Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation

:  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 41; no. 2; pp. 108 - 115
Main Authors Afreen, F., Zobayed, S. M. A., Kozai, T.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2006
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract :  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV‐B radiation (280–315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red ≫ blue ≥ white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6‐month‐old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV‐B radiation for 3 days followed by low intensity UV‐B radiation for 15 days. The reduction of melatonin under longer periods of UV‐B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV‐B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
AbstractList Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV‐B radiation (280–315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red ≫ blue ≥ white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6‐month‐old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV‐B radiation for 3 days followed by low intensity UV‐B radiation for 15 days. The reduction of melatonin under longer periods of UV‐B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV‐B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
Melatonin (N-acetyl-5-methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV-B radiation (280-315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red >> blue greater than or equal to white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6-month-old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV-B radiation for 3 days followed by low intensity UV-B radiation for 15 days. The reduction of melatonin under longer periods of UV-B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV-B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
:  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV‐B radiation (280–315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red ≫ blue ≥ white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6‐month‐old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV‐B radiation for 3 days followed by low intensity UV‐B radiation for 15 days. The reduction of melatonin under longer periods of UV‐B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV‐B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
Melatonin (N-acetyl-5-methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV-B radiation (280-315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red >> blue > or = white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6-month-old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV-B radiation for 3 days followed by low intensity UV-B radiation for 15 days. The reduction of melatonin under longer periods of UV-B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV-B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
Melatonin (N-acetyl-5-methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV-B radiation (280-315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red >> blue > or = white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6-month-old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV-B radiation for 3 days followed by low intensity UV-B radiation for 15 days. The reduction of melatonin under longer periods of UV-B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV-B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
Author Afreen, F.
Kozai, T.
Zobayed, S. M. A.
Author_xml – sequence: 1
  givenname: F.
  surname: Afreen
  fullname: Afreen, F.
  organization: Department of Bioproduction Science, Faculty of Horticulture; Chiba University, Matsudo, Chiba 271-8510, Japan
– sequence: 2
  givenname: S. M. A.
  surname: Zobayed
  fullname: Zobayed, S. M. A.
  organization: Department of Bioproduction Science, Faculty of Horticulture; Chiba University, Matsudo, Chiba 271-8510, Japan
– sequence: 3
  givenname: T.
  surname: Kozai
  fullname: Kozai, T.
  organization: Department of Bioproduction Science, Faculty of Horticulture; Chiba University, Matsudo, Chiba 271-8510, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17993912$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16879315$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLcLfwH5AreEsZ04MeJCV7C0Kh-qSsvNmk1s6m02Tu2s2PDrSdhVewRrJFua5x3PzHtCjlrfGkIog5SN5806ZRIggUL9SDmATAGEKNLdEzJ7SByRGRQZTwSo8picxLgGgLIs5TNyzGRZKMHyGbn7bBrsfetaOsayGaohhFv3G-k2YGPa6OJbGkzsfBsN9ZZ2DbY9Dd73kfaexs5U_UjS-y02rh8mpHE_b3uKbU2_XyenNGDtsHe-fU6eWmyieXG45-Tq44erxafk4uvybPH-IqmkkEXCTY6sLngGVmUsx5Xltc1XGZeoGEqlDM85VgYKFCiFRcttljFrS1ByxcWcvN6X7YK_35rY642LlWnGxo3fRj3ODiLPsn-CHGTJxAjPSbkHq-BjDMbqLrgNhkEz0JMheq2nvetp73oyRP81RO9G6cvDH9vVxtSPwoMDI_DqAGCssLEB28rFR65QSig2TfVuz_1yjRn-uwF9_u1sfIzyZC93sTe7BzmGOy0LUeT65stSn8MpXC5uLvW1-AONDbhz
CODEN JPRSE9
CitedBy_id crossref_primary_10_3389_fphar_2020_00917
crossref_primary_10_1007_s11240_015_0844_x
crossref_primary_10_1007_s00344_022_10886_w
crossref_primary_10_1111_jpi_12017
crossref_primary_10_1007_s11356_013_2368_4
crossref_primary_10_1038_s41598_017_12566_2
crossref_primary_10_1111_jpi_12011
crossref_primary_10_1111_jpi_12253
crossref_primary_10_7717_peerj_5009
crossref_primary_10_1007_s00344_022_10812_0
crossref_primary_10_1093_jxb_erac168
crossref_primary_10_1007_s11627_011_9413_0
crossref_primary_10_1007_s12374_011_9159_6
crossref_primary_10_1111_j_1600_079X_2012_00999_x
crossref_primary_10_1007_s11099_015_0140_3
crossref_primary_10_1093_jxb_eru336
crossref_primary_10_1093_jxb_erac164
crossref_primary_10_1080_17429145_2019_1645895
crossref_primary_10_1111_j_1600_079X_2006_00407_x
crossref_primary_10_3390_molecules20047396
crossref_primary_10_15407_frg2022_05_371
crossref_primary_10_3390_horticulturae9050586
crossref_primary_10_1186_s40529_020_00301_6
crossref_primary_10_1080_10408398_2010_529193
crossref_primary_10_1111_jpi_12038
crossref_primary_10_1111_jpi_12159
crossref_primary_10_3390_horticulturae8090810
crossref_primary_10_1093_jxb_erac196
crossref_primary_10_1016_j_jplph_2017_11_003
crossref_primary_10_1111_jpi_12152
crossref_primary_10_1007_s12298_018_0567_7
crossref_primary_10_1016_j_foodchem_2019_125502
crossref_primary_10_1039_D0FO03213A
crossref_primary_10_1016_j_envexpbot_2019_03_013
crossref_primary_10_1016_j_envexpbot_2018_08_016
crossref_primary_10_1134_S2079086418050080
crossref_primary_10_3389_fpls_2016_01721
crossref_primary_10_1007_s13580_022_00507_6
crossref_primary_10_1016_j_plaphy_2019_04_026
crossref_primary_10_1111_jpi_12028
crossref_primary_10_3390_molecules23010238
crossref_primary_10_1093_fqsafe_fyab009
crossref_primary_10_1111_jpi_12025
crossref_primary_10_12791_KSBEC_2017_26_4_249
crossref_primary_10_3390_ijms17111777
crossref_primary_10_3389_fphar_2023_1182937
crossref_primary_10_3389_fpls_2017_00190
crossref_primary_10_20286_focsci_020227
crossref_primary_10_1038_s41598_018_24284_4
crossref_primary_10_1111_j_1600_079X_2008_00660_x
crossref_primary_10_1016_j_sajb_2023_10_045
crossref_primary_10_1093_jxb_eraa235
crossref_primary_10_1016_j_scienta_2018_04_068
crossref_primary_10_3390_molecules22101791
crossref_primary_10_1111_j_1600_079X_2007_00552_x
crossref_primary_10_1016_j_freeradbiomed_2017_02_042
crossref_primary_10_1111_jpi_12055
crossref_primary_10_1016_j_jep_2022_115823
crossref_primary_10_3390_ijms20071735
crossref_primary_10_1007_s11627_017_9879_5
crossref_primary_10_3390_agronomy9100570
crossref_primary_10_3390_biom10040523
crossref_primary_10_1080_23802359_2019_1666050
crossref_primary_10_4161_psb_23279
crossref_primary_10_1007_s12298_020_00878_z
crossref_primary_10_53471_bahce_963661
crossref_primary_10_2478_fhort_2018_0016
crossref_primary_10_1111_j_1600_079X_2007_00540_x
crossref_primary_10_1016_j_heliyon_2021_e06150
crossref_primary_10_1038_s41598_017_10799_9
crossref_primary_10_1111_jpi_12044
crossref_primary_10_1111_jipb_12993
crossref_primary_10_1016_j_scienta_2019_05_036
crossref_primary_10_1111_j_1469_185X_2009_00118_x
crossref_primary_10_3390_molecules23030535
crossref_primary_10_1111_pce_13879
crossref_primary_10_7717_peerj_10486
crossref_primary_10_1007_s12298_019_00674_4
crossref_primary_10_1007_s00344_021_10432_0
crossref_primary_10_1016_j_phytochem_2020_112592
crossref_primary_10_3390_molecules25030753
crossref_primary_10_1111_jpi_12077
crossref_primary_10_1111_ppl_13372
crossref_primary_10_1007_s10068_018_0333_1
crossref_primary_10_1016_j_envexpbot_2020_104036
crossref_primary_10_21273_JASHS04964_20
crossref_primary_10_1016_j_scienta_2021_110392
crossref_primary_10_1016_j_scienta_2023_112499
crossref_primary_10_1093_jxb_eru357
crossref_primary_10_1093_jxb_eru476
crossref_primary_10_1093_jxb_ern284
crossref_primary_10_1111_jpi_12504
crossref_primary_10_1007_s11738_008_0213_z
crossref_primary_10_1080_15592324_2015_1049788
crossref_primary_10_1111_ppl_12976
crossref_primary_10_1016_j_foodchem_2012_10_077
crossref_primary_10_1111_jpi_12180
crossref_primary_10_1111_ppl_13262
crossref_primary_10_1007_s10725_021_00705_9
crossref_primary_10_1111_ppl_13143
crossref_primary_10_1016_j_jff_2018_06_023
crossref_primary_10_1371_journal_pone_0093462
crossref_primary_10_3389_fpls_2021_752584
crossref_primary_10_1016_j_envexpbot_2020_104063
crossref_primary_10_1016_j_jinsphys_2014_01_005
crossref_primary_10_1016_j_fitote_2009_02_006
crossref_primary_10_1111_j_1600_079X_2011_00966_x
crossref_primary_10_3390_ijms19051528
crossref_primary_10_1016_j_foodchem_2017_03_137
crossref_primary_10_1007_s11738_022_03373_y
crossref_primary_10_1111_jpi_12096
crossref_primary_10_1155_2014_815769
crossref_primary_10_1111_jpi_12891
crossref_primary_10_1111_jpi_12094
crossref_primary_10_3390_f12101404
crossref_primary_10_1051_e3sconf_202014501022
crossref_primary_10_4161_psb_2_5_4260
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_1111_j_1600_079X_2010_00783_x
crossref_primary_10_1111_jpi_12526
crossref_primary_10_1016_j_sjbs_2019_09_034
crossref_primary_10_1016_j_tplants_2014_07_006
crossref_primary_10_1111_jpi_12523
crossref_primary_10_1021_acs_jafc_2c07147
crossref_primary_10_1016_j_plaphy_2016_12_018
crossref_primary_10_1002_clen_201800459
crossref_primary_10_1007_s43450_021_00141_w
crossref_primary_10_1134_S1021443719010126
crossref_primary_10_1016_j_envexpbot_2024_105830
crossref_primary_10_3390_ijms20020353
crossref_primary_10_1016_j_envexpbot_2022_104980
crossref_primary_10_1096_fj_06_7745com
crossref_primary_10_1093_jxb_eru386
crossref_primary_10_1016_j_envpol_2023_123180
crossref_primary_10_1016_j_sajb_2023_09_053
crossref_primary_10_1016_j_scienta_2007_11_014
crossref_primary_10_1371_journal_pone_0245505
crossref_primary_10_1111_j_1600_079X_2010_00817_x
crossref_primary_10_3389_fpls_2019_00677
crossref_primary_10_1007_s11627_021_10161_9
crossref_primary_10_1038_s41598_020_63986_6
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1002_agj2_20263
crossref_primary_10_1080_15592324_2020_1737450
crossref_primary_10_17660_ActaHortic_2020_1273_55
crossref_primary_10_3390_cosmetics9010007
crossref_primary_10_1039_D4TA01332H
crossref_primary_10_1111_j_1600_079X_2012_00979_x
crossref_primary_10_3390_agronomy12040949
crossref_primary_10_1016_j_envexpbot_2022_104822
crossref_primary_10_1016_j_plaphy_2020_01_039
crossref_primary_10_3389_fpls_2021_683047
crossref_primary_10_3390_horticulturae9080913
crossref_primary_10_1093_treephys_tpac112
crossref_primary_10_1093_jxb_err256
crossref_primary_10_1094_PDIS_11_19_2361_RE
crossref_primary_10_1016_j_jinsphys_2008_06_005
crossref_primary_10_1111_jpi_12452
crossref_primary_10_3389_fpls_2015_01230
crossref_primary_10_32615_ps_2021_031
crossref_primary_10_1016_j_indcrop_2019_111612
crossref_primary_10_3389_fpls_2016_00198
crossref_primary_10_3390_molecules23051164
crossref_primary_10_1002_ps_7183
crossref_primary_10_1016_j_scienta_2023_112635
crossref_primary_10_1021_jf8022063
crossref_primary_10_29252_nbr_5_2_144
crossref_primary_10_1111_jpi_12325
crossref_primary_10_1016_j_phytol_2011_04_002
crossref_primary_10_22424_jmsb_2018_36_1_14
crossref_primary_10_1016_j_jplph_2008_06_002
crossref_primary_10_1016_j_envexpbot_2021_104407
crossref_primary_10_3389_fpls_2016_01814
crossref_primary_10_1111_j_1600_079X_2009_00668_x
crossref_primary_10_3390_ijms19123910
crossref_primary_10_1111_jpi_12115
crossref_primary_10_1111_jpi_12111
crossref_primary_10_3390_molecules201018886
crossref_primary_10_3390_plants9070838
crossref_primary_10_1071_FP16384
crossref_primary_10_1021_jf103725f
crossref_primary_10_4161_psb_2_6_4639
crossref_primary_10_1016_j_chemosphere_2019_03_026
crossref_primary_10_1111_j_1600_079X_2008_00652_x
crossref_primary_10_3390_su13010294
crossref_primary_10_1080_17429145_2020_1766584
crossref_primary_10_3390_plants11070890
crossref_primary_10_1007_s10725_023_01110_0
crossref_primary_10_1186_s12870_021_03082_7
crossref_primary_10_1111_jpi_12105
crossref_primary_10_1002_jobm_201500223
crossref_primary_10_1111_jpi_12342
crossref_primary_10_32615_bp_2020_090
crossref_primary_10_1016_j_bse_2009_12_026
crossref_primary_10_1021_jf300359a
Cites_doi 10.2174/1568026023394443
10.1016/j.nut.2005.02.005
10.1111/j.1600-079X.2005.00226.x
10.1111/j.1600-079X.1995.tb00136.x
10.1002/cbf.973
10.1007/s00425-004-1317-3
10.1021/jf010321
10.1210/edrv-12-2-151
10.1034/j.1600-079X.2001.310102.x
10.1126/science.1876838
10.1016/S0303-7207(97)00206-2
10.1034/j.1600-079X.2000.280401.x
10.1016/0006-8993(84)91045-X
10.1111/j.1600-079X.1995.tb00175.x
10.1016/S0031-9422(96)00568-7
10.1016/S0140-6736(03)13615-X
10.1016/S0024-3205(03)00252-2
10.1111/j.1600-079X.2005.00276.x
10.1007/978-4-431-68255-4_173
10.1016/S0024-3205(00)00896-1
10.1073/pnas.69.8.2003
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
DOI 10.1111/j.1600-079X.2006.00337.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1600-079X
EndPage 115
ExternalDocumentID 10_1111_j_1600_079X_2006_00337_x
16879315
17993912
JPI337
ark_67375_WNG_J0B0RCWR_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
186
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJUZ
AAKAS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABHUG
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BQCPF
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
ID FETCH-LOGICAL-c6367-2e5a1d7240f9415abf2df5b426a91a699e252ace07a3a63faf2f441ff8096b23
IEDL.DBID DR2
ISSN 0742-3098
IngestDate Fri Aug 16 06:26:37 EDT 2024
Fri Aug 16 10:45:43 EDT 2024
Fri Aug 23 02:19:30 EDT 2024
Sat Sep 28 07:41:10 EDT 2024
Sun Oct 22 16:06:32 EDT 2023
Sat Aug 24 00:53:52 EDT 2024
Wed Jan 17 04:59:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Melatonin
light quality
Metabolite
Light
Quality
plants
Irradiation
Glycyrrhiza uralensis
Antioxidant
UV-B irradiation
Pineal hormone
secondary metabolite
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6367-2e5a1d7240f9415abf2df5b426a91a699e252ace07a3a63faf2f441ff8096b23
Notes ark:/67375/WNG-J0B0RCWR-V
istex:1A7CCAAD1AE55ED9BD84169E39E2A7ACA6208226
ArticleID:JPI337
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1600-079X.2006.00337.x
PMID 16879315
PQID 20681370
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_68703544
proquest_miscellaneous_20681370
crossref_primary_10_1111_j_1600_079X_2006_00337_x
pubmed_primary_16879315
pascalfrancis_primary_17993912
wiley_primary_10_1111_j_1600_079X_2006_00337_x_JPI337
istex_primary_ark_67375_WNG_J0B0RCWR_V
PublicationCentury 2000
PublicationDate September 2006
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: September 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Journal of pineal research
PublicationTitleAlternate J Pineal Res
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Hernández-Ruiz J, Cano A, Arnao MB. Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 2005; 39:137-142.
Kolar J, Machackova I, Eder J et al. Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 1997; 44:1407-1413.
Conti A, Conconi S, Hertens E et al. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res 2000; 28:192-202.
Kolar J, Machackova I. Melatonin in higher plants: occurrence and possible functions. J Pineal Res 2005; 39:333-341.
Chen G, Huo Y, Tan DX et al. Melatonin in Chinese medicinal herbs. Life Sci 2003; 3:19-26.
Tan DX, Chen LD, Poeggeler B et al. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J 1993; 1:57-60.
Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181-197.
Köhidai L, Vakkuri O, Keresztesi M et al. Melatonin in the unicellular Tetrahymena pyriformis: effects of different lighting conditions. Cell Biochem Funct 2002; 20:269-272.
Reiter RJ, Manchester LC, Tan DX. Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005; 21:920-924.
Balzer I, Hardeland R. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 1991; 253:795-797.
Duval B, Shetty K, Thomas WH. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phys 2000; 11:559-566.
Reiter RJ. Pineal melatonin: cell biology of its synthesis and its physiological interactions. Endocr Rev 1991; 12:151-180.
Itoh MT, Ishizuka B, Kudo Y et al. Detection of melatonin and serotonin N-acetyltransferase and hydroxyindole-O-methyltransferase in rat ovary. Mol. Cell. Endocrinol 1997; 136:7-13.
Van Tassel DL, Roberts N, Lewy A et al. Melatonin in plant organs. J Pineal Res 2001; 31:8-15.
Burkhardt S, Tan DX, Manchester LC et al. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J Agric Food Chem 2001; 49:4898-4902.
Hattori A, Migitaka H, Iigo M et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol Biol Int 1995; 35:627-634.
Brainard GC, Richardson BA, King TS et al. The influence of different light spectra on the suppression of pineal melatonin content in the syrian hamster. Brain Res 1984; 294:333-339.
Cinatl J, Morgenstern BG, Bauer P et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet North Am Ed 2003; 361 2045-2046.
Cardinali DP, Larin F, Wurtman RJ. Control of the rat pineal gland by light spectra. Proc Natl Acad Sci U S A 1972; 69:2003-2005.
Hernández-Ruiz J, Cano A, Arnao MB. Melatonin: a growth-stimulating compound present in lupin tissues. Planta 2004; 220:140-144.
Manchester LC, Poeggeler B, Alvares FL et al. Melatonin immunoreactivity in the photosynthetic prokaryote, Rhodospirillum rubrum: Implications for an ancient antioxidant system. Cell Mol Biol Res 1995; 41:391-395.
Manchester LC, Tan DX, Reiter RJ et al. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 2000; 67:3023-3029.
Zawilska JB, Jarmak A, Woldan-Tambor A et al. Light-induced suppression of nocturnal serotonin N-acetyltransferase activity in chick pineal gland and retina: a wavelength comparison. J Pineal Res 1995; 19:87-92.
Dubbels R, Reiter RJ, Klenke E et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 1995; 18:28-31.
1991; 253
1997; 136
2004; 220
2000; 28
1991; 12
1997; 44
2000; 67
1995; 35
2002; 2
2005; 21
1994
2001; 49
1995; 19
1995; 18
1972; 69
1993; 1
1995; 41
1984; 294
2001
2002; 20
2000; 11
1986
2003; 3
2005; 39
2001; 31
2003; 361
Tan DX (e_1_2_6_15_2) 1993; 1
Duval B (e_1_2_6_26_2) 2000; 11
Pan SF (e_1_2_6_3_2) 1986
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_20_2
Hardeland R (e_1_2_6_25_2) 2001
e_1_2_6_9_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_5_2
Hattori A (e_1_2_6_8_2) 1995; 35
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
Manchester LC (e_1_2_6_7_2) 1995; 41
e_1_2_6_27_2
References_xml – start-page: 55
  year: 1986
  end-page: 59
– volume: 35
  start-page: 627
  year: 1995
  end-page: 634
  article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates
  publication-title: Biochem. Mol Biol Int
– volume: 20
  start-page: 269
  year: 2002
  end-page: 272
  article-title: Melatonin in the unicellular : effects of different lighting conditions
  publication-title: Cell Biochem Funct
– volume: 39
  start-page: 333
  year: 2005
  end-page: 341
  article-title: Melatonin in higher plants: occurrence and possible functions
  publication-title: J Pineal Res
– volume: 2
  start-page: 181
  year: 2002
  end-page: 197
  article-title: Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger
  publication-title: Curr Top Med Chem
– start-page: 662
  year: 1994
  end-page: 665
– volume: 31
  start-page: 8
  year: 2001
  end-page: 15
  article-title: Melatonin in plant organs
  publication-title: J Pineal Res
– volume: 67
  start-page: 3023
  year: 2000
  end-page: 3029
  article-title: High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection
  publication-title: Life Sci
– volume: 21
  start-page: 920
  year: 2005
  end-page: 924
  article-title: Melatonin in walnuts: influence on levels of melatonin and total antioxidant capacity of blood
  publication-title: Nutrition
– volume: 12
  start-page: 151
  year: 1991
  end-page: 180
  article-title: Pineal melatonin: cell biology of its synthesis and its physiological interactions
  publication-title: Endocr Rev
– volume: 49
  start-page: 4898
  year: 2001
  end-page: 4902
  article-title: Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries ( )
  publication-title: J Agric Food Chem
– volume: 294
  start-page: 333
  year: 1984
  end-page: 339
  article-title: The influence of different light spectra on the suppression of pineal melatonin content in the syrian hamster
  publication-title: Brain Res
– volume: 69
  start-page: 2003
  year: 1972
  end-page: 2005
  article-title: Control of the rat pineal gland by light spectra
  publication-title: Proc Natl Acad Sci U S A
– volume: 19
  start-page: 87
  year: 1995
  end-page: 92
  article-title: Light‐induced suppression of nocturnal serotonin N‐acetyltransferase activity in chick pineal gland and retina: a wavelength comparison
  publication-title: J Pineal Res
– volume: 136
  start-page: 7
  year: 1997
  end-page: 13
  article-title: Detection of melatonin and serotonin N‐acetyltransferase and hydroxyindole‐O‐methyltransferase in rat ovary
  publication-title: Mol. Cell. Endocrinol
– volume: 39
  start-page: 137
  year: 2005
  end-page: 142
  article-title: Melatonin acts as a growth‐stimulating compound in some monocot species
  publication-title: J Pineal Res
– volume: 220
  start-page: 140
  year: 2004
  end-page: 144
  article-title: Melatonin: a growth‐stimulating compound present in lupin tissues
  publication-title: Planta
– volume: 1
  start-page: 57
  year: 1993
  end-page: 60
  article-title: Melatonin: a potent, endogenous hydroxyl radical scavenger
  publication-title: Endocr J
– volume: 3
  start-page: 19
  year: 2003
  end-page: 26
  article-title: Melatonin in Chinese medicinal herbs
  publication-title: Life Sci
– volume: 41
  start-page: 391
  year: 1995
  end-page: 395
  article-title: Melatonin immunoreactivity in the photosynthetic prokaryote, : Implications for an ancient antioxidant system
  publication-title: Cell Mol Biol Res
– volume: 44
  start-page: 1407
  year: 1997
  end-page: 1413
  article-title: Melatonin: occurrence and daily rhythm in
  publication-title: Phytochemistry
– start-page: 70
  year: 2001
  end-page: 79
– volume: 28
  start-page: 192
  year: 2000
  end-page: 202
  article-title: Evidence for melatonin synthesis in mouse and human bone marrow cells
  publication-title: J Pineal Res
– volume: 253
  start-page: 795
  year: 1991
  end-page: 797
  article-title: Photoperiodism and effects of indoleamines in a unicellular alga,
  publication-title: Science
– volume: 18
  start-page: 28
  year: 1995
  end-page: 31
  article-title: Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography‐mass spectrometry
  publication-title: J Pineal Res
– volume: 11
  start-page: 559
  year: 2000
  end-page: 566
  article-title: Phenolic compounds and antioxidant properties in the snow alga after exposure to UV light
  publication-title: J Appl Phys
– volume: 361
  start-page: 2045
  year: 2003
  end-page: 2046
  article-title: Glycyrrhizin, an active component of liquorice roots, and replication of SARS‐associated coronavirus
  publication-title: Lancet North Am Ed
– ident: e_1_2_6_16_2
  doi: 10.2174/1568026023394443
– start-page: 70
  volume-title: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites
  year: 2001
  ident: e_1_2_6_25_2
  contributor:
    fullname: Hardeland R
– ident: e_1_2_6_14_2
  doi: 10.1016/j.nut.2005.02.005
– ident: e_1_2_6_24_2
  doi: 10.1111/j.1600-079X.2005.00226.x
– ident: e_1_2_6_17_2
  doi: 10.1111/j.1600-079X.1995.tb00136.x
– ident: e_1_2_6_22_2
  doi: 10.1002/cbf.973
– ident: e_1_2_6_23_2
  doi: 10.1007/s00425-004-1317-3
– ident: e_1_2_6_13_2
  doi: 10.1021/jf010321
– ident: e_1_2_6_2_2
  doi: 10.1210/edrv-12-2-151
– ident: e_1_2_6_11_2
  doi: 10.1034/j.1600-079X.2001.310102.x
– ident: e_1_2_6_6_2
  doi: 10.1126/science.1876838
– ident: e_1_2_6_4_2
  doi: 10.1016/S0303-7207(97)00206-2
– volume: 11
  start-page: 559
  year: 2000
  ident: e_1_2_6_26_2
  article-title: Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light
  publication-title: J Appl Phys
  contributor:
    fullname: Duval B
– volume: 41
  start-page: 391
  year: 1995
  ident: e_1_2_6_7_2
  article-title: Melatonin immunoreactivity in the photosynthetic prokaryote, Rhodospirillum rubrum: Implications for an ancient antioxidant system
  publication-title: Cell Mol Biol Res
  contributor:
    fullname: Manchester LC
– start-page: 55
  volume-title: Pineal Research Review
  year: 1986
  ident: e_1_2_6_3_2
  contributor:
    fullname: Pan SF
– ident: e_1_2_6_5_2
  doi: 10.1034/j.1600-079X.2000.280401.x
– volume: 35
  start-page: 627
  year: 1995
  ident: e_1_2_6_8_2
  article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates
  publication-title: Biochem. Mol Biol Int
  contributor:
    fullname: Hattori A
– ident: e_1_2_6_19_2
  doi: 10.1016/0006-8993(84)91045-X
– ident: e_1_2_6_21_2
  doi: 10.1111/j.1600-079X.1995.tb00175.x
– ident: e_1_2_6_9_2
  doi: 10.1016/S0031-9422(96)00568-7
– ident: e_1_2_6_27_2
  doi: 10.1016/S0140-6736(03)13615-X
– ident: e_1_2_6_18_2
  doi: 10.1016/S0024-3205(03)00252-2
– ident: e_1_2_6_12_2
  doi: 10.1111/j.1600-079X.2005.00276.x
– volume: 1
  start-page: 57
  year: 1993
  ident: e_1_2_6_15_2
  article-title: Melatonin: a potent, endogenous hydroxyl radical scavenger
  publication-title: Endocr J
  contributor:
    fullname: Tan DX
– ident: e_1_2_6_28_2
  doi: 10.1007/978-4-431-68255-4_173
– ident: e_1_2_6_10_2
  doi: 10.1016/S0024-3205(00)00896-1
– ident: e_1_2_6_20_2
  doi: 10.1073/pnas.69.8.2003
SSID ssj0008886
Score 2.3636668
Snippet :  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of...
Melatonin (N-acetyl-5-methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin...
Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 108
SubjectTerms antioxidant
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Glycyrrhiza
Glycyrrhiza uralensis
Glycyrrhiza uralensis - chemistry
Glycyrrhiza uralensis - metabolism
Glycyrrhiza uralensis - radiation effects
Light
light quality
melatonin
Melatonin - analysis
Melatonin - biosynthesis
Melatonin - isolation & purification
Plant Leaves - chemistry
Plant Roots - chemistry
Plant Roots - radiation effects
Plant Stems - chemistry
plants
secondary metabolite
Seeds - chemistry
Ultraviolet Rays
UV-B irradiation
Vertebrates: endocrinology
Title Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation
URI https://api.istex.fr/ark:/67375/WNG-J0B0RCWR-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-079X.2006.00337.x
https://www.ncbi.nlm.nih.gov/pubmed/16879315
https://search.proquest.com/docview/20681370
https://search.proquest.com/docview/68703544
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5Keumlr_Thpk11KLl5sS1bsnJLQpN0IaEseezNyLZEy268wfZCNqf-hP7G_pLOWLvZuqRQSsEHg-WHRjPWN6NvRgAfcEYtdCyNXyjL_ViWqZ_TcqGySR6aUpsyoGzkk1NxfB4Px8l4yX-iXBhXH-Iu4EaW0f2vycB13vSNXFBWtFTj1ZoC53JAeJLq6hE-Gq0rSaGjJ1xFzsjngUr7pJ57H9SbqR6S0G-IOakbFJ51u17cB0v7KLebpg6fwGTVQcdOmQzmbT4obn-r_fh_JPAUHi_RLNtz6vcMHpjqOWzuVejJXy3YDuv4pV3gfhOuToh3R9FfhsfRdFEs6vrL11vNqPIH8eibXVY7yq5hM8uupzjqDJF927B2xrqcUGzJXB7ogppMKbTAdFWy84sf377vs5pKLZCuvYCzw49nB8f-crMHvxAcf9aRSXRYSgQYViGo0LmNStQXBBBahVooZaIk0oUJpOZacKttZBHKWZuiE5ZH_CVsVLPKvAbG01RJJaQ26FtaY3AOLmKe46ALS6u6HoSrcc2uXUmP7BdXCEWakUhpg06i_KFIsxsPdjoFuLtB1xOixMkkuzw9yobBfjA6uBxlFx5s9zRk_QaJSFCFkQfvVyqToSXT8oyuzGze4PtEGnIZ_LmFwM_nSRx78Mrp2vrpeEnxMPEg6TTmrzuWDT9_wpM3_3jfFjxyMSki3b2Fjbaem3eI0tp8u7O_n2iGMA8
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbtswECWK5NBeuqWLuiQ8FLnJkESJFHtL0iaOGxuF4SS-EZREokUcOZBlIM6pn9Bv7Jd0RrTjqkiBoiiggwBRC4cz4pvhmyEh72BGzXUsjJ9Ly_xYFKmf4XKhtEkWmkKbIsBs5P6Ad0_j3jgZL7cDwlwYVx_iNuCGltH8r9HAMSDdtnKOadFCjleLCoyJDgDKTbD-BK30w3BdSwpcPe5qckY-C2TapvXc-aTWXLWJYr9G7qSegfis2_fiLmDaxrnNRHX4iExWXXT8lIvOvM46-c1v1R__kwwek4dLQEv3nAY-IfdM-ZRs7ZXgzF8u6C5tKKZN7H6LXPaReocBYArH0WSRL6rqy9cbTbH4B1LpZ-9p5Vi7hk4tvZrAwFMA9_WM1lPapIVCS-pSQRfYZILRBarLgp6e_fj2fZ9WWG0B1e0ZGR1-HB10_eV-D37OGfyvI5PosBCAMawEXKEzGxWgMoAhtAw1l9JESaRzEwjNNGdW28gCmrM2BT8si9hzslFOS_OSUJamUkgutAH30hoD03AeswxGnVtc2PVIuBpYdeWqeqhfvCEQqUKR4h6dyPoDkaprj-w2GnB7g64ukBUnEnU-OFK9YD8YHpwP1ZlHtlsqsn6DADAow8gjOyudUWDMuEKjSzOdz-B9PA2ZCP7cgsPnsySOPfLCKdv66XBJsjDxSNKozF93TPU-H8PJq3-8b4fc7476J-rkePDpNXngQlTIwXtDNupqbt4CaKuz7cYYfwJtNTQv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiFeuA1YGGx-QHtLlcSJHe9tF7qtsGqqdumb5SS2QO3SKk2ldU_8BH4jv4Rz4nalaEgIIeUhUpyLj8-Jv3P8nWNCPsCMmutYGD-XlvmxKFI_w-VCaZMsNIU2RYDZyGddfnIZd_pJf85_wlwYVx_iPuCGltH8r9HAx4VdNXKOWdFC9hdrCoyJFuDJ9ZizCB2xo96ylBR4etyV5Ix8Fsh0ldXz4JNWpqp1lPotUif1BKRn3bYXD-HSVZjbzFPtZ2Sw6KGjpwxa0zpr5Xe_FX_8PyJ4Tp7O4Szdd_r3gjwy5UuysV-CK38zo7u0IZg2kfsNcnOGxDsM_1I4joezfFZVX77eaYqlP5BIP9mjlePsGjqydDyEYacA7esJrUe0SQqFltQlgs6wyRBjC1SXBb28-vHt-wGtsNYCKtsrctH-eHF44s93e_BzzuBvHZlEh4UAhGEloAqd2agAhQEEoWWouZQmSiKdm0Bopjmz2kYWsJy1KXhhWcRek7VyVJpNQlmaSiG50AacS2sMTMJ5zDIYdG5xWdcj4WJc1djV9FC_-EIgUoUixR06kfMHIlW3HtltFOD-Bl0NkBMnEnXdPVad4CDoHV731JVHtlc0ZPkGAVBQhpFHdhYqo8CUcX1Gl2Y0ncD7eBoyEfy5BYfPZ0kce-SN07Xl0-GSZGHikaTRmL_umOqcn8LJ23-8b4c8Pj9qq8-n3U9b5ImLTyEB7x1Zq6upeQ-Irc62G1P8CZyoMt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+in+Glycyrrhiza+uralensis+%3A+response+of+plant+roots+to+spectral+quality+of+light+and+UV%E2%80%90B+radiation&rft.jtitle=Journal+of+pineal+research&rft.au=Afreen%2C+F.&rft.au=Zobayed%2C+S.+M.+A.&rft.au=Kozai%2C+T.&rft.date=2006-09-01&rft.issn=0742-3098&rft.eissn=1600-079X&rft.volume=41&rft.issue=2&rft.spage=108&rft.epage=115&rft_id=info:doi/10.1111%2Fj.1600-079X.2006.00337.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1600_079X_2006_00337_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon