Thermochromic Silks for Temperature Management and Dynamic Textile Displays
Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance ther...
Saved in:
Published in | Nano-micro letters Vol. 13; no. 1; pp. 72 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays.
Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy.
The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy.
Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m
−3
, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. |
---|---|
AbstractList | HighlightsWearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays.Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy.The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy.Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m −3 , comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. Abstract Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. |
ArticleNumber | 72 |
Author | Wang, Yang Pei, Ying Ling, Shengjie Ren, Jing Ye, Chao |
Author_xml | – sequence: 1 givenname: Yang surname: Wang fullname: Wang, Yang organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 2 givenname: Jing surname: Ren fullname: Ren, Jing organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 3 givenname: Chao surname: Ye fullname: Ye, Chao organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 4 givenname: Ying surname: Pei fullname: Pei, Ying organization: School of Materials Science and Engineering, Zhengzhou University – sequence: 5 givenname: Shengjie surname: Ling fullname: Ling, Shengjie email: lingshj@shanghaitech.edu.cn organization: School of Physical Science and Technology, ShanghaiTech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138303$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLUv_AAcUiQuXwPgrsS9IqOWjoogDy9lyvJNdlyRe7ISy_x5vUwrtYU-2xu89z5t5T8nREAYk5DmF1xSgfpMEKAYlMFoCSE3L60fkhFEJpZSSHuU7p7SsaqiOyWlKvgHJRM1qKZ6QYy4oVxz4Cfm83GDsg9vE0HtXfPPdj1S0IRZL7LcY7ThFLL7Ywa6xx2Es7LAqzneD3YOX-Hv0HRbnPm07u0vPyOPWdglPb88F-f7h_fLsU3n59ePF2bvL0lVcjqWlDa01NJWVCgGtFo5T7Vhb1dzpVqhcZgIr0YCiymoHHFAz3Sioa90gX5CLWXcV7JXZRt_buDPBenNTCHFtbBy969Awx1uLTkqGINrGqlWjmpZSJlgNCqqs9XbW2k5NjyuXPUbb3RO9_zL4jVmHXya3VkumssCrW4EYfk6YRtP75LDr7IBhSoZJwbjUIk97QV4-gF6FKQ55VIZVVMvsjrGDKMmVztvm_CBKKE2pklJn1Iv_3d3Z-rv_DGAzwMWQUsT2DkLB7HNm5pyZnDNzkzNznUnqAcn50Y4-7Cfku8NUPlNT_mdYY_zX9gHWH9al5OU |
CitedBy_id | crossref_primary_10_1007_s42765_022_00203_1 crossref_primary_10_1016_j_cej_2024_149869 crossref_primary_10_1088_1402_4896_ac9867 crossref_primary_10_1021_acsami_2c07666 crossref_primary_10_1002_adma_202210085 crossref_primary_10_1126_science_adj8013 crossref_primary_10_1021_acsami_4c09071 crossref_primary_10_3390_en17112627 crossref_primary_10_3390_molecules29204944 crossref_primary_10_1002_smll_202102660 crossref_primary_10_1080_00405000_2023_2228552 crossref_primary_10_1007_s42765_022_00138_7 crossref_primary_10_1021_acs_nanolett_4c03848 crossref_primary_10_1016_j_cej_2024_148698 crossref_primary_10_1016_j_indcrop_2023_117254 crossref_primary_10_1007_s10971_023_06232_5 crossref_primary_10_1088_2053_1591_acd50f crossref_primary_10_1002_adfm_202301607 crossref_primary_10_1002_admt_202201137 crossref_primary_10_1021_acsaem_2c01379 crossref_primary_10_1016_j_apsusc_2023_156962 crossref_primary_10_1016_j_cej_2023_145534 crossref_primary_10_1007_s12200_022_00042_3 crossref_primary_10_1021_acsapm_4c01738 crossref_primary_10_1039_D3TC03769J crossref_primary_10_1515_epoly_2023_0189 crossref_primary_10_1557_s43577_024_00735_4 crossref_primary_10_1007_s40820_022_00895_5 crossref_primary_10_1016_j_cej_2022_136369 crossref_primary_10_1007_s10570_024_05974_x crossref_primary_10_1016_j_colsurfa_2024_135367 crossref_primary_10_1039_D5MH00046G crossref_primary_10_1002_cmt2_33 crossref_primary_10_1002_adfm_202304109 crossref_primary_10_1002_est2_70110 crossref_primary_10_1002_sus2_207 crossref_primary_10_1016_j_cej_2022_134901 crossref_primary_10_1016_j_partic_2023_08_016 crossref_primary_10_1039_D3MH01636F crossref_primary_10_3390_polym16111545 crossref_primary_10_1177_00405175231179997 crossref_primary_10_1016_j_isci_2024_109604 crossref_primary_10_1007_s12274_023_6373_8 crossref_primary_10_1016_j_matchemphys_2023_127977 crossref_primary_10_1016_j_ijleo_2023_171556 crossref_primary_10_1016_j_porgcoat_2023_107928 crossref_primary_10_1021_acsnano_1c10680 crossref_primary_10_1016_j_jallcom_2023_172013 crossref_primary_10_1002_adma_202500073 crossref_primary_10_1016_j_coco_2024_102122 crossref_primary_10_1021_acsami_3c17947 crossref_primary_10_1002_smll_202206572 crossref_primary_10_1073_pnas_2207353119 crossref_primary_10_1016_j_cej_2023_144504 crossref_primary_10_1002_rpm_20230017 crossref_primary_10_1007_s12274_023_5587_0 crossref_primary_10_1080_00405000_2024_2383022 crossref_primary_10_1021_acssuschemeng_3c05583 crossref_primary_10_1007_s42114_024_00954_y crossref_primary_10_1007_s40820_023_01126_1 crossref_primary_10_1016_j_indcrop_2022_115783 crossref_primary_10_1002_adom_202403126 |
Cites_doi | 10.1038/natrevmats.2018.16 10.1002/adfm.201805305 10.1016/j.msec.2013.09.041 10.1088/1361-665x/ab21ef 10.1002/adfm.201300365 10.1016/j.dyepig.2018.11.007 10.1007/s40820-019-0348-z 10.1016/j.biomaterials.2011.08.081 10.1007/s10118-014-1368-2 10.1038/71978 10.1021/acs.nanolett.0c00147 10.1021/acssuschemeng.0c03874 10.1002/adfm.201605657 10.1007/s10529-010-0498-z 10.1038/s41598-017-11592-4 10.1101/gad.13.5.511 10.1038/s41467-017-00613-5 10.1016/B978-0-08-092523-3.50016-2 10.1038/nature21002 10.1007/s11033-007-9183-2 10.1016/j.matpr.2020.01.518 10.1039/c3py00508a 10.1021/acsomega.8b03566 10.1016/j.matt.2019.07.016 10.1002/adfm.201705291 10.1021/acs.nanolett.6b03597 10.1016/j.progpolymsci.2018.06.004 10.1016/j.ces.2006.05.027 10.1021/bm400267m 10.1016/j.porgcoat.2020.105697 10.1002/biot.201700754 10.1017/S0022112074002126 10.3389/fmats.2020.00050 10.1038/s41377-018-0038-5 10.1021/sc400355k 10.1021/la300622h 10.1557/mrs.2018.320 10.1038/ncomms8145 10.1021/acsami.9b20612 10.1007/978-0-387-21656-0 10.1016/j.ijbiomac.2013.11.006 10.1002/adma.201601572 10.1021/acssuschemeng.9b05799 10.1039/C5TB00448A 10.1021/acssuschemeng.5b00749 10.1146/annurev.fluid.31.1.347 10.1177/0040517520910217 10.1038/nbt771 10.1002/adma.200800582 10.1111/cote.12015 10.1002/adma.201601783 10.1021/Bm2006032 10.1038/s41467-019-12161-1 10.1002/9780470175637.ch3 10.1016/j.coco.2020.100414 10.1021/acsomega.9b04109 10.1016/j.ijbiomac.2017.06.069 10.1021/acs.chemrev.9b00416 10.7852/jses.2012.50.2.87 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-021-00591-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_2c3faec552e04fba8db8bf1124270806 PMC8187528 34138303 10_1007_s40820_021_00591_w |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-a1b1790b6a58e0ea94c319c2f673c9f4858e24e64b0818a9c030e929b80779be3 |
IEDL.DBID | BENPR |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:01:43 EDT 2025 Thu Aug 21 17:44:42 EDT 2025 Fri Jul 11 10:53:31 EDT 2025 Wed Aug 13 07:56:12 EDT 2025 Wed Aug 13 08:07:12 EDT 2025 Wed Aug 13 04:30:35 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:46:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Silk Thermochromic Dynamic display Smart textile |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-a1b1790b6a58e0ea94c319c2f673c9f4858e24e64b0818a9c030e929b80779be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2538900533?pq-origsite=%requestingapplication% |
PMID | 34138303 |
PQID | 2489118559 |
PQPubID | 2044332 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c3faec552e04fba8db8bf1124270806 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187528 proquest_miscellaneous_2542359430 proquest_journals_2619577922 proquest_journals_2538900533 proquest_journals_2489118559 pubmed_primary_34138303 crossref_primary_10_1007_s40820_021_00591_w crossref_citationtrail_10_1007_s40820_021_00591_w springer_journals_10_1007_s40820_021_00591_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2021 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Wang, Jian, Wang, Zhang (CR26) 2017; 27 Yang, Pan, Luo, Xu, Huang (CR40) 2019; 28 Zhang, Fei, Zhang, Chen, Yin (CR55) 2020; 147 Cai, Shao, Hu, Zhang (CR13) 2015; 3 Wang, Guo, Zhou, Ye, Omenetto (CR24) 2018; 28 Vainker (CR3) 2004 Mullins, Kasper (CR53) 2006; 61 Ling, Li, Jin, Kaplan, Buehler (CR56) 2016; 28 Wang, Li, Feng, Li, Jiang (CR12) 2014; 63 Zhang, Licon, Harris, Oliveira, McFarland (CR10) 2019; 4 Ling, Kaplan, Buehler (CR4) 2018; 3 Nisal, Trivedy, Mohammad, Panneri, Sen Gupta (CR18) 2014; 2 Yamao, Katayama, Nakazawa, Yamakawa, Hayashi (CR35) 1999; 13 Ling, Qi, Knight, Huang, Huang (CR59) 2013; 14 Ling, Chen, Fan, Zheng, Jin (CR2) 2018; 85 Iizuka, Sezutsu, Tatematsu, Kobayashi, Yonemura (CR33) 2013; 23 Liu, David, Ip, Li, Li (CR34) 2009; 36 Wang, Li, Gao, Jian, Xia (CR27) 2016; 28 Ramos, Miranda, Franco, Silva, Azevedo (CR6) 2020; 8 Nambajjwe, Musinguzi, Rwahwire, Kasedde, Namuga (CR11) 2020; 28 Quéré (CR51) 1999; 31 Zhou, Shao, Chen (CR23) 2014; 32 Wu, Ye, Liu, Ren, Yao (CR57) 2020; 5 Fang, Zheng, Yao, Chen, Tang (CR22) 2015; 3 Jin, Lin, Kiani, Joshipura, Ge (CR44) 2019; 10 Plateau (CR50) 1873 Viková, Pechová (CR42) 2020; 90 Tomita (CR37) 2011; 33 Lewin, Pearce (CR5) 1998 Ling, Wang, Zhang, Zhang, Mu (CR30) 2018; 28 Tamura, Thibert, Royer, Kanda, Eappen (CR31) 2000; 18 Chen, Wen, Zhang, Lei, Feng (CR45) 2020; 12 Qu, Li, Cai, Pan, Ghosh (CR43) 2018; 7 Ke, Zhu, Zhang, Yang, Guo (CR7) 2020; 8 Chowdhury, Butola, Joshi (CR38) 2013; 129 Dong, Zhang, Tao, Chen, Li (CR19) 2017; 7 Ye, Ren, Wang, Zhang, Qian (CR29) 2019; 1 Mead-Hunter, King, Mullins (CR52) 2012; 28 Schanda (CR54) 2007 Tansil, Li, Koh, Peng, Win (CR17) 2011; 32 Wu, Song, Zhang, Liu, Li (CR14) 2017; 104 Ling, Qin, Li, Huang, Kaplan (CR28) 2017; 8 Cao, Jin, Luo (CR41) 2019 Zhan, Fan, Wang, Yao, Shao (CR15) 2020; 21 Zhou, Shao, Knight, Yan, Chen (CR21) 2009; 21 Ren, Wang, Yao, Wang, Fei (CR1) 2019; 119 Cho, Yun, Lee, Jang, Park (CR25) 2015; 6 Ling, Qi, Knight, Shao, Chen (CR60) 2013; 4 Zhang, Hu, Xiang, Zhai, Zhu (CR39) 2019; 162 Wang, Wang, Zhang, Jian, Zhang (CR8) 2016; 16 Yang, Zhang, Ye, Chen, Ling (CR63) 2019; 14 Landau, Levich (CR47) 1988 Ye, Dong, Ren, Ling (CR61) 2019; 12 Tomita, Munetsuna, Sato, Adachi, Hino (CR32) 2003; 21 James (CR48) 1974; 63 Wang, Li, Zhang, Liu, Jiang (CR9) 2014; 34 Gennes, Brochard-Wyart, Quéré (CR49) 2004 Shen, Feng, Qi, Cao, Ge (CR46) 2020; 20 Ling, Qi, Knight, Shao, Chen (CR58) 2011; 12 Patrick, Robb, Sottos, Moore, White (CR62) 2016; 540 Lee, Sultan, Hong, Lee, Lee (CR16) 2020; 7 Ren, Liu, Kaplan, Ling (CR20) 2019; 44 Kim, Yun, Choi, Kim, Park (CR36) 2012; 50 J-T Wang (591_CR9) 2014; 34 JAF Plateau (591_CR50) 1873 GQ Zhou (591_CR21) 2009; 21 S Ling (591_CR28) 2017; 8 S Ling (591_CR30) 2018; 28 Q Wang (591_CR26) 2017; 27 NC Tansil (591_CR17) 2011; 32 M Tomita (591_CR37) 2011; 33 SJ Ling (591_CR59) 2013; 14 G Wu (591_CR14) 2017; 104 T Iizuka (591_CR33) 2013; 23 D Quéré (591_CR51) 1999; 31 H Zhou (591_CR23) 2014; 32 J-T Wang (591_CR12) 2014; 63 SJ Ling (591_CR60) 2013; 4 S Ling (591_CR4) 2018; 3 D Wu (591_CR57) 2020; 5 M Tomita (591_CR32) 2003; 21 X Cao (591_CR41) 2019 D James (591_CR48) 1974; 63 SY Cho (591_CR25) 2015; 6 N Ramos (591_CR6) 2020; 8 X Zhang (591_CR10) 2019; 4 J Ke (591_CR7) 2020; 8 M Lewin (591_CR5) 1998 MA Chowdhury (591_CR38) 2013; 129 W Zhang (591_CR55) 2020; 147 SJ Vainker (591_CR3) 2004 L Cai (591_CR13) 2015; 3 J-M Liu (591_CR34) 2009; 36 M Viková (591_CR42) 2020; 90 Q Wang (591_CR8) 2016; 16 R Mead-Hunter (591_CR52) 2012; 28 M Yamao (591_CR35) 1999; 13 M Yang (591_CR40) 2019; 28 L Landau (591_CR47) 1988 T Tamura (591_CR31) 2000; 18 OJ Lee (591_CR16) 2020; 7 Y Jin (591_CR44) 2019; 10 Q Zhan (591_CR15) 2020; 21 Y Qu (591_CR43) 2018; 7 JF Patrick (591_CR62) 2016; 540 G Fang (591_CR22) 2015; 3 N Yang (591_CR63) 2019; 14 Y Zhang (591_CR39) 2019; 162 J Ren (591_CR1) 2019; 119 C Nambajjwe (591_CR11) 2020; 28 J Ren (591_CR20) 2019; 44 C Wang (591_CR27) 2016; 28 H-L Dong (591_CR19) 2017; 7 B Mullins (591_CR53) 2006; 61 S Ling (591_CR56) 2016; 28 Y Wang (591_CR24) 2018; 28 P Gennes (591_CR49) 2004 C Ye (591_CR61) 2019; 12 A Nisal (591_CR18) 2014; 2 S Ling (591_CR2) 2018; 85 SW Kim (591_CR36) 2012; 50 C Ye (591_CR29) 2019; 1 S Shen (591_CR46) 2020; 20 SJ Ling (591_CR58) 2011; 12 J Schanda (591_CR54) 2007 J Chen (591_CR45) 2020; 12 |
References_xml | – volume: 3 start-page: 18016 year: 2018 ident: CR4 article-title: Nanofibrils in nature and materials engineering publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.16 – volume: 28 start-page: 1805305 year: 2018 ident: CR24 article-title: Design, fabrication, and function of silk-based nanomaterials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805305 – volume: 34 start-page: 417 year: 2014 end-page: 421 ident: CR9 article-title: Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.09.041 – volume: 28 start-page: 085003 year: 2019 ident: CR40 article-title: Cnt/cotton composite yarn for electro-thermochromic textiles publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/ab21ef – volume: 23 start-page: 5232 year: 2013 end-page: 5239 ident: CR33 article-title: Colored fluorescent silk made by transgenic silkworms publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300365 – year: 1998 ident: CR5 publication-title: Handbook of Fiber Chemistry, Revised and Expanded – volume: 162 start-page: 705 year: 2019 end-page: 711 ident: CR39 article-title: Fabrication of visual textile temperature indicators based on reversible thermochromic fibers publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2018.11.007 – volume: 12 start-page: 12 year: 2019 ident: CR61 article-title: Ultrastable and high-performance silk energy harvesting textiles publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0348-z – volume: 32 start-page: 9576 year: 2011 end-page: 9583 ident: CR17 article-title: The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.081 – volume: 32 start-page: 29 year: 2014 end-page: 34 ident: CR23 article-title: Wet-spinning of regenerated silk fiber from aqueous silk fibroin solutions: influence of calcium ion addition in spinning dope on the performance of regenerated silk fiber publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-014-1368-2 – volume: 18 start-page: 81 year: 2000 end-page: 84 ident: CR31 article-title: Germline transformation of the silkworm L. Using a piggybac transposon-derived vector publication-title: Nat. Biotechnol. doi: 10.1038/71978 – volume: 20 start-page: 2137 year: 2020 end-page: 2143 ident: CR46 article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00147 – volume: 8 start-page: 11872 year: 2020 end-page: 11887 ident: CR6 article-title: Toward spinning greener advanced silk fibers by feeding silkworms with nanomaterials publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c03874 – volume: 27 start-page: 1605657 year: 2017 ident: CR26 article-title: Carbonized silk nanofiber membrane for transparent and sensitive electronic skin publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605657 – volume: 33 start-page: 645 year: 2011 end-page: 654 ident: CR37 article-title: Transgenic silkworms that weave recombinant proteins into silk cocoons publication-title: Biotechnol. Lett. doi: 10.1007/s10529-010-0498-z – volume: 7 start-page: 10972 year: 2017 ident: CR19 article-title: Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets publication-title: Sci. Rep. doi: 10.1038/s41598-017-11592-4 – volume: 13 start-page: 511 year: 1999 end-page: 516 ident: CR35 article-title: Gene targeting in the silkworm by use of a baculovirus publication-title: Genes Dev. doi: 10.1101/gad.13.5.511 – volume: 8 start-page: 1387 year: 2017 ident: CR28 article-title: Polymorphic regenerated silk fibers assembled through bioinspired spinning publication-title: Nat. Commun. doi: 10.1038/s41467-017-00613-5 – year: 1988 ident: CR47 article-title: Dragging of a liquid by a moving plate publication-title: Dyn. Curv. Fronts doi: 10.1016/B978-0-08-092523-3.50016-2 – volume: 540 start-page: 363 year: 2016 end-page: 370 ident: CR62 article-title: Polymers with autonomous life-cycle control publication-title: Nature doi: 10.1038/nature21002 – volume: 36 start-page: 329 year: 2009 end-page: 335 ident: CR34 article-title: High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system publication-title: Mol. Bio. Rep. doi: 10.1007/s11033-007-9183-2 – volume: 28 start-page: 1221 year: 2020 end-page: 1226 ident: CR11 article-title: Improving electricity from silk cocoons through feeding silkworms with silver nanoparticles publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.01.518 – volume: 4 start-page: 5401 year: 2013 end-page: 5406 ident: CR60 article-title: Ftir imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends publication-title: Polym. Chem. doi: 10.1039/c3py00508a – volume: 4 start-page: 4832 year: 2019 end-page: 4838 ident: CR10 article-title: Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene publication-title: ACS Omega doi: 10.1021/acsomega.8b03566 – volume: 1 start-page: 1411 year: 2019 end-page: 1425 ident: CR29 article-title: Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles publication-title: Matter doi: 10.1016/j.matt.2019.07.016 – volume: 28 start-page: 1705291 year: 2018 ident: CR30 article-title: Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705291 – volume: 16 start-page: 6695 year: 2016 end-page: 6700 ident: CR8 article-title: Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03597 – volume: 85 start-page: 1 year: 2018 end-page: 56 ident: CR2 article-title: Biopolymer nanofibrils: structure, modeling, preparation, and applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.06.004 – volume: 61 start-page: 6223 year: 2006 end-page: 6227 ident: CR53 article-title: Comment on: “Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study” by frising et al publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.05.027 – volume: 14 start-page: 1885 year: 2013 end-page: 1892 ident: CR59 article-title: Insight into the structure of single antheraea pernyi silkworm fibers using synchrotron ftir microspectroscopy publication-title: Biomacromol doi: 10.1021/bm400267m – year: 2004 ident: CR3 publication-title: Chinese Silk: A Cultural History – volume: 147 start-page: 105697 year: 2020 ident: CR55 article-title: Durable and tunable temperature responsive silk fabricated with reactive thermochromic pigments publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2020.105697 – volume: 14 start-page: 1700754 year: 2019 ident: CR63 article-title: Nanobiopolymers fabrication and their life cycle assessments publication-title: Biotechnol. J. doi: 10.1002/biot.201700754 – volume: 63 start-page: 657 year: 1974 end-page: 664 ident: CR48 article-title: The meniscus on the outside of a small circular cylinder publication-title: J. Fluid Mech. doi: 10.1017/S0022112074002126 – volume: 7 start-page: 50 year: 2020 ident: CR16 article-title: Recent advances in fluorescent silk fibroin publication-title: Front. Mater. doi: 10.3389/fmats.2020.00050 – volume: 7 start-page: 26 year: 2018 ident: CR43 article-title: Thermal camouflage based on the phase-changing material gst publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0038-5 – volume: 2 start-page: 312 year: 2014 end-page: 317 ident: CR18 article-title: Uptake of azo dyes into silk glands for production of colored silk cocoons using a green feeding approach publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400355k – volume: 28 start-page: 6731 year: 2012 end-page: 6735 ident: CR52 article-title: Plateau rayleigh instability simulation publication-title: Langmuir doi: 10.1021/la300622h – volume: 44 start-page: 53 year: 2019 end-page: 58 ident: CR20 article-title: Interplay of structure and mechanics in silk/carbon nanocomposites publication-title: MRS Bull. doi: 10.1557/mrs.2018.320 – volume: 6 start-page: 7145 year: 2015 ident: CR25 article-title: Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein publication-title: Nat. Commun. doi: 10.1038/ncomms8145 – volume: 12 start-page: 7565 year: 2020 end-page: 7574 ident: CR45 article-title: Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20612 – year: 2004 ident: CR49 publication-title: Capillarity and Wetting Phenomena doi: 10.1007/978-0-387-21656-0 – volume: 63 start-page: 205 year: 2014 end-page: 209 ident: CR12 article-title: Directly obtaining pristine magnetic silk fibers from silkworm publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.11.006 – volume: 28 start-page: 6640 year: 2016 end-page: 6648 ident: CR27 article-title: Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors publication-title: Adv. Mater. doi: 10.1002/adma.201601572 – volume: 8 start-page: 460 year: 2020 end-page: 468 ident: CR7 article-title: Size-dependent uptake and distribution of agnps by silkworms publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05799 – volume: 3 start-page: 3940 year: 2015 end-page: 3947 ident: CR22 article-title: Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00448A – volume: 3 start-page: 2551 year: 2015 end-page: 2557 ident: CR13 article-title: Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00749 – volume: 31 start-page: 347 year: 1999 end-page: 384 ident: CR51 article-title: Fluid coating on a fiber publication-title: Ann. Rev. Fluid. Mech. doi: 10.1146/annurev.fluid.31.1.347 – volume: 90 start-page: 2070 year: 2020 end-page: 2084 ident: CR42 article-title: Study of adaptive thermochromic camouflage for combat uniform publication-title: Text. Res. J. doi: 10.1177/0040517520910217 – volume: 21 start-page: 52 year: 2003 end-page: 56 ident: CR32 article-title: Transgenic silkworms produce recombinant human type iii procollagen in cocoons publication-title: Nat. Biotechnol. doi: 10.1038/nbt771 – volume: 21 start-page: 366 year: 2009 end-page: 370 ident: CR21 article-title: Silk fibers extruded artificially from aqueous solutions of regenerated silk fibroin are tougher than their natural counterparts publication-title: Adv. Mater. doi: 10.1002/adma.200800582 – volume: 129 start-page: 232 year: 2013 end-page: 237 ident: CR38 article-title: Application of thermochromic colorants on textiles: temperature dependence of colorimetric properties publication-title: Color. Technol. doi: 10.1111/cote.12015 – year: 1873 ident: CR50 publication-title: Statique Expérimentale et Théorique des Liquides – volume: 28 start-page: 7783 year: 2016 end-page: 7790 ident: CR56 article-title: Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices publication-title: Adv. Mater. doi: 10.1002/adma.201601783 – volume: 12 start-page: 3344 year: 2011 end-page: 3349 ident: CR58 article-title: Synchrotron ftir microspectroscopy of single natural silk fibers publication-title: Biomacromol doi: 10.1021/Bm2006032 – volume: 10 start-page: 4187 year: 2019 ident: CR44 article-title: Materials tactile logic via innervated soft thermochromic elastomers publication-title: Nat. Commun. doi: 10.1038/s41467-019-12161-1 – start-page: 25 year: 2007 end-page: 78 ident: CR54 publication-title: Colorimetry: Understanding the CIE System doi: 10.1002/9780470175637.ch3 – volume: 21 start-page: 100414 year: 2020 ident: CR15 article-title: Super-strong and uniform fluorescent composite silk from trace aie nanoparticle feeding publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.100414 – volume: 5 start-page: 11955 year: 2020 end-page: 11961 ident: CR57 article-title: Light, strong, and ductile architectures achieved by silk fiber “welding” processing publication-title: ACS Omega doi: 10.1021/acsomega.9b04109 – start-page: 503 year: 2019 end-page: 524 ident: CR41 publication-title: 21-VO -based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency – volume: 104 start-page: 533 year: 2017 end-page: 538 ident: CR14 article-title: Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.06.069 – volume: 119 start-page: 12279 year: 2019 end-page: 12336 ident: CR1 article-title: Biological material interfaces as inspiration for mechanical and optical material designs publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00416 – volume: 50 start-page: 87 year: 2012 end-page: 92 ident: CR36 article-title: Construction of fluorescent red silk using fibroin h-chain expression system publication-title: J. Sericul. Entomol. Sci. doi: 10.7852/jses.2012.50.2.87 – volume: 28 start-page: 1705291 year: 2018 ident: 591_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705291 – volume: 8 start-page: 1387 year: 2017 ident: 591_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00613-5 – volume: 7 start-page: 50 year: 2020 ident: 591_CR16 publication-title: Front. Mater. doi: 10.3389/fmats.2020.00050 – volume: 28 start-page: 6640 year: 2016 ident: 591_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201601572 – volume: 8 start-page: 460 year: 2020 ident: 591_CR7 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05799 – volume: 16 start-page: 6695 year: 2016 ident: 591_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03597 – volume: 14 start-page: 1885 year: 2013 ident: 591_CR59 publication-title: Biomacromol doi: 10.1021/bm400267m – volume: 4 start-page: 5401 year: 2013 ident: 591_CR60 publication-title: Polym. Chem. doi: 10.1039/c3py00508a – volume: 27 start-page: 1605657 year: 2017 ident: 591_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605657 – volume: 63 start-page: 657 year: 1974 ident: 591_CR48 publication-title: J. Fluid Mech. doi: 10.1017/S0022112074002126 – volume: 33 start-page: 645 year: 2011 ident: 591_CR37 publication-title: Biotechnol. Lett. doi: 10.1007/s10529-010-0498-z – volume: 147 start-page: 105697 year: 2020 ident: 591_CR55 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2020.105697 – volume: 32 start-page: 9576 year: 2011 ident: 591_CR17 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.081 – volume: 7 start-page: 10972 year: 2017 ident: 591_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-017-11592-4 – volume: 18 start-page: 81 year: 2000 ident: 591_CR31 publication-title: Nat. Biotechnol. doi: 10.1038/71978 – volume: 162 start-page: 705 year: 2019 ident: 591_CR39 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2018.11.007 – volume: 14 start-page: 1700754 year: 2019 ident: 591_CR63 publication-title: Biotechnol. J. doi: 10.1002/biot.201700754 – volume: 21 start-page: 52 year: 2003 ident: 591_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/nbt771 – volume-title: Statique Expérimentale et Théorique des Liquides year: 1873 ident: 591_CR50 – volume: 129 start-page: 232 year: 2013 ident: 591_CR38 publication-title: Color. Technol. doi: 10.1111/cote.12015 – volume: 28 start-page: 1221 year: 2020 ident: 591_CR11 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.01.518 – volume: 8 start-page: 11872 year: 2020 ident: 591_CR6 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c03874 – volume: 4 start-page: 4832 year: 2019 ident: 591_CR10 publication-title: ACS Omega doi: 10.1021/acsomega.8b03566 – volume: 32 start-page: 29 year: 2014 ident: 591_CR23 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-014-1368-2 – volume: 3 start-page: 18016 year: 2018 ident: 591_CR4 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.16 – volume: 12 start-page: 7565 year: 2020 ident: 591_CR45 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20612 – volume: 31 start-page: 347 year: 1999 ident: 591_CR51 publication-title: Ann. Rev. Fluid. Mech. doi: 10.1146/annurev.fluid.31.1.347 – volume: 28 start-page: 6731 year: 2012 ident: 591_CR52 publication-title: Langmuir doi: 10.1021/la300622h – volume: 1 start-page: 1411 year: 2019 ident: 591_CR29 publication-title: Matter doi: 10.1016/j.matt.2019.07.016 – volume: 28 start-page: 7783 year: 2016 ident: 591_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.201601783 – volume: 44 start-page: 53 year: 2019 ident: 591_CR20 publication-title: MRS Bull. doi: 10.1557/mrs.2018.320 – volume: 28 start-page: 1805305 year: 2018 ident: 591_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805305 – volume: 5 start-page: 11955 year: 2020 ident: 591_CR57 publication-title: ACS Omega doi: 10.1021/acsomega.9b04109 – volume: 7 start-page: 26 year: 2018 ident: 591_CR43 publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0038-5 – volume: 12 start-page: 12 year: 2019 ident: 591_CR61 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0348-z – volume: 104 start-page: 533 year: 2017 ident: 591_CR14 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.06.069 – year: 1988 ident: 591_CR47 publication-title: Dyn. Curv. Fronts doi: 10.1016/B978-0-08-092523-3.50016-2 – volume: 540 start-page: 363 year: 2016 ident: 591_CR62 publication-title: Nature doi: 10.1038/nature21002 – volume: 36 start-page: 329 year: 2009 ident: 591_CR34 publication-title: Mol. Bio. Rep. doi: 10.1007/s11033-007-9183-2 – volume: 3 start-page: 3940 year: 2015 ident: 591_CR22 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00448A – volume: 34 start-page: 417 year: 2014 ident: 591_CR9 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.09.041 – volume-title: Capillarity and Wetting Phenomena year: 2004 ident: 591_CR49 doi: 10.1007/978-0-387-21656-0 – volume: 13 start-page: 511 year: 1999 ident: 591_CR35 publication-title: Genes Dev. doi: 10.1101/gad.13.5.511 – volume: 28 start-page: 085003 year: 2019 ident: 591_CR40 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/ab21ef – volume-title: Chinese Silk: A Cultural History year: 2004 ident: 591_CR3 – volume: 2 start-page: 312 year: 2014 ident: 591_CR18 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400355k – volume: 21 start-page: 366 year: 2009 ident: 591_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.200800582 – volume: 23 start-page: 5232 year: 2013 ident: 591_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300365 – volume: 12 start-page: 3344 year: 2011 ident: 591_CR58 publication-title: Biomacromol doi: 10.1021/Bm2006032 – volume: 6 start-page: 7145 year: 2015 ident: 591_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms8145 – volume: 3 start-page: 2551 year: 2015 ident: 591_CR13 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00749 – volume: 50 start-page: 87 year: 2012 ident: 591_CR36 publication-title: J. Sericul. Entomol. Sci. doi: 10.7852/jses.2012.50.2.87 – volume: 21 start-page: 100414 year: 2020 ident: 591_CR15 publication-title: Compos. Commun. doi: 10.1016/j.coco.2020.100414 – volume: 63 start-page: 205 year: 2014 ident: 591_CR12 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.11.006 – volume: 10 start-page: 4187 year: 2019 ident: 591_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12161-1 – volume: 61 start-page: 6223 year: 2006 ident: 591_CR53 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.05.027 – volume: 119 start-page: 12279 year: 2019 ident: 591_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00416 – volume: 85 start-page: 1 year: 2018 ident: 591_CR2 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.06.004 – volume-title: Handbook of Fiber Chemistry, Revised and Expanded year: 1998 ident: 591_CR5 – start-page: 503 volume-title: 21-VO2-based Thermochromic Materials and Applications: Flexible Foils and Coated Glass for Energy Building Efficiency year: 2019 ident: 591_CR41 – start-page: 25 volume-title: Colorimetry: Understanding the CIE System year: 2007 ident: 591_CR54 doi: 10.1002/9780470175637.ch3 – volume: 20 start-page: 2137 year: 2020 ident: 591_CR46 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00147 – volume: 90 start-page: 2070 year: 2020 ident: 591_CR42 publication-title: Text. Res. J. doi: 10.1177/0040517520910217 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.49066 |
Snippet | Highlights
Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in... HighlightsWearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in... Highlights Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 72 |
SubjectTerms | Bonding Commercialization Continuous coating Displays Dynamic display Engineering Fabrics Fourier transforms Hydrophobicity Immersion coating Interfacial bonding Low cost Mechanical properties Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Sewing Silk Smart materials Smart textile Sustainability Synchrotrons Textiles Thermal treatment materials Thermochromic Thermochromism Wearable technology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfBMolZG4gUXi2LFzbGmrCgQXWqk3y19RV2yz1e5Wpf--M0422YUFLlxjZ7V5HnveyDNvCHlXNnloQsgZr51jwuvAahtKlgfRCKWsKzQWJ3_9Vp2cic_n8nyt1RfmhHXywB1wH7kvGxu9lDzmonFWB6ddAyxBcAVsJ4ltg89bC6bAkrjCjkzj_SC2VRZrKjUCNV3KUchMonCZGvUxJRfg13tH2xFphVdYqVNdUbBK5VVfgZPq8LBrc84w2wGLOQt2s-HlUjOAbQz290TMX25jk5M7fkQe9uyU7neoPCb3YvuEPFjTLHxKvoBhzS9n_mKO9cz0-2T6Y0GB-dLTCAy8U2imY1INtW2gh13be5jycwmnED2cLK6m9nbxjJwdH51-OmF9RwbmgZgsmS0cKnq5ykod82hr4QFFz5tKlb5uhIbHXMRKOFTKs7WHIyQCAXM6V6p2sXxOdtpZG18SWvkyeBvAQkIlrAtwsgQNIbIrAkTsPGSkWCFofC9Xjl0zpmYQWk6oG0DdJNTNTUbeD-9cdWIdf519gAszzESh7fQAzM_05mf-ZX4Z2V0tq-l3_8JwocGHaAjWtg-Dk6lTEfT2YYhpJcDFeUbeDsOw6_Eqx7Zxdo0_ATRYonR-Rl50NjR8B_ISDcwkI2rDujY-dHOknVwkZXFYNCW5zsiHlR2Of-vPQL76H0C-Jvc5bqCUKbRLdpbz6_gG-N7S7aWtfQfmfEXw priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SZQUJC4gaXEsWPnCJSqAsGFVuot8it0xZKtNlsV_j0zzqsLCxLX2LtKxjOebzQz3wC8LJrMN95njFfWMuG0Z5XxBcu8aIRSxuaampM_fS6PTsSHU3k6NIV1Y7X7mJKMN_XU7EajkTNGJQXUMZmzy-twQ1LsTinamXOcK5rGNOcGaaSyuMJQI4jPpZhJzCSRlqmZG1NygT59cLI9iFaUvopT6vKclSorh-6b3a-15eHiIIBd6PXPIszfMrHRwR3egdsDMk3f9Kp0F66F9h7cusJXeB8-olKtv6_c2Zp6mdMvi-W3LkXUmx4HRN89O3M6F9SkpvXpQT_yHrf82OANlB4suvOl-dk9gJPD98fvjtgwjYE5BCUbZnJLbF62NFKHLJhKOJSi402pClc1QuNjLkIpLLHkmcrh9REQfFmdKVXZUDyEvXbVhseQlq7wznjUDl8KYz3eKl5jeGxzj9E69wnkowRrN1CV08SMZT2RLEep1yj1Okq9vkzg1fSb856o45-739LBTDuJZDs-WK2_1oPN1twVjQlOSh4y0VijvdW2QYAquEKgXSawPx5rPVh-V3Oh0X9oDNR2L6ODqWID9O5ljGcliovzBF5My2jxlMYxbVhd0F8gBJZEm5_Ao16Hpu8gTKIRlSSgtrRr60O3V9rFWWQVx0NTkusEXo96OL_W3wX55P-2P4WbnEwl1gPtw95mfRGeIarb2OfRiH8BHUU6OA priority: 102 providerName: Springer Nature |
Title | Thermochromic Silks for Temperature Management and Dynamic Textile Displays |
URI | https://link.springer.com/article/10.1007/s40820-021-00591-w https://www.ncbi.nlm.nih.gov/pubmed/34138303 https://www.proquest.com/docview/2489118559 https://www.proquest.com/docview/2538900533 https://www.proquest.com/docview/2619577922 https://www.proquest.com/docview/2542359430 https://pubmed.ncbi.nlm.nih.gov/PMC8187528 https://doaj.org/article/2c3faec552e04fba8db8bf1124270806 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZocoED4s1CiRaJG1jser1r7wk1SUMFokKQSr2t_FoaETYhSVX13zPjOJsGQi852E4Uj8cznz2ebwh5k9WJra1NKCu1ptxIS0tlM5pYXnMhlE4lJid_OS1Ozvin8_w8XLgtw7PKjU30htrODN6Rv2ewM0ufOfph_pti1SiMroYSGgekCyZYyg7p9o9Pv37baBQTWJlpGyfE8sr8BlsNR26XbEtoliOBmdjyZOaMg38PDncNqAWGsnzFujSlhUiKkInj8_GwenNC8dUDJnWm9GrH2_miAPuQ7L8PMv-KynpnN3pA7geUGh-t1eohueOaR-TeDe7Cx-QzKNji18xcLDCvOf4-mf5cxoCA47EDJL5mao63j2ti1dh4eN0oHDwGjwDWKB5OlvOpul4-IWej4_HghIbKDNQAQFlRlWpk9tKFyqVLnCq5ASkaVhciM2XNJTQz7gqukTFPlQZMiQMgpmUiRKld9pR0mlnjnpO4MJk1yoKm2IIrbcHCWAlHZZ1aOLkzG5F0I8HKBNpyrJ4xrVrCZS_1CqReealXVxF5235nvibtuHV0HxemHYmE275htvhRhf1bMZPVypk8Zy7htVbSaqlrAKucCQDdRUQON8taBSuwrBiX4EskHNr2d7cqvb8bzrY5iIuxiLxuu2H3Y0hHNW52iT8BcDhHCv2IPFvrUDsPxCcSEEpExI527Ux0t6eZXHiGcVg0kTMZkXcbPdz-rf8L8sXtk3xJ7jLcGv4t0CHprBaX7hUgupXukQM5-tgj3aP-sD_qhU0MrQPG8bMY9PxdyR9Z7ENq |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUcgAODG8MBcwMnMCDLcuWfGAYIISUtL2QzvRm9DLNEOyQpJPJn-I3sis_0kDorVdL8USrfXyydr8l5EVchKYwJgxoplTAtDBBJk0chIYVjHOpIoHFyYdH6eCYfTlJTnbI77YWBtMqW5_oHLWpNH4jf0PBMjNXOfpu-ivArlF4u9q20KjVYmhXSziyzd_u92B_X1La_zT6OAiargKBhuC6CGSkkJVKpTIRNrQyYxrUUNMi5bHOCibgMWU2ZQrZ3mSmwQwsgAglQs4zZWN47xVylcUQybEyvf-51V_KsQ_U-lYSmzmzc9w4DJlk4jV9WoJ0aXzNyplQBmiiCe81fOd4ceb640VRkPIwbep-XPUf9ooOA8yxwBLSKFhuxFbXgmAbbv43_fOvO2AXWvu3yM0GE_vvayW-TXZseYfcOMeUeJcMQZ1nPyt9OsMqav_rePJj7gPe9kcWcH_NC-2vU3l8WRq_tyolTh5B_AHf5_fG8-lErub3yPGl7Nh9sltWpX1I_FTHRksDemlSJpUBf2YEHMxVZFiaUeORqJVgrhuSdOzVMck7emcn9Ryknjup50uPvOp-M60pQi6c_QE3ppuJ9N7uQTX7njfeIqc6LqTVSUJtyAolhVFCFQCNGeUA8VOP7LXbmjc-Z55TJiByCTgibh_uDGj7MJykExAXpR553g2Dr8ELJFna6gxfAeA7QcJ-jzyodahbB6IhAXjII3xDuzYWujlSjk8dnzlsGk-o8MjrVg_Xf-v_gnx08SKfkWuD0eFBfrB_NHxMrlM0E5eFtEd2F7Mz-wSw5EI9dQbsk2-X7TH-ALbReMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDyLoYCR4ARW7fV6d33gEAhRm0CF1FbqzezLNCI4UZIqyr_iJzLrVxoISBx69W6seGZ25lvNzDcAr-I8NLkxYUBSpQKqhQlSaeIgNDSnnEsVCdec_PmYHZ7RwXlyvgM_m16Ystq9SUlWPQ2OpalYHExNftA2vrkxyWHgygtc92QULOuyyqFdLfHSNn931EMNvyak__H0w2FQzxUINIbXRSAj5XipFJOJsKGVKdVoiJrkjMc6zanAx4RaRpXje5OpxoNgEUYoEXKeKhvje2_ArmB4Qjuw2-0OTgaNDRPuZkGtM5NuoDO9wo9DHZtMvKZQSxxlGl8zcyaEIqKoQ3wF4blLnpUz8qIoYDxkde_PdkFsxNdyDME27PxnCehveeAyvPbvwp0aF_vdypDvwY4t7sPtK2yJD2CIJj37MdEXM9dJ7Z-Mxt_nPmJu_9Qi9q-4of11OY8vC-P3VoV0m08xBqH_83uj-XQsV_OHcHYtOnsEnWJS2MfgMx0bLQ3apmFUKoM-zQi8nKvIUJYS40HUSDDTNVG6m9cxzlqK51LqGUo9K6WeLT140_5mWtGE_HP3e6eYdqej-C4fTGbfstpjZETHubQ6SYgNaa6kMEqoHOExJRxhPvNgv1FrVvudeUaowOgl8Jq4fRnDW1q2X29fxtt0guIixIOX7TL6G5dEkoWdXLpXIABPHGm_B3uVDbXf4RCRQEzkAd-wro0P3VwpRhclpzkqjSdEePC2scP13_q7IJ_83_YXcPNLr599OjoePoVbxJ2asjBpHzqL2aV9hvByoZ7XJ9qHr9ftRH4B3CN71w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermochromic+Silks+for+Temperature+Management+and+Dynamic+Textile+Displays&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Yang&rft.au=Ren%2C+Jing&rft.au=Ye%2C+Chao&rft.au=Pei%2C+Ying&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft_id=info:doi/10.1007%2Fs40820-021-00591-w&rft_id=info%3Apmid%2F34138303&rft.externalDocID=PMC8187528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |