crossref_primary_10_1007_s10933_021_00178_w crossref_primary_10_1016_j_ympev_2023_107959 crossref_primary_10_1111_mve_12680 crossref_primary_10_3390_plants11233248 crossref_primary_10_1016_j_gecco_2023_e02668 crossref_primary_10_1016_j_ympev_2023_107955 crossref_primary_10_3390_f15111894 crossref_primary_10_1007_s10493_022_00765_0 crossref_primary_10_1186_s40657_019_0160_y crossref_primary_10_3390_atmos13111773 crossref_primary_10_3390_su16114689 crossref_primary_10_3390_d13050212 crossref_primary_10_1111_jzs_12541 crossref_primary_10_1371_journal_pone_0305168 crossref_primary_10_3389_fenvs_2022_993920 crossref_primary_10_1016_j_agee_2022_108341 crossref_primary_10_1007_s10336_020_01762_z crossref_primary_10_1002_ajb2_16140 crossref_primary_10_3390_su15043112 crossref_primary_10_3389_fpls_2023_1184556 crossref_primary_10_1007_s10530_024_03285_7 crossref_primary_10_1002_aqc_3663 crossref_primary_10_3390_land11091438 crossref_primary_10_1111_ibi_13249 crossref_primary_10_1016_j_rsma_2023_103333 crossref_primary_10_1371_journal_pone_0264660 crossref_primary_10_22201_ib_20078706e_2024_95_5323 crossref_primary_10_1016_j_pecon_2021_02_010 crossref_primary_10_3354_meps14146 crossref_primary_10_1007_s10764_024_00457_z crossref_primary_10_1016_j_pocean_2023_103001 crossref_primary_10_1111_eea_13353 crossref_primary_10_1002_ece3_70277 crossref_primary_10_1186_s12870_024_05191_5 crossref_primary_10_1093_jmammal_gyab108 crossref_primary_10_1002_ps_6932 crossref_primary_10_1016_j_ecolind_2023_111518 crossref_primary_10_3390_d13060250 crossref_primary_10_3390_plants11202669 crossref_primary_10_1002_ecs2_3714 crossref_primary_10_1007_s10340_022_01479_3 crossref_primary_10_1186_s12862_023_02132_y crossref_primary_10_1071_ZO23016 crossref_primary_10_3390_insects11070454 crossref_primary_10_1016_j_marenvres_2022_105696 crossref_primary_10_1002_ece3_9228 crossref_primary_10_1016_j_ecolmodel_2019_108837 crossref_primary_10_1038_s41598_024_68611_4 crossref_primary_10_1186_s12862_024_02234_1 crossref_primary_10_1038_s41598_025_87617_0 crossref_primary_10_1134_S2079086421030087 crossref_primary_10_3390_insects12090831 crossref_primary_10_1007_s11258_023_01312_6 crossref_primary_10_52707_1081_1710_47_1_88 crossref_primary_10_3389_fmicb_2024_1519560 crossref_primary_10_3389_fmars_2024_1375641 crossref_primary_10_1093_jee_toae255 crossref_primary_10_1016_j_actatropica_2020_105607 crossref_primary_10_1016_j_jaridenv_2024_105285 crossref_primary_10_3897_zookeys_1173_107204 crossref_primary_10_1016_j_ijppaw_2024_100907 crossref_primary_10_1111_jbi_15017 crossref_primary_10_1038_s43247_023_01062_3 crossref_primary_10_3390_insects13010079 crossref_primary_10_3390_insects15020081 crossref_primary_10_1134_S2079086421030075 crossref_primary_10_1111_jfb_14727 crossref_primary_10_3390_f13091504 crossref_primary_10_1515_mammalia_2022_0095 crossref_primary_10_3390_insects15080575 crossref_primary_10_1002_ece3_10565 crossref_primary_10_1002_ece3_11653 crossref_primary_10_1007_s10764_024_00481_z crossref_primary_10_1007_s10531_025_03030_z crossref_primary_10_1002_aqc_70071 crossref_primary_10_3390_f15122179 crossref_primary_10_3390_d16060322 crossref_primary_10_1111_aje_13064 crossref_primary_10_1016_j_avrs_2024_100160 crossref_primary_10_3390_d14100813 crossref_primary_10_1016_j_ecolmodel_2022_110040 crossref_primary_10_1007_s00704_023_04627_6 crossref_primary_10_1007_s11356_024_32935_5 crossref_primary_10_3389_fcosc_2025_1470223 crossref_primary_10_1371_journal_pone_0317356 crossref_primary_10_1007_s11258_023_01374_6 crossref_primary_10_1371_journal_pone_0260382 crossref_primary_10_1186_s12870_024_05355_3 crossref_primary_10_3390_insects15121012 crossref_primary_10_1002_ece3_6786 crossref_primary_10_1038_s41598_024_69889_0 crossref_primary_10_1186_s12862_020_01671_y crossref_primary_10_1038_s44185_022_00008_w crossref_primary_10_1186_s12870_023_04471_w crossref_primary_10_21829_myb_2020_2622002 crossref_primary_10_7717_peerj_15741 crossref_primary_10_1093_jmammal_gyab152 crossref_primary_10_3390_plants13213097 crossref_primary_10_1371_journal_pone_0276951 crossref_primary_10_1111_jbi_14021 crossref_primary_10_3390_f15071195 crossref_primary_10_1111_tbed_13306 crossref_primary_10_1371_journal_pone_0241710 crossref_primary_10_3390_f12111464 crossref_primary_10_1371_journal_pone_0262451 crossref_primary_10_3390_ani13203251 crossref_primary_10_3389_fevo_2024_1358914 crossref_primary_10_3390_ani14192840 crossref_primary_10_1007_s11692_023_09613_4 crossref_primary_10_3390_biology11060849 crossref_primary_10_1093_biolinnean_blaa230 crossref_primary_10_3390_rs14174334 crossref_primary_10_1111_mec_17118 crossref_primary_10_1007_s10914_022_09627_3 crossref_primary_10_3897_natureconservation_55_120594 crossref_primary_10_1111_jbi_14018 crossref_primary_10_3390_insects15060411 crossref_primary_10_1016_j_ecolind_2025_113088 crossref_primary_10_3390_data8090144 crossref_primary_10_3389_fevo_2023_1260857 crossref_primary_10_3389_fevo_2023_1277058 crossref_primary_10_1002_ece3_11325 crossref_primary_10_1002_evl3_191 crossref_primary_10_3390_ijms26020574 crossref_primary_10_7717_peerj_16814 crossref_primary_10_1111_ecog_06714 crossref_primary_10_1371_journal_pone_0237208 crossref_primary_10_1002_wll2_12020 crossref_primary_10_1038_s41598_025_85587_x crossref_primary_10_3356_JRR_20_114 crossref_primary_10_5194_we_22_33_2022 crossref_primary_10_1002_ece3_8629 crossref_primary_10_1007_s40808_020_00790_1 crossref_primary_10_3390_d14110937 crossref_primary_10_1111_jbi_14245 crossref_primary_10_1111_fog_12555 crossref_primary_10_3390_su16167071 crossref_primary_10_1016_j_ecolmodel_2022_110139 crossref_primary_10_3389_fmars_2021_745501 crossref_primary_10_1111_2041_210X_14034 crossref_primary_10_1016_j_ympev_2024_108146 crossref_primary_10_1016_j_ecolmodel_2021_109804 crossref_primary_10_1093_biolinnean_blab149 crossref_primary_10_1007_s10530_020_02372_9 crossref_primary_10_3390_ani13111764 crossref_primary_10_1002_ece3_11454 crossref_primary_10_1016_j_quascirev_2020_106766 crossref_primary_10_3390_v15040892 crossref_primary_10_1080_09397140_2024_2314338 crossref_primary_10_1071_WR24116 crossref_primary_10_3390_f13122112 crossref_primary_10_1016_j_ocecoaman_2024_107213 crossref_primary_10_1002_ece3_7429 crossref_primary_10_1111_mve_12591 crossref_primary_10_3390_f11111159 crossref_primary_10_1007_s10531_021_02250_3 crossref_primary_10_3389_feart_2023_1111878 crossref_primary_10_1016_j_dsr2_2022_105077 crossref_primary_10_1007_s00606_021_01773_0 crossref_primary_10_1080_09670262_2023_2214184 crossref_primary_10_3390_jof9070739 crossref_primary_10_3390_f13071067 crossref_primary_10_3390_insects15050324 crossref_primary_10_1093_biolinnean_blac129 crossref_primary_10_3390_insects12050450 crossref_primary_10_1016_j_ecocom_2023_101041 crossref_primary_10_1111_jbi_14219 crossref_primary_10_1002_ece3_10374 crossref_primary_10_1007_s10530_021_02579_4 crossref_primary_10_1016_j_avrs_2025_100243 crossref_primary_10_1093_biolinnean_blab153 crossref_primary_10_1111_mec_17207 crossref_primary_10_1007_s11258_024_01473_y crossref_primary_10_1111_1749_4877_12618 crossref_primary_10_1111_ecog_05642 crossref_primary_10_1111_ecog_06852 crossref_primary_10_3389_fpls_2023_1302417 crossref_primary_10_1038_s41598_024_57125_8 crossref_primary_10_1007_s10980_020_01185_4 crossref_primary_10_1016_j_actatropica_2024_107135 crossref_primary_10_1016_j_actatropica_2024_107497 crossref_primary_10_1016_j_ecolmodel_2022_110073 crossref_primary_10_3389_ffgc_2024_1293366 crossref_primary_10_1051_parasite_2021030 crossref_primary_10_3389_fvets_2024_1352236 crossref_primary_10_3390_su15043181 crossref_primary_10_1111_csp2_12749 crossref_primary_10_3390_su132011486 crossref_primary_10_1007_s10393_021_01519_x crossref_primary_10_1016_j_marenvres_2022_105730 crossref_primary_10_1002_ece3_11477 crossref_primary_10_1007_s42991_021_00151_0 crossref_primary_10_1186_s12936_021_04036_y crossref_primary_10_3390_d16020094 crossref_primary_10_1002_ece3_70528 crossref_primary_10_1080_23766808_2022_2087282 crossref_primary_10_1016_j_flora_2022_152103 crossref_primary_10_3390_f15030525 crossref_primary_10_1007_s10526_021_10100_y crossref_primary_10_1007_s13364_023_00707_0 crossref_primary_10_3390_d16120736 crossref_primary_10_1002_ajb2_16322 crossref_primary_10_3389_fevo_2023_1112962 crossref_primary_10_3390_f12040385 crossref_primary_10_1016_j_geosus_2024_05_004 crossref_primary_10_1016_j_scitotenv_2023_161782 crossref_primary_10_1038_s41598_022_24309_z crossref_primary_10_1111_jen_13181 crossref_primary_10_1016_j_marenvres_2023_105926 crossref_primary_10_3390_biology11010110 crossref_primary_10_1093_ornithology_ukae022 crossref_primary_10_3161_00016454AO2019_54_2_007 crossref_primary_10_3390_plants13071027 crossref_primary_10_1016_j_funbio_2024_07_010 crossref_primary_10_1007_s10531_021_02176_w crossref_primary_10_3897_vz_74_e123485 crossref_primary_10_1002_ece3_11241 crossref_primary_10_1007_s10531_021_02198_4 crossref_primary_10_1007_s11676_022_01513_1 crossref_primary_10_1111_icad_12807 crossref_primary_10_3390_d16070429 crossref_primary_10_1016_j_indcrop_2025_120555 crossref_primary_10_1038_s41598_021_84805_6 crossref_primary_10_1093_gbe_evaa104 crossref_primary_10_1002_ece3_11121 crossref_primary_10_3389_fpls_2024_1393663 crossref_primary_10_1016_j_ecolmodel_2024_110893 crossref_primary_10_3389_fenvs_2022_846243 crossref_primary_10_52707_1081_1710_46_2_155 crossref_primary_10_1111_gcb_17282 crossref_primary_10_3354_meps13486 crossref_primary_10_1111_ecog_06992 crossref_primary_10_3390_ani14050672 crossref_primary_10_1111_mve_12488 |
Cites_doi | 10.1111/j.1600-0587.2009.06142.x 10.1016/S0304-3800(02)00349-6 10.1016/j.ecolmodel.2013.04.011 10.1016/j.ecolmodel.2005.03.026 10.1086/685387 10.1007/s10530-011-9963-4 10.1016/S1364-8152(97)00014-5 10.1111/j.1600-0587.2013.07872.x 10.1111/j.1466-8238.2011.00683.x 10.4081/gh.2014.19 10.1111/ddi.12125 10.1371/journal.pone.0209082 10.1111/j.1472-4642.2010.00725.x 10.1002/joc.1276 10.1111/2041-210X.12261 10.1111/ecog.01132 10.1111/j.2041-210X.2010.00036.x 10.1016/j.ecolmodel.2012.04.001 10.17161/bi.v2i0.4 10.1890/10-1171.1 10.1111/j.0906-7590.2007.05102.x 10.1111/ddi.12160 10.1353/book.36167 10.1111/2041-210X.12998 10.1016/j.ecolmodel.2007.11.008 10.1111/nyas.13873 10.1111/j.1466-8238.2007.00347.x 10.1093/bjps/axs036 10.1111/2041-210X.12945 10.23943/princeton/9780691136868.001.0001 10.1111/j.1466-8238.2007.00358.x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 PeerJ. Ltd. 2019 Cobos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Cobos et al. 2019 Cobos et al. |
Copyright_xml | – notice: COPYRIGHT 2019 PeerJ. Ltd. – notice: 2019 Cobos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Cobos et al. 2019 Cobos et al. |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj.6281 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Ecology |
EISSN | 2167-8359 |
ExternalDocumentID | oai_doaj_org_article_6db12a52ebd840179fb10cff39040972 PMC6368831 A572732209 30755826 10_7717_peerj_6281 |
Genre | Journal Article |
GeographicLocations | United States--US Mexico |
GeographicLocations_xml | – name: Mexico – name: United States--US |
GrantInformation_xml | – fundername: PAPIIT UNAM grantid: IN116018 – fundername: CONACyT-FORDECyT grantid: 273646 |
GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RPM W2D YAO NPM PMFND 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c636t-20cafb848066812eb92b5398d49c010a6849ee97ba682f24d7eb07c4996acf1a3 |
IEDL.DBID | M48 |
ISSN | 2167-8359 |
IngestDate | Wed Aug 27 01:28:51 EDT 2025 Thu Aug 21 14:02:35 EDT 2025 Thu Jul 10 23:37:18 EDT 2025 Fri Jul 25 11:55:19 EDT 2025 Tue Jun 17 21:24:11 EDT 2025 Tue Jun 10 20:41:43 EDT 2025 Thu May 22 21:22:11 EDT 2025 Thu Apr 03 07:07:23 EDT 2025 Tue Jul 01 01:10:50 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extrapolation risks Species distribution models Model projections Model calibration Model selection |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c636t-20cafb848066812eb92b5398d49c010a6849ee97ba682f24d7eb07c4996acf1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.6281 |
PMID | 30755826 |
PQID | 2176621712 |
PQPubID | 2045935 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6db12a52ebd840179fb10cff39040972 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6368831 proquest_miscellaneous_2229089231 proquest_journals_2176621712 gale_infotracmisc_A572732209 gale_infotracacademiconefile_A572732209 gale_healthsolutions_A572732209 pubmed_primary_30755826 crossref_citationtrail_10_7717_peerj_6281 crossref_primary_10_7717_peerj_6281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-06 |
PublicationDateYYYYMMDD | 2019-02-06 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ (San Francisco, CA) |
PublicationTitleAlternate | PeerJ |
PublicationYear | 2019 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Peterson (10.7717/peerj.6281/ref-21) 2008; 213 R Core Team (10.7717/peerj.6281/ref-24) 2018 Warren (10.7717/peerj.6281/ref-33) 2011; 21 Peterson (10.7717/peerj.6281/ref-17) 2014 Nylander (10.7717/peerj.6281/ref-15) 2004 Escobar (10.7717/peerj.6281/ref-6) 2014; 9 Peterson (10.7717/peerj.6281/ref-18) 2018; 1429 Warren (10.7717/peerj.6281/ref-34) 2014; 20 Jiménez-Valverde (10.7717/peerj.6281/ref-10) 2011; 13 Owens (10.7717/peerj.6281/ref-16) 2013; 263 Raghavan (10.7717/peerj.6281/ref-25) 2019; 14 Elith (10.7717/peerj.6281/ref-5) 2011; 17 Hijmans (10.7717/peerj.6281/ref-8) 2005; 25 Jiménez-Valverde (10.7717/peerj.6281/ref-9) 2012; 21 Phillips (10.7717/peerj.6281/ref-23) 2006; 190 Elith (10.7717/peerj.6281/ref-4) 2010; 1 Anderson (10.7717/peerj.6281/ref-3) 2003; 162 Searcy (10.7717/peerj.6281/ref-27) 2016; 187 Spear (10.7717/peerj.6281/ref-30) 1997; 12 Kass (10.7717/peerj.6281/ref-11) 2018 Soberón (10.7717/peerj.6281/ref-29) 2005; 2 Lobo (10.7717/peerj.6281/ref-12) 2007; 17 Saupe (10.7717/peerj.6281/ref-26) 2012; 237–238 Peterson (10.7717/peerj.6281/ref-19) 2008; 17 Warren (10.7717/peerj.6281/ref-32) 2010; 33 Aiello-Lammens (10.7717/peerj.6281/ref-1) 2015; 38 Alonso Bosch (10.7717/peerj.6281/ref-2) 2011 Franklin (10.7717/peerj.6281/ref-7) 2013; 19 Muscarella (10.7717/peerj.6281/ref-14) 2014; 5 Steele (10.7717/peerj.6281/ref-31) 2013; 64 Merow (10.7717/peerj.6281/ref-13) 2013; 36 Peterson (10.7717/peerj.6281/ref-20) 2007; 30 Peterson (10.7717/peerj.6281/ref-22) 2011 Sequeira (10.7717/peerj.6281/ref-28) 2018; 9 |
References_xml | – volume: 33 start-page: 607 year: 2010 ident: 10.7717/peerj.6281/ref-32 article-title: ENMTools: a toolbox for comparative studies of environmental niche models publication-title: Ecography doi: 10.1111/j.1600-0587.2009.06142.x – volume: 162 start-page: 211 year: 2003 ident: 10.7717/peerj.6281/ref-3 article-title: Evaluating predictive models of species’ distributions: criteria for selecting optimal models publication-title: Ecological Modelling doi: 10.1016/S0304-3800(02)00349-6 – volume: 263 start-page: 10 year: 2013 ident: 10.7717/peerj.6281/ref-16 article-title: Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2013.04.011 – volume: 190 start-page: 231 year: 2006 ident: 10.7717/peerj.6281/ref-23 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2005.03.026 – volume: 187 start-page: 423 year: 2016 ident: 10.7717/peerj.6281/ref-27 article-title: Do ecological niche models accurately identify climatic determinants of species ranges? publication-title: American Naturalist doi: 10.1086/685387 – volume: 13 start-page: 2785 year: 2011 ident: 10.7717/peerj.6281/ref-10 article-title: Use of niche models in invasive species risk assessments publication-title: Biological Invasions doi: 10.1007/s10530-011-9963-4 – volume: 12 start-page: 219 year: 1997 ident: 10.7717/peerj.6281/ref-30 article-title: Large simulation models: calibration, uniqueness and goodness of fit publication-title: Environmental Modelling & Software doi: 10.1016/S1364-8152(97)00014-5 – volume: 36 start-page: 1058 year: 2013 ident: 10.7717/peerj.6281/ref-13 article-title: A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter publication-title: Ecography doi: 10.1111/j.1600-0587.2013.07872.x – volume: 21 start-page: 498 year: 2012 ident: 10.7717/peerj.6281/ref-9 article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2011.00683.x – volume: 9 start-page: 221 year: 2014 ident: 10.7717/peerj.6281/ref-6 article-title: Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference publication-title: Geospatial Health doi: 10.4081/gh.2014.19 – volume: 19 start-page: 1217 year: 2013 ident: 10.7717/peerj.6281/ref-7 article-title: Species distribution models in conservation biogeography: developments and challenges publication-title: Diversity and Distributions doi: 10.1111/ddi.12125 – volume: 14 start-page: e0209082 year: 2019 ident: 10.7717/peerj.6281/ref-25 article-title: Current and future distribution of the Lone Star Tick, Amblyomma americanum (L.) (Acari: Ixodidae) in North America publication-title: PLOS ONE doi: 10.1371/journal.pone.0209082 – volume: 17 start-page: 43 year: 2011 ident: 10.7717/peerj.6281/ref-5 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Diversity and Distributions doi: 10.1111/j.1472-4642.2010.00725.x – volume: 25 start-page: 1965 year: 2005 ident: 10.7717/peerj.6281/ref-8 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology doi: 10.1002/joc.1276 – volume: 5 start-page: 1198 year: 2014 ident: 10.7717/peerj.6281/ref-14 article-title: ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12261 – volume: 38 start-page: 541 year: 2015 ident: 10.7717/peerj.6281/ref-1 article-title: spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models publication-title: Ecography doi: 10.1111/ecog.01132 – volume: 1 start-page: 330 year: 2010 ident: 10.7717/peerj.6281/ref-4 article-title: The art of modelling range-shifting species publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210X.2010.00036.x – volume: 237–238 start-page: 11 year: 2012 ident: 10.7717/peerj.6281/ref-26 article-title: Variation in niche and distribution model performance: the need for a priori assessment of key causal factors publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2012.04.001 – volume-title: MrModeltest v2 year: 2004 ident: 10.7717/peerj.6281/ref-15 – volume: 2 start-page: 1 year: 2005 ident: 10.7717/peerj.6281/ref-29 article-title: Interpretation of models of fundamental ecological niches and species’ distributional areas publication-title: Biodiversity Informatics doi: 10.17161/bi.v2i0.4 – volume: 21 start-page: 335 year: 2011 ident: 10.7717/peerj.6281/ref-33 article-title: Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria publication-title: Ecological Applications doi: 10.1890/10-1171.1 – volume: 30 start-page: 550 year: 2007 ident: 10.7717/peerj.6281/ref-20 article-title: Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent publication-title: Ecography doi: 10.1111/j.0906-7590.2007.05102.x – volume: 20 start-page: 334 year: 2014 ident: 10.7717/peerj.6281/ref-34 article-title: Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern publication-title: Diversity and Distributions doi: 10.1111/ddi.12160 – volume-title: Mapping disease transmission risk year: 2014 ident: 10.7717/peerj.6281/ref-17 doi: 10.1353/book.36167 – year: 2011 ident: 10.7717/peerj.6281/ref-2 article-title: Origen y diversificación del género Peltophryne (Amphibia: Anura: Bufonidae) en Cuba publication-title: Doctoral thesis – volume: 9 start-page: 1250 year: 2018 ident: 10.7717/peerj.6281/ref-28 article-title: Transferring biodiversity models for conservation: opportunities and challenges publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12998 – year: 2018 ident: 10.7717/peerj.6281/ref-24 article-title: R: a language and environment for statistical computing – volume: 213 start-page: 63 year: 2008 ident: 10.7717/peerj.6281/ref-21 article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modeling publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2007.11.008 – volume: 1429 start-page: 66 issue: 1 year: 2018 ident: 10.7717/peerj.6281/ref-18 article-title: Major challenges for correlational ecological niche model projections to future climate conditions publication-title: Annals of the New York Academy of Sciences doi: 10.1111/nyas.13873 – volume: 17 start-page: 135 year: 2008 ident: 10.7717/peerj.6281/ref-19 article-title: Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2007.00347.x – volume: 64 start-page: 609 year: 2013 ident: 10.7717/peerj.6281/ref-31 article-title: Climate models, calibration, and confirmation publication-title: British Journal for the Philosophy of Science doi: 10.1093/bjps/axs036 – year: 2018 ident: 10.7717/peerj.6281/ref-11 article-title: Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12945 – volume-title: Ecological niches and geographic distributions year: 2011 ident: 10.7717/peerj.6281/ref-22 doi: 10.23943/princeton/9780691136868.001.0001 – volume: 17 start-page: 145 year: 2007 ident: 10.7717/peerj.6281/ref-12 article-title: AUC: a misleading measure of the performance of predictive distribution models publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2007.00358.x |
SSID | ssj0000826083 |
Score | 2.636718 |
Snippet | Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a challenging... Background Ecological niche modeling is a set of analytical tools with applications in diverse disciplines, yet creating these models rigorously is now a... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e6281 |
SubjectTerms | Automation Biodiversity Biogeography Bioinformatics Calibration Climate change Computational Biology Disease transmission Ecology Extrapolation risks Model calibration Model projections Model selection Niches (Ecology) Software Species distribution models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1VPaBeEIUCoQVcFQlxCE0cx7G5FURVVVoOqJV6s2zHhn6QrdpdiZ_PjJMNG4HEhcsqWk8kZ_Jm_EYZPwO8ETwWuvFlXvsi5kKqMneu0LmqXax8lNalHd6zL_LkXJxe1BdrR31RT1gvD9w77lC2ruS25sG1WIsgfKIrCx8j1uok1ZSyL655a8VUysHImpFc9HqkDZYsh7ch3F29l1yVkxUoCfX_mY7X1qNpr-Ta4nP8CB4OrJEd9bPdho3QPYYHs-G7-BM4u16G7scHZjv2lWEVfI1ZgiEdZX2HaGhZ-7s5iM0jC36V9FhHzaAsnYhzz6gN_hub2Z9otwPnx5_PPp3kw3kJuZeVXCDgvY1OCYU0Atft4DR3daVVK7THsstKJXQIunF4xSMXbRNc0XiseaT1sbTVU9js5l14Dqzxvi205U47KUg1DmmIKKLj2omqiVUG71Y-NH4QE6czLW4MFhXkb5P8bcjfGRyMtre9hMZfrT7SqxgtSPY6_YFgMAMYzL_AkMFrepGm30M6Bq85qommcQRKBm-TBYUvTtjbYRcCPjYJYU0s9yaWGHZ-OrwCixnC_t5wktvEnxJnsj8O053UytaF-RJtSGFfEa_O4FmPrfGhMeHWNUI3g2aCuolXpiPd5fckCo4IUKoqX_wPN-7CFvJCnZrT5R5sLu6W4SVyr4V7lcLsF5ANLGk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oHYovovOrOjWiID50a9M2TXyRTe4Ywh0yNthbaNJk6rS93g_Q_95z2txuRfHlUm5OITk5n-nJ7wC8yblPVGnTuLCJj3Mh09iYRMWyMD6zXlSmu-E9OxZHZ_mn8-I8HLgtQ1nlxiZ2hrpuLZ2R73FCMsSflH-Y_4ypaxR9XQ0tNG7CFppgKSewdTA9_nwynLKggxMYZPS4pCWmLntz5xbfdgWX6cgTdYD9f5vla35pXDN5zQkd3oO7IXpk-_1234cbrtmGW9MOefr3NtyehS_lD-D0cu2aH-9Z1bAThnnxJdoNhgEq62tGXc3qq3Ih1nrm7MYMsobKQ1nXI2fJqDD-gs2qX0j3EM4Op6cfj-LQQSG2IhMrVAFbeSNziYEFenJnFDdFpmSdK4uJWCVkrpxTpcEn7nlel84kpcUsSFTWp1X2CCZN27gnwEpr60RV3CgjcsKRw8AkT7zhyuRZ6bMI3m24qW2AF6cuF981phnEed1xXhPnI3g90M57UI1_Uh3QpgwUBITd_dEuLnTQKy1qk_KqwKXVOB2cljdpYr3PVEJIXjyCl7Slur9VOqiz3i8ocOM8URG87ShIoXHCtgr3EnDZBI01otwZUaIi2vHwRmx0MARLfSW2EbwahulNKm5rXLtGGsLclxRpR_C4l7Jh0WiCiwKFOIJyJH8jroxHmq9fOphwlAAps_Tp_6f1DO5gDKi6QnSxA5PVYu2eY5y1Mi-CMv0BOjAohw priority: 102 providerName: ProQuest |
Title | kuenm: an R package for detailed development of ecological niche models using Maxent |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30755826 https://www.proquest.com/docview/2176621712 https://www.proquest.com/docview/2229089231 https://pubmed.ncbi.nlm.nih.gov/PMC6368831 https://doaj.org/article/6db12a52ebd840179fb10cff39040972 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBelhbGX0e7TXZdpbDD24MyWZdnay2hHuzJIGaWBvAlJlrr1w-nSBNr_fnfyx-qtj3sxITqDdLo7_S45_Y6Qd5z5RBY2jXOb-JiLMo2NSWRc5sZn1gttwg3vyZE4nPJvs3y2Rrr-na0Cr-9N7bCf1HRxMb75dfsZHB7w67iAbOTjlXOLs7FgeAN7A06kAjsZTFqYHyIyYGiAGg076V-vDM6jQNv_b3C-czoNKyfvHEUHm-RRiyHpbrPpW2TN1Y_Jg0n7L_kTcnK-cvXlJ6prekwhJz6HmEEBnNKmXtRVtPpTKkTnnjrbhUBaY2koDf1xrikWxZ_Sib4BuadkerB_8uUwbrsnxFZkYgnmb7U3JS8BVMAp7oxkJs9kWXFpIQnTouTSOVkY-MQ841XhTFJYyICEtj7V2TOyXs9r94LQwtoqkZoZaQRHDjkAJTzxhknDs8JnEfnQ6VDZllocO1xcKEgxUN8q6FuhviPytpe9agg17pXaw63oJZAEO3wxX5yq1qeUqEzKdA5Lq2A6MC1v0sR6n8kEWbxYRF7jRqrmRmnvymo3R9DGWCIj8j5IoHnBhK1u7yTAspEWayC5M5AEJ7TD4c5YVGfDiiH5JjxSmMmbfhjfxMK22s1XIIN8-yWi7Ig8b2yrXzSE3zwH041IMbC6gVaGI_XPH4EiHCygLLN0-3-o8SV5CChRhlJ1sUPWl4uVewVIbGlGZGNv_-j78Sj8kgHPr7N0FFzvNxdoNw8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrTheEJQrUKgRINSH0MRxnBgJoRa22tLuClVbqW8mduwCheyyh6B_it_IOFcbgXjryypaTyJ7PGcy_gbgOaM2EIkO_VgH1mc8DX2lAuGnsbKRtjxT5Qnv4YgPjtiH4_h4BX43Z2FcWWVjE0tDnU-0e0e-RR2SIf6E9O30h--6Rrmvq00LjUos9s3ZT0zZ5m_23uP-vqB0tz9-N_DrrgK-5hFfoFjozKqUpehs0bsZJaiKI5HmTGhMTjKeMmGMSBReUUtZnhgVJBozA55pG2YRPvcKrLKIB7QHqzv90cfD9q0OOlSOQU2Fg5pgqrQ1NWb29RWnadjxfGWDgL_dwAU_2K3RvOD0dm_BzTpaJduVeN2GFVOswdV-iXR9tgbXhvWX-TswPl2a4vtrkhXkkGAefop2imBATKoaVZOT_Lw8iUwsMboxu6Rw5aik7MkzJ64Q_4QMs19IdxeOLoW396BXTArzAEiidR6IjCqhOHO4dRgIscAqKhSLEht5sNlwU-oaztx11fgmMa1xnJcl56XjvAfPWtppBeLxT6odtykthQPeLv-YzE5krceS5yqkWYxLy3E6OC2rwkBbG4nAIYdRDzbclsrqFGtrPuR27AJFSgPhwcuSwhkQnLDO6nMQuGwHxdWhXO9QouLr7nAjNrI2PHN5riYePG2H3Z2umK4wkyXSOIz_1EX2HtyvpKxdNJr8OEYh9iDpyF-HK92R4svnEpYcJSBNo_Dh_6e1AdcH4-GBPNgb7T-CGxh_irIInq9DbzFbmscY4y3Uk1qxCHy6bF3-A34NZO4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6Vrai4ICivQKFGgBCHsImTODESQi3dVUvZVVW1Um8hduwCheyyD0H_Gr-OmbzaCMStl1W0nkT2eJ7J-BuA5yG3noy170bas24oEt9VypNuEikbaCsyVZ7wHo3F7nH44SQ6WYHfzVkYKqtsbGJpqPOJpnfkfU5Ihvjj876tyyIOdobvpj9c6iBFX1qbdhqViOyb85-Yvs3f7u3gXr_gfDg4er_r1h0GXC0CsUAR0ZlVSZig40VPZ5TkKgpkkodSY6KSiSSUxshY4RW3PMxjo7xYY5YgMm39LMDnXoPVmLKiHqxuD8YHh-0bHnSuAgOcChM1xrSpPzVm9vW14Inf8YJls4C_XcIln9it17zkAIe34GYdubKtStRuw4op1uH6oES9Pl-HtVH9lf4OHJ0tTfH9DcsKdsgwJz9Dm8UwOGZVvarJWX5RqsQmlhndmGBWUGkqK_vzzBkV5Z-yUfYL6e7C8ZXw9h70iklhHgCLtc49mXEllQgJww6DotCziksVBrENHHjVcDPVNbQ5ddj4lmKKQ5xPS86nxHkHnrW00wrQ459U27QpLQWBcJd_TGanaa3TqciVz7MIl5bjdHBaVvmetjaQHqGIcQc2aUvT6kRra0rSrYiCRs496cDLkoKMCU5YZ_WZCFw2wXJ1KDc6lGgEdHe4EZu0NkLz9EJlHHjaDtOdVFhXmMkSaQjvP6Eo34H7lZS1i0bzH0UoxA7EHfnrcKU7Unz5XEKUowQkSeA__P-0NmENdTj9uDfefwQ3MBSVZT282IDeYrY0jzHcW6gntV4x-HTVqvwHHq1pIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=kuenm%3A+an+R+package+for+detailed+development+of+ecological+niche+models+using+Maxent&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Marlon+E.+Cobos&rft.au=A.+Townsend+Peterson&rft.au=Narayani+Barve&rft.au=Luis+Osorio-Olvera&rft.date=2019-02-06&rft.pub=PeerJ+Inc&rft.eissn=2167-8359&rft.volume=7&rft.spage=e6281&rft_id=info:doi/10.7717%2Fpeerj.6281&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6db12a52ebd840179fb10cff39040972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |