Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode
Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO 3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/elec...
Saved in:
Published in | Nano-micro letters Vol. 13; no. 1; pp. 79 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO
3
, is introduced to Zn anode surface in aqueous zinc ion batteries.
The BaTiO
3
layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface.
Zn dendrite can be restrained, and Zn metal batteries based on BaTiO
3
layer show stable cycling.
Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO
3
, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO
3
layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm
−2
with capacity of 1 mAh cm
−2
. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO
2
batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g
−1
after 300 cycles. |
---|---|
AbstractList | Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface. Zn dendrite can be restrained, and Zn metal batteries based on BaTiO3 layer show stable cycling. Abstract Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO3, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm−2 with capacity of 1 mAh cm−2. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g−1 after 300 cycles. HighlightsAn artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion batteries.The BaTiO3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface.Zn dendrite can be restrained, and Zn metal batteries based on BaTiO3 layer show stable cycling.Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO3, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm−2 with capacity of 1 mAh cm−2. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g−1 after 300 cycles. Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO 3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface. Zn dendrite can be restrained, and Zn metal batteries based on BaTiO 3 layer show stable cycling. Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO 3 , which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO 3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm −2 with capacity of 1 mAh cm −2 . Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO 2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g −1 after 300 cycles. |
ArticleNumber | 79 |
Author | Wu, Kai Liu, Xiaoyu Liu, Yuyu Cui, Jin Xie, Yihua Zhang, Jiujun Yi, Jin Sun, Yang Xia, Yongyao |
Author_xml | – sequence: 1 givenname: Kai surname: Wu fullname: Wu, Kai organization: Institute for Sustainable Energy/College of Sciences, Shanghai University – sequence: 2 givenname: Jin surname: Yi fullname: Yi, Jin email: jin.yi@shu.edu.cn organization: Institute for Sustainable Energy/College of Sciences, Shanghai University – sequence: 3 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Institute for Sustainable Energy/College of Sciences, Shanghai University – sequence: 4 givenname: Yang surname: Sun fullname: Sun, Yang email: sunyang5@mail.sysu.edu.cn organization: School of Materials, Sun Yat-Sen University – sequence: 5 givenname: Jin surname: Cui fullname: Cui, Jin organization: Institute for Sustainable Energy/College of Sciences, Shanghai University – sequence: 6 givenname: Yihua surname: Xie fullname: Xie, Yihua organization: Department of Chemistry and Institute of New Energy, Fudan University – sequence: 7 givenname: Yuyu surname: Liu fullname: Liu, Yuyu organization: Institute for Sustainable Energy/College of Sciences, Shanghai University – sequence: 8 givenname: Yongyao surname: Xia fullname: Xia, Yongyao organization: Department of Chemistry and Institute of New Energy, Fudan University – sequence: 9 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun email: jiujun.zhang@i.shu.edu.cn organization: Institute for Sustainable Energy/College of Sciences, Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138325$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEUhUeoiJbSF2CBLLFhM-Df8XiDFLUFIkVC4mfDxvJ47qSuXDvYTlF3vANvyJPgJC3QLrKyZZ_z-d7r87Q5CDFA0zwn-DXBWL7JHPcUt5iSFmOhVEsfNUeUCNwKIchB3TNC2k7i7rA5ydkNWFAuqRT8SXPIOGE9o-KoKZ9gufamuLBE3wI6g1XMrrgY0LUzyAQ0S8VNzjrj0efo3fj7569zD7ak6G8KoHkokCZjAf1w5QLNvFsGGNGZW0UPGU0xoUWs7IWbYPPALMQRnjWPJ-MznNyux83Xd-dfTj-0i4_v56ezRWs7Jko7joMyamRgB0Y7YWTPp8mC6UACB2HxCCPuq5YSDmwkA--NxdZQhQ1lcmTHzXzHHaO51Kvkrky60dE4vT2IaalNbc960Gbo6cQtMXVEXA0wYMu4mGSdUye7QVbW2x1rtR6uYLQQSjL-HvT-TXAXehmvdU96KUhfAa9uASl-X0Mu-splC96bAHGdNRWcsvqRklfpywfSy7hOoY5K044oIRWmaq9KsF5hybDYq-KK8k7JbXEv_u_ub1t3QamCfiewKeacYNLWFbMJSm3WeU2w3sRS72Kpayz1NpaaVit9YL2j7zWxnSlXcVhC-lf2HtcfUNr0iw |
CitedBy_id | crossref_primary_10_1002_adfm_202426037 crossref_primary_10_1007_s12598_025_03298_8 crossref_primary_10_1016_j_scriptamat_2023_115520 crossref_primary_10_1016_j_ensm_2024_103456 crossref_primary_10_1007_s40820_023_01227_x crossref_primary_10_1016_j_jcis_2024_08_253 crossref_primary_10_1016_j_jechem_2022_01_037 crossref_primary_10_1016_j_cclet_2023_109332 crossref_primary_10_1016_j_jallcom_2022_168402 crossref_primary_10_1016_j_surfin_2024_104735 crossref_primary_10_1039_D3TA02663A crossref_primary_10_1021_acsami_2c05887 crossref_primary_10_1016_j_ensm_2024_103571 crossref_primary_10_1002_adma_202308086 crossref_primary_10_1002_cssc_202300632 crossref_primary_10_1557_s43581_022_00033_z crossref_primary_10_1007_s41918_024_00214_z crossref_primary_10_1039_D2TA04875B crossref_primary_10_1002_ente_202201288 crossref_primary_10_1016_j_cclet_2021_11_015 crossref_primary_10_1002_smtd_202201572 crossref_primary_10_1016_j_cej_2024_152524 crossref_primary_10_1016_j_ensm_2022_06_050 crossref_primary_10_3390_batteries8120293 crossref_primary_10_1016_j_jpowsour_2025_236316 crossref_primary_10_1021_acsenergylett_3c00534 crossref_primary_10_1002_smll_202303457 crossref_primary_10_1021_acs_iecr_2c03462 crossref_primary_10_1002_adfm_202112936 crossref_primary_10_1016_j_cej_2023_142308 crossref_primary_10_1002_smll_202407411 crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1002_aenm_202405804 crossref_primary_10_1002_cssc_202400076 crossref_primary_10_1016_j_jallcom_2024_176669 crossref_primary_10_1007_s40820_021_00782_5 crossref_primary_10_1002_smll_202303963 crossref_primary_10_1016_j_nanoen_2022_107333 crossref_primary_10_1016_j_ensm_2023_103075 crossref_primary_10_1007_s11431_022_2194_2 crossref_primary_10_1016_j_electacta_2024_145124 crossref_primary_10_1016_j_colsurfa_2022_129970 crossref_primary_10_1016_j_mtener_2021_100824 crossref_primary_10_1007_s40820_022_00867_9 crossref_primary_10_1007_s40820_024_01337_0 crossref_primary_10_1021_acsami_4c17475 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1039_D4RA07551J crossref_primary_10_1016_j_jcis_2022_10_127 crossref_primary_10_1021_acsanm_3c06229 crossref_primary_10_1039_D4QI02769H crossref_primary_10_1016_j_ensm_2023_103078 crossref_primary_10_1021_acsnano_4c04632 crossref_primary_10_1002_aenm_202400033 crossref_primary_10_1002_ange_202319661 crossref_primary_10_1007_s11431_022_2073_5 crossref_primary_10_1021_acsami_4c06463 crossref_primary_10_1021_acs_nanolett_2c03277 crossref_primary_10_1007_s40820_022_00969_4 crossref_primary_10_1016_j_nanoen_2023_108858 crossref_primary_10_1021_acsanm_1c02326 crossref_primary_10_1039_D1EE02021H crossref_primary_10_1016_j_ensm_2023_01_013 crossref_primary_10_1016_j_jechem_2022_03_026 crossref_primary_10_1002_advs_202402915 crossref_primary_10_3390_ijms252011172 crossref_primary_10_1039_D2CC02974J crossref_primary_10_1002_ange_202414562 crossref_primary_10_1016_j_ensm_2022_02_052 crossref_primary_10_1007_s40820_023_01174_7 crossref_primary_10_1016_j_nxener_2023_100048 crossref_primary_10_1002_batt_202300544 crossref_primary_10_1016_j_jcis_2025_02_082 crossref_primary_10_1002_adma_202413677 crossref_primary_10_1002_batt_202300420 crossref_primary_10_1021_acsenergylett_2c01960 crossref_primary_10_1039_D3TA01415K crossref_primary_10_1007_s12598_023_02319_8 crossref_primary_10_1002_adfm_202422868 crossref_primary_10_1021_acsami_2c04888 crossref_primary_10_1016_j_jpowsour_2024_235314 crossref_primary_10_1002_adfm_202409950 crossref_primary_10_1016_j_jallcom_2023_170323 crossref_primary_10_1002_admi_202102254 crossref_primary_10_1002_sstr_202200143 crossref_primary_10_1002_aenm_202300606 crossref_primary_10_1039_D4TA02133A crossref_primary_10_1007_s12598_023_02478_8 crossref_primary_10_1016_j_jpowsour_2023_233912 crossref_primary_10_1002_anie_202414562 crossref_primary_10_1021_acs_energyfuels_2c02920 crossref_primary_10_1002_smll_202205667 crossref_primary_10_1002_eem2_12265 crossref_primary_10_1016_j_jechem_2023_02_037 crossref_primary_10_1016_j_scib_2023_09_034 crossref_primary_10_1002_adfm_202305098 crossref_primary_10_1002_aenm_202200318 crossref_primary_10_1021_acssuschemeng_1c08646 crossref_primary_10_3390_nano11102746 crossref_primary_10_1002_cssc_202401251 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1002_adfm_202201038 crossref_primary_10_1016_j_cclet_2021_09_083 crossref_primary_10_1016_j_ensm_2023_01_034 crossref_primary_10_1021_acsami_4c20613 crossref_primary_10_1007_s40820_021_00777_2 crossref_primary_10_1002_celc_202200222 crossref_primary_10_1021_acs_iecr_2c02575 crossref_primary_10_1007_s40820_022_00939_w crossref_primary_10_1002_smsc_202400015 crossref_primary_10_1016_j_jmst_2023_02_062 crossref_primary_10_1002_smll_202200006 crossref_primary_10_1002_smtd_202300101 crossref_primary_10_1039_D1CC06325A crossref_primary_10_1016_j_electacta_2023_143211 crossref_primary_10_1016_j_ensm_2022_07_046 crossref_primary_10_1016_j_cej_2022_136247 crossref_primary_10_1039_D4TA00580E crossref_primary_10_1002_anie_202319661 crossref_primary_10_1016_j_mtchem_2023_101629 crossref_primary_10_1016_j_electacta_2025_146053 crossref_primary_10_1002_batt_202200468 crossref_primary_10_1016_j_gee_2024_05_012 crossref_primary_10_1002_anie_202215324 crossref_primary_10_1002_ente_202200944 crossref_primary_10_1016_j_mset_2023_04_003 crossref_primary_10_1021_acsenergylett_3c01017 crossref_primary_10_1002_aenm_202204092 crossref_primary_10_1016_j_jmat_2024_05_013 crossref_primary_10_1021_acsnano_1c04354 crossref_primary_10_1039_D4TA05143B crossref_primary_10_1007_s40820_022_00960_z crossref_primary_10_1002_ange_202215324 crossref_primary_10_1007_s40820_024_01475_5 crossref_primary_10_1016_j_ensm_2023_102856 crossref_primary_10_1002_batt_202100417 crossref_primary_10_1016_j_cej_2021_132576 crossref_primary_10_1002_cnl2_109 crossref_primary_10_3390_ma16113957 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1039_D2TA03550B crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1007_s40820_022_00835_3 crossref_primary_10_1021_acsenergylett_2c02339 crossref_primary_10_1021_acsenergylett_2c02735 crossref_primary_10_1002_adfm_202404579 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1002_smll_202401789 crossref_primary_10_1007_s12598_024_02673_1 crossref_primary_10_1016_j_colsurfa_2022_130255 crossref_primary_10_1021_acsami_2c07551 crossref_primary_10_1021_acsami_2c01698 crossref_primary_10_1088_2515_7655_ac774d crossref_primary_10_1039_D3QM00964E crossref_primary_10_1021_acsnano_4c06588 crossref_primary_10_1016_j_fuel_2022_125510 crossref_primary_10_1016_j_cej_2024_154311 crossref_primary_10_1021_acsami_2c13261 crossref_primary_10_1016_j_jpowsour_2023_234005 crossref_primary_10_1016_j_est_2023_109874 crossref_primary_10_1021_acsami_1c05941 crossref_primary_10_1016_j_nanoen_2024_109416 crossref_primary_10_1016_j_ijbiomac_2025_140691 crossref_primary_10_1016_j_nanoen_2021_106322 |
Cites_doi | 10.1021/acs.accounts.9b00457 10.1063/1.2211309 10.1002/adsu.201700133 10.1126/sciadv.aba4098 10.1021/acs.nanolett.7b04889 10.1039/c7ta00371d 10.1038/nenergy.2016.39 10.1021/acsenergylett.8b00565 10.1021/acsaem.0c00309 10.1021/jacs.8b09603 10.1126/science.1223985 10.1016/j.electacta.2018.04.139 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1088/1361-6528/ab5b38 10.1016/j.nanoen.2018.07.006 10.1016/0927-0256(96)00008-0 10.1002/aenm.201801090 10.1002/adfm.201803665 10.1103/PhysRevB.54.11169 10.14456/jmmm.2019.55 10.1039/c9ee03545a 10.1002/adfm.201802564 10.1039/d0ta02486d 10.1002/adfm.201908528 10.1021/acsenergylett.8b01426 10.1039/c9ee00596j 10.1002/anie.202005472 10.1002/anie.202001844 10.1002/adfm.201602498 10.1002/adfm.202001867 10.14456/jmmm.2020.31 10.1021/acsami.9b11243 10.1002/adma.202001755 10.1002/adfm.202000599 10.1002/aenm.201903977 10.1002/anie.202000162 10.1021/acs.nanolett.5b02379 10.1039/d0ta06622b 10.1016/j.ensm.2020.01.003 10.1016/j.apsusc.2020.147630 10.1021/jacs.8b07858 10.1126/science.1092508 10.1016/j.nanoen.2019.05.059 10.1002/adma.201903675 10.1039/c8ee01991f 10.1002/aenm.201400930 10.1016/j.pmatsci.2007.05.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-021-00599-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_ab82f4c1a72749beb0c345f7138676b7 PMC8187518 34138325 10_1007_s40820_021_00599_2 |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-ddb9a9d3ecb3265a784ffcea6e7e4e5c0ded08c63214e3d1b48ac0ca290a237d3 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:22:00 EDT 2025 Thu Aug 21 17:44:42 EDT 2025 Fri Jul 11 01:22:14 EDT 2025 Wed Aug 13 10:40:40 EDT 2025 Wed Aug 13 03:05:51 EDT 2025 Wed Aug 13 11:32:07 EDT 2025 Mon Jul 21 05:57:28 EDT 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Fri Feb 21 02:46:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Artificial solid–electrolyte interface Regulated Zn deposition Zn anode Perovskite type dielectric material Zn ion battery |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-ddb9a9d3ecb3265a784ffcea6e7e4e5c0ded08c63214e3d1b48ac0ca290a237d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2538907305?pq-origsite=%requestingapplication% |
PMID | 34138325 |
PQID | 2492469718 |
PQPubID | 2044332 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab82f4c1a72749beb0c345f7138676b7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187518 proquest_miscellaneous_2542359974 proquest_journals_2619579029 proquest_journals_2538907305 proquest_journals_2492469718 pubmed_primary_34138325 crossref_citationtrail_10_1007_s40820_021_00599_2 crossref_primary_10_1007_s40820_021_00599_2 springer_journals_10_1007_s40820_021_00599_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2021 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Cui, Zhao, Wu, Chen, Yang (CR42) 2020; 59 Deng, Xie, Han, Tang, Gao (CR6) 2020; 30 Lolupiman, Wangyao, Qin (CR21) 2019; 29 Zhang, Dong, Jia, Bian, Wang (CR9) 2018; 3 Zhao, Zhao, Hu, Li, Li (CR19) 2019; 12 Bi, Bi, Hao, Luo, Cai (CR28) 2018; 51 Kresse, Furthmüjller (CR36) 1996; 6 Yun, Shin, Ryu, Shinde, Kim (CR38) 2018; 2 Cao, Zhang, Zhang, Sawangphruk, Qin (CR4) 2020; 8 Kresse, Furthmüjller (CR35) 1996; 54 Kong, Zhang, Ma, Boey (CR30) 2008; 53 Yim, Han, Park, Park, Lee (CR31) 2016; 26 Song, Tan, Chao, Fan (CR13) 2018; 28 Hou, Tan, Gao, Li, Lu (CR40) 2020; 8 Cui, Zhao, Wu, Wang, Qin (CR41) 2020; 27 Yang, Guo, Yan, Wang, Liu (CR25) 2020; 32 Blochl (CR34) 1994; 50 Liu, Yi, Wu, Jiang, Liu (CR5) 2020; 31 Wu, Huang, Yi, Liu, Liu (CR14) 2020; 10 Yu, So, Ren, Wu, Guo (CR15) 2018; 140 Zhang, Yu (CR16) 2020; 53 Xie, Liang, Gao, Guo, Guo (CR24) 2020; 13 Braga, Oliveira, Kai, Murchison, Bard (CR29) 2018; 140 Zhang, Luan, Tang, Ji, Wang (CR44) 2020; 59 Cao, Zhang, Zhang, Wang, Han (CR7) 2020; 534 Hu, Zhu, Wang, Wei, Yan (CR8) 2018; 18 Ahn, Rabe, Triscone (CR32) 2004; 303 Zheng, Hou, Duan, Song, Wei (CR43) 2015; 15 Zhao, Yang, Liu, Zhu, Huang (CR20) 2020 Abdulla, Cao, Wangyao, Qin (CR17) 2020; 30 Yang, Chang, Qiao, Deng, Mu (CR22) 2020; 59 Peng, Freunberger, Chen, Bruce (CR26) 2012; 337 Palneedi, Peddigari, Hwang, Jeong, Ryu (CR27) 2018; 28 Fang, Zhou, Pan, Liang (CR1) 2018; 3 Yi, Liang, Liu, Wu, Liu (CR2) 2018; 11 Kang, Cui, Jiang, Gao, Luo (CR18) 2018; 8 Zhang, Chen, Zhou, Liu (CR12) 2015; 5 Ma, Cross (CR33) 2006; 88 Li, Ma, Han, Wang, Liu (CR10) 2019; 62 Chen, Wood, Kazyak, LePage, Davis (CR45) 2017; 5 Pan, Shao, Yan, Cheng, Han (CR47) 2016; 1 Liang, Yi, Liu, Wu, Wang (CR3) 2020; 30 Liu, Yang, Liu, Amine, Zhao (CR23) 2019; 11 Chao, Zhou, Xie, Ye, Li (CR39) 2020; 6 Alfaruqi, Islam, Putro, Mathew, Kim (CR48) 2018; 276 Venkatkarthick, Rodthongkum, Zhang, Wang, Pattananuwat (CR11) 2020; 3 Zeng, Zhang, Qin, Liu, Fang (CR46) 2019; 31 Perdew, Burke, Ernzerhof (CR37) 1996; 77 D Chao (599_CR39) 2020; 6 L Zhang (599_CR12) 2015; 5 X Zhang (599_CR16) 2020; 53 G Fang (599_CR1) 2018; 3 Z Zhao (599_CR19) 2019; 12 JM Yun (599_CR38) 2018; 2 K Bi (599_CR28) 2018; 51 P Liang (599_CR3) 2020; 30 J Cao (599_CR7) 2020; 534 Y Cui (599_CR41) 2020; 27 Y Zeng (599_CR46) 2019; 31 C Deng (599_CR6) 2020; 30 X Xie (599_CR24) 2020; 13 Y Cui (599_CR42) 2020; 59 Q Zhang (599_CR44) 2020; 59 T Yim (599_CR31) 2016; 26 CH Ahn (599_CR32) 2004; 303 JP Perdew (599_CR37) 1996; 77 P Hu (599_CR8) 2018; 18 PE Blochl (599_CR34) 1994; 50 Z Peng (599_CR26) 2012; 337 LB Kong (599_CR30) 2008; 53 MH Braga (599_CR29) 2018; 140 R Zhao (599_CR20) 2020 H Li (599_CR10) 2019; 62 ZMH Alfaruqi (599_CR48) 2018; 276 J Abdulla (599_CR17) 2020; 30 G Kresse (599_CR35) 1996; 54 N Zhang (599_CR9) 2018; 3 K Wu (599_CR14) 2020; 10 L Kang (599_CR18) 2018; 8 W Ma (599_CR33) 2006; 88 X Liu (599_CR5) 2020; 31 H Yang (599_CR22) 2020; 59 Q Yang (599_CR25) 2020; 32 J Yi (599_CR2) 2018; 11 K Lolupiman (599_CR21) 2019; 29 H Palneedi (599_CR27) 2018; 28 J Zheng (599_CR43) 2015; 15 H Pan (599_CR47) 2016; 1 J Cao (599_CR4) 2020; 8 Z Hou (599_CR40) 2020; 8 G Kresse (599_CR36) 1996; 6 M Song (599_CR13) 2018; 28 H Yu (599_CR15) 2018; 140 M Liu (599_CR23) 2019; 11 R Venkatkarthick (599_CR11) 2020; 3 K-H Chen (599_CR45) 2017; 5 |
References_xml | – volume: 53 start-page: 368 year: 2020 end-page: 379 ident: CR16 article-title: Crystalline domain battery materials publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00457 – volume: 88 start-page: 232902 year: 2006 ident: CR33 article-title: Flexoelectricity of barium titanate publication-title: Appl. Phys. Lett. doi: 10.1063/1.2211309 – volume: 2 start-page: 1700133 year: 2018 ident: CR38 article-title: Piezoelectric performance of cubic-phase BaTiO nanoparticles vertically aligned via electric field publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700133 – volume: 6 start-page: eaba4098 year: 2020 ident: CR39 article-title: Roadmap for advanced aqueous batteries: from design of materials to applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 18 start-page: 1758 year: 2018 end-page: 1763 ident: CR8 article-title: Highly durable Na V O ⋅1.63H O nanowire cathode for aqueous zinc-ion battery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04889 – volume: 5 start-page: 11671 year: 2017 end-page: 11681 ident: CR45 article-title: Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes publication-title: J. Mater. Chem. A doi: 10.1039/c7ta00371d – volume: 1 start-page: 16039 year: 2016 ident: CR47 article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 3 start-page: 1366 year: 2018 end-page: 1372 ident: CR9 article-title: Rechargeable aqueous Zn–V O battery with high energy density and long cycle life publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – volume: 3 start-page: 4677 year: 2020 end-page: 4689 ident: CR11 article-title: Vanadium-based oxide on two-dimensional vanadium carbide mxene (V O @V CT ) as cathode for rechargeable aqueous zinc-ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00309 – volume: 140 start-page: 17968 year: 2018 end-page: 17976 ident: CR29 article-title: Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09603 – volume: 337 start-page: 563 year: 2012 ident: CR26 article-title: A reversible and higher-rate Li–O battery publication-title: Science doi: 10.1126/science.1223985 – volume: 276 start-page: 1 year: 2018 end-page: 11 ident: CR48 article-title: Structural transformation and electrochemical study of layered MnO in rechargeable aqueous zinc-ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.139 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR34 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 31 start-page: 122001 year: 2020 ident: CR5 article-title: Rechargeable Zn–MnO batteries: advances, challenges and perspectives publication-title: Nanotechnology doi: 10.1088/1361-6528/ab5b38 – volume: 51 start-page: 513 year: 2018 end-page: 523 ident: CR28 article-title: Ultrafine core-shell BaTiO @SiO structures for nanocomposite capacitors with high energy density publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.006 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR36 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 1801090 year: 2018 ident: CR18 article-title: Nanoporous CaCO coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 28 start-page: 1803665 year: 2018 ident: CR27 article-title: High-performance dielectric ceramic films for energy storage capacitors: progress and outlook publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803665 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR35 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 29 start-page: 120 year: 2019 end-page: 126 ident: CR21 article-title: Electrodeposition of Zn/TiO composite coatings for anode materials of zinc ion battery publication-title: J. Met. Mater. Miner. doi: 10.14456/jmmm.2019.55 – volume: 13 start-page: 503 year: 2020 end-page: 510 ident: CR24 article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes publication-title: Energy Environ. Sci. doi: 10.1039/c9ee03545a – volume: 28 start-page: 1802564 year: 2018 ident: CR13 article-title: Recent advances in Zn-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 8 start-page: 9331 year: 2020 end-page: 9344 ident: CR4 article-title: A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode publication-title: J. Mater. Chem. A doi: 10.1039/d0ta02486d – volume: 30 start-page: 1908528 year: 2020 ident: CR3 article-title: Highly reversible zn anode enabled by controllable formation of nucleation sites for Zn-based batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908528 – volume: 3 start-page: 2480 year: 2018 end-page: 2501 ident: CR1 article-title: Recent advances in aqueous zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 12 start-page: 1938 year: 2019 end-page: 1949 ident: CR19 article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase publication-title: Energy Environ. Sci. doi: 10.1039/c9ee00596j – volume: 59 start-page: 16594 year: 2020 end-page: 16601 ident: CR42 article-title: An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005472 – volume: 59 start-page: 9377 year: 2020 end-page: 9381 ident: CR22 article-title: Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001844 – volume: 26 start-page: 7817 year: 2016 end-page: 7823 ident: CR31 article-title: Effective polysulfide rejection by dipole-aligned BaTiO coated separator in lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602498 – year: 2020 ident: CR20 article-title: Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001867 – volume: 30 start-page: 1 year: 2020 end-page: 8 ident: CR17 article-title: Review on the suppression of Zn dendrite for high performance of Zn ion battery publication-title: J. Met. Mater. Miner. doi: 10.14456/jmmm.2020.31 – volume: 11 start-page: 32046 year: 2019 end-page: 32051 ident: CR23 article-title: Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11243 – volume: 32 start-page: 2001755 year: 2020 ident: CR25 article-title: Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes publication-title: Adv. Mater. doi: 10.1002/adma.202001755 – volume: 30 start-page: 2000599 year: 2020 ident: CR6 article-title: A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000599 – volume: 10 start-page: 1903977 year: 2020 ident: CR14 article-title: Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903977 – volume: 59 start-page: 13180 year: 2020 end-page: 13191 ident: CR44 article-title: Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000162 – volume: 15 start-page: 6102 year: 2015 end-page: 6109 ident: CR43 article-title: Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02379 – volume: 8 start-page: 19367 year: 2020 end-page: 19374 ident: CR40 article-title: Tailoring desolvation kinetics enables stable zinc metal anodes publication-title: J. Mater. Chem. A doi: 10.1039/d0ta06622b – volume: 27 start-page: 1 year: 2020 end-page: 8 ident: CR41 article-title: Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.003 – volume: 534 start-page: 147630 year: 2020 ident: CR7 article-title: Mechanochemical reactions of MnO and graphite nanosheets as a durable zinc ion battery cathode publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147630 – volume: 140 start-page: 15279 year: 2018 end-page: 15289 ident: CR15 article-title: Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07858 – volume: 303 start-page: 488 year: 2004 end-page: 491 ident: CR32 article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures publication-title: Science doi: 10.1126/science.1092508 – volume: 62 start-page: 550 year: 2019 end-page: 587 ident: CR10 article-title: Advanced rechargeable zinc-based batteries: recent progress and future perspectives publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.059 – volume: 31 start-page: e1903675 year: 2019 ident: CR46 article-title: Dendrite-free zinc deposition induced by multifunctional cnt frameworks for stable flexible Zn-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201903675 – volume: 11 start-page: 3075 year: 2018 end-page: 3095 ident: CR2 article-title: Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries publication-title: Energy Environ. Sci. doi: 10.1039/c8ee01991f – volume: 5 start-page: 1400930 year: 2015 ident: CR12 article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 53 start-page: 207 year: 2008 end-page: 322 ident: CR30 article-title: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2007.05.001 – volume: 534 start-page: 147630 year: 2020 ident: 599_CR7 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147630 – volume: 26 start-page: 7817 year: 2016 ident: 599_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602498 – volume: 54 start-page: 11169 year: 1996 ident: 599_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 2 start-page: 1700133 year: 2018 ident: 599_CR38 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201700133 – volume: 28 start-page: 1802564 year: 2018 ident: 599_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 59 start-page: 16594 year: 2020 ident: 599_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005472 – volume: 59 start-page: 9377 year: 2020 ident: 599_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001844 – volume: 140 start-page: 17968 year: 2018 ident: 599_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09603 – volume: 3 start-page: 4677 year: 2020 ident: 599_CR11 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00309 – volume: 140 start-page: 15279 year: 2018 ident: 599_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07858 – volume: 11 start-page: 3075 year: 2018 ident: 599_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/c8ee01991f – volume: 32 start-page: 2001755 year: 2020 ident: 599_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.202001755 – volume: 12 start-page: 1938 year: 2019 ident: 599_CR19 publication-title: Energy Environ. Sci. doi: 10.1039/c9ee00596j – volume: 3 start-page: 2480 year: 2018 ident: 599_CR1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 31 start-page: 122001 year: 2020 ident: 599_CR5 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab5b38 – volume: 18 start-page: 1758 year: 2018 ident: 599_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04889 – volume: 29 start-page: 120 year: 2019 ident: 599_CR21 publication-title: J. Met. Mater. Miner. doi: 10.14456/jmmm.2019.55 – volume: 88 start-page: 232902 year: 2006 ident: 599_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2211309 – volume: 5 start-page: 11671 year: 2017 ident: 599_CR45 publication-title: J. Mater. Chem. A doi: 10.1039/c7ta00371d – volume: 27 start-page: 1 year: 2020 ident: 599_CR41 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.003 – volume: 30 start-page: 1908528 year: 2020 ident: 599_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908528 – volume: 3 start-page: 1366 year: 2018 ident: 599_CR9 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00565 – volume: 53 start-page: 368 year: 2020 ident: 599_CR16 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00457 – year: 2020 ident: 599_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001867 – volume: 50 start-page: 17953 year: 1994 ident: 599_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 5 start-page: 1400930 year: 2015 ident: 599_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 13 start-page: 503 year: 2020 ident: 599_CR24 publication-title: Energy Environ. Sci. doi: 10.1039/c9ee03545a – volume: 77 start-page: 3865 year: 1996 ident: 599_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 59 start-page: 13180 year: 2020 ident: 599_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000162 – volume: 10 start-page: 1903977 year: 2020 ident: 599_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903977 – volume: 303 start-page: 488 year: 2004 ident: 599_CR32 publication-title: Science doi: 10.1126/science.1092508 – volume: 30 start-page: 1 year: 2020 ident: 599_CR17 publication-title: J. Met. Mater. Miner. doi: 10.14456/jmmm.2020.31 – volume: 53 start-page: 207 year: 2008 ident: 599_CR30 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2007.05.001 – volume: 51 start-page: 513 year: 2018 ident: 599_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.006 – volume: 6 start-page: 15 year: 1996 ident: 599_CR36 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 8 start-page: 19367 year: 2020 ident: 599_CR40 publication-title: J. Mater. Chem. A doi: 10.1039/d0ta06622b – volume: 8 start-page: 9331 year: 2020 ident: 599_CR4 publication-title: J. Mater. Chem. A doi: 10.1039/d0ta02486d – volume: 337 start-page: 563 year: 2012 ident: 599_CR26 publication-title: Science doi: 10.1126/science.1223985 – volume: 11 start-page: 32046 year: 2019 ident: 599_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11243 – volume: 1 start-page: 16039 year: 2016 ident: 599_CR47 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 30 start-page: 2000599 year: 2020 ident: 599_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000599 – volume: 62 start-page: 550 year: 2019 ident: 599_CR10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.059 – volume: 6 start-page: eaba4098 year: 2020 ident: 599_CR39 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 276 start-page: 1 year: 2018 ident: 599_CR48 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.139 – volume: 8 start-page: 1801090 year: 2018 ident: 599_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 15 start-page: 6102 year: 2015 ident: 599_CR43 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02379 – volume: 31 start-page: e1903675 year: 2019 ident: 599_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201903675 – volume: 28 start-page: 1803665 year: 2018 ident: 599_CR27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803665 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.597774 |
Snippet | Highlights
An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO
3
, is introduced to Zn anode surface in aqueous zinc ion... HighlightsAn artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion... Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | Anodes Anodic polarization Artificial solid–electrolyte interface Barium titanates Cycles Dendritic structure Deposition Electric dipoles Electric fields Electrode polarization Electrolytes Energy storage Engineering Manganese dioxide Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Perovskite type dielectric material Perovskites Plating Rechargeable batteries Regulated Zn deposition Storage batteries Stripping Zinc Zn anode Zn ion battery Zn-ion batteries |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnuCA-CewICNxAwvHceLkWNhdrdDCAVhpxSXyzwQiVckKskjceAfekCdhxknTFgpcuLW148Tj6cznzPgbxh7bxhjptRRNcFbo4JVwLlihtIfUmTRv4jnuV6-L41P98iw_2yj1RTlhIz3wKLhn1pWq0T616Gh15cBJn-m8wb1VWZjCxXPk6PM2NlOoScpQRaZ1fJDKKusNlhpNnC7ZmsgsJ-Iys-bHzJXG202OdgTShkJYsVJdmorCyGI6gRPP4VHVZiko2yHynQi15eViMYBdCPb3RMxforHRyR1dY1cndMoXo1Sus0vQ3WBXNjgLb7LhzVi9Hr_w9x0_gFXaF__SWm67ePFIS8Hf9ss2_Pj2_XCstbP8OgCPryAb64HTK2C-WLYf0NLzg_acqKU4Ymh-0uPYJ20DdINF1we4xU6PDt-9OBZT6QbhEcEMIgRX2Spk4B3iw9yaUjeNB1uAAQ25lwGCLLGvSjVkIXW6tF56qyppVWZCdpvtdX0Hdxk3KtDxYd1Y47QvweLHMtLKIfYrK0hYuhJ17SdecyqvsaxnRua4PDUuTx2Xp1YJezJfcz6yevy193NawbknMXLHH1BP60lP63_pacL2V-tfT2bic010jbqoEB_sbkZvVJENznc34-Y3N5VUVcIezc1oHijmYzvoL2gIxMs4C6MTdmdUtnkeBGDQoOPgZksNtya63dK1HyMFOcI8itcl7OlKYdeP9WdB3vsfgrzPLiv6p8WUon22N3y6gAcIDAf3MNqAn8jUVBU priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQucAB8SalICNxA0uOY8fJcelDFSocgEoVl8ivlEirpGpTpN76H_iH_BJmnMd2YUHitrt2vHFmPPM5M_6GkNem1po7yVntrWHSO8Gs9YYJ6UJqdarqeI77w8f88Fi-P1En46GwiynbfQpJRks9H3bD0sicYUpBJBVhYHhvK9i7o17vrjjHhcZqTKvYIJZUljcYaiTyuWQrEjOFpGV6xY2phASfPjrZAURrDF_FKnVpynLN8_H0zebbWvNwsRDAJvT6ZxLmb5HY6OAO7pN7IzKli0GVHpBboX1I7t7gK3xE-k9D5Xr4Qr-2dC9MKV_0e2OoaePFAyUF_dwtG__z-sf-UGdnedUHGl8_1sYFiq9_6WLZnIKVp3vNGdJKUcDP9KiDsY-aOuAfLNrOh8fk-GD_y-4hG8s2MAfopWfe29KUPgvOAjZURheyrl0wedBBBuW4D54X0FekMmQ-tbIwjjsjSm5Epn32hGy1XRueEaqFx6PDsjbaSlcEAx-LSCkHuK8oQ0LS6VFXbuQ0x9Iay2pmY47iqUA8VRRPJRLyZr7mbGD0-GfvdyjBuSeycccfuvPTalzclbGFqKVLDSiOLG2w3GVS1bD_L3KdW52QnUn-1WgiLiqkapR5CdhgczN4ohLtr9rcDBtfpUsuyoS8mpvBNGC8x7Shu8QhACvDLLRMyNNB2eZ5IHgBYw6D6zU1XJvoekvbfIv04wDxMFaXkLeTwq5u6-8Pcvv_uj8ndwSuqZg4tEO2-vPL8ALgX29fxtX-C5nMSHo priority: 102 providerName: Springer Nature |
Title | Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode |
URI | https://link.springer.com/article/10.1007/s40820-021-00599-2 https://www.ncbi.nlm.nih.gov/pubmed/34138325 https://www.proquest.com/docview/2492469718 https://www.proquest.com/docview/2538907305 https://www.proquest.com/docview/2619579029 https://www.proquest.com/docview/2542359974 https://pubmed.ncbi.nlm.nih.gov/PMC8187518 https://doaj.org/article/ab82f4c1a72749beb0c345f7138676b7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLVoZwMLxLspZWQkdhCROE6crNA8qVCpUKFSxSbyKyXSKJm2UyR2_AN_yJdwr_OYDgzdjDKx48Tx9fWJr30OIa9kIUSgeeAXRkmfG818pYz0Gdc2VCKMC7eP--NxcnjKP5zFZ-2E21W7rLLzic5Rm1rjHPlbBj0zQ3uM3y0vfFSNwuhqK6GxQwbgglP4-BqMZ8efTjqLYgKVmdZxQpRX5jfYajhyu0RrQrMYCczEmiczZhzG93bAbQC1wFCWU6wLQz8RQdLuxHH78VC9OfBx1YPjPfHZxmjnRAG2Idl_F2T-FZV1g938AbnfolQ6aszqIbljq0fk3g3uwsdkddKo2MMf-rWiU9st_6LfS0ll5S5u6Cno53pRmt8_f80azZ3Fj5WlbiqykNpSnAqmo0V5Dh6fTsslUkxRwNL0qIayj8rC4g1GVW3sE3I6n32ZHPqthIOvAcmsfGNUJjMTWa0AJ8ZSpLwotJWJFZbbWAfGmiCFvCzkNjKh4qnUgZYsCySLhImekt2qruweoYIZ3EbMCykU16mVcJg6ejnAgGlmPRJ2rzrXLb85ymws8p6Z2TVPDs2Tu-bJmUde99csG3aPW3OPsQX7nMjM7U7Ul-d529FzqVJWcB1KMByeKasCHfG4EGGUJiJRwiMHXfvnrbu4ypG2kScZ4ITtyb3tb0-Gj-BYZAHLPPKyTwY3gbEfWdn6GosA3Ay1ENwjzxpj6-uBQAYcOxQuNsxwo6KbKVX5zVGRA9zDuJ1H3nQGu36s_7_I_dsr-ZzcZdiH3KKhA7K7ury2LwD6rdSQ7KTz90MyGI2n4_mw7e1wdsI4_iaToZtU-QMwoFIu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiH8MBRYJTmBhr9de-4BQIA0pTXuAVqp6MfvnYCmyQ5uCeuMdeA8eiidhZm0nDYTeeouy603WMzvz2bP7fYQ8k4UQgeaBXxglfW4085Uy0mdc21CJMC7cOe6d3WS4zz8cxAdr5Fd3Fga3VXYx0QVqU2t8R_6KwcrM0B_jN9OvPqpGYXW1k9Bo3GLbnn6HR7bj11t9sO9zxgabe--Gfqsq4GtIrjPfGJXJzERWK4AusRQpLwptZWKF5TbWgbEmSKEvC7mNTKh4KnWgJcsCySJhIhj3ErnMoyjDFZUO3nf-ywTqQC2qkijmzM9w43BkkokW9Gkx0qWJBStnzDigiTa9N_BdYOHM6eOFoZ-IIGnP_bjTf6gVHfi4x8KxrPhsKbc6CYJVuPnf7Z9_1YBdah3cINdbTEx7jRPfJGu2ukWunWFKvE1mH-3YCY1VY3pY0b7tNpvRb6WksnIXN2QY9FM9Kc3vHz83G4WfyenMUvfis5DaUnzxTHuTcgz5hfbLKRJaUUDudFTD2KOysPgDvao29g7ZvxDT3iXrVV3Z-4QKZvDQMi-kUFynVsLH1JHZAeJMM-uRsLvVuW7Z1FHUY5LPeaCdeXIwT-7MkzOPvJhfM224RM7t_RYtOO-JPODui_ponLdhJZcqZQXXoQTH4ZmyKtARjwsRRmkiEiU8stHZP2-D03GOJJE8yQCVrG6er7TVzfDIHYssYJlHns6bIShhpUlWtj7BIQClwywE98i9xtnm80DYBGkEBhdLbrg00eWWqvziiM8BXGKV0CMvO4dd_K3_38gH50_yCbky3NsZ5aOt3e2H5CrD9eS2K22Q9dnRiX0EoHOmHruVTsnniw4tfwA0K4sG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQkRAcEP8EChiJG0RNHCdOjku3qwJLhYBKFZfIvyXSKlm1aSVuvANvyJMw42STXViQuGVjxxtn7JkvmZlvCHkhnRCR5lHojJIhN5qFShkZMq5trEScOp_H_f4oOzzmb0_Sk7Usfh_tvnJJdjkNyNJUt3tL4_aGxDcskxyFGF7gCUZCUMJX4U0lxqC-_ZF_nAmszDT6CbG8Ml9jq-HI7ZKMhGYpEpiJkSczZRzse29wO0At0JXlK9bFcZiJKOszcbbf1oa180UBtiHZPwMyf_PKemM3u0Vu9iiVTrpldZtcsfUdcmONu_AuaT92VezhB_1S06ldhX_Ry0pSWfuLO3oK-qlZVObn9x8HXc2dxbfWUv8p0kltKX4KppNFdQoan06rJVJMUcDSdN7A2PPKWfyDSd0Ye48czw4-7x-GfQmHUAOSaUNjVCELk1itACemUuTcOW1lZoXlNtWRsSbKoS-LuU1MrHgudaQlKyLJEmGS-2Snbmr7kFDBDKYRcyeF4jq3Eg5zTy8HGDAvbEDi1aMudc9vjmU2FuXAzOzFU4J4Si-ekgXk5XDNsmP3-Gfv1yjBoScyc_sTzdlp2W_0UqqcOa5jCQuHF8qqSCc8dSJO8kxkSgRkdyX_slcX5yXSNvKsAJywvRmsUoG6ON3eDC_BqSgiVgTk-dAMagJ9P7K2zQUOAbgZZiF4QB50i22YBwIZUOwwuNhYhhsT3Wypq6-eihzgHvrtAvJqtWDH2_r7g3z0f92fkWsfprNy_ubo3WNyneH28vFEu2SnPbuwTwAVtuqp3_i_AC_IT6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Zn+Deposition+via+an+Artificial+Solid%E2%80%93Electrolyte+Interface+with+Aligned+Dipoles+for+Long+Life+Zn+Anode&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Kai&rft.au=Yi%2C+Jin&rft.au=Liu%2C+Xiaoyu&rft.au=Sun%2C+Yang&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1007%2Fs40820-021-00599-2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |