Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance

We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 235; no. 2; pp. 457 - 470
Main Authors Parsa, Behnoosh, Zatsiorsky, Vladimir M., Latash, Mark L.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2017
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger than the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.
AbstractList We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger than the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.
We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger that the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.
We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger than the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific performance variables estimated using the framework of the uncontrolled manifold (UCM) hypothesis. Our first hypothesis was that selective stability of performance variables would be observed even when the magnitudes of those variables drifted unintentionally because of the lack of visual feedback. Our second hypothesis was that stability of a variable would depend on the number of explicit task constraints. Subjects performed four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural or modified finger involvement under full visual feedback, which was removed later for some or all of the salient variables. We used inter-trial analysis of variance and drifts in the space of finger forces within the UCM and within the orthogonal to the UCM space. The two variance components were used to estimate a synergy index stabilizing the force/moment combination, while the two drift components were used to estimate motor equivalent and non-motor equivalent force changes, respectively. Without visual feedback, both force and moment drifted toward lower absolute magnitudes. The non-motor equivalent component of motion in the finger force space was larger than the motor equivalent component for variables that stopped receiving visual feedback. In contrast, variables that continued to receive visual feedback showed larger motor equivalent component, compared to non-motor equivalent component, over the same time interval. These data falsified the first hypothesis; indeed, selective stabilization of a variable over the duration of a trial allows expecting comparably large motor equivalent components both with and without visual feedback. Adding a new constraint (presented as a target magnitude of middle finger force) resulted in a drop in the synergy index in support of the second hypothesis. We interpret the force drift as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task. The results show that presenting sensory feedback on a performance variable makes synergies stabilizing that variable dependent on that particular sensory feedback.
Audience Academic
Author Parsa, Behnoosh
Zatsiorsky, Vladimir M.
Latash, Mark L.
AuthorAffiliation 1 Department of Kinesiology, The Pennsylvania State University
2 Moscow Institute of Physics and Technology
AuthorAffiliation_xml – name: 2 Moscow Institute of Physics and Technology
– name: 1 Department of Kinesiology, The Pennsylvania State University
Author_xml – sequence: 1
  givenname: Behnoosh
  surname: Parsa
  fullname: Parsa, Behnoosh
  organization: Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University
– sequence: 2
  givenname: Vladimir M.
  surname: Zatsiorsky
  fullname: Zatsiorsky, Vladimir M.
  organization: Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University
– sequence: 3
  givenname: Mark L.
  surname: Latash
  fullname: Latash, Mark L.
  email: mll11@psu.edu
  organization: Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, Moscow Institute of Physics and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27778048$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhi00xLrBD-AGRUJCcJFiO_7KLpCmaUCloUl8XFuu47SeUruznYr9-zltB80EiOQisc_zvjo-fk_AkfPOAPASwSmCkL-PEGKMSohYSQRkJX4CJohUuEQIsiMwgRCRXEH1MTiJ8WZYVhw-A8eYcy4gERMQrtfJrlRn012hXFPEpOZ2u_JtYV0yLlnvVLct9m60o4efeFbMZtPii08-FOa2txvVGafN3i30OvXBDG4bFazKlefgaau6aF7sv6fgx8fL7xefy6vrT7OL86tSs4qmUnPEa1K1iKF5RbgWBrGWUY4N4bSBAjV1S0hNYFvXPJ-lJsSghraCUSaIwdUp-LDzXffzlWl0bjyoTq5DPm-4k15ZOa44u5QLv5EUc0I5yQZv9wbB3_YmJrmyUZuuU874PkokmKggxYL_B1pRVuUHZfT1I_TG9yEPdGtIMWWciN_UIo9TWtf63KIeTOU5pQhWEFOYqekfqPw2ZmV1Dktr8_5I8G4kyEwyP9NC9THK2bevY_bNAbs0qkvL6Lt-e-tj8NXhoH9N-CFlGeA7QAcfYzCt1DapwSe3azuJoBzyLHd5ljnPcsizHO4QPVI-mP9Lg3eamFm3MOFgwH8V3QNnfgMh
CitedBy_id crossref_primary_10_1007_s00221_019_05548_5
crossref_primary_10_1038_s41598_021_00721_9
crossref_primary_10_1038_s41598_022_23274_x
crossref_primary_10_1123_mc_2020_0031
crossref_primary_10_1007_s00221_016_4809_z
crossref_primary_10_1152_jn_00485_2017
crossref_primary_10_1007_s00221_017_4972_x
Cites_doi 10.1016/j.tics.2009.11.004
10.1016/j.clinph.2010.02.166
10.1007/s00221-014-4148-x
10.1007/s002210050738
10.1007/978-1-4939-1338-1_7
10.1007/s00221-010-2440-y
10.1038/29528
10.1007/s00221-007-1259-7
10.1007/s00221-014-4128-1
10.1093/brain/118.2.495
10.1152/jn.00681.2004
10.3200/JMBR.41.4.317-330
10.1113/jphysiol.2003.057174
10.1007/s00422-005-0548-0
10.1007/s004220100279
10.1007/s00221-012-3383-2
10.1123/mcj.14.3.294
10.1016/j.neuroscience.2016.01.054
10.1152/jn.00163.2011
10.1152/jn.00043.2012
10.1152/jn.00180.2016
10.1007/s00221-002-1081-1
10.1038/nn1010
10.1123/mcj.2.4.306
10.1016/j.neulet.2005.02.003
10.1093/acprof:oso/9780195333169.001.0001
10.1016/j.neuroscience.2015.05.075
10.1097/00003677-200201000-00006
10.1207/s15326969eco0704_5
10.1007/s002210000540
10.1007/978-1-4939-2736-4
10.1007/s002210100861
10.1016/j.jbiomech.2007.01.022
10.1162/neco.2008.01-08-698
10.1123/mcj.17.2.145
10.1016/j.cub.2007.08.051
10.1016/j.neubiorev.2016.08.005
10.1007/s00221-011-2541-2
10.1037/0096-1523.14.1.37
10.1016/j.neuroscience.2014.12.079
10.1038/nn963
10.1123/mcj.11.3.276
10.1007/s00221-012-3000-4
10.1152/jn.2000.84.4.1708
10.1007/s00221-016-4757-7
10.1007/s00221-016-4809-z
10.3390/medicina46060054
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
COPYRIGHT 2017 Springer
Experimental Brain Research is a copyright of Springer, 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: COPYRIGHT 2017 Springer
– notice: Experimental Brain Research is a copyright of Springer, 2017.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1007/s00221-016-4806-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context Science
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Social Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
ProQuest One Psychology

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1432-1106
EndPage 470
ExternalDocumentID PMC5274574
4312388401
A551030250
27778048
10_1007_s00221_016_4806_2
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: NS035032; AR048563
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: NINDS NIH HHS
  grantid: R01 NS035032
– fundername: NIAMS NIH HHS
  grantid: R01 AR048563
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-XW
-Y2
-~C
-~X
.55
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P2P
PF-
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PRQQA
AEIIB
PMFND
7QP
7QR
7TK
7TM
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c635t-c717943f161b347c8e16f6572e475d081d9f44940f997048944e1d5f865684e23
IEDL.DBID 7X7
ISSN 0014-4819
1432-1106
IngestDate Thu Aug 21 17:32:04 EDT 2025
Thu Jul 10 18:06:08 EDT 2025
Mon Jul 21 11:56:27 EDT 2025
Sat Aug 23 14:39:45 EDT 2025
Tue Jun 17 21:36:29 EDT 2025
Tue Jun 10 20:32:38 EDT 2025
Fri Jun 27 04:36:26 EDT 2025
Thu May 22 21:18:56 EDT 2025
Mon Jul 21 05:53:46 EDT 2025
Tue Jul 01 02:44:33 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Motor equivalence
Synergy
Force
Unintentional movement
Finger
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-c717943f161b347c8e16f6572e475d081d9f44940f997048944e1d5f865684e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5274574
PMID 27778048
PQID 1865256748
PQPubID 47176
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5274574
proquest_miscellaneous_1868305287
proquest_miscellaneous_1835633331
proquest_journals_1865256748
gale_infotracmisc_A551030250
gale_infotracacademiconefile_A551030250
gale_incontextgauss_ISR_A551030250
gale_healthsolutions_A551030250
pubmed_primary_27778048
crossref_citationtrail_10_1007_s00221_016_4806_2
crossref_primary_10_1007_s00221_016_4806_2
springer_journals_10_1007_s00221_016_4806_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAbbrev Exp Brain Res
PublicationTitleAlternate Exp Brain Res
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Feldman (CR10) 2015
Ivanenko, Poppele, Lacquaniti (CR14) 2004; 556
Olafsdottir, Yoshida, Zatsiorsky, Latash (CR33) 2005; 381
CR37
Martin, Scholz, Schöner (CR28) 2009; 21
Bernstein (CR4) 1947
Diedrichsen, Shadmehr, Ivry (CR9) 2010; 14
Bernstein (CR5) 1967
Latash, Shim, Smilga, Zatsiorsky (CR25) 2005; 92
Vaillancourt, Russell (CR52) 2002; 145
Scholz, Danion, Latash, Schöner (CR43) 2002; 86
Hammond (CR12) 1954; 127
CR2
Harris, Wolpert (CR13) 1998; 394
Gelfand, Latash (CR11) 1998; 2
Latash, Huang (CR21) 2015; 301
Latash, Scholz, Danion, Schöner (CR23) 2001; 141
Ranganathan, Newell (CR39) 2009; 41
Latash (CR17) 2008
Park, Wu, Lewis, Huang, Latash (CR35) 2012; 108
Scholz, Schöner, Latash (CR42) 2000; 135
DeWald, Pope, Given, Buchanan, Rymer (CR7) 1995; 118
Scholz, Dwight-Higgin, Lynch, Tseng, Martin, Schöner (CR44) 2011; 209
Latash, Scholz, Schöner (CR26) 2007; 11
Newell, Carlton (CR32) 1993; 14
Ting, Macpherson (CR50) 2005; 93
Slifkin, Vaillancourt, Newell (CR47) 2000; 84
Diedrichsen (CR8) 2007; 17
Park, Zatsiorsky, Latash (CR34) 2010; 207
Mattos, Kuhl, Scholz, Latash (CR30) 2013; 17
Latash (CR19) 2012; 217
Ranganathan, Newell (CR38) 2008; 186
d’Avella, Saltiel, Bizzi (CR6) 2003; 6
Latash, Scholz, Schöner (CR24) 2002; 30
Latash (CR20) 2016; 69
Latash, Zatsiorsky (CR22) 2016
Scholz, Schöner (CR40) 1999; 126
Scholz, Schöner (CR41) 2014; 826
Venkadesan, Guckenheimer, Valero-Cuevas (CR53) 2007; 40
Solnik, Pazin, Coelho, Rosenbaum, Scholz, Zatsiorsky, Latash (CR48) 2013; 225
Kugler, Turvey (CR16) 1987
Latash, Levin, Scholz, Schöner (CR27) 2010; 46
Mattos, Latash, Park, Kuhl, Scholz (CR29) 2011; 106
Jo, Maenza, Good, Huang, Park, Sainburg, Latash (CR15) 2016; 319
Schöner (CR45) 1995; 8
Parsa, O’Shea, Zatsiorsky, Latash (CR36) 2016; 116
Mattos, Schöner, Zatsiorsky, Latash (CR31) 2015; 233
Babinski (CR3) 1899; 7
Latash (CR18) 2010; 14
Todorov, Jordan (CR51) 2002; 5
Tatton, Bawa, Bruce, Lee (CR49) 1978; 4
Zhou, Zhang, Latash (CR54) 2015; 289
Ambike, Zatsiorsky, Latash (CR1) 2015; 233
Shemmel, Krutky, Perreault (CR46) 2010; 121
JP Scholz (4806_CR40) 1999; 126
H Olafsdottir (4806_CR33) 2005; 381
ML Latash (4806_CR20) 2016; 69
J Shemmel (4806_CR46) 2010; 121
S Solnik (4806_CR48) 2013; 225
D Mattos (4806_CR30) 2013; 17
S Ambike (4806_CR1) 2015; 233
ML Latash (4806_CR21) 2015; 301
YP Ivanenko (4806_CR14) 2004; 556
V Martin (4806_CR28) 2009; 21
J Park (4806_CR35) 2012; 108
ML Latash (4806_CR18) 2010; 14
ML Latash (4806_CR22) 2016
B Parsa (4806_CR36) 2016; 116
D Mattos (4806_CR29) 2011; 106
CM Harris (4806_CR13) 1998; 394
NA Bernstein (4806_CR4) 1947
IM Gelfand (4806_CR11) 1998; 2
ML Latash (4806_CR23) 2001; 141
F Babinski (4806_CR3) 1899; 7
R Ranganathan (4806_CR38) 2008; 186
PH Hammond (4806_CR12) 1954; 127
DE Vaillancourt (4806_CR52) 2002; 145
LH Ting (4806_CR50) 2005; 93
R Ranganathan (4806_CR39) 2009; 41
T Zhou (4806_CR54) 2015; 289
AG Feldman (4806_CR10) 2015
G Schöner (4806_CR45) 1995; 8
M Venkadesan (4806_CR53) 2007; 40
A d’Avella (4806_CR6) 2003; 6
ML Latash (4806_CR17) 2008
AB Slifkin (4806_CR47) 2000; 84
JP DeWald (4806_CR7) 1995; 118
4806_CR2
ML Latash (4806_CR25) 2005; 92
E Todorov (4806_CR51) 2002; 5
J Park (4806_CR34) 2010; 207
ML Latash (4806_CR24) 2002; 30
JP Scholz (4806_CR42) 2000; 135
WG Tatton (4806_CR49) 1978; 4
JP Scholz (4806_CR44) 2011; 209
KM Newell (4806_CR32) 1993; 14
NA Bernstein (4806_CR5) 1967
ML Latash (4806_CR27) 2010; 46
JP Scholz (4806_CR41) 2014; 826
JP Scholz (4806_CR43) 2002; 86
J Diedrichsen (4806_CR9) 2010; 14
HJ Jo (4806_CR15) 2016; 319
D Mattos (4806_CR31) 2015; 233
4806_CR37
PN Kugler (4806_CR16) 1987
ML Latash (4806_CR19) 2012; 217
ML Latash (4806_CR26) 2007; 11
J Diedrichsen (4806_CR8) 2007; 17
11713627 - Exp Brain Res. 2001 Nov;141(2):153-65
15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
27193319 - J Neurophysiol. 2016 Aug 1;116(2):698-708
27785549 - Exp Brain Res. 2017 Feb;235(2):481-496
11918210 - Biol Cybern. 2002 Jan;86(1):29-39
11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
20944446 - Medicina (Kaunas). 2010;46(6):382-92
22552184 - J Neurophysiol. 2012 Aug 1;108(3):915-24
19718817 - Neural Comput. 2009 May;21(5):1371-414
21287157 - Exp Brain Res. 2011 Mar;209(3):319-32
20434396 - Clin Neurophysiol. 2010 Oct;121(10):1680-9
9723616 - Nature. 1998 Aug 20;394(6695):780-4
25596318 - Neuroscience. 2015 Mar 19;289:181-93
12136377 - Exp Brain Res. 2002 Aug;145(3):275-85
26047732 - Neuroscience. 2015 Aug 20;301:39-48
26828408 - Neuroscience. 2016 Apr 5;319:194-205
17400231 - J Biomech. 2007;40(8):1653-61
14354685 - J Physiol. 1955 Feb 28;127(2):23-5P
12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
15739110 - Biol Cybern. 2005 Mar;92(3):186-91
25344311 - Exp Brain Res. 2015 Feb;233(2):487-502
2964505 - J Exp Psychol Hum Percept Perform. 1988 Feb;14(1):37-44
17900901 - Curr Biol. 2007 Oct 9;17(19):1675-9
15882796 - Neurosci Lett. 2005 Jun 10-17;381(1-2):92-6
23370796 - Motor Control. 2013 Apr;17(2):145-75
18183373 - Exp Brain Res. 2008 Apr;186(4):561-70
10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
7735890 - Brain. 1995 Apr;118 ( Pt 2):495-510
14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31
25417192 - Exp Brain Res. 2015 Mar;233(3):711-21
21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36
17715460 - Motor Control. 2007 Jul;11(3):276-308
22246105 - Exp Brain Res. 2012 Mar;217(1):1-5
20702893 - Motor Control. 2010 Jul;14(3):294-322
12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
9758883 - Motor Control. 1998 Oct;2(4):306-13
27497717 - Neurosci Biobehav Rev. 2016 Oct;69:136-46
20005767 - Trends Cogn Sci. 2010 Jan;14(1):31-9
19508958 - J Mot Behav. 2009 Jul;41(4):317-30
25330887 - Adv Exp Med Biol. 2014;826:91-100
23288326 - Exp Brain Res. 2013 Mar;225(3):431-42
11024063 - J Neurophysiol. 2000 Oct;84(4):1708-18
27540726 - Exp Brain Res. 2016 Dec;234(12 ):3597-3611
References_xml – volume: 14
  start-page: 31
  year: 2010
  end-page: 39
  ident: CR9
  article-title: The coordination of movement: optimal feedback control and beyond
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2009.11.004
– volume: 121
  start-page: 1680
  year: 2010
  end-page: 1689
  ident: CR46
  article-title: Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.02.166
– volume: 233
  start-page: 711
  year: 2015
  end-page: 721
  ident: CR1
  article-title: Processes underlying unintentional finger force changes in the absence of visual feedback
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-4148-x
– volume: 126
  start-page: 289
  year: 1999
  end-page: 306
  ident: CR40
  article-title: The uncontrolled manifold concept: identifying control variables for a functional task
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050738
– volume: 826
  start-page: 91
  year: 2014
  end-page: 100
  ident: CR41
  article-title: Use of the uncontrolled manifold (UCM) approach to understand motor variability, motor equivalence, and self-motion
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4939-1338-1_7
– volume: 207
  start-page: 119
  year: 2010
  end-page: 132
  ident: CR34
  article-title: Optimality vs. variability: An example of multi-finger redundant tasks
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-010-2440-y
– volume: 394
  start-page: 780
  year: 1998
  end-page: 784
  ident: CR13
  article-title: Signal-dependent noise determines motor planning
  publication-title: Nature
  doi: 10.1038/29528
– volume: 186
  start-page: 561
  year: 2008
  end-page: 570
  ident: CR38
  article-title: Motor synergies: feedback and error compensation within and between trials
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-007-1259-7
– volume: 233
  start-page: 487
  year: 2015
  end-page: 502
  ident: CR31
  article-title: Motor equivalence during accurate multi-finger force production
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-4128-1
– volume: 118
  start-page: 495
  year: 1995
  end-page: 510
  ident: CR7
  article-title: Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects
  publication-title: Brain
  doi: 10.1093/brain/118.2.495
– volume: 93
  start-page: 609
  year: 2005
  end-page: 613
  ident: CR50
  article-title: A limited set of muscle synergies for force control during a postural task
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00681.2004
– volume: 7
  start-page: 806
  year: 1899
  end-page: 816
  ident: CR3
  article-title: De l’asynergie cerebelleuse
  publication-title: Rev Neurol
– volume: 41
  start-page: 317
  year: 2009
  end-page: 330
  ident: CR39
  article-title: Influence of augmented feedback on coordination strategies
  publication-title: J Mot Behav
  doi: 10.3200/JMBR.41.4.317-330
– volume: 556
  start-page: 267
  year: 2004
  end-page: 282
  ident: CR14
  article-title: Five basic muscle activation patterns account for muscle activity during human locomotion
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.057174
– volume: 92
  start-page: 186
  year: 2005
  end-page: 191
  ident: CR25
  article-title: A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model
  publication-title: Biol Cybern
  doi: 10.1007/s00422-005-0548-0
– volume: 86
  start-page: 29
  year: 2002
  end-page: 39
  ident: CR43
  article-title: Understanding finger coordination through analysis of the structure of force variability
  publication-title: Biol Cybern
  doi: 10.1007/s004220100279
– volume: 225
  start-page: 431
  year: 2013
  end-page: 442
  ident: CR48
  article-title: End-state comfort and joint configuration variance during reaching
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3383-2
– year: 1947
  ident: CR4
  publication-title: On the construction of movements
– volume: 14
  start-page: 294
  year: 2010
  end-page: 322
  ident: CR18
  article-title: Motor synergies and the equilibrium-point hypothesis
  publication-title: Mot Control
  doi: 10.1123/mcj.14.3.294
– volume: 84
  start-page: 1708
  year: 2000
  end-page: 1718
  ident: CR47
  article-title: Intermittency in the control of continuous force production
  publication-title: J Neurophysiol
– volume: 319
  start-page: 194
  year: 2016
  end-page: 205
  ident: CR15
  article-title: Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.01.054
– volume: 106
  start-page: 1424
  year: 2011
  end-page: 1436
  ident: CR29
  article-title: Unpredictable elbow joint perturbation during reaching results in multijoint motor equivalence
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00163.2011
– volume: 108
  start-page: 915
  year: 2012
  end-page: 924
  ident: CR35
  article-title: Changes in multi-finger interaction and coordination in Parkinson’s disease
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00043.2012
– volume: 116
  start-page: 698
  year: 2016
  end-page: 708
  ident: CR36
  article-title: On the nature of unintentional action: a study of force/moment drifts during multi-finger tasks
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00180.2016
– volume: 145
  start-page: 275
  year: 2002
  end-page: 285
  ident: CR52
  article-title: Temporal capacity of short-term visuomotor memory in continuous force production
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1081-1
– volume: 6
  start-page: 300
  year: 2003
  end-page: 308
  ident: CR6
  article-title: Combinations of muscle synergies in the construction of a natural motor behavior
  publication-title: Nat Neurosci
  doi: 10.1038/nn1010
– volume: 46
  start-page: 382
  year: 2010
  end-page: 392
  ident: CR27
  article-title: Motor control theories and their applications
  publication-title: Medicina
– year: 1987
  ident: CR16
  publication-title: Information, natural law, and the self-assembly of rhythmic movement
– volume: 2
  start-page: 306
  year: 1998
  end-page: 313
  ident: CR11
  article-title: On the problem of adequate language in movement science
  publication-title: Mot Control
  doi: 10.1123/mcj.2.4.306
– volume: 127
  start-page: 23P
  year: 1954
  end-page: 25P
  ident: CR12
  article-title: Involuntary activity in biceps following the sudden application of velocity to the abducted forearm
  publication-title: J Physiol
– volume: 381
  start-page: 92
  year: 2005
  end-page: 96
  ident: CR33
  article-title: Anticipatory covariation of finger forces during self-paced and reaction time force production
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.02.003
– year: 2008
  ident: CR17
  publication-title: Synergy
  doi: 10.1093/acprof:oso/9780195333169.001.0001
– ident: CR2
– ident: CR37
– volume: 301
  start-page: 39
  year: 2015
  end-page: 48
  ident: CR21
  article-title: Neural control of movement stability: lessons from studies of neurological patients
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.05.075
– year: 2016
  ident: CR22
  publication-title: Biomechanics and motor control: defining central concepts
– volume: 30
  start-page: 26
  year: 2002
  end-page: 31
  ident: CR24
  article-title: Motor control strategies revealed in the structure of motor variability
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200201000-00006
– volume: 8
  start-page: 291
  year: 1995
  end-page: 314
  ident: CR45
  article-title: Recent developments and problems in human movement science and their conceptual implications
  publication-title: Ecol Psychol
  doi: 10.1207/s15326969eco0704_5
– volume: 135
  start-page: 382
  year: 2000
  end-page: 404
  ident: CR42
  article-title: Identifying the control structure of multijoint coordination during pistol shooting
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000540
– year: 2015
  ident: CR10
  publication-title: Referent control of action and perception: challenging conventional theories in behavioral science
  doi: 10.1007/978-1-4939-2736-4
– volume: 141
  start-page: 153
  year: 2001
  end-page: 165
  ident: CR23
  article-title: Structure of motor variability in marginally redundant multi-finger force production tasks
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100861
– volume: 40
  start-page: 1653
  year: 2007
  end-page: 1661
  ident: CR53
  article-title: Manipulating the edge of instability
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.01.022
– volume: 21
  start-page: 1371
  year: 2009
  end-page: 1414
  ident: CR28
  article-title: Redundancy, self-motion, and motor control
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.01-08-698
– volume: 17
  start-page: 145
  year: 2013
  end-page: 175
  ident: CR30
  article-title: Motor equivalence (ME) during reaching: is ME observable at the muscle level?
  publication-title: Mot Control
  doi: 10.1123/mcj.17.2.145
– volume: 4
  start-page: 229
  year: 1978
  end-page: 245
  ident: CR49
  article-title: Long loop reflexes in monkeys: an interpretive base for human reflexes
  publication-title: Prog Clin Neurophysiol
– volume: 17
  start-page: 1675
  year: 2007
  end-page: 1679
  ident: CR8
  article-title: Optimal task-dependent changes of bimanual feedback control and adaptation
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.08.051
– volume: 69
  start-page: 136
  year: 2016
  end-page: 146
  ident: CR20
  article-title: Towards physics of neural processes and behavior
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.08.005
– volume: 209
  start-page: 319
  year: 2011
  end-page: 332
  ident: CR44
  article-title: Motor equivalence and self-motion induced by different movement speeds
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-011-2541-2
– volume: 14
  start-page: 37
  year: 1993
  end-page: 44
  ident: CR32
  article-title: Force variability in isometric responses
  publication-title: J Exp Psychol Hum Percept Perform
  doi: 10.1037/0096-1523.14.1.37
– volume: 289
  start-page: 181
  year: 2015
  end-page: 193
  ident: CR54
  article-title: Intentional and unintentional multi-joint movements: their nature and structure of variance
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.12.079
– volume: 5
  start-page: 1226
  year: 2002
  end-page: 1235
  ident: CR51
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nat Neurosci
  doi: 10.1038/nn963
– volume: 11
  start-page: 276
  year: 2007
  end-page: 308
  ident: CR26
  article-title: Toward a new theory of motor synergies
  publication-title: Mot Control
  doi: 10.1123/mcj.11.3.276
– year: 1967
  ident: CR5
  publication-title: The co-ordination and regulation of movements
– volume: 217
  start-page: 1
  year: 2012
  end-page: 5
  ident: CR19
  article-title: The bliss (not the problem) of motor abundance (not redundancy)
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3000-4
– volume: 319
  start-page: 194
  year: 2016
  ident: 4806_CR15
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.01.054
– volume: 14
  start-page: 294
  year: 2010
  ident: 4806_CR18
  publication-title: Mot Control
  doi: 10.1123/mcj.14.3.294
– volume: 289
  start-page: 181
  year: 2015
  ident: 4806_CR54
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.12.079
– volume: 394
  start-page: 780
  year: 1998
  ident: 4806_CR13
  publication-title: Nature
  doi: 10.1038/29528
– volume: 126
  start-page: 289
  year: 1999
  ident: 4806_CR40
  publication-title: Exp Brain Res
  doi: 10.1007/s002210050738
– volume: 127
  start-page: 23P
  year: 1954
  ident: 4806_CR12
  publication-title: J Physiol
– volume: 2
  start-page: 306
  year: 1998
  ident: 4806_CR11
  publication-title: Mot Control
  doi: 10.1123/mcj.2.4.306
– volume: 207
  start-page: 119
  year: 2010
  ident: 4806_CR34
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-010-2440-y
– volume: 86
  start-page: 29
  year: 2002
  ident: 4806_CR43
  publication-title: Biol Cybern
  doi: 10.1007/s004220100279
– volume: 4
  start-page: 229
  year: 1978
  ident: 4806_CR49
  publication-title: Prog Clin Neurophysiol
– volume: 141
  start-page: 153
  year: 2001
  ident: 4806_CR23
  publication-title: Exp Brain Res
  doi: 10.1007/s002210100861
– volume: 233
  start-page: 711
  year: 2015
  ident: 4806_CR1
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-4148-x
– volume: 69
  start-page: 136
  year: 2016
  ident: 4806_CR20
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2016.08.005
– volume: 14
  start-page: 37
  year: 1993
  ident: 4806_CR32
  publication-title: J Exp Psychol Hum Percept Perform
  doi: 10.1037/0096-1523.14.1.37
– volume: 5
  start-page: 1226
  year: 2002
  ident: 4806_CR51
  publication-title: Nat Neurosci
  doi: 10.1038/nn963
– volume: 92
  start-page: 186
  year: 2005
  ident: 4806_CR25
  publication-title: Biol Cybern
  doi: 10.1007/s00422-005-0548-0
– volume: 17
  start-page: 145
  year: 2013
  ident: 4806_CR30
  publication-title: Mot Control
  doi: 10.1123/mcj.17.2.145
– volume: 8
  start-page: 291
  year: 1995
  ident: 4806_CR45
  publication-title: Ecol Psychol
  doi: 10.1207/s15326969eco0704_5
– volume: 84
  start-page: 1708
  year: 2000
  ident: 4806_CR47
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2000.84.4.1708
– volume: 17
  start-page: 1675
  year: 2007
  ident: 4806_CR8
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.08.051
– volume: 381
  start-page: 92
  year: 2005
  ident: 4806_CR33
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2005.02.003
– volume: 30
  start-page: 26
  year: 2002
  ident: 4806_CR24
  publication-title: Exerc Sport Sci Rev
  doi: 10.1097/00003677-200201000-00006
– volume-title: The co-ordination and regulation of movements
  year: 1967
  ident: 4806_CR5
– volume: 41
  start-page: 317
  year: 2009
  ident: 4806_CR39
  publication-title: J Mot Behav
  doi: 10.3200/JMBR.41.4.317-330
– volume: 116
  start-page: 698
  year: 2016
  ident: 4806_CR36
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00180.2016
– volume: 40
  start-page: 1653
  year: 2007
  ident: 4806_CR53
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2007.01.022
– volume: 217
  start-page: 1
  year: 2012
  ident: 4806_CR19
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3000-4
– volume: 233
  start-page: 487
  year: 2015
  ident: 4806_CR31
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-4128-1
– volume-title: On the construction of movements
  year: 1947
  ident: 4806_CR4
– volume: 145
  start-page: 275
  year: 2002
  ident: 4806_CR52
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1081-1
– volume-title: Information, natural law, and the self-assembly of rhythmic movement
  year: 1987
  ident: 4806_CR16
– volume: 118
  start-page: 495
  year: 1995
  ident: 4806_CR7
  publication-title: Brain
  doi: 10.1093/brain/118.2.495
– volume: 556
  start-page: 267
  year: 2004
  ident: 4806_CR14
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2003.057174
– volume-title: Synergy
  year: 2008
  ident: 4806_CR17
  doi: 10.1093/acprof:oso/9780195333169.001.0001
– volume: 209
  start-page: 319
  year: 2011
  ident: 4806_CR44
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-011-2541-2
– volume: 186
  start-page: 561
  year: 2008
  ident: 4806_CR38
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-007-1259-7
– volume: 7
  start-page: 806
  year: 1899
  ident: 4806_CR3
  publication-title: Rev Neurol
– volume: 14
  start-page: 31
  year: 2010
  ident: 4806_CR9
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2009.11.004
– volume: 108
  start-page: 915
  year: 2012
  ident: 4806_CR35
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00043.2012
– volume-title: Referent control of action and perception: challenging conventional theories in behavioral science
  year: 2015
  ident: 4806_CR10
  doi: 10.1007/978-1-4939-2736-4
– ident: 4806_CR2
  doi: 10.1007/s00221-016-4757-7
– ident: 4806_CR37
  doi: 10.1007/s00221-016-4809-z
– volume: 106
  start-page: 1424
  year: 2011
  ident: 4806_CR29
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00163.2011
– volume: 21
  start-page: 1371
  year: 2009
  ident: 4806_CR28
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.01-08-698
– volume: 826
  start-page: 91
  year: 2014
  ident: 4806_CR41
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4939-1338-1_7
– volume: 225
  start-page: 431
  year: 2013
  ident: 4806_CR48
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-012-3383-2
– volume: 6
  start-page: 300
  year: 2003
  ident: 4806_CR6
  publication-title: Nat Neurosci
  doi: 10.1038/nn1010
– volume: 301
  start-page: 39
  year: 2015
  ident: 4806_CR21
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.05.075
– volume: 11
  start-page: 276
  year: 2007
  ident: 4806_CR26
  publication-title: Mot Control
  doi: 10.1123/mcj.11.3.276
– volume: 46
  start-page: 382
  year: 2010
  ident: 4806_CR27
  publication-title: Medicina
  doi: 10.3390/medicina46060054
– volume: 135
  start-page: 382
  year: 2000
  ident: 4806_CR42
  publication-title: Exp Brain Res
  doi: 10.1007/s002210000540
– volume: 121
  start-page: 1680
  year: 2010
  ident: 4806_CR46
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.02.166
– volume: 93
  start-page: 609
  year: 2005
  ident: 4806_CR50
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00681.2004
– volume-title: Biomechanics and motor control: defining central concepts
  year: 2016
  ident: 4806_CR22
– reference: 21287157 - Exp Brain Res. 2011 Mar;209(3):319-32
– reference: 11918210 - Biol Cybern. 2002 Jan;86(1):29-39
– reference: 20944446 - Medicina (Kaunas). 2010;46(6):382-92
– reference: 11713627 - Exp Brain Res. 2001 Nov;141(2):153-65
– reference: 26828408 - Neuroscience. 2016 Apr 5;319:194-205
– reference: 27193319 - J Neurophysiol. 2016 Aug 1;116(2):698-708
– reference: 20005767 - Trends Cogn Sci. 2010 Jan;14(1):31-9
– reference: 9723616 - Nature. 1998 Aug 20;394(6695):780-4
– reference: 20434396 - Clin Neurophysiol. 2010 Oct;121(10):1680-9
– reference: 14724214 - J Physiol. 2004 Apr 1;556(Pt 1):267-82
– reference: 22246105 - Exp Brain Res. 2012 Mar;217(1):1-5
– reference: 11024063 - J Neurophysiol. 2000 Oct;84(4):1708-18
– reference: 27785549 - Exp Brain Res. 2017 Feb;235(2):481-496
– reference: 12563264 - Nat Neurosci. 2003 Mar;6(3):300-8
– reference: 26047732 - Neuroscience. 2015 Aug 20;301:39-48
– reference: 17400231 - J Biomech. 2007;40(8):1653-61
– reference: 11800496 - Exerc Sport Sci Rev. 2002 Jan;30(1):26-31
– reference: 27540726 - Exp Brain Res. 2016 Dec;234(12 ):3597-3611
– reference: 17715460 - Motor Control. 2007 Jul;11(3):276-308
– reference: 14354685 - J Physiol. 1955 Feb 28;127(2):23-5P
– reference: 22552184 - J Neurophysiol. 2012 Aug 1;108(3):915-24
– reference: 25417192 - Exp Brain Res. 2015 Mar;233(3):711-21
– reference: 19718817 - Neural Comput. 2009 May;21(5):1371-414
– reference: 27497717 - Neurosci Biobehav Rev. 2016 Oct;69:136-46
– reference: 9758883 - Motor Control. 1998 Oct;2(4):306-13
– reference: 25330887 - Adv Exp Med Biol. 2014;826:91-100
– reference: 12136377 - Exp Brain Res. 2002 Aug;145(3):275-85
– reference: 21676927 - J Neurophysiol. 2011 Sep;106(3):1424-36
– reference: 17900901 - Curr Biol. 2007 Oct 9;17(19):1675-9
– reference: 23370796 - Motor Control. 2013 Apr;17(2):145-75
– reference: 20702893 - Motor Control. 2010 Jul;14(3):294-322
– reference: 12404008 - Nat Neurosci. 2002 Nov;5(11):1226-35
– reference: 18183373 - Exp Brain Res. 2008 Apr;186(4):561-70
– reference: 15739110 - Biol Cybern. 2005 Mar;92(3):186-91
– reference: 19508958 - J Mot Behav. 2009 Jul;41(4):317-30
– reference: 15342720 - J Neurophysiol. 2005 Jan;93(1):609-13
– reference: 15882796 - Neurosci Lett. 2005 Jun 10-17;381(1-2):92-6
– reference: 10382616 - Exp Brain Res. 1999 Jun;126(3):289-306
– reference: 11146817 - Exp Brain Res. 2000 Dec;135(3):382-404
– reference: 7735890 - Brain. 1995 Apr;118 ( Pt 2):495-510
– reference: 25596318 - Neuroscience. 2015 Mar 19;289:181-93
– reference: 25344311 - Exp Brain Res. 2015 Feb;233(2):487-502
– reference: 23288326 - Exp Brain Res. 2013 Mar;225(3):431-42
– reference: 2964505 - J Exp Psychol Hum Percept Perform. 1988 Feb;14(1):37-44
SSID ssj0014370
Score 2.2656434
Snippet We address the nature of unintentional changes in performance in two papers. This second paper tested hypotheses related to stability of task-specific...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 457
SubjectTerms Adult
Analysis of Variance
Biomedical and Life Sciences
Biomedicine
Feedback, Sensory - physiology
Female
Fingers - physiology
Humans
Hypotheses
Intention
Male
Movement - physiology
Nervous system
Neurology
Neurosciences
Psychomotor Performance - physiology
Research Article
Variables
Young Adult
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQufSCoOUjUMAgBBIoKB_jOOG2qlp1kQoSsFJvUeLYpRJNoGmQ9t8z4zhWs2orscf1czZrj8dv4pkXxt5ArESuRRrSS9JCAIxT6jTRoayqWuWFbHJb5Xr8JTtawecTceLquPsp2306krSe2he70XZDoW8WQo5hMPrduwJDd8rjWiULf3QAqRzrTmJAYFxMR5nXXWK2GW265Ct70ma-5Mahqd2LDu-ze45E8sU46w_YHd3usN1FiwH0-Zq_5Tat0z4v32Hb3sWtd9nFV_QQ55Z686ptOFJDmxy75p3hpBzh8s9t49DOvrEFEP0nvlx-5Mcdhupc_xnO0FDJN7irkRbtcKHpan8xCCeLeshWhwc_9o9C99aFUCH5uAyVtKJxBqlgnYJUuY4zkwmZaJCiQQbRFAaggMgUhcT1XwDouBEmR2aYg07SR2yr7Vr9hHHIorQqaqgr7FKpqkauoSKT6TgyptZJwKJp-EvlJMnpzRi_Si-mbGespDQ0mrESu7z3XX6Pehy3gV_SnJZjSalfy-VCkI4gsb-AvbYIUsJoKdXmtBr6vlx-_zYDvXMg0-HtqcpVLuCfJPGsGXJvhsSlqubNk3GVzlX0ZYwDh7xTQh6wV76ZelL6W6u7gTCpyFL8xLdhshydN0bAAXs82qsfoURKEprCX5AzS_YAEhmft7RnP63YuEgkCAkB-zDZ_JVbv2ngn_4X-hnbTogs2Vz4PbaFxqqfI9W7rF_Ypf0PY51Ipw
  priority: 102
  providerName: Springer Nature
Title Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance
URI https://link.springer.com/article/10.1007/s00221-016-4806-2
https://www.ncbi.nlm.nih.gov/pubmed/27778048
https://www.proquest.com/docview/1865256748
https://www.proquest.com/docview/1835633331
https://www.proquest.com/docview/1868305287
https://pubmed.ncbi.nlm.nih.gov/PMC5274574
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvfSCoOURKMUgBBIokDh2nHBBAW3pglpQYaXtKUocGyrRpG0apP33zHid0KzE7mWlzDgPezz-xh5_JuQ5D5VItIh8PCTN5xzilDJi2pdFUaoklVVid7keHsUHM_55LuZuwq11aZW9T7SOumoUzpG_DZNYwPAsefL-_MLHU6NwddUdoXGTbCJ1GVq1nA8BF0ABudyCEnKfw9DXr2oGlkSUMQykY5BAUM1G49Kqd742PK2mTq6sn9phaf82ueXwJM2WBnCH3ND1NtnJaoilzxb0BbUZnnbqfJtsDd5usUMuv4KzOLMonBZ1RQEl2jzZBW0MRRIJl4puhV09umL3QrTv6HT6hh42ELVTfdGdgs2im3B3Q1ra7lLj3f5API7GdZfM9ic_Ph747gAGXwEOufKVtPxxBlBhGXGpEh3GJhaSaS5FBWCiSg3nKQ9MmkpwBSnnOqyEgaaKE65ZdI9s1E2tHxDK4yAq0pKXBRQpVFEC7FCBiXUYGFNq5pGgr_5cOXZyPCTjdz7wKtsWyzEjDVsshyKvhiLnS2qOdcpPsE3z5e7SoVvnmUBKQQSCHnlmNZAUo8asm59F17b59PvxSOmlUzINvJ4q3CYG-Ejk0Rpp7o40odeqsbg3rtx5jTb_Z-MeeTqIsSRmwtW66VAnEnEEv3CdTpyAH4dg2CP3l_Y61BCTEjmn4AlyZMmDAvKNjyX16S_LOy6Y5EJyj7zubf7aq_-v4h-u_9BHZIshULJ58LtkA6xTPwaYd1Xu2b68RzazTydfJvD_YXL07Riuzlj2F5inUGc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaq8kBfELQcgUIN4pBAgcSx4wQJoRVQbWi3SNBK-5YmjtNWokm72YD2T_EbmXEOmpXYt-7jepzDM54jnvmGkOfcVSLQwrOxSZrNOcQpqce0LZMkVUEos8BUuU4O_PER_zoV0zXyp6uFwbTKTicaRZ2VCr-Rv3MDX4B5ljz4eHFpY9coPF3tWmg0YrGnF78hZKs-RJ-Bvy8Y2_1y-Glst10FbAXGdW4raUDRcnB1Uo9LFWjXz30hmeZSZGAhszDnPOROHoYS5DvkXLuZyOH-fsA1Ah2Ayr8BhtfBYE9O-wAPXA_ZlLy43OZgartTVMeAljKGgbsPIxDEs4EdXLYGV8zhcqrm0nmtMYO7t8mt1n-lo0bg7pA1XWySrVEBsfv5gr6kJqPUfKrfJBu9dl1skdk3UE7nxuunSZFR8EpNXu6CljlF0Io29d0M1sXgH1N7Ub2nUfSWTsp5OaP6sj6DPYJqqb0awuDWM41X-wXxPwrzXXJ0Lay5R9aLstAPCOW-4yVhytMEpiQqScHNUU7ua9fJ81Qzizjd8seqRUPHphw_4x7H2XAsxgw45FgMU173Uy4aKJBVxDvI07ipZu3VSDwSCGGIjqdFnhkKBOEoMMvnJKmrKo5-fB8QvWqJ8hIeTyVt0QS8JOJ2DSi3B5SgJdRwuBOuuNVSVfxvT1nkaT-MMzHzrtBljTSe8D34uato_ADsBgTfFrnfyGu_QkxKxLiCO8iBJPcEiG8-HCnOTg3OuWCSC8kt8qaT-SuP_r-Ff7j6RXfIzfHhZD_ejw72HpENhk6aycHfJusgqfoxuJjz9InZ15QcX7ci-QvOeIX5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqrYT6gqDlCBRqEIcECk0cO06QEFpoV11Kl6qlUt9C4thQiSbtHqD9a_w6ZpyDZiX2rfsYj7OOZzyHPfOZkGfcVyLSInDxkjSXc4hTsoBpV6ZppqJY5pGtcj0YhXsn_NOpOF0hf5paGEyrbHSiVdR5qXCPfNuPQgHmWfJo29RpEYc7g_cXly7eIIUnrc11GpWI7Ov5bwjfJu-GO8Dr54wNdr9-3HPrGwZcBYZ26ippAdIMuD1ZwKWKtB-aUEimuRQ5WMs8NpzH3DNxLEHWY861nwsDYwkjrhH0ANT_qsSoqEdWP-yODo_aMwweyKoAxucuB8PbnKl6FsKUMQzjQ2iBkJ51rOKibbhiHBcTNxdOb61RHNwiN2tvlvYr8btNVnSxTjb6BUTy53P6gtr8Urtxv07WWl073yDjL6Cqzm0MQNMip-Cj2izdOS0NRQiLOhHeNs6KzhNbiTF5S4fDN_SgnJZjqi9nZ7BiUEnVb0NQ3NlY49t-pWPcuNF3yMm1MOcu6RVloe8TykMvSOOMZyl0SVWagdOjPBNq3zMm08whXjP9iaqx0fGKjp9Ji-psOZZgPhxyLIEur9ouFxUwyDLiLeRpUtW2tkol6QsENEQ31CFPLQVCchQo3N_T2WSSDI-POkQvayJTwvBUWpdQwEciileHcrNDCTpDdZsb4UpqnTVJ_q0whzxpm7En5uEVupwhTSDCAH7-MpowAisCobhD7lXy2s4QkxIRr-AfZEeSWwJEO--2FGc_LOq5YJILyR3yupH5K0P_38Q_WP6hW-QGKJHk83C0_5CsMfTYbEL-JumBoOpH4G9Os8f1wqbk23Xrkr8yRYuU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimality+and+stability+of+intentional+and+unintentional+actions%3A+II.+Motor+equivalence+and+structure+of+variance&rft.jtitle=Experimental+brain+research&rft.au=Parsa%2C+Behnoosh&rft.au=Zatsiorsky%2C+Vladimir+M&rft.au=Latash%2C+Mark+L&rft.date=2017-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=235&rft.issue=2&rft.spage=457&rft_id=info:doi/10.1007%2Fs00221-016-4806-2&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4312388401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon