Thermochromic Silks for Temperature Management and Dynamic Textile Displays

Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance ther...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 72 - 17
Main Authors Wang, Yang, Ren, Jing, Ye, Chao, Pei, Ying, Ling, Shengjie
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m −3 , comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs.
AbstractList HighlightsWearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays.Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy.The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy.Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs.
Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m −3 , comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs.
Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. Abstract Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs.
ArticleNumber 72
Author Wang, Yang
Pei, Ying
Ling, Shengjie
Ren, Jing
Ye, Chao
Author_xml – sequence: 1
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 2
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 3
  givenname: Chao
  surname: Ye
  fullname: Ye, Chao
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 4
  givenname: Ying
  surname: Pei
  fullname: Pei, Ying
  organization: School of Materials Science and Engineering, Zhengzhou University
– sequence: 5
  givenname: Shengjie
  surname: Ling
  fullname: Ling, Shengjie
  email: lingshj@shanghaitech.edu.cn
  organization: School of Physical Science and Technology, ShanghaiTech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138303$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLUv_AAcUiQuXwPgrsS9IqOWjoogDy9lyvJNdlyRe7ISy_x5vUwrtYU-2xu89z5t5T8nREAYk5DmF1xSgfpMEKAYlMFoCSE3L60fkhFEJpZSSHuU7p7SsaqiOyWlKvgHJRM1qKZ6QYy4oVxz4Cfm83GDsg9vE0HtXfPPdj1S0IRZL7LcY7ThFLL7Ywa6xx2Es7LAqzneD3YOX-Hv0HRbnPm07u0vPyOPWdglPb88F-f7h_fLsU3n59ePF2bvL0lVcjqWlDa01NJWVCgGtFo5T7Vhb1dzpVqhcZgIr0YCiymoHHFAz3Sioa90gX5CLWXcV7JXZRt_buDPBenNTCHFtbBy969Awx1uLTkqGINrGqlWjmpZSJlgNCqqs9XbW2k5NjyuXPUbb3RO9_zL4jVmHXya3VkumssCrW4EYfk6YRtP75LDr7IBhSoZJwbjUIk97QV4-gF6FKQ55VIZVVMvsjrGDKMmVztvm_CBKKE2pklJn1Iv_3d3Z-rv_DGAzwMWQUsT2DkLB7HNm5pyZnDNzkzNznUnqAcn50Y4-7Cfku8NUPlNT_mdYY_zX9gHWH9al5OU
CitedBy_id crossref_primary_10_1007_s42765_022_00203_1
crossref_primary_10_1016_j_cej_2024_149869
crossref_primary_10_1088_1402_4896_ac9867
crossref_primary_10_1021_acsami_2c07666
crossref_primary_10_1002_adma_202210085
crossref_primary_10_1126_science_adj8013
crossref_primary_10_1021_acsami_4c09071
crossref_primary_10_3390_en17112627
crossref_primary_10_3390_molecules29204944
crossref_primary_10_1002_smll_202102660
crossref_primary_10_1080_00405000_2023_2228552
crossref_primary_10_1007_s42765_022_00138_7
crossref_primary_10_1021_acs_nanolett_4c03848
crossref_primary_10_1016_j_cej_2024_148698
crossref_primary_10_1016_j_indcrop_2023_117254
crossref_primary_10_1007_s10971_023_06232_5
crossref_primary_10_1088_2053_1591_acd50f
crossref_primary_10_1002_adfm_202301607
crossref_primary_10_1002_admt_202201137
crossref_primary_10_1021_acsaem_2c01379
crossref_primary_10_1016_j_apsusc_2023_156962
crossref_primary_10_1016_j_cej_2023_145534
crossref_primary_10_1007_s12200_022_00042_3
crossref_primary_10_1021_acsapm_4c01738
crossref_primary_10_1039_D3TC03769J
crossref_primary_10_1515_epoly_2023_0189
crossref_primary_10_1557_s43577_024_00735_4
crossref_primary_10_1007_s40820_022_00895_5
crossref_primary_10_1016_j_cej_2022_136369
crossref_primary_10_1007_s10570_024_05974_x
crossref_primary_10_1016_j_colsurfa_2024_135367
crossref_primary_10_1039_D5MH00046G
crossref_primary_10_1002_cmt2_33
crossref_primary_10_1002_adfm_202304109
crossref_primary_10_1002_est2_70110
crossref_primary_10_1002_sus2_207
crossref_primary_10_1016_j_cej_2022_134901
crossref_primary_10_1016_j_partic_2023_08_016
crossref_primary_10_1039_D3MH01636F
crossref_primary_10_3390_polym16111545
crossref_primary_10_1177_00405175231179997
crossref_primary_10_1016_j_isci_2024_109604
crossref_primary_10_1007_s12274_023_6373_8
crossref_primary_10_1016_j_matchemphys_2023_127977
crossref_primary_10_1016_j_ijleo_2023_171556
crossref_primary_10_1016_j_porgcoat_2023_107928
crossref_primary_10_1021_acsnano_1c10680
crossref_primary_10_1016_j_jallcom_2023_172013
crossref_primary_10_1002_adma_202500073
crossref_primary_10_1016_j_coco_2024_102122
crossref_primary_10_1021_acsami_3c17947
crossref_primary_10_1002_smll_202206572
crossref_primary_10_1073_pnas_2207353119
crossref_primary_10_1016_j_cej_2023_144504
crossref_primary_10_1002_rpm_20230017
crossref_primary_10_1007_s12274_023_5587_0
crossref_primary_10_1080_00405000_2024_2383022
crossref_primary_10_1021_acssuschemeng_3c05583
crossref_primary_10_1007_s42114_024_00954_y
crossref_primary_10_1007_s40820_023_01126_1
crossref_primary_10_1016_j_indcrop_2022_115783
crossref_primary_10_1002_adom_202403126
Cites_doi 10.1038/natrevmats.2018.16
10.1002/adfm.201805305
10.1016/j.msec.2013.09.041
10.1088/1361-665x/ab21ef
10.1002/adfm.201300365
10.1016/j.dyepig.2018.11.007
10.1007/s40820-019-0348-z
10.1016/j.biomaterials.2011.08.081
10.1007/s10118-014-1368-2
10.1038/71978
10.1021/acs.nanolett.0c00147
10.1021/acssuschemeng.0c03874
10.1002/adfm.201605657
10.1007/s10529-010-0498-z
10.1038/s41598-017-11592-4
10.1101/gad.13.5.511
10.1038/s41467-017-00613-5
10.1016/B978-0-08-092523-3.50016-2
10.1038/nature21002
10.1007/s11033-007-9183-2
10.1016/j.matpr.2020.01.518
10.1039/c3py00508a
10.1021/acsomega.8b03566
10.1016/j.matt.2019.07.016
10.1002/adfm.201705291
10.1021/acs.nanolett.6b03597
10.1016/j.progpolymsci.2018.06.004
10.1016/j.ces.2006.05.027
10.1021/bm400267m
10.1016/j.porgcoat.2020.105697
10.1002/biot.201700754
10.1017/S0022112074002126
10.3389/fmats.2020.00050
10.1038/s41377-018-0038-5
10.1021/sc400355k
10.1021/la300622h
10.1557/mrs.2018.320
10.1038/ncomms8145
10.1021/acsami.9b20612
10.1007/978-0-387-21656-0
10.1016/j.ijbiomac.2013.11.006
10.1002/adma.201601572
10.1021/acssuschemeng.9b05799
10.1039/C5TB00448A
10.1021/acssuschemeng.5b00749
10.1146/annurev.fluid.31.1.347
10.1177/0040517520910217
10.1038/nbt771
10.1002/adma.200800582
10.1111/cote.12015
10.1002/adma.201601783
10.1021/Bm2006032
10.1038/s41467-019-12161-1
10.1002/9780470175637.ch3
10.1016/j.coco.2020.100414
10.1021/acsomega.9b04109
10.1016/j.ijbiomac.2017.06.069
10.1021/acs.chemrev.9b00416
10.7852/jses.2012.50.2.87
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-021-00591-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
Publicly Available Content Database


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 17
ExternalDocumentID oai_doaj_org_article_2c3faec552e04fba8db8bf1124270806
PMC8187528
34138303
10_1007_s40820_021_00591_w
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c635t-a1b1790b6a58e0ea94c319c2f673c9f4858e24e64b0818a9c030e929b80779be3
IEDL.DBID BENPR
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:01:43 EDT 2025
Thu Aug 21 17:44:42 EDT 2025
Fri Jul 11 10:53:31 EDT 2025
Wed Aug 13 07:56:12 EDT 2025
Wed Aug 13 08:07:12 EDT 2025
Wed Aug 13 04:30:35 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Tue Jul 01 00:55:45 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:46:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Silk
Thermochromic
Dynamic display
Smart textile
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-a1b1790b6a58e0ea94c319c2f673c9f4858e24e64b0818a9c030e929b80779be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2538900533?pq-origsite=%requestingapplication%
PMID 34138303
PQID 2489118559
PQPubID 2044332
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_2c3faec552e04fba8db8bf1124270806
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187528
proquest_miscellaneous_2542359430
proquest_journals_2619577922
proquest_journals_2538900533
proquest_journals_2489118559
pubmed_primary_34138303
crossref_primary_10_1007_s40820_021_00591_w
crossref_citationtrail_10_1007_s40820_021_00591_w
springer_journals_10_1007_s40820_021_00591_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Wang, Jian, Wang, Zhang (CR26) 2017; 27
Yang, Pan, Luo, Xu, Huang (CR40) 2019; 28
Zhang, Fei, Zhang, Chen, Yin (CR55) 2020; 147
Cai, Shao, Hu, Zhang (CR13) 2015; 3
Wang, Guo, Zhou, Ye, Omenetto (CR24) 2018; 28
Vainker (CR3) 2004
Mullins, Kasper (CR53) 2006; 61
Ling, Li, Jin, Kaplan, Buehler (CR56) 2016; 28
Wang, Li, Feng, Li, Jiang (CR12) 2014; 63
Zhang, Licon, Harris, Oliveira, McFarland (CR10) 2019; 4
Ling, Kaplan, Buehler (CR4) 2018; 3
Nisal, Trivedy, Mohammad, Panneri, Sen Gupta (CR18) 2014; 2
Yamao, Katayama, Nakazawa, Yamakawa, Hayashi (CR35) 1999; 13
Ling, Qi, Knight, Huang, Huang (CR59) 2013; 14
Ling, Chen, Fan, Zheng, Jin (CR2) 2018; 85
Iizuka, Sezutsu, Tatematsu, Kobayashi, Yonemura (CR33) 2013; 23
Liu, David, Ip, Li, Li (CR34) 2009; 36
Wang, Li, Gao, Jian, Xia (CR27) 2016; 28
Ramos, Miranda, Franco, Silva, Azevedo (CR6) 2020; 8
Nambajjwe, Musinguzi, Rwahwire, Kasedde, Namuga (CR11) 2020; 28
Quéré (CR51) 1999; 31
Zhou, Shao, Chen (CR23) 2014; 32
Wu, Ye, Liu, Ren, Yao (CR57) 2020; 5
Fang, Zheng, Yao, Chen, Tang (CR22) 2015; 3
Jin, Lin, Kiani, Joshipura, Ge (CR44) 2019; 10
Plateau (CR50) 1873
Viková, Pechová (CR42) 2020; 90
Tomita (CR37) 2011; 33
Lewin, Pearce (CR5) 1998
Ling, Wang, Zhang, Zhang, Mu (CR30) 2018; 28
Tamura, Thibert, Royer, Kanda, Eappen (CR31) 2000; 18
Chen, Wen, Zhang, Lei, Feng (CR45) 2020; 12
Qu, Li, Cai, Pan, Ghosh (CR43) 2018; 7
Ke, Zhu, Zhang, Yang, Guo (CR7) 2020; 8
Chowdhury, Butola, Joshi (CR38) 2013; 129
Dong, Zhang, Tao, Chen, Li (CR19) 2017; 7
Ye, Ren, Wang, Zhang, Qian (CR29) 2019; 1
Mead-Hunter, King, Mullins (CR52) 2012; 28
Schanda (CR54) 2007
Tansil, Li, Koh, Peng, Win (CR17) 2011; 32
Wu, Song, Zhang, Liu, Li (CR14) 2017; 104
Ling, Qin, Li, Huang, Kaplan (CR28) 2017; 8
Cao, Jin, Luo (CR41) 2019
Zhan, Fan, Wang, Yao, Shao (CR15) 2020; 21
Zhou, Shao, Knight, Yan, Chen (CR21) 2009; 21
Ren, Wang, Yao, Wang, Fei (CR1) 2019; 119
Cho, Yun, Lee, Jang, Park (CR25) 2015; 6
Ling, Qi, Knight, Shao, Chen (CR60) 2013; 4
Zhang, Hu, Xiang, Zhai, Zhu (CR39) 2019; 162
Wang, Wang, Zhang, Jian, Zhang (CR8) 2016; 16
Yang, Zhang, Ye, Chen, Ling (CR63) 2019; 14
Landau, Levich (CR47) 1988
Ye, Dong, Ren, Ling (CR61) 2019; 12
Tomita, Munetsuna, Sato, Adachi, Hino (CR32) 2003; 21
James (CR48) 1974; 63
Wang, Li, Zhang, Liu, Jiang (CR9) 2014; 34
Gennes, Brochard-Wyart, Quéré (CR49) 2004
Shen, Feng, Qi, Cao, Ge (CR46) 2020; 20
Ling, Qi, Knight, Shao, Chen (CR58) 2011; 12
Patrick, Robb, Sottos, Moore, White (CR62) 2016; 540
Lee, Sultan, Hong, Lee, Lee (CR16) 2020; 7
Ren, Liu, Kaplan, Ling (CR20) 2019; 44
Kim, Yun, Choi, Kim, Park (CR36) 2012; 50
J-T Wang (591_CR9) 2014; 34
JAF Plateau (591_CR50) 1873
GQ Zhou (591_CR21) 2009; 21
S Ling (591_CR28) 2017; 8
S Ling (591_CR30) 2018; 28
Q Wang (591_CR26) 2017; 27
NC Tansil (591_CR17) 2011; 32
M Tomita (591_CR37) 2011; 33
SJ Ling (591_CR59) 2013; 14
G Wu (591_CR14) 2017; 104
T Iizuka (591_CR33) 2013; 23
D Quéré (591_CR51) 1999; 31
H Zhou (591_CR23) 2014; 32
J-T Wang (591_CR12) 2014; 63
SJ Ling (591_CR60) 2013; 4
S Ling (591_CR4) 2018; 3
D Wu (591_CR57) 2020; 5
M Tomita (591_CR32) 2003; 21
X Cao (591_CR41) 2019
D James (591_CR48) 1974; 63
SY Cho (591_CR25) 2015; 6
N Ramos (591_CR6) 2020; 8
X Zhang (591_CR10) 2019; 4
J Ke (591_CR7) 2020; 8
M Lewin (591_CR5) 1998
MA Chowdhury (591_CR38) 2013; 129
W Zhang (591_CR55) 2020; 147
SJ Vainker (591_CR3) 2004
L Cai (591_CR13) 2015; 3
J-M Liu (591_CR34) 2009; 36
M Viková (591_CR42) 2020; 90
Q Wang (591_CR8) 2016; 16
R Mead-Hunter (591_CR52) 2012; 28
M Yamao (591_CR35) 1999; 13
M Yang (591_CR40) 2019; 28
L Landau (591_CR47) 1988
T Tamura (591_CR31) 2000; 18
OJ Lee (591_CR16) 2020; 7
Y Jin (591_CR44) 2019; 10
Q Zhan (591_CR15) 2020; 21
Y Qu (591_CR43) 2018; 7
JF Patrick (591_CR62) 2016; 540
G Fang (591_CR22) 2015; 3
N Yang (591_CR63) 2019; 14
Y Zhang (591_CR39) 2019; 162
J Ren (591_CR1) 2019; 119
C Nambajjwe (591_CR11) 2020; 28
J Ren (591_CR20) 2019; 44
C Wang (591_CR27) 2016; 28
H-L Dong (591_CR19) 2017; 7
B Mullins (591_CR53) 2006; 61
S Ling (591_CR56) 2016; 28
Y Wang (591_CR24) 2018; 28
P Gennes (591_CR49) 2004
C Ye (591_CR61) 2019; 12
A Nisal (591_CR18) 2014; 2
S Ling (591_CR2) 2018; 85
SW Kim (591_CR36) 2012; 50
C Ye (591_CR29) 2019; 1
S Shen (591_CR46) 2020; 20
SJ Ling (591_CR58) 2011; 12
J Schanda (591_CR54) 2007
J Chen (591_CR45) 2020; 12
References_xml – volume: 3
  start-page: 18016
  year: 2018
  ident: CR4
  article-title: Nanofibrils in nature and materials engineering
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.16
– volume: 28
  start-page: 1805305
  year: 2018
  ident: CR24
  article-title: Design, fabrication, and function of silk-based nanomaterials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805305
– volume: 34
  start-page: 417
  year: 2014
  end-page: 421
  ident: CR9
  article-title: Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.09.041
– volume: 28
  start-page: 085003
  year: 2019
  ident: CR40
  article-title: Cnt/cotton composite yarn for electro-thermochromic textiles
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/ab21ef
– volume: 23
  start-page: 5232
  year: 2013
  end-page: 5239
  ident: CR33
  article-title: Colored fluorescent silk made by transgenic silkworms
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300365
– year: 1998
  ident: CR5
  publication-title: Handbook of Fiber Chemistry, Revised and Expanded
– volume: 162
  start-page: 705
  year: 2019
  end-page: 711
  ident: CR39
  article-title: Fabrication of visual textile temperature indicators based on reversible thermochromic fibers
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2018.11.007
– volume: 12
  start-page: 12
  year: 2019
  ident: CR61
  article-title: Ultrastable and high-performance silk energy harvesting textiles
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0348-z
– volume: 32
  start-page: 9576
  year: 2011
  end-page: 9583
  ident: CR17
  article-title: The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.081
– volume: 32
  start-page: 29
  year: 2014
  end-page: 34
  ident: CR23
  article-title: Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-014-1368-2
– volume: 18
  start-page: 81
  year: 2000
  end-page: 84
  ident: CR31
  article-title: Germline transformation of the silkworm L. Using a piggybac transposon-derived vector
  publication-title: Nat. Biotechnol.
  doi: 10.1038/71978
– volume: 20
  start-page: 2137
  year: 2020
  end-page: 2143
  ident: CR46
  article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00147
– volume: 8
  start-page: 11872
  year: 2020
  end-page: 11887
  ident: CR6
  article-title: Toward spinning greener advanced silk fibers by feeding silkworms with nanomaterials
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c03874
– volume: 27
  start-page: 1605657
  year: 2017
  ident: CR26
  article-title: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605657
– volume: 33
  start-page: 645
  year: 2011
  end-page: 654
  ident: CR37
  article-title: Transgenic silkworms that weave recombinant proteins into silk cocoons
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-010-0498-z
– volume: 7
  start-page: 10972
  year: 2017
  ident: CR19
  article-title: Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11592-4
– volume: 13
  start-page: 511
  year: 1999
  end-page: 516
  ident: CR35
  article-title: Gene targeting in the silkworm by use of a baculovirus
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.5.511
– volume: 8
  start-page: 1387
  year: 2017
  ident: CR28
  article-title: Polymorphic regenerated silk fibers assembled through bioinspired spinning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00613-5
– year: 1988
  ident: CR47
  article-title: Dragging of a liquid by a moving plate
  publication-title: Dyn. Curv. Fronts
  doi: 10.1016/B978-0-08-092523-3.50016-2
– volume: 540
  start-page: 363
  year: 2016
  end-page: 370
  ident: CR62
  article-title: Polymers with autonomous life-cycle control
  publication-title: Nature
  doi: 10.1038/nature21002
– volume: 36
  start-page: 329
  year: 2009
  end-page: 335
  ident: CR34
  article-title: High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system
  publication-title: Mol. Bio. Rep.
  doi: 10.1007/s11033-007-9183-2
– volume: 28
  start-page: 1221
  year: 2020
  end-page: 1226
  ident: CR11
  article-title: Improving electricity from silk cocoons through feeding silkworms with silver nanoparticles
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.01.518
– volume: 4
  start-page: 5401
  year: 2013
  end-page: 5406
  ident: CR60
  article-title: Ftir imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00508a
– volume: 4
  start-page: 4832
  year: 2019
  end-page: 4838
  ident: CR10
  article-title: Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03566
– volume: 1
  start-page: 1411
  year: 2019
  end-page: 1425
  ident: CR29
  article-title: Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles
  publication-title: Matter
  doi: 10.1016/j.matt.2019.07.016
– volume: 28
  start-page: 1705291
  year: 2018
  ident: CR30
  article-title: Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705291
– volume: 16
  start-page: 6695
  year: 2016
  end-page: 6700
  ident: CR8
  article-title: Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03597
– volume: 85
  start-page: 1
  year: 2018
  end-page: 56
  ident: CR2
  article-title: Biopolymer nanofibrils: structure, modeling, preparation, and applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.06.004
– volume: 61
  start-page: 6223
  year: 2006
  end-page: 6227
  ident: CR53
  article-title: Comment on: “Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study” by frising et al
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.05.027
– volume: 14
  start-page: 1885
  year: 2013
  end-page: 1892
  ident: CR59
  article-title: Insight into the structure of single antheraea pernyi silkworm fibers using synchrotron ftir microspectroscopy
  publication-title: Biomacromol
  doi: 10.1021/bm400267m
– year: 2004
  ident: CR3
  publication-title: Chinese Silk: A Cultural History
– volume: 147
  start-page: 105697
  year: 2020
  ident: CR55
  article-title: Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2020.105697
– volume: 14
  start-page: 1700754
  year: 2019
  ident: CR63
  article-title: Nanobiopolymers fabrication and their life cycle assessments
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700754
– volume: 63
  start-page: 657
  year: 1974
  end-page: 664
  ident: CR48
  article-title: The meniscus on the outside of a small circular cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112074002126
– volume: 7
  start-page: 50
  year: 2020
  ident: CR16
  article-title: Recent advances in fluorescent silk fibroin
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00050
– volume: 7
  start-page: 26
  year: 2018
  ident: CR43
  article-title: Thermal camouflage based on the phase-changing material gst
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0038-5
– volume: 2
  start-page: 312
  year: 2014
  end-page: 317
  ident: CR18
  article-title: Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400355k
– volume: 28
  start-page: 6731
  year: 2012
  end-page: 6735
  ident: CR52
  article-title: Plateau rayleigh instability simulation
  publication-title: Langmuir
  doi: 10.1021/la300622h
– volume: 44
  start-page: 53
  year: 2019
  end-page: 58
  ident: CR20
  article-title: Interplay of structure and mechanics in silk/carbon nanocomposites
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.320
– volume: 6
  start-page: 7145
  year: 2015
  ident: CR25
  article-title: Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8145
– volume: 12
  start-page: 7565
  year: 2020
  end-page: 7574
  ident: CR45
  article-title: Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20612
– year: 2004
  ident: CR49
  publication-title: Capillarity and Wetting Phenomena
  doi: 10.1007/978-0-387-21656-0
– volume: 63
  start-page: 205
  year: 2014
  end-page: 209
  ident: CR12
  article-title: Directly obtaining pristine magnetic silk fibers from silkworm
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.11.006
– volume: 28
  start-page: 6640
  year: 2016
  end-page: 6648
  ident: CR27
  article-title: Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601572
– volume: 8
  start-page: 460
  year: 2020
  end-page: 468
  ident: CR7
  article-title: Size-dependent uptake and distribution of agnps by silkworms
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05799
– volume: 3
  start-page: 3940
  year: 2015
  end-page: 3947
  ident: CR22
  article-title: Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00448A
– volume: 3
  start-page: 2551
  year: 2015
  end-page: 2557
  ident: CR13
  article-title: Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00749
– volume: 31
  start-page: 347
  year: 1999
  end-page: 384
  ident: CR51
  article-title: Fluid coating on a fiber
  publication-title: Ann. Rev. Fluid. Mech.
  doi: 10.1146/annurev.fluid.31.1.347
– volume: 90
  start-page: 2070
  year: 2020
  end-page: 2084
  ident: CR42
  article-title: Study of adaptive thermochromic camouflage for combat uniform
  publication-title: Text. Res. J.
  doi: 10.1177/0040517520910217
– volume: 21
  start-page: 52
  year: 2003
  end-page: 56
  ident: CR32
  article-title: Transgenic silkworms produce recombinant human type iii procollagen in cocoons
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt771
– volume: 21
  start-page: 366
  year: 2009
  end-page: 370
  ident: CR21
  article-title: Silk fibers extruded artificially from aqueous solutions of regenerated silk fibroin are tougher than their natural counterparts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800582
– volume: 129
  start-page: 232
  year: 2013
  end-page: 237
  ident: CR38
  article-title: Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties
  publication-title: Color. Technol.
  doi: 10.1111/cote.12015
– year: 1873
  ident: CR50
  publication-title: Statique Expérimentale et Théorique des Liquides
– volume: 28
  start-page: 7783
  year: 2016
  end-page: 7790
  ident: CR56
  article-title: Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601783
– volume: 12
  start-page: 3344
  year: 2011
  end-page: 3349
  ident: CR58
  article-title: Synchrotron ftir microspectroscopy of single natural silk fibers
  publication-title: Biomacromol
  doi: 10.1021/Bm2006032
– volume: 10
  start-page: 4187
  year: 2019
  ident: CR44
  article-title: Materials tactile logic via innervated soft thermochromic elastomers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12161-1
– start-page: 25
  year: 2007
  end-page: 78
  ident: CR54
  publication-title: Colorimetry: Understanding the CIE System
  doi: 10.1002/9780470175637.ch3
– volume: 21
  start-page: 100414
  year: 2020
  ident: CR15
  article-title: Super-strong and uniform fluorescent composite silk from trace aie nanoparticle feeding
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.100414
– volume: 5
  start-page: 11955
  year: 2020
  end-page: 11961
  ident: CR57
  article-title: Light, strong, and ductile architectures achieved by silk fiber “welding” processing
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b04109
– start-page: 503
  year: 2019
  end-page: 524
  ident: CR41
  publication-title: 21-VO -based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency
– volume: 104
  start-page: 533
  year: 2017
  end-page: 538
  ident: CR14
  article-title: Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.06.069
– volume: 119
  start-page: 12279
  year: 2019
  end-page: 12336
  ident: CR1
  article-title: Biological material interfaces as inspiration for mechanical and optical material designs
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00416
– volume: 50
  start-page: 87
  year: 2012
  end-page: 92
  ident: CR36
  article-title: Construction of fluorescent red silk using fibroin h-chain expression system
  publication-title: J. Sericul. Entomol. Sci.
  doi: 10.7852/jses.2012.50.2.87
– volume: 28
  start-page: 1705291
  year: 2018
  ident: 591_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705291
– volume: 8
  start-page: 1387
  year: 2017
  ident: 591_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00613-5
– volume: 7
  start-page: 50
  year: 2020
  ident: 591_CR16
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00050
– volume: 28
  start-page: 6640
  year: 2016
  ident: 591_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601572
– volume: 8
  start-page: 460
  year: 2020
  ident: 591_CR7
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05799
– volume: 16
  start-page: 6695
  year: 2016
  ident: 591_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03597
– volume: 14
  start-page: 1885
  year: 2013
  ident: 591_CR59
  publication-title: Biomacromol
  doi: 10.1021/bm400267m
– volume: 4
  start-page: 5401
  year: 2013
  ident: 591_CR60
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00508a
– volume: 27
  start-page: 1605657
  year: 2017
  ident: 591_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605657
– volume: 63
  start-page: 657
  year: 1974
  ident: 591_CR48
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112074002126
– volume: 33
  start-page: 645
  year: 2011
  ident: 591_CR37
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-010-0498-z
– volume: 147
  start-page: 105697
  year: 2020
  ident: 591_CR55
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2020.105697
– volume: 32
  start-page: 9576
  year: 2011
  ident: 591_CR17
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.08.081
– volume: 7
  start-page: 10972
  year: 2017
  ident: 591_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11592-4
– volume: 18
  start-page: 81
  year: 2000
  ident: 591_CR31
  publication-title: Nat. Biotechnol.
  doi: 10.1038/71978
– volume: 162
  start-page: 705
  year: 2019
  ident: 591_CR39
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2018.11.007
– volume: 14
  start-page: 1700754
  year: 2019
  ident: 591_CR63
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201700754
– volume: 21
  start-page: 52
  year: 2003
  ident: 591_CR32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt771
– volume-title: Statique Expérimentale et Théorique des Liquides
  year: 1873
  ident: 591_CR50
– volume: 129
  start-page: 232
  year: 2013
  ident: 591_CR38
  publication-title: Color. Technol.
  doi: 10.1111/cote.12015
– volume: 28
  start-page: 1221
  year: 2020
  ident: 591_CR11
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.01.518
– volume: 8
  start-page: 11872
  year: 2020
  ident: 591_CR6
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c03874
– volume: 4
  start-page: 4832
  year: 2019
  ident: 591_CR10
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03566
– volume: 32
  start-page: 29
  year: 2014
  ident: 591_CR23
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-014-1368-2
– volume: 3
  start-page: 18016
  year: 2018
  ident: 591_CR4
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.16
– volume: 12
  start-page: 7565
  year: 2020
  ident: 591_CR45
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20612
– volume: 31
  start-page: 347
  year: 1999
  ident: 591_CR51
  publication-title: Ann. Rev. Fluid. Mech.
  doi: 10.1146/annurev.fluid.31.1.347
– volume: 28
  start-page: 6731
  year: 2012
  ident: 591_CR52
  publication-title: Langmuir
  doi: 10.1021/la300622h
– volume: 1
  start-page: 1411
  year: 2019
  ident: 591_CR29
  publication-title: Matter
  doi: 10.1016/j.matt.2019.07.016
– volume: 28
  start-page: 7783
  year: 2016
  ident: 591_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601783
– volume: 44
  start-page: 53
  year: 2019
  ident: 591_CR20
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.320
– volume: 28
  start-page: 1805305
  year: 2018
  ident: 591_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805305
– volume: 5
  start-page: 11955
  year: 2020
  ident: 591_CR57
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b04109
– volume: 7
  start-page: 26
  year: 2018
  ident: 591_CR43
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0038-5
– volume: 12
  start-page: 12
  year: 2019
  ident: 591_CR61
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0348-z
– volume: 104
  start-page: 533
  year: 2017
  ident: 591_CR14
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.06.069
– year: 1988
  ident: 591_CR47
  publication-title: Dyn. Curv. Fronts
  doi: 10.1016/B978-0-08-092523-3.50016-2
– volume: 540
  start-page: 363
  year: 2016
  ident: 591_CR62
  publication-title: Nature
  doi: 10.1038/nature21002
– volume: 36
  start-page: 329
  year: 2009
  ident: 591_CR34
  publication-title: Mol. Bio. Rep.
  doi: 10.1007/s11033-007-9183-2
– volume: 3
  start-page: 3940
  year: 2015
  ident: 591_CR22
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00448A
– volume: 34
  start-page: 417
  year: 2014
  ident: 591_CR9
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.09.041
– volume-title: Capillarity and Wetting Phenomena
  year: 2004
  ident: 591_CR49
  doi: 10.1007/978-0-387-21656-0
– volume: 13
  start-page: 511
  year: 1999
  ident: 591_CR35
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.5.511
– volume: 28
  start-page: 085003
  year: 2019
  ident: 591_CR40
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/ab21ef
– volume-title: Chinese Silk: A Cultural History
  year: 2004
  ident: 591_CR3
– volume: 2
  start-page: 312
  year: 2014
  ident: 591_CR18
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400355k
– volume: 21
  start-page: 366
  year: 2009
  ident: 591_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800582
– volume: 23
  start-page: 5232
  year: 2013
  ident: 591_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300365
– volume: 12
  start-page: 3344
  year: 2011
  ident: 591_CR58
  publication-title: Biomacromol
  doi: 10.1021/Bm2006032
– volume: 6
  start-page: 7145
  year: 2015
  ident: 591_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8145
– volume: 3
  start-page: 2551
  year: 2015
  ident: 591_CR13
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00749
– volume: 50
  start-page: 87
  year: 2012
  ident: 591_CR36
  publication-title: J. Sericul. Entomol. Sci.
  doi: 10.7852/jses.2012.50.2.87
– volume: 21
  start-page: 100414
  year: 2020
  ident: 591_CR15
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2020.100414
– volume: 63
  start-page: 205
  year: 2014
  ident: 591_CR12
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.11.006
– volume: 10
  start-page: 4187
  year: 2019
  ident: 591_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12161-1
– volume: 61
  start-page: 6223
  year: 2006
  ident: 591_CR53
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.05.027
– volume: 119
  start-page: 12279
  year: 2019
  ident: 591_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00416
– volume: 85
  start-page: 1
  year: 2018
  ident: 591_CR2
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.06.004
– volume-title: Handbook of Fiber Chemistry, Revised and Expanded
  year: 1998
  ident: 591_CR5
– start-page: 503
  volume-title: 21-VO2-based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency
  year: 2019
  ident: 591_CR41
– start-page: 25
  volume-title: Colorimetry: Understanding the CIE System
  year: 2007
  ident: 591_CR54
  doi: 10.1002/9780470175637.ch3
– volume: 20
  start-page: 2137
  year: 2020
  ident: 591_CR46
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00147
– volume: 90
  start-page: 2070
  year: 2020
  ident: 591_CR42
  publication-title: Text. Res. J.
  doi: 10.1177/0040517520910217
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.49066
Snippet Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in...
HighlightsWearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in...
Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Bonding
Commercialization
Continuous coating
Displays
Dynamic display
Engineering
Fabrics
Fourier transforms
Hydrophobicity
Immersion coating
Interfacial bonding
Low cost
Mechanical properties
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Sewing
Silk
Smart materials
Smart textile
Sustainability
Synchrotrons
Textiles
Thermal treatment materials
Thermochromic
Thermochromism
Wearable technology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfBMolZG4gUXi2LFzbGmrCgQXWqk3y19RV2yz1e5Wpf--M0422YUFLlxjZ7V5HnveyDNvCHlXNnloQsgZr51jwuvAahtKlgfRCKWsKzQWJ3_9Vp2cic_n8nyt1RfmhHXywB1wH7kvGxu9lDzmonFWB6ddAyxBcAVsJ4ltg89bC6bAkrjCjkzj_SC2VRZrKjUCNV3KUchMonCZGvUxJRfg13tH2xFphVdYqVNdUbBK5VVfgZPq8LBrc84w2wGLOQt2s-HlUjOAbQz290TMX25jk5M7fkQe9uyU7neoPCb3YvuEPFjTLHxKvoBhzS9n_mKO9cz0-2T6Y0GB-dLTCAy8U2imY1INtW2gh13be5jycwmnED2cLK6m9nbxjJwdH51-OmF9RwbmgZgsmS0cKnq5ykod82hr4QFFz5tKlb5uhIbHXMRKOFTKs7WHIyQCAXM6V6p2sXxOdtpZG18SWvkyeBvAQkIlrAtwsgQNIbIrAkTsPGSkWCFofC9Xjl0zpmYQWk6oG0DdJNTNTUbeD-9cdWIdf519gAszzESh7fQAzM_05mf-ZX4Z2V0tq-l3_8JwocGHaAjWtg-Dk6lTEfT2YYhpJcDFeUbeDsOw6_Eqx7Zxdo0_ATRYonR-Rl50NjR8B_ISDcwkI2rDujY-dHOknVwkZXFYNCW5zsiHlR2Of-vPQL76H0C-Jvc5bqCUKbRLdpbz6_gG-N7S7aWtfQfmfEXw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SZQUJC4gaXEsWPnCJSqAsGFVuot8it0xZKtNlsV_j0zzqsLCxLX2LtKxjOebzQz3wC8LJrMN95njFfWMuG0Z5XxBcu8aIRSxuaampM_fS6PTsSHU3k6NIV1Y7X7mJKMN_XU7EajkTNGJQXUMZmzy-twQ1LsTinamXOcK5rGNOcGaaSyuMJQI4jPpZhJzCSRlqmZG1NygT59cLI9iFaUvopT6vKclSorh-6b3a-15eHiIIBd6PXPIszfMrHRwR3egdsDMk3f9Kp0F66F9h7cusJXeB8-olKtv6_c2Zp6mdMvi-W3LkXUmx4HRN89O3M6F9SkpvXpQT_yHrf82OANlB4suvOl-dk9gJPD98fvjtgwjYE5BCUbZnJLbF62NFKHLJhKOJSi402pClc1QuNjLkIpLLHkmcrh9REQfFmdKVXZUDyEvXbVhseQlq7wznjUDl8KYz3eKl5jeGxzj9E69wnkowRrN1CV08SMZT2RLEep1yj1Okq9vkzg1fSb856o45-739LBTDuJZDs-WK2_1oPN1twVjQlOSh4y0VijvdW2QYAquEKgXSawPx5rPVh-V3Oh0X9oDNR2L6ODqWID9O5ljGcliovzBF5My2jxlMYxbVhd0F8gBJZEm5_Ao16Hpu8gTKIRlSSgtrRr60O3V9rFWWQVx0NTkusEXo96OL_W3wX55P-2P4WbnEwl1gPtw95mfRGeIarb2OfRiH8BHUU6OA
  priority: 102
  providerName: Springer Nature
Title Thermochromic Silks for Temperature Management and Dynamic Textile Displays
URI https://link.springer.com/article/10.1007/s40820-021-00591-w
https://www.ncbi.nlm.nih.gov/pubmed/34138303
https://www.proquest.com/docview/2489118559
https://www.proquest.com/docview/2538900533
https://www.proquest.com/docview/2619577922
https://www.proquest.com/docview/2542359430
https://pubmed.ncbi.nlm.nih.gov/PMC8187528
https://doaj.org/article/2c3faec552e04fba8db8bf1124270806
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZocoED4s1CiRaJG1jser1r7wk1SUMFokKQSr2t_FoaETYhSVX13zPjOJsGQi852E4Uj8cznz2ebwh5k9WJra1NKCu1ptxIS0tlM5pYXnMhlE4lJid_OS1Ozvin8_w8XLgtw7PKjU30htrODN6Rv2ewM0ufOfph_pti1SiMroYSGgekCyZYyg7p9o9Pv37baBQTWJlpGyfE8sr8BlsNR26XbEtoliOBmdjyZOaMg38PDncNqAWGsnzFujSlhUiKkInj8_GwenNC8dUDJnWm9GrH2_miAPuQ7L8PMv-KynpnN3pA7geUGh-t1eohueOaR-TeDe7Cx-QzKNji18xcLDCvOf4-mf5cxoCA47EDJL5mao63j2ti1dh4eN0oHDwGjwDWKB5OlvOpul4-IWej4_HghIbKDNQAQFlRlWpk9tKFyqVLnCq5ASkaVhciM2XNJTQz7gqukTFPlQZMiQMgpmUiRKld9pR0mlnjnpO4MJk1yoKm2IIrbcHCWAlHZZ1aOLkzG5F0I8HKBNpyrJ4xrVrCZS_1CqReealXVxF5235nvibtuHV0HxemHYmE275htvhRhf1bMZPVypk8Zy7htVbSaqlrAKucCQDdRUQON8taBSuwrBiX4EskHNr2d7cqvb8bzrY5iIuxiLxuu2H3Y0hHNW52iT8BcDhHCv2IPFvrUDsPxCcSEEpExI527Ux0t6eZXHiGcVg0kTMZkXcbPdz-rf8L8sXtk3xJ7jLcGv4t0CHprBaX7hUgupXukQM5-tgj3aP-sD_qhU0MrQPG8bMY9PxdyR9Z7ENq
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcwMnMCDLcuWfGAYIISUtL2QzvRm9DLNEOyQpJPJn-I3sis_0kDorVdL8USrfXyydr8l5EVchKYwJgxoplTAtDBBJk0chIYVjHOpIoHFyYdH6eCYfTlJTnbI77YWBtMqW5_oHLWpNH4jf0PBMjNXOfpu-ivArlF4u9q20KjVYmhXSziyzd_u92B_X1La_zT6OAiargKBhuC6CGSkkJVKpTIRNrQyYxrUUNMi5bHOCibgMWU2ZQrZ3mSmwQwsgAglQs4zZWN47xVylcUQybEyvf-51V_KsQ_U-lYSmzmzc9w4DJlk4jV9WoJ0aXzNyplQBmiiCe81fOd4ceb640VRkPIwbep-XPUf9ooOA8yxwBLSKFhuxFbXgmAbbv43_fOvO2AXWvu3yM0GE_vvayW-TXZseYfcOMeUeJcMQZ1nPyt9OsMqav_rePJj7gPe9kcWcH_NC-2vU3l8WRq_tyolTh5B_AHf5_fG8-lErub3yPGl7Nh9sltWpX1I_FTHRksDemlSJpUBf2YEHMxVZFiaUeORqJVgrhuSdOzVMck7emcn9Ryknjup50uPvOp-M60pQi6c_QE3ppuJ9N7uQTX7njfeIqc6LqTVSUJtyAolhVFCFQCNGeUA8VOP7LXbmjc-Z55TJiByCTgibh_uDGj7MJykExAXpR553g2Dr8ELJFna6gxfAeA7QcJ-jzyodahbB6IhAXjII3xDuzYWujlSjk8dnzlsGk-o8MjrVg_Xf-v_gnx08SKfkWuD0eFBfrB_NHxMrlM0E5eFtEd2F7Mz-wSw5EI9dQbsk2-X7TH-ALbReMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyLoYCR4ARW7fV6d33gEAhRm0CF1FbqzezLNCI4UZIqyr_iJzLrVxoISBx69W6seGZ25lvNzDcAr-I8NLkxYUBSpQKqhQlSaeIgNDSnnEsVCdec_PmYHZ7RwXlyvgM_m16Ystq9SUlWPQ2OpalYHExNftA2vrkxyWHgygtc92QULOuyyqFdLfHSNn931EMNvyak__H0w2FQzxUINIbXRSAj5XipFJOJsKGVKdVoiJrkjMc6zanAx4RaRpXje5OpxoNgEUYoEXKeKhvje2_ArmB4Qjuw2-0OTgaNDRPuZkGtM5NuoDO9wo9DHZtMvKZQSxxlGl8zcyaEIqKoQ3wF4blLnpUz8qIoYDxkde_PdkFsxNdyDME27PxnCehveeAyvPbvwp0aF_vdypDvwY4t7sPtK2yJD2CIJj37MdEXM9dJ7Z-Mxt_nPmJu_9Qi9q-4of11OY8vC-P3VoV0m08xBqH_83uj-XQsV_OHcHYtOnsEnWJS2MfgMx0bLQ3apmFUKoM-zQi8nKvIUJYS40HUSDDTNVG6m9cxzlqK51LqGUo9K6WeLT140_5mWtGE_HP3e6eYdqej-C4fTGbfstpjZETHubQ6SYgNaa6kMEqoHOExJRxhPvNgv1FrVvudeUaowOgl8Jq4fRnDW1q2X29fxtt0guIixIOX7TL6G5dEkoWdXLpXIABPHGm_B3uVDbXf4RCRQEzkAd-wro0P3VwpRhclpzkqjSdEePC2scP13_q7IJ_83_YXcPNLr599OjoePoVbxJ2asjBpHzqL2aV9hvByoZ7XJ9qHr9ftRH4B3CN71w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermochromic+Silks+for+Temperature+Management+and+Dynamic+Textile+Displays&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Yang&rft.au=Ren%2C+Jing&rft.au=Ye%2C+Chao&rft.au=Pei%2C+Ying&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft_id=info:doi/10.1007%2Fs40820-021-00591-w&rft_id=info%3Apmid%2F34138303&rft.externalDocID=PMC8187528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon