Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode

Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO 3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/elec...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 79 - 11
Main Authors Wu, Kai, Yi, Jin, Liu, Xiaoyu, Sun, Yang, Cui, Jin, Xie, Yihua, Liu, Yuyu, Xia, Yongyao, Zhang, Jiujun
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO 3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface. Zn dendrite can be restrained, and Zn metal batteries based on BaTiO 3 layer show stable cycling. Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO 3 , which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO 3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm −2 with capacity of 1 mAh cm −2 . Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO 2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g −1 after 300 cycles.
AbstractList Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface. Zn dendrite can be restrained, and Zn metal batteries based on BaTiO3 layer show stable cycling. Abstract Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO3, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm−2 with capacity of 1 mAh cm−2. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g−1 after 300 cycles.
HighlightsAn artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion batteries.The BaTiO3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface.Zn dendrite can be restrained, and Zn metal batteries based on BaTiO3 layer show stable cycling.Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO3, which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm−2 with capacity of 1 mAh cm−2. Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g−1 after 300 cycles.
Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion batteries. The BaTiO 3 layer endowing inherent character of the switched polarization can regulate the interfacial electric field at anode/electrolyte interface. Zn dendrite can be restrained, and Zn metal batteries based on BaTiO 3 layer show stable cycling. Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices. However, the practical applications have been limited by the issues derived from Zn anode. As one of serious problems, Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable. Herein, with the aim to regulate Zn deposition, an artificial solid–electrolyte interface is subtly engineered with a perovskite type material, BaTiO 3 , which can be polarized, and its polarization could be switched under the external electric field. Resulting from the aligned dipole in BaTiO 3 layer, zinc ions could move in order during cycling process. Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth. As a result, the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm −2 with capacity of 1 mAh cm −2 . Furthermore, this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO 2 batteries. The battery can deliver nearly 100% Coulombic efficiency at 2 A g −1 after 300 cycles.
ArticleNumber 79
Author Wu, Kai
Liu, Xiaoyu
Liu, Yuyu
Cui, Jin
Xie, Yihua
Zhang, Jiujun
Yi, Jin
Sun, Yang
Xia, Yongyao
Author_xml – sequence: 1
  givenname: Kai
  surname: Wu
  fullname: Wu, Kai
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
– sequence: 2
  givenname: Jin
  surname: Yi
  fullname: Yi, Jin
  email: jin.yi@shu.edu.cn
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
– sequence: 3
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
– sequence: 4
  givenname: Yang
  surname: Sun
  fullname: Sun, Yang
  email: sunyang5@mail.sysu.edu.cn
  organization: School of Materials, Sun Yat-Sen University
– sequence: 5
  givenname: Jin
  surname: Cui
  fullname: Cui, Jin
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
– sequence: 6
  givenname: Yihua
  surname: Xie
  fullname: Xie, Yihua
  organization: Department of Chemistry and Institute of New Energy, Fudan University
– sequence: 7
  givenname: Yuyu
  surname: Liu
  fullname: Liu, Yuyu
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
– sequence: 8
  givenname: Yongyao
  surname: Xia
  fullname: Xia, Yongyao
  organization: Department of Chemistry and Institute of New Energy, Fudan University
– sequence: 9
  givenname: Jiujun
  surname: Zhang
  fullname: Zhang, Jiujun
  email: jiujun.zhang@i.shu.edu.cn
  organization: Institute for Sustainable Energy/College of Sciences, Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138325$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhUeoiJbSF2CBLLFhM-Df8XiDFLUFIkVC4mfDxvJ47qSuXDvYTlF3vANvyJPgJC3QLrKyZZ_z-d7r87Q5CDFA0zwn-DXBWL7JHPcUt5iSFmOhVEsfNUeUCNwKIchB3TNC2k7i7rA5ydkNWFAuqRT8SXPIOGE9o-KoKZ9gufamuLBE3wI6g1XMrrgY0LUzyAQ0S8VNzjrj0efo3fj7569zD7ak6G8KoHkokCZjAf1w5QLNvFsGGNGZW0UPGU0xoUWs7IWbYPPALMQRnjWPJ-MznNyux83Xd-dfTj-0i4_v56ezRWs7Jko7joMyamRgB0Y7YWTPp8mC6UACB2HxCCPuq5YSDmwkA--NxdZQhQ1lcmTHzXzHHaO51Kvkrky60dE4vT2IaalNbc960Gbo6cQtMXVEXA0wYMu4mGSdUye7QVbW2x1rtR6uYLQQSjL-HvT-TXAXehmvdU96KUhfAa9uASl-X0Mu-splC96bAHGdNRWcsvqRklfpywfSy7hOoY5K044oIRWmaq9KsF5hybDYq-KK8k7JbXEv_u_ub1t3QamCfiewKeacYNLWFbMJSm3WeU2w3sRS72Kpayz1NpaaVit9YL2j7zWxnSlXcVhC-lf2HtcfUNr0iw
CitedBy_id crossref_primary_10_1002_adfm_202426037
crossref_primary_10_1007_s12598_025_03298_8
crossref_primary_10_1016_j_scriptamat_2023_115520
crossref_primary_10_1016_j_ensm_2024_103456
crossref_primary_10_1007_s40820_023_01227_x
crossref_primary_10_1016_j_jcis_2024_08_253
crossref_primary_10_1016_j_jechem_2022_01_037
crossref_primary_10_1016_j_cclet_2023_109332
crossref_primary_10_1016_j_jallcom_2022_168402
crossref_primary_10_1016_j_surfin_2024_104735
crossref_primary_10_1039_D3TA02663A
crossref_primary_10_1021_acsami_2c05887
crossref_primary_10_1016_j_ensm_2024_103571
crossref_primary_10_1002_adma_202308086
crossref_primary_10_1002_cssc_202300632
crossref_primary_10_1557_s43581_022_00033_z
crossref_primary_10_1007_s41918_024_00214_z
crossref_primary_10_1039_D2TA04875B
crossref_primary_10_1002_ente_202201288
crossref_primary_10_1016_j_cclet_2021_11_015
crossref_primary_10_1002_smtd_202201572
crossref_primary_10_1016_j_cej_2024_152524
crossref_primary_10_1016_j_ensm_2022_06_050
crossref_primary_10_3390_batteries8120293
crossref_primary_10_1016_j_jpowsour_2025_236316
crossref_primary_10_1021_acsenergylett_3c00534
crossref_primary_10_1002_smll_202303457
crossref_primary_10_1021_acs_iecr_2c03462
crossref_primary_10_1002_adfm_202112936
crossref_primary_10_1016_j_cej_2023_142308
crossref_primary_10_1002_smll_202407411
crossref_primary_10_1016_j_enchem_2022_100076
crossref_primary_10_1002_aenm_202405804
crossref_primary_10_1002_cssc_202400076
crossref_primary_10_1016_j_jallcom_2024_176669
crossref_primary_10_1007_s40820_021_00782_5
crossref_primary_10_1002_smll_202303963
crossref_primary_10_1016_j_nanoen_2022_107333
crossref_primary_10_1016_j_ensm_2023_103075
crossref_primary_10_1007_s11431_022_2194_2
crossref_primary_10_1016_j_electacta_2024_145124
crossref_primary_10_1016_j_colsurfa_2022_129970
crossref_primary_10_1016_j_mtener_2021_100824
crossref_primary_10_1007_s40820_022_00867_9
crossref_primary_10_1007_s40820_024_01337_0
crossref_primary_10_1021_acsami_4c17475
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1039_D4RA07551J
crossref_primary_10_1016_j_jcis_2022_10_127
crossref_primary_10_1021_acsanm_3c06229
crossref_primary_10_1039_D4QI02769H
crossref_primary_10_1016_j_ensm_2023_103078
crossref_primary_10_1021_acsnano_4c04632
crossref_primary_10_1002_aenm_202400033
crossref_primary_10_1002_ange_202319661
crossref_primary_10_1007_s11431_022_2073_5
crossref_primary_10_1021_acsami_4c06463
crossref_primary_10_1021_acs_nanolett_2c03277
crossref_primary_10_1007_s40820_022_00969_4
crossref_primary_10_1016_j_nanoen_2023_108858
crossref_primary_10_1021_acsanm_1c02326
crossref_primary_10_1039_D1EE02021H
crossref_primary_10_1016_j_ensm_2023_01_013
crossref_primary_10_1016_j_jechem_2022_03_026
crossref_primary_10_1002_advs_202402915
crossref_primary_10_3390_ijms252011172
crossref_primary_10_1039_D2CC02974J
crossref_primary_10_1002_ange_202414562
crossref_primary_10_1016_j_ensm_2022_02_052
crossref_primary_10_1007_s40820_023_01174_7
crossref_primary_10_1016_j_nxener_2023_100048
crossref_primary_10_1002_batt_202300544
crossref_primary_10_1016_j_jcis_2025_02_082
crossref_primary_10_1002_adma_202413677
crossref_primary_10_1002_batt_202300420
crossref_primary_10_1021_acsenergylett_2c01960
crossref_primary_10_1039_D3TA01415K
crossref_primary_10_1007_s12598_023_02319_8
crossref_primary_10_1002_adfm_202422868
crossref_primary_10_1021_acsami_2c04888
crossref_primary_10_1016_j_jpowsour_2024_235314
crossref_primary_10_1002_adfm_202409950
crossref_primary_10_1016_j_jallcom_2023_170323
crossref_primary_10_1002_admi_202102254
crossref_primary_10_1002_sstr_202200143
crossref_primary_10_1002_aenm_202300606
crossref_primary_10_1039_D4TA02133A
crossref_primary_10_1007_s12598_023_02478_8
crossref_primary_10_1016_j_jpowsour_2023_233912
crossref_primary_10_1002_anie_202414562
crossref_primary_10_1021_acs_energyfuels_2c02920
crossref_primary_10_1002_smll_202205667
crossref_primary_10_1002_eem2_12265
crossref_primary_10_1016_j_jechem_2023_02_037
crossref_primary_10_1016_j_scib_2023_09_034
crossref_primary_10_1002_adfm_202305098
crossref_primary_10_1002_aenm_202200318
crossref_primary_10_1021_acssuschemeng_1c08646
crossref_primary_10_3390_nano11102746
crossref_primary_10_1002_cssc_202401251
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1002_adfm_202201038
crossref_primary_10_1016_j_cclet_2021_09_083
crossref_primary_10_1016_j_ensm_2023_01_034
crossref_primary_10_1021_acsami_4c20613
crossref_primary_10_1007_s40820_021_00777_2
crossref_primary_10_1002_celc_202200222
crossref_primary_10_1021_acs_iecr_2c02575
crossref_primary_10_1007_s40820_022_00939_w
crossref_primary_10_1002_smsc_202400015
crossref_primary_10_1016_j_jmst_2023_02_062
crossref_primary_10_1002_smll_202200006
crossref_primary_10_1002_smtd_202300101
crossref_primary_10_1039_D1CC06325A
crossref_primary_10_1016_j_electacta_2023_143211
crossref_primary_10_1016_j_ensm_2022_07_046
crossref_primary_10_1016_j_cej_2022_136247
crossref_primary_10_1039_D4TA00580E
crossref_primary_10_1002_anie_202319661
crossref_primary_10_1016_j_mtchem_2023_101629
crossref_primary_10_1016_j_electacta_2025_146053
crossref_primary_10_1002_batt_202200468
crossref_primary_10_1016_j_gee_2024_05_012
crossref_primary_10_1002_anie_202215324
crossref_primary_10_1002_ente_202200944
crossref_primary_10_1016_j_mset_2023_04_003
crossref_primary_10_1021_acsenergylett_3c01017
crossref_primary_10_1002_aenm_202204092
crossref_primary_10_1016_j_jmat_2024_05_013
crossref_primary_10_1021_acsnano_1c04354
crossref_primary_10_1039_D4TA05143B
crossref_primary_10_1007_s40820_022_00960_z
crossref_primary_10_1002_ange_202215324
crossref_primary_10_1007_s40820_024_01475_5
crossref_primary_10_1016_j_ensm_2023_102856
crossref_primary_10_1002_batt_202100417
crossref_primary_10_1016_j_cej_2021_132576
crossref_primary_10_1002_cnl2_109
crossref_primary_10_3390_ma16113957
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1039_D2TA03550B
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1007_s40820_022_00835_3
crossref_primary_10_1021_acsenergylett_2c02339
crossref_primary_10_1021_acsenergylett_2c02735
crossref_primary_10_1002_adfm_202404579
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1002_smll_202401789
crossref_primary_10_1007_s12598_024_02673_1
crossref_primary_10_1016_j_colsurfa_2022_130255
crossref_primary_10_1021_acsami_2c07551
crossref_primary_10_1021_acsami_2c01698
crossref_primary_10_1088_2515_7655_ac774d
crossref_primary_10_1039_D3QM00964E
crossref_primary_10_1021_acsnano_4c06588
crossref_primary_10_1016_j_fuel_2022_125510
crossref_primary_10_1016_j_cej_2024_154311
crossref_primary_10_1021_acsami_2c13261
crossref_primary_10_1016_j_jpowsour_2023_234005
crossref_primary_10_1016_j_est_2023_109874
crossref_primary_10_1021_acsami_1c05941
crossref_primary_10_1016_j_nanoen_2024_109416
crossref_primary_10_1016_j_ijbiomac_2025_140691
crossref_primary_10_1016_j_nanoen_2021_106322
Cites_doi 10.1021/acs.accounts.9b00457
10.1063/1.2211309
10.1002/adsu.201700133
10.1126/sciadv.aba4098
10.1021/acs.nanolett.7b04889
10.1039/c7ta00371d
10.1038/nenergy.2016.39
10.1021/acsenergylett.8b00565
10.1021/acsaem.0c00309
10.1021/jacs.8b09603
10.1126/science.1223985
10.1016/j.electacta.2018.04.139
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1088/1361-6528/ab5b38
10.1016/j.nanoen.2018.07.006
10.1016/0927-0256(96)00008-0
10.1002/aenm.201801090
10.1002/adfm.201803665
10.1103/PhysRevB.54.11169
10.14456/jmmm.2019.55
10.1039/c9ee03545a
10.1002/adfm.201802564
10.1039/d0ta02486d
10.1002/adfm.201908528
10.1021/acsenergylett.8b01426
10.1039/c9ee00596j
10.1002/anie.202005472
10.1002/anie.202001844
10.1002/adfm.201602498
10.1002/adfm.202001867
10.14456/jmmm.2020.31
10.1021/acsami.9b11243
10.1002/adma.202001755
10.1002/adfm.202000599
10.1002/aenm.201903977
10.1002/anie.202000162
10.1021/acs.nanolett.5b02379
10.1039/d0ta06622b
10.1016/j.ensm.2020.01.003
10.1016/j.apsusc.2020.147630
10.1021/jacs.8b07858
10.1126/science.1092508
10.1016/j.nanoen.2019.05.059
10.1002/adma.201903675
10.1039/c8ee01991f
10.1002/aenm.201400930
10.1016/j.pmatsci.2007.05.001
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-021-00599-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Collection (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 11
ExternalDocumentID oai_doaj_org_article_ab82f4c1a72749beb0c345f7138676b7
PMC8187518
34138325
10_1007_s40820_021_00599_2
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c635t-ddb9a9d3ecb3265a784ffcea6e7e4e5c0ded08c63214e3d1b48ac0ca290a237d3
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:22:00 EDT 2025
Thu Aug 21 17:44:42 EDT 2025
Fri Jul 11 01:22:14 EDT 2025
Wed Aug 13 10:40:40 EDT 2025
Wed Aug 13 03:05:51 EDT 2025
Wed Aug 13 11:32:07 EDT 2025
Mon Jul 21 05:57:28 EDT 2025
Tue Jul 01 00:55:45 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Fri Feb 21 02:46:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial solid–electrolyte interface
Regulated Zn deposition
Zn anode
Perovskite type dielectric material
Zn ion battery
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-ddb9a9d3ecb3265a784ffcea6e7e4e5c0ded08c63214e3d1b48ac0ca290a237d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2538907305?pq-origsite=%requestingapplication%
PMID 34138325
PQID 2492469718
PQPubID 2044332
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ab82f4c1a72749beb0c345f7138676b7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187518
proquest_miscellaneous_2542359974
proquest_journals_2619579029
proquest_journals_2538907305
proquest_journals_2492469718
pubmed_primary_34138325
crossref_citationtrail_10_1007_s40820_021_00599_2
crossref_primary_10_1007_s40820_021_00599_2
springer_journals_10_1007_s40820_021_00599_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Cui, Zhao, Wu, Chen, Yang (CR42) 2020; 59
Deng, Xie, Han, Tang, Gao (CR6) 2020; 30
Lolupiman, Wangyao, Qin (CR21) 2019; 29
Zhang, Dong, Jia, Bian, Wang (CR9) 2018; 3
Zhao, Zhao, Hu, Li, Li (CR19) 2019; 12
Bi, Bi, Hao, Luo, Cai (CR28) 2018; 51
Kresse, Furthmüjller (CR36) 1996; 6
Yun, Shin, Ryu, Shinde, Kim (CR38) 2018; 2
Cao, Zhang, Zhang, Sawangphruk, Qin (CR4) 2020; 8
Kresse, Furthmüjller (CR35) 1996; 54
Kong, Zhang, Ma, Boey (CR30) 2008; 53
Yim, Han, Park, Park, Lee (CR31) 2016; 26
Song, Tan, Chao, Fan (CR13) 2018; 28
Hou, Tan, Gao, Li, Lu (CR40) 2020; 8
Cui, Zhao, Wu, Wang, Qin (CR41) 2020; 27
Yang, Guo, Yan, Wang, Liu (CR25) 2020; 32
Blochl (CR34) 1994; 50
Liu, Yi, Wu, Jiang, Liu (CR5) 2020; 31
Wu, Huang, Yi, Liu, Liu (CR14) 2020; 10
Yu, So, Ren, Wu, Guo (CR15) 2018; 140
Zhang, Yu (CR16) 2020; 53
Xie, Liang, Gao, Guo, Guo (CR24) 2020; 13
Braga, Oliveira, Kai, Murchison, Bard (CR29) 2018; 140
Zhang, Luan, Tang, Ji, Wang (CR44) 2020; 59
Cao, Zhang, Zhang, Wang, Han (CR7) 2020; 534
Hu, Zhu, Wang, Wei, Yan (CR8) 2018; 18
Ahn, Rabe, Triscone (CR32) 2004; 303
Zheng, Hou, Duan, Song, Wei (CR43) 2015; 15
Zhao, Yang, Liu, Zhu, Huang (CR20) 2020
Abdulla, Cao, Wangyao, Qin (CR17) 2020; 30
Yang, Chang, Qiao, Deng, Mu (CR22) 2020; 59
Peng, Freunberger, Chen, Bruce (CR26) 2012; 337
Palneedi, Peddigari, Hwang, Jeong, Ryu (CR27) 2018; 28
Fang, Zhou, Pan, Liang (CR1) 2018; 3
Yi, Liang, Liu, Wu, Liu (CR2) 2018; 11
Kang, Cui, Jiang, Gao, Luo (CR18) 2018; 8
Zhang, Chen, Zhou, Liu (CR12) 2015; 5
Ma, Cross (CR33) 2006; 88
Li, Ma, Han, Wang, Liu (CR10) 2019; 62
Chen, Wood, Kazyak, LePage, Davis (CR45) 2017; 5
Pan, Shao, Yan, Cheng, Han (CR47) 2016; 1
Liang, Yi, Liu, Wu, Wang (CR3) 2020; 30
Liu, Yang, Liu, Amine, Zhao (CR23) 2019; 11
Chao, Zhou, Xie, Ye, Li (CR39) 2020; 6
Alfaruqi, Islam, Putro, Mathew, Kim (CR48) 2018; 276
Venkatkarthick, Rodthongkum, Zhang, Wang, Pattananuwat (CR11) 2020; 3
Zeng, Zhang, Qin, Liu, Fang (CR46) 2019; 31
Perdew, Burke, Ernzerhof (CR37) 1996; 77
D Chao (599_CR39) 2020; 6
L Zhang (599_CR12) 2015; 5
X Zhang (599_CR16) 2020; 53
G Fang (599_CR1) 2018; 3
Z Zhao (599_CR19) 2019; 12
JM Yun (599_CR38) 2018; 2
K Bi (599_CR28) 2018; 51
P Liang (599_CR3) 2020; 30
J Cao (599_CR7) 2020; 534
Y Cui (599_CR41) 2020; 27
Y Zeng (599_CR46) 2019; 31
C Deng (599_CR6) 2020; 30
X Xie (599_CR24) 2020; 13
Y Cui (599_CR42) 2020; 59
Q Zhang (599_CR44) 2020; 59
T Yim (599_CR31) 2016; 26
CH Ahn (599_CR32) 2004; 303
JP Perdew (599_CR37) 1996; 77
P Hu (599_CR8) 2018; 18
PE Blochl (599_CR34) 1994; 50
Z Peng (599_CR26) 2012; 337
LB Kong (599_CR30) 2008; 53
MH Braga (599_CR29) 2018; 140
R Zhao (599_CR20) 2020
H Li (599_CR10) 2019; 62
ZMH Alfaruqi (599_CR48) 2018; 276
J Abdulla (599_CR17) 2020; 30
G Kresse (599_CR35) 1996; 54
N Zhang (599_CR9) 2018; 3
K Wu (599_CR14) 2020; 10
L Kang (599_CR18) 2018; 8
W Ma (599_CR33) 2006; 88
X Liu (599_CR5) 2020; 31
H Yang (599_CR22) 2020; 59
Q Yang (599_CR25) 2020; 32
J Yi (599_CR2) 2018; 11
K Lolupiman (599_CR21) 2019; 29
H Palneedi (599_CR27) 2018; 28
J Zheng (599_CR43) 2015; 15
H Pan (599_CR47) 2016; 1
J Cao (599_CR4) 2020; 8
Z Hou (599_CR40) 2020; 8
G Kresse (599_CR36) 1996; 6
M Song (599_CR13) 2018; 28
H Yu (599_CR15) 2018; 140
M Liu (599_CR23) 2019; 11
R Venkatkarthick (599_CR11) 2020; 3
K-H Chen (599_CR45) 2017; 5
References_xml – volume: 53
  start-page: 368
  year: 2020
  end-page: 379
  ident: CR16
  article-title: Crystalline domain battery materials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00457
– volume: 88
  start-page: 232902
  year: 2006
  ident: CR33
  article-title: Flexoelectricity of barium titanate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2211309
– volume: 2
  start-page: 1700133
  year: 2018
  ident: CR38
  article-title: Piezoelectric performance of cubic-phase BaTiO nanoparticles vertically aligned via electric field
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700133
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: CR39
  article-title: Roadmap for advanced aqueous batteries: from design of materials to applications
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 18
  start-page: 1758
  year: 2018
  end-page: 1763
  ident: CR8
  article-title: Highly durable Na V O ⋅1.63H O nanowire cathode for aqueous zinc-ion battery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04889
– volume: 5
  start-page: 11671
  year: 2017
  end-page: 11681
  ident: CR45
  article-title: Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta00371d
– volume: 1
  start-page: 16039
  year: 2016
  ident: CR47
  article-title: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 3
  start-page: 1366
  year: 2018
  end-page: 1372
  ident: CR9
  article-title: Rechargeable aqueous Zn–V O battery with high energy density and long cycle life
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00565
– volume: 3
  start-page: 4677
  year: 2020
  end-page: 4689
  ident: CR11
  article-title: Vanadium-based oxide on two-dimensional vanadium carbide mxene (V O @V CT ) as cathode for rechargeable aqueous zinc-ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00309
– volume: 140
  start-page: 17968
  year: 2018
  end-page: 17976
  ident: CR29
  article-title: Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09603
– volume: 337
  start-page: 563
  year: 2012
  ident: CR26
  article-title: A reversible and higher-rate Li–O battery
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 276
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR48
  article-title: Structural transformation and electrochemical study of layered MnO in rechargeable aqueous zinc-ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.139
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR34
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 31
  start-page: 122001
  year: 2020
  ident: CR5
  article-title: Rechargeable Zn–MnO batteries: advances, challenges and perspectives
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab5b38
– volume: 51
  start-page: 513
  year: 2018
  end-page: 523
  ident: CR28
  article-title: Ultrafine core-shell BaTiO @SiO structures for nanocomposite capacitors with high energy density
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.006
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR36
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 8
  start-page: 1801090
  year: 2018
  ident: CR18
  article-title: Nanoporous CaCO coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 28
  start-page: 1803665
  year: 2018
  ident: CR27
  article-title: High-performance dielectric ceramic films for energy storage capacitors: progress and outlook
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803665
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR35
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 29
  start-page: 120
  year: 2019
  end-page: 126
  ident: CR21
  article-title: Electrodeposition of Zn/TiO composite coatings for anode materials of zinc ion battery
  publication-title: J. Met. Mater. Miner.
  doi: 10.14456/jmmm.2019.55
– volume: 13
  start-page: 503
  year: 2020
  end-page: 510
  ident: CR24
  article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee03545a
– volume: 28
  start-page: 1802564
  year: 2018
  ident: CR13
  article-title: Recent advances in Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 8
  start-page: 9331
  year: 2020
  end-page: 9344
  ident: CR4
  article-title: A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta02486d
– volume: 30
  start-page: 1908528
  year: 2020
  ident: CR3
  article-title: Highly reversible zn anode enabled by controllable formation of nucleation sites for Zn-based batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908528
– volume: 3
  start-page: 2480
  year: 2018
  end-page: 2501
  ident: CR1
  article-title: Recent advances in aqueous zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 12
  start-page: 1938
  year: 2019
  end-page: 1949
  ident: CR19
  article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee00596j
– volume: 59
  start-page: 16594
  year: 2020
  end-page: 16601
  ident: CR42
  article-title: An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005472
– volume: 59
  start-page: 9377
  year: 2020
  end-page: 9381
  ident: CR22
  article-title: Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001844
– volume: 26
  start-page: 7817
  year: 2016
  end-page: 7823
  ident: CR31
  article-title: Effective polysulfide rejection by dipole-aligned BaTiO coated separator in lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602498
– year: 2020
  ident: CR20
  article-title: Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001867
– volume: 30
  start-page: 1
  year: 2020
  end-page: 8
  ident: CR17
  article-title: Review on the suppression of Zn dendrite for high performance of Zn ion battery
  publication-title: J. Met. Mater. Miner.
  doi: 10.14456/jmmm.2020.31
– volume: 11
  start-page: 32046
  year: 2019
  end-page: 32051
  ident: CR23
  article-title: Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11243
– volume: 32
  start-page: 2001755
  year: 2020
  ident: CR25
  article-title: Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001755
– volume: 30
  start-page: 2000599
  year: 2020
  ident: CR6
  article-title: A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000599
– volume: 10
  start-page: 1903977
  year: 2020
  ident: CR14
  article-title: Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903977
– volume: 59
  start-page: 13180
  year: 2020
  end-page: 13191
  ident: CR44
  article-title: Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000162
– volume: 15
  start-page: 6102
  year: 2015
  end-page: 6109
  ident: CR43
  article-title: Janus solid-liquid interface enabling ultrahigh charging and discharging rate for advanced lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02379
– volume: 8
  start-page: 19367
  year: 2020
  end-page: 19374
  ident: CR40
  article-title: Tailoring desolvation kinetics enables stable zinc metal anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta06622b
– volume: 27
  start-page: 1
  year: 2020
  end-page: 8
  ident: CR41
  article-title: Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.003
– volume: 534
  start-page: 147630
  year: 2020
  ident: CR7
  article-title: Mechanochemical reactions of MnO and graphite nanosheets as a durable zinc ion battery cathode
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147630
– volume: 140
  start-page: 15279
  year: 2018
  end-page: 15289
  ident: CR15
  article-title: Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07858
– volume: 303
  start-page: 488
  year: 2004
  end-page: 491
  ident: CR32
  article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures
  publication-title: Science
  doi: 10.1126/science.1092508
– volume: 62
  start-page: 550
  year: 2019
  end-page: 587
  ident: CR10
  article-title: Advanced rechargeable zinc-based batteries: recent progress and future perspectives
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.059
– volume: 31
  start-page: e1903675
  year: 2019
  ident: CR46
  article-title: Dendrite-free zinc deposition induced by multifunctional cnt frameworks for stable flexible Zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903675
– volume: 11
  start-page: 3075
  year: 2018
  end-page: 3095
  ident: CR2
  article-title: Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc–air batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee01991f
– volume: 5
  start-page: 1400930
  year: 2015
  ident: CR12
  article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400930
– volume: 53
  start-page: 207
  year: 2008
  end-page: 322
  ident: CR30
  article-title: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2007.05.001
– volume: 534
  start-page: 147630
  year: 2020
  ident: 599_CR7
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147630
– volume: 26
  start-page: 7817
  year: 2016
  ident: 599_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602498
– volume: 54
  start-page: 11169
  year: 1996
  ident: 599_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 2
  start-page: 1700133
  year: 2018
  ident: 599_CR38
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201700133
– volume: 28
  start-page: 1802564
  year: 2018
  ident: 599_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802564
– volume: 59
  start-page: 16594
  year: 2020
  ident: 599_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005472
– volume: 59
  start-page: 9377
  year: 2020
  ident: 599_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001844
– volume: 140
  start-page: 17968
  year: 2018
  ident: 599_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09603
– volume: 3
  start-page: 4677
  year: 2020
  ident: 599_CR11
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00309
– volume: 140
  start-page: 15279
  year: 2018
  ident: 599_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07858
– volume: 11
  start-page: 3075
  year: 2018
  ident: 599_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c8ee01991f
– volume: 32
  start-page: 2001755
  year: 2020
  ident: 599_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001755
– volume: 12
  start-page: 1938
  year: 2019
  ident: 599_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee00596j
– volume: 3
  start-page: 2480
  year: 2018
  ident: 599_CR1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01426
– volume: 31
  start-page: 122001
  year: 2020
  ident: 599_CR5
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab5b38
– volume: 18
  start-page: 1758
  year: 2018
  ident: 599_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04889
– volume: 29
  start-page: 120
  year: 2019
  ident: 599_CR21
  publication-title: J. Met. Mater. Miner.
  doi: 10.14456/jmmm.2019.55
– volume: 88
  start-page: 232902
  year: 2006
  ident: 599_CR33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2211309
– volume: 5
  start-page: 11671
  year: 2017
  ident: 599_CR45
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c7ta00371d
– volume: 27
  start-page: 1
  year: 2020
  ident: 599_CR41
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.003
– volume: 30
  start-page: 1908528
  year: 2020
  ident: 599_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908528
– volume: 3
  start-page: 1366
  year: 2018
  ident: 599_CR9
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00565
– volume: 53
  start-page: 368
  year: 2020
  ident: 599_CR16
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00457
– year: 2020
  ident: 599_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001867
– volume: 50
  start-page: 17953
  year: 1994
  ident: 599_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 5
  start-page: 1400930
  year: 2015
  ident: 599_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400930
– volume: 13
  start-page: 503
  year: 2020
  ident: 599_CR24
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c9ee03545a
– volume: 77
  start-page: 3865
  year: 1996
  ident: 599_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 59
  start-page: 13180
  year: 2020
  ident: 599_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000162
– volume: 10
  start-page: 1903977
  year: 2020
  ident: 599_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903977
– volume: 303
  start-page: 488
  year: 2004
  ident: 599_CR32
  publication-title: Science
  doi: 10.1126/science.1092508
– volume: 30
  start-page: 1
  year: 2020
  ident: 599_CR17
  publication-title: J. Met. Mater. Miner.
  doi: 10.14456/jmmm.2020.31
– volume: 53
  start-page: 207
  year: 2008
  ident: 599_CR30
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2007.05.001
– volume: 51
  start-page: 513
  year: 2018
  ident: 599_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.006
– volume: 6
  start-page: 15
  year: 1996
  ident: 599_CR36
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 8
  start-page: 19367
  year: 2020
  ident: 599_CR40
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta06622b
– volume: 8
  start-page: 9331
  year: 2020
  ident: 599_CR4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta02486d
– volume: 337
  start-page: 563
  year: 2012
  ident: 599_CR26
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 11
  start-page: 32046
  year: 2019
  ident: 599_CR23
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11243
– volume: 1
  start-page: 16039
  year: 2016
  ident: 599_CR47
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.39
– volume: 30
  start-page: 2000599
  year: 2020
  ident: 599_CR6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000599
– volume: 62
  start-page: 550
  year: 2019
  ident: 599_CR10
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.059
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: 599_CR39
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 276
  start-page: 1
  year: 2018
  ident: 599_CR48
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.139
– volume: 8
  start-page: 1801090
  year: 2018
  ident: 599_CR18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 15
  start-page: 6102
  year: 2015
  ident: 599_CR43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02379
– volume: 31
  start-page: e1903675
  year: 2019
  ident: 599_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903675
– volume: 28
  start-page: 1803665
  year: 2018
  ident: 599_CR27
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803665
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.597774
Snippet Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO 3 , is introduced to Zn anode surface in aqueous zinc ion...
HighlightsAn artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion...
Highlights An artificial solid–electrolyte interface composed of a perovskite type material, BaTiO3, is introduced to Zn anode surface in aqueous zinc ion...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Anodes
Anodic polarization
Artificial solid–electrolyte interface
Barium titanates
Cycles
Dendritic structure
Deposition
Electric dipoles
Electric fields
Electrode polarization
Electrolytes
Energy storage
Engineering
Manganese dioxide
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Perovskite type dielectric material
Perovskites
Plating
Rechargeable batteries
Regulated Zn deposition
Storage batteries
Stripping
Zinc
Zn anode
Zn ion battery
Zn-ion batteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQnuCA-CewICNxAwvHceLkWNhdrdDCAVhpxSXyzwQiVckKskjceAfekCdhxknTFgpcuLW148Tj6cznzPgbxh7bxhjptRRNcFbo4JVwLlihtIfUmTRv4jnuV6-L41P98iw_2yj1RTlhIz3wKLhn1pWq0T616Gh15cBJn-m8wb1VWZjCxXPk6PM2NlOoScpQRaZ1fJDKKusNlhpNnC7ZmsgsJ-Iys-bHzJXG202OdgTShkJYsVJdmorCyGI6gRPP4VHVZiko2yHynQi15eViMYBdCPb3RMxforHRyR1dY1cndMoXo1Sus0vQ3WBXNjgLb7LhzVi9Hr_w9x0_gFXaF__SWm67ePFIS8Hf9ss2_Pj2_XCstbP8OgCPryAb64HTK2C-WLYf0NLzg_acqKU4Ymh-0uPYJ20DdINF1we4xU6PDt-9OBZT6QbhEcEMIgRX2Spk4B3iw9yaUjeNB1uAAQ25lwGCLLGvSjVkIXW6tF56qyppVWZCdpvtdX0Hdxk3KtDxYd1Y47QvweLHMtLKIfYrK0hYuhJ17SdecyqvsaxnRua4PDUuTx2Xp1YJezJfcz6yevy193NawbknMXLHH1BP60lP63_pacL2V-tfT2bic010jbqoEB_sbkZvVJENznc34-Y3N5VUVcIezc1oHijmYzvoL2gIxMs4C6MTdmdUtnkeBGDQoOPgZksNtya63dK1HyMFOcI8itcl7OlKYdeP9WdB3vsfgrzPLiv6p8WUon22N3y6gAcIDAf3MNqAn8jUVBU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQucAB8SalICNxA0uOY8fJcelDFSocgEoVl8ivlEirpGpTpN76H_iH_BJmnMd2YUHitrt2vHFmPPM5M_6GkNem1po7yVntrWHSO8Gs9YYJ6UJqdarqeI77w8f88Fi-P1En46GwiynbfQpJRks9H3bD0sicYUpBJBVhYHhvK9i7o17vrjjHhcZqTKvYIJZUljcYaiTyuWQrEjOFpGV6xY2phASfPjrZAURrDF_FKnVpynLN8_H0zebbWvNwsRDAJvT6ZxLmb5HY6OAO7pN7IzKli0GVHpBboX1I7t7gK3xE-k9D5Xr4Qr-2dC9MKV_0e2OoaePFAyUF_dwtG__z-sf-UGdnedUHGl8_1sYFiq9_6WLZnIKVp3vNGdJKUcDP9KiDsY-aOuAfLNrOh8fk-GD_y-4hG8s2MAfopWfe29KUPgvOAjZURheyrl0wedBBBuW4D54X0FekMmQ-tbIwjjsjSm5Epn32hGy1XRueEaqFx6PDsjbaSlcEAx-LSCkHuK8oQ0LS6VFXbuQ0x9Iay2pmY47iqUA8VRRPJRLyZr7mbGD0-GfvdyjBuSeycccfuvPTalzclbGFqKVLDSiOLG2w3GVS1bD_L3KdW52QnUn-1WgiLiqkapR5CdhgczN4ohLtr9rcDBtfpUsuyoS8mpvBNGC8x7Shu8QhACvDLLRMyNNB2eZ5IHgBYw6D6zU1XJvoekvbfIv04wDxMFaXkLeTwq5u6-8Pcvv_uj8ndwSuqZg4tEO2-vPL8ALgX29fxtX-C5nMSHo
  priority: 102
  providerName: Springer Nature
Title Regulating Zn Deposition via an Artificial Solid–Electrolyte Interface with Aligned Dipoles for Long Life Zn Anode
URI https://link.springer.com/article/10.1007/s40820-021-00599-2
https://www.ncbi.nlm.nih.gov/pubmed/34138325
https://www.proquest.com/docview/2492469718
https://www.proquest.com/docview/2538907305
https://www.proquest.com/docview/2619579029
https://www.proquest.com/docview/2542359974
https://pubmed.ncbi.nlm.nih.gov/PMC8187518
https://doaj.org/article/ab82f4c1a72749beb0c345f7138676b7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLVoZwMLxLspZWQkdhCROE6crNA8qVCpUKFSxSbyKyXSKJm2UyR2_AN_yJdwr_OYDgzdjDKx48Tx9fWJr30OIa9kIUSgeeAXRkmfG818pYz0Gdc2VCKMC7eP--NxcnjKP5zFZ-2E21W7rLLzic5Rm1rjHPlbBj0zQ3uM3y0vfFSNwuhqK6GxQwbgglP4-BqMZ8efTjqLYgKVmdZxQpRX5jfYajhyu0RrQrMYCczEmiczZhzG93bAbQC1wFCWU6wLQz8RQdLuxHH78VC9OfBx1YPjPfHZxmjnRAG2Idl_F2T-FZV1g938AbnfolQ6aszqIbljq0fk3g3uwsdkddKo2MMf-rWiU9st_6LfS0ll5S5u6Cno53pRmt8_f80azZ3Fj5WlbiqykNpSnAqmo0V5Dh6fTsslUkxRwNL0qIayj8rC4g1GVW3sE3I6n32ZHPqthIOvAcmsfGNUJjMTWa0AJ8ZSpLwotJWJFZbbWAfGmiCFvCzkNjKh4qnUgZYsCySLhImekt2qruweoYIZ3EbMCykU16mVcJg6ejnAgGlmPRJ2rzrXLb85ymws8p6Z2TVPDs2Tu-bJmUde99csG3aPW3OPsQX7nMjM7U7Ul-d529FzqVJWcB1KMByeKasCHfG4EGGUJiJRwiMHXfvnrbu4ypG2kScZ4ITtyb3tb0-Gj-BYZAHLPPKyTwY3gbEfWdn6GosA3Ay1ENwjzxpj6-uBQAYcOxQuNsxwo6KbKVX5zVGRA9zDuJ1H3nQGu36s_7_I_dsr-ZzcZdiH3KKhA7K7ury2LwD6rdSQ7KTz90MyGI2n4_mw7e1wdsI4_iaToZtU-QMwoFIu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOiH8MBRYJTmBhr9de-4BQIA0pTXuAVqp6MfvnYCmyQ5uCeuMdeA8eiidhZm0nDYTeeouy603WMzvz2bP7fYQ8k4UQgeaBXxglfW4085Uy0mdc21CJMC7cOe6d3WS4zz8cxAdr5Fd3Fga3VXYx0QVqU2t8R_6KwcrM0B_jN9OvPqpGYXW1k9Bo3GLbnn6HR7bj11t9sO9zxgabe--Gfqsq4GtIrjPfGJXJzERWK4AusRQpLwptZWKF5TbWgbEmSKEvC7mNTKh4KnWgJcsCySJhIhj3ErnMoyjDFZUO3nf-ywTqQC2qkijmzM9w43BkkokW9Gkx0qWJBStnzDigiTa9N_BdYOHM6eOFoZ-IIGnP_bjTf6gVHfi4x8KxrPhsKbc6CYJVuPnf7Z9_1YBdah3cINdbTEx7jRPfJGu2ukWunWFKvE1mH-3YCY1VY3pY0b7tNpvRb6WksnIXN2QY9FM9Kc3vHz83G4WfyenMUvfis5DaUnzxTHuTcgz5hfbLKRJaUUDudFTD2KOysPgDvao29g7ZvxDT3iXrVV3Z-4QKZvDQMi-kUFynVsLH1JHZAeJMM-uRsLvVuW7Z1FHUY5LPeaCdeXIwT-7MkzOPvJhfM224RM7t_RYtOO-JPODui_ponLdhJZcqZQXXoQTH4ZmyKtARjwsRRmkiEiU8stHZP2-D03GOJJE8yQCVrG6er7TVzfDIHYssYJlHns6bIShhpUlWtj7BIQClwywE98i9xtnm80DYBGkEBhdLbrg00eWWqvziiM8BXGKV0CMvO4dd_K3_38gH50_yCbky3NsZ5aOt3e2H5CrD9eS2K22Q9dnRiX0EoHOmHruVTsnniw4tfwA0K4sG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQkRAcEP8EChiJG0RNHCdOjku3qwJLhYBKFZfIvyXSKlm1aSVuvANvyJMw42STXViQuGVjxxtn7JkvmZlvCHkhnRCR5lHojJIhN5qFShkZMq5trEScOp_H_f4oOzzmb0_Sk7Usfh_tvnJJdjkNyNJUt3tL4_aGxDcskxyFGF7gCUZCUMJX4U0lxqC-_ZF_nAmszDT6CbG8Ml9jq-HI7ZKMhGYpEpiJkSczZRzse29wO0At0JXlK9bFcZiJKOszcbbf1oa180UBtiHZPwMyf_PKemM3u0Vu9iiVTrpldZtcsfUdcmONu_AuaT92VezhB_1S06ldhX_Ry0pSWfuLO3oK-qlZVObn9x8HXc2dxbfWUv8p0kltKX4KppNFdQoan06rJVJMUcDSdN7A2PPKWfyDSd0Ye48czw4-7x-GfQmHUAOSaUNjVCELk1itACemUuTcOW1lZoXlNtWRsSbKoS-LuU1MrHgudaQlKyLJEmGS-2Snbmr7kFDBDKYRcyeF4jq3Eg5zTy8HGDAvbEDi1aMudc9vjmU2FuXAzOzFU4J4Si-ekgXk5XDNsmP3-Gfv1yjBoScyc_sTzdlp2W_0UqqcOa5jCQuHF8qqSCc8dSJO8kxkSgRkdyX_slcX5yXSNvKsAJywvRmsUoG6ON3eDC_BqSgiVgTk-dAMagJ9P7K2zQUOAbgZZiF4QB50i22YBwIZUOwwuNhYhhsT3Wypq6-eihzgHvrtAvJqtWDH2_r7g3z0f92fkWsfprNy_ubo3WNyneH28vFEu2SnPbuwTwAVtuqp3_i_AC_IT6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+Zn+Deposition+via+an+Artificial+Solid%E2%80%93Electrolyte+Interface+with+Aligned+Dipoles+for+Long+Life+Zn+Anode&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Kai&rft.au=Yi%2C+Jin&rft.au=Liu%2C+Xiaoyu&rft.au=Sun%2C+Yang&rft.date=2021-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft.spage=79&rft_id=info:doi/10.1007%2Fs40820-021-00599-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon