Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation

:  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 41; no. 2; pp. 108 - 115
Main Authors Afreen, F., Zobayed, S. M. A., Kozai, T.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2006
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary::  Melatonin (N‐acetyl‐5‐methoxytryptamine) is known to be synthesized and secreted by the pineal gland in vertebrates. Evidence for the occurrence of melatonin in the roots of Glycyrrhiza uralensis plants and the response of this plant to the spectral quality of light including red, blue and white light (control) and UV‐B radiation (280–315 nm) for the synthesis of melatonin were investigated. Melatonin was extracted and quantified in seed, root, leaf and stem tissues and results revealed that the root tissues contained the highest concentration of melatonin; melatonin concentrations also increased with plant development. After 3 months of growth under red, blue and white fluorescent lamps, the melatonin concentrations were highest in red light exposed plants and varied depending on the wavelength of light spectrum in the following order red ≫ blue ≥ white light. Interestingly, in a more mature plant (6 months) melatonin concentration was increased considerably; the increments in concentration were X4, X5 and X3 in 6‐month‐old red, blue and white light exposed (control) plants, respectively. The difference in melatonin concentrations between blue and white light exposed (control) plants was not significant. The concentration of melatonin quantified in the root tissues was highest in the plants exposed to high intensity UV‐B radiation for 3 days followed by low intensity UV‐B radiation for 15 days. The reduction of melatonin under longer periods of UV‐B exposure indicates that melatonin synthesis may be related to the integrated (intensity and duration) value of UV‐B irradiation. Melatonin in G. uralensis plant is presumably for protection against oxidative damage caused as a response to UV irradiation.
Bibliography:ark:/67375/WNG-J0B0RCWR-V
istex:1A7CCAAD1AE55ED9BD84169E39E2A7ACA6208226
ArticleID:JPI337
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0742-3098
1600-079X
DOI:10.1111/j.1600-079X.2006.00337.x