Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease
The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and...
Saved in:
Published in | Molecular neurodegeneration Vol. 17; no. 1; pp. 19 - 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.03.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve.
The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction.
There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. |
---|---|
AbstractList | The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve.BACKGROUNDThe implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve.The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction.MAIN MESSAGESThe putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction.There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.CONCLUSIONSThere is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. Background: The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages: The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions: There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. Abstract Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer’s disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer’s disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer’s disease but still require further investigation. Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. Keywords: Gut microbiota, Synaptic dysfunction, Alzheimer's disease, Peripheral immunomodulation, Neuroinflammation The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. |
ArticleNumber | 19 |
Audience | Academic |
Author | Sokol, Harry Lemere, Cynthia A. Dorothée, Guillaume Bairamian, Diane Sha, Sha Rolhion, Nathalie Krantic, Slavica |
Author_xml | – sequence: 1 givenname: Diane surname: Bairamian fullname: Bairamian, Diane – sequence: 2 givenname: Sha surname: Sha fullname: Sha, Sha – sequence: 3 givenname: Nathalie surname: Rolhion fullname: Rolhion, Nathalie – sequence: 4 givenname: Harry surname: Sokol fullname: Sokol, Harry – sequence: 5 givenname: Guillaume surname: Dorothée fullname: Dorothée, Guillaume – sequence: 6 givenname: Cynthia A. surname: Lemere fullname: Lemere, Cynthia A. – sequence: 7 givenname: Slavica orcidid: 0000-0002-0785-4549 surname: Krantic fullname: Krantic, Slavica |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35248147$$D View this record in MEDLINE/PubMed https://hal.science/hal-03702829$$DView record in HAL |
BookMark | eNp9kstu1DAUhi1URNuBF2CBIrGBRYpvuZgF0qgqtNIgNrBEluPLjKvEHuKk0rDiNbrrs_RReBLOTFrUqRCKlFjH__-dY-c_RgchBovQS4JPCKnLd4kwTHmOKc0xLuBNn6AjUhU4J4yWBw_Wh-g4pUuMeQXCZ-iQFZTXhFdH6Ptnr_vY-DiozIfbm2DHPvrgWtV1avARSiqY25u0CWo9eJ2ZTXJj0Nut95nKXNRjymLI5u3PlfWd7X__uk6Z8cmqZJ-jp061yb64-87Qt49nX0_P88WXTxen80WuS1YMuVCUGF1qwoxq6oZWjSu0465mxCnGNRGmYpxoVlSV0bwRgtDaYay54aa0BZuhi4lrorqU6953qt_IqLzcFWK_lKqH6VsrGXgZIJTQjDMlGkocUXAdVNhG4ApYHybWemw6a7QNQ6_aPej-TvAruYxXsq5FjUsGgLcTYPXIdj5fyG0NswpT6HdFQPvmrlkff4w2DbLzSdu2VcHGMUlashK4HEadodeTdKngGPCLInTXW7mcl0IUuMb19iZO_qGCx9jOa8iP81DfM7x6eNy_A99HBAT1JICcpNRbJ7UfdtEAsm8lwXKbRjmlUUIa5S6NkoKVPrLe0_9j-gMze-Pi |
CitedBy_id | crossref_primary_10_1007_s12035_024_04368_1 crossref_primary_10_17816_KMJ567814 crossref_primary_10_1007_s12035_024_04322_1 crossref_primary_10_5937_arhfarm74_46612 crossref_primary_10_1186_s13052_025_01874_3 crossref_primary_10_1186_s13195_022_01062_z crossref_primary_10_3389_fimmu_2025_1533343 crossref_primary_10_1186_s12866_024_03188_6 crossref_primary_10_31083_j_jin2202038 crossref_primary_10_3389_fnins_2023_1130730 crossref_primary_10_1038_s41598_024_60580_y crossref_primary_10_1038_s41401_023_01147_x crossref_primary_10_1111_cns_14480 crossref_primary_10_1016_j_arr_2025_102659 crossref_primary_10_3390_cells13030286 crossref_primary_10_1080_19490976_2024_2389319 crossref_primary_10_1016_j_bbi_2024_12_027 crossref_primary_10_1016_j_bcp_2022_115213 crossref_primary_10_3389_fnut_2022_1012076 crossref_primary_10_3390_nu16213586 crossref_primary_10_3389_fmed_2024_1410246 crossref_primary_10_3390_ijms252011272 crossref_primary_10_1007_s13659_022_00354_z crossref_primary_10_1080_19490976_2024_2412376 crossref_primary_10_3389_fncom_2022_986591 crossref_primary_10_1016_j_ijbiomac_2024_134939 crossref_primary_10_1016_j_lfs_2023_122132 crossref_primary_10_1007_s40520_023_02409_8 crossref_primary_10_1016_j_jep_2025_119323 crossref_primary_10_3390_nu16091288 crossref_primary_10_3390_brainsci14121224 crossref_primary_10_1016_j_ejphar_2023_176305 crossref_primary_10_1016_j_mad_2023_111787 crossref_primary_10_3389_fnagi_2022_968444 crossref_primary_10_1111_ejn_16450 crossref_primary_10_1016_j_arr_2022_101831 crossref_primary_10_1016_j_fbio_2025_106189 crossref_primary_10_1186_s13024_024_00720_0 crossref_primary_10_1007_s40520_024_02718_6 crossref_primary_10_1021_acschemneuro_4c00293 crossref_primary_10_4103_1673_5374_389745 crossref_primary_10_1016_j_arr_2024_102481 crossref_primary_10_14336_AD_2024_0134 crossref_primary_10_1016_j_ibneur_2024_01_008 crossref_primary_10_1186_s13024_023_00635_2 crossref_primary_10_3389_fnagi_2024_1402347 crossref_primary_10_34922_AE_2024_37_4_016 crossref_primary_10_1016_j_lfs_2023_122022 crossref_primary_10_3390_fermentation9080762 crossref_primary_10_3390_nu16060852 crossref_primary_10_3390_foods12244428 crossref_primary_10_1080_19490976_2024_2387794 crossref_primary_10_1007_s11357_024_01284_z crossref_primary_10_3390_medicina59071337 crossref_primary_10_1039_D3FO01893H crossref_primary_10_2174_0113816128264312231101110307 crossref_primary_10_1016_j_ijbiomac_2024_134494 crossref_primary_10_3390_metabo12121222 crossref_primary_10_3390_jcm12041650 crossref_primary_10_1016_j_scib_2024_09_005 crossref_primary_10_1016_j_ijbiomac_2025_141850 crossref_primary_10_1016_j_bbi_2024_08_022 crossref_primary_10_1016_j_dci_2024_105274 crossref_primary_10_1186_s40035_024_00459_0 crossref_primary_10_1007_s40495_023_00325_z crossref_primary_10_12938_bmfh_2024_022 crossref_primary_10_3390_cells11132023 crossref_primary_10_3389_fragi_2024_1395649 crossref_primary_10_1093_ejendo_lvae139 crossref_primary_10_3233_ADR_220047 crossref_primary_10_3389_fnins_2022_1002266 crossref_primary_10_1016_j_biopha_2023_114474 crossref_primary_10_1016_j_pbb_2025_173972 crossref_primary_10_3233_JAD_240597 crossref_primary_10_7759_cureus_73681 crossref_primary_10_1002_EXP_20230154 crossref_primary_10_1016_j_arr_2024_102544 crossref_primary_10_1016_j_arr_2025_102685 crossref_primary_10_1016_j_jhazmat_2024_136739 crossref_primary_10_1002_mnfr_202200652 crossref_primary_10_1016_j_arr_2023_102084 crossref_primary_10_3389_fphar_2022_898360 crossref_primary_10_1016_j_prp_2023_154740 crossref_primary_10_3390_ijms25179379 crossref_primary_10_3390_microbiolres14040131 crossref_primary_10_3390_microorganisms12040634 crossref_primary_10_1016_j_ejphar_2024_177022 crossref_primary_10_1111_cns_14840 crossref_primary_10_37349_emed_2022_00097 crossref_primary_10_1515_revneuro_2024_0090 crossref_primary_10_4103_NRR_NRR_D_23_01979 crossref_primary_10_1007_s12035_024_04513_w crossref_primary_10_1111_ijfs_17380 crossref_primary_10_1515_revneuro_2023_0006 crossref_primary_10_3389_fradi_2022_895088 crossref_primary_10_1016_j_phymed_2024_156150 crossref_primary_10_1007_s11427_022_2276_6 crossref_primary_10_1016_j_crfs_2023_100533 crossref_primary_10_1038_s41598_024_56989_0 crossref_primary_10_12677_acm_2024_1482282 crossref_primary_10_14283_jpad_2024_119 crossref_primary_10_3390_ijms232314924 crossref_primary_10_1002_imt2_70006 crossref_primary_10_1016_j_jff_2023_105764 crossref_primary_10_1016_j_exger_2024_112371 crossref_primary_10_3390_nu16142366 crossref_primary_10_1007_s12035_024_04498_6 crossref_primary_10_1177_13872877241313140 crossref_primary_10_3389_fphar_2023_1178596 crossref_primary_10_1016_j_ijbiomac_2024_131869 crossref_primary_10_1016_j_ibneur_2024_12_008 crossref_primary_10_1148_radiol_233019 crossref_primary_10_3390_brainsci14090950 crossref_primary_10_1038_s41380_024_02510_y crossref_primary_10_3389_fimmu_2024_1383464 crossref_primary_10_1021_acs_jafc_3c06238 crossref_primary_10_1002_ddr_22096 crossref_primary_10_1080_17460913_2024_2417608 crossref_primary_10_3389_fimmu_2024_1462003 crossref_primary_10_1186_s13024_023_00595_7 crossref_primary_10_3390_ijms26062440 crossref_primary_10_1016_j_biopha_2024_117277 crossref_primary_10_2174_0126667975291873240506111439 crossref_primary_10_3390_antiox14020139 crossref_primary_10_1016_j_apsb_2025_03_008 crossref_primary_10_3389_fpsyt_2022_872594 crossref_primary_10_2147_JIR_S383853 crossref_primary_10_1002_ibra_12065 crossref_primary_10_1016_j_jneuroim_2024_578374 crossref_primary_10_1007_s00216_022_04207_z crossref_primary_10_1080_19490976_2023_2282790 crossref_primary_10_1177_25424823241309024 crossref_primary_10_26508_lsa_202302529 crossref_primary_10_3389_fcimb_2024_1348279 crossref_primary_10_1016_j_phymed_2024_155394 crossref_primary_10_1186_s40168_024_02001_w crossref_primary_10_3233_ADR_220097 crossref_primary_10_1016_j_jpha_2024_101043 crossref_primary_10_31083_j_jin2206148 crossref_primary_10_1016_j_xcrp_2025_102458 crossref_primary_10_1055_s_0043_1771459 crossref_primary_10_3389_fphar_2022_975784 crossref_primary_10_3390_life14101234 crossref_primary_10_1111_cns_70259 crossref_primary_10_1016_j_arr_2023_102035 crossref_primary_10_1080_07853890_2024_2411011 crossref_primary_10_3389_fnagi_2023_1305790 crossref_primary_10_1111_cns_70091 crossref_primary_10_1007_s00109_023_02289_5 crossref_primary_10_1016_j_bbi_2024_04_002 crossref_primary_10_1111_febs_17365 crossref_primary_10_1177_17562848241301574 crossref_primary_10_1186_s12974_025_03352_3 crossref_primary_10_1186_s12951_022_01642_z crossref_primary_10_3389_fgene_2023_1230245 crossref_primary_10_3389_fphar_2024_1416502 crossref_primary_10_3389_fnhum_2025_1548701 crossref_primary_10_1186_s13195_024_01471_2 crossref_primary_10_1016_j_jep_2025_119424 crossref_primary_10_1021_acs_jafc_4c08548 crossref_primary_10_3390_biomedicines11102802 crossref_primary_10_1016_j_biopha_2023_114312 crossref_primary_10_1016_j_isci_2023_106744 crossref_primary_10_2147_JIR_S422114 crossref_primary_10_1186_s13195_023_01285_8 crossref_primary_10_1016_j_nbd_2023_106295 crossref_primary_10_2147_JPR_S416253 crossref_primary_10_1177_03000605251314817 crossref_primary_10_3390_biomedicines11020408 crossref_primary_10_3233_JAD_215422 |
Cites_doi | 10.1016/S1474-4422(15)70016-5 10.1038/s43587-021-00093-9 10.1186/s13024-017-0184-x 10.1016/j.mcn.2020.103493 10.1038/s41575-019-0258-z 10.3389/fneur.2018.00412 10.1038/ni.3666 10.7554/eLife.59826 10.1016/j.nbd.2009.01.006 10.1016/j.celrep.2021.109332 10.1016/j.jalz.2019.07.002 10.1016/j.tins.2020.01.003 10.1186/1471-2180-9-123 10.3389/fneur.2018.00662 10.1016/j.neurobiolaging.2012.09.012 10.5056/jnm18087 10.1007/s11910-017-0733-2 10.1007/164_2019_225 10.15252/emmm.201606210 10.3389/fcell.2020.634069 10.3390/ijms21051652 10.1038/s41598-017-13601-y 10.1007/s00115-011-3258-y 10.1073/pnas.162228299 10.1016/j.brainres.2014.08.040 10.1186/1742-2094-9-99 10.1155/2016/3204519 10.1089/sur.2012.126 10.1016/j.xcrm.2020.100138 10.1038/s41598-017-11047-w 10.1016/j.immuni.2021.02.002 10.1016/j.cbi.2021.109452 10.1093/brain/awv408 10.1038/s41467-018-05470-4 10.18632/aging.103093 10.1186/1742-2094-9-106 10.1038/nature21029 10.1016/j.imlet.2021.02.001 10.3389/fimmu.2021.653208 10.1016/j.immuni.2017.08.008 10.1186/s40168-019-0733-3 10.1016/j.bbr.2021.113125 10.1016/S1474-4422(19)30356-4 10.1016/j.cell.2017.05.018 10.3389/fnagi.2021.650047 10.1126/scitranslmed.aaf6295 10.2147/JIR.S163248 10.1007/s11427-016-9001-4 10.1371/journal.pone.0010667 10.2174/1389200219666180813144834 10.1016/j.phrs.2020.105314 10.1523/JNEUROSCI.2774-16.2016 10.1007/s00702-017-1831-7 10.1177/1759091419855541 10.1016/j.brainres.2018.03.015 10.3390/cells10040779 10.1016/j.neuint.2016.06.011 10.1002/ca.1089 10.1186/s12974-018-1066-z 10.1371/journal.pone.0106503 10.1038/nn.4476 10.1016/j.parkreldis.2016.08.019 10.3389/fnmol.2020.00138 10.1056/NEJMoa1202753 10.2174/156720501401161201104858 10.1155/2020/8456596 10.1152/ajpgi.00048.2015 10.1073/pnas.1000097107 10.1186/s12974-019-1561-x 10.1007/s10753-012-9484-z 10.3389/fcimb.2020.00098 10.3389/fcell.2020.631460 10.1038/npp.2012.86 10.3233/JAD-200306 10.1111/bpa.12908 10.3233/JAD-201040 10.3390/microorganisms8111715 10.1038/ncomms12015 10.3389/fbioe.2020.537847 10.1016/j.phrs.2018.03.012 10.3390/nu11081765 10.3389/fnagi.2019.00233 10.4088/jcp.v67n0801 10.1038/s41586-018-0023-4 10.1523/JNEUROSCI.4361-12.2013 10.1038/srep41802 10.1038/nm.4106 10.1016/j.bbi.2021.06.003 10.1038/s41586-019-1644-y 10.1016/j.arr.2021.101396 10.1038/s41598-017-02587-2 10.3389/fendo.2020.00025 10.1093/brain/aww017 10.1126/science.1198469 10.1038/nature07830 10.1126/science.aad8373 10.1084/jem.20150478 10.1002/hipo.20591 10.2217/fnl.11.50 10.1016/j.bbi.2021.09.002 10.4049/jimmunol.1100620 10.1016/s0306-4522(01)00405-5 10.3233/JAD-180176 10.3389/fncel.2014.00380 10.1038/nrneurol.2012.241 10.1016/j.cub.2012.07.029 10.1111/lam.12882 10.1182/blood-2018-11-844555 10.1038/sj.ejcn.1602546 10.1073/pnas.1719083115 10.3390/medicines5010010 10.1126/science.1241165 10.1016/j.xcrm.2021.100398 10.1016/j.chom.2018.05.003 10.3389/fnins.2020.00575 10.1093/gerona/glz262 10.1038/s41398-019-0525-3 10.1146/annurev-immunol-102319-103410 10.1016/j.bbi.2019.05.008 10.1016/j.nutres.2020.12.010 10.3389/fnagi.2016.00256 10.1016/j.trci.2018.06.014 10.1016/j.physbeh.2019.112745 10.1523/JNEUROSCI.1698-15.2015 10.1084/jem.20200895 10.1038/srep30028 10.1016/j.neurobiolaging.2016.07.009 10.1152/physrev.00014.2003 10.3233/JAD-181220 10.1038/s41577-018-0051-1 10.1016/j.cell.2016.11.018 10.1186/s12974-020-1705-z 10.3389/fnagi.2015.00030 10.1038/ni.2552 10.18632/aging.102645 10.1111/jnc.13713 10.1002/mds.26069 10.1016/j.jneuroim.2014.07.012 10.1016/j.neurobiolaging.2016.08.019 10.3390/ijms21051711 10.1186/s12974-015-0332-6 10.1084/jem.20150479 10.1113/JP279919 10.1128/mBio.00632-19 10.1515/revneuro-2019-0058 10.1111/cns.13569 10.4049/jimmunol.181.6.3733 10.1038/nn.4030 10.1016/j.bbi.2007.05.005 10.1126/science.1072994 10.1007/s00005-012-0181-2 10.1083/jcb.200705042 10.1146/annurev-immunol-071219-125715 10.1073/pnas.1711235114 10.1016/j.jneuroim.2019.01.004 10.3389/fnins.2021.595583 10.1016/j.nbd.2017.02.010 10.1007/s12035-018-0973-4 10.1099/0022-1317-51-5-448 10.1186/s13195-017-0241-2 10.1002/jnr.23540 10.1038/s41582-021-00549-x 10.14283/jpad.2018.32 10.1038/nrneurol.2017.111 10.3389/fnagi.2018.00416 10.1016/j.brainresbull.2019.11.011 10.1016/j.chom.2020.06.008 10.1111/joa.13122 10.1084/jem.20182386 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1186/s13024-022-00522-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1750-1326 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_391234b9a9c343a9b21f1a24829eb907 PMC8898063 oai_HAL_hal_03702829v1 A699508085 35248147 10_1186_s13024_022_00522_2 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG060057 – fundername: Shared Services Center NASA grantid: 80NSSC18K0810 – fundername: ; grantid: MicIAD – fundername: ; grantid: MicAD – fundername: ; grantid: 80NSSC18K0810 – fundername: ; grantid: RF1 AG060057 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR IPY ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 7X8 1XC VOOES 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-9a21dc6c13dab8b27bf5cf4f831fa34c19d7341c3577dc4b99128f00c4d4d6e53 |
IEDL.DBID | M48 |
ISSN | 1750-1326 |
IngestDate | Wed Aug 27 00:59:40 EDT 2025 Thu Aug 21 14:31:35 EDT 2025 Fri May 09 12:11:04 EDT 2025 Fri Jul 11 05:49:56 EDT 2025 Tue Jun 17 21:45:42 EDT 2025 Tue Jun 10 20:43:31 EDT 2025 Mon Jul 21 05:45:54 EDT 2025 Tue Jul 01 01:59:05 EDT 2025 Thu Apr 24 23:00:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gut microbiota Neuroinflammation Alzheimer’s disease Peripheral immunomodulation Synaptic dysfunction Gut microbiota Synaptic dysfunction Alzheimer's disease Peripheral immunomodulation Neuroinflammation Alzheimer's disease |
Language | English |
License | 2022. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-9a21dc6c13dab8b27bf5cf4f831fa34c19d7341c3577dc4b99128f00c4d4d6e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 PMCID: PMC8898063 |
ORCID | 0000-0002-0785-4549 0000-0001-5763-3632 0000-0002-2914-1822 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13024-022-00522-2 |
PMID | 35248147 |
PQID | 2636889434 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_391234b9a9c343a9b21f1a24829eb907 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8898063 hal_primary_oai_HAL_hal_03702829v1 proquest_miscellaneous_2636889434 gale_infotracmisc_A699508085 gale_infotracacademiconefile_A699508085 pubmed_primary_35248147 crossref_citationtrail_10_1186_s13024_022_00522_2 crossref_primary_10_1186_s13024_022_00522_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-05 |
PublicationDateYYYYMMDD | 2022-03-05 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular neurodegeneration |
PublicationTitleAlternate | Mol Neurodegener |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Y Kobayashi (522_CR157) 2019; 6 AV Colombo (522_CR146) 2021; 10 MJ Claesson (522_CR101) 2011; 108 JM Huston (522_CR49) 2012; 13 J Wang (522_CR130) 2017; 13 Y Shi (522_CR29) 2018; 18 Z Ling (522_CR97) 2021; 8 W Li (522_CR126) 2017; 60 522_CR75 M Govindarajulu (522_CR76) 2020; 13 O Mossad (522_CR129) 2020; 30 P Fang (522_CR143) 2020; 28 S Prokop (522_CR69) 2015; 212 C Chu (522_CR50) 2019; 574 JP Haran (522_CR93) 2019; 10 N Salazar (522_CR104) 2019; 11 JL McCarville (522_CR15) 2020; 38 MR Minter (522_CR121) 2017; 7 HB Dodiya (522_CR122) 2019; 216 Y Xin (522_CR148) 2018; 9 M Marizzoni (522_CR119) 2020; 78 R Goutagny (522_CR79) 2013; 4 E Biagi (522_CR100) 2010; 5 MF Munoz-Pinto (522_CR51) 2021; 70 RP Friedland (522_CR117) 2020; 21 JM Wells (522_CR14) 2017; 312 P Strandwitz (522_CR47) 2018; 1693 J Sun (522_CR161) 2019; 9 522_CR159 MF Butt (522_CR167) 2020; 236 S Zhu (522_CR5) 2020; 17 522_CR156 TP Zanos (522_CR48) 2018; 115 AG Efthymiou (522_CR59) 2017; 12 L Hamelin (522_CR73) 2016; 139 AC Wendeln (522_CR35) 2018; 556 Y Yan (522_CR24) 2021; 54 DO Seo (522_CR116) 2020; 75 K Atarashi (522_CR17) 2011; 331 ET Peuker (522_CR169) 2002; 15 YP Silva (522_CR37) 2020; 11 RJ Bateman (522_CR55) 2012; 367 NM Vogt (522_CR88) 2017; 7 QJ Wang (522_CR152) 2020; 12 ICM Hoogland (522_CR34) 2015; 12 ID Vainchtein (522_CR45) 2020; 43 ML Wu (522_CR112) 2021; 402 F Orsini (522_CR63) 2014; 8 J Li (522_CR7) 2021; 232 C Dansokho (522_CR141) 2016; 139 RN O’Callaghan (522_CR84) 2009; 19 D Erny (522_CR36) 2015; 18 B Li (522_CR95) 2019; 15 Z Liu (522_CR9) 2020; 14 M Biagioli (522_CR20) 2019; 256 522_CR52 Y Zhang (522_CR43) 2019; 7 HM Roager (522_CR21) 2018; 9 KP MacPherson (522_CR133) 2017; 102 522_CR56 522_CR57 L Dupraz (522_CR19) 2021; 36 A Hammad (522_CR62) 2018; 15 RB DeMattos (522_CR153) 2002; 99 S Wu (522_CR91) 2021; 13 PC Bello-Medina (522_CR107) 2021; 15 MJ Hopkins (522_CR103) 2002; 51 K Kowalski (522_CR115) 2019; 25 HM Grifka-Walk (522_CR22) 2021; 12 BM Bettcher (522_CR10) 2021; 17 D Benton (522_CR158) 2007; 61 MA Lynch (522_CR82) 2004; 84 C Cavanagh (522_CR61) 2016; 47 AM Wall (522_CR87) 2015; 93 S Stojanov (522_CR89) 2020; 8 C Bäuerl (522_CR110) 2018; 66 F Leblhuber (522_CR155) 2018; 15 522_CR171 TC Fung (522_CR8) 2017; 20 E Cekanaviciute (522_CR128) 2017; 114 MT Heneka (522_CR86) 2015; 14 NH Varvel (522_CR70) 2015; 212 A Cattaneo (522_CR92) 2017; 49 P He (522_CR137) 2007; 178 D Tweedie (522_CR135) 2012; 9 Y Li (522_CR113) 2020; 12 D Okin (522_CR12) 2012; 22 S Krasemann (522_CR30) 2017; 47 S Jangi (522_CR127) 2016; 7 RL Johnson (522_CR168) 2018; 11 MM Unger (522_CR124) 2016; 32 K Hirota (522_CR23) 2013; 14 L Peixoto (522_CR147) 2013; 38 L Bonfili (522_CR149) 2017; 7 T Liu (522_CR42) 2012; 35 P Liu (522_CR98) 2019; 80 L Bonfili (522_CR150) 2018; 55 A Agus (522_CR4) 2018; 23 SR Sarkar (522_CR6) 2019; 328 F Pistollato (522_CR160) 2018; 131 522_CR38 522_CR39 Z Ling (522_CR94) 2021; 8 S Hong (522_CR65) 2016; 352 TR Sampson (522_CR125) 2016; 167 K Alves de Lima (522_CR26) 2020; 38 T Doifode (522_CR142) 2020; 164 P Li (522_CR27) 2021; 27 MM Varnum (522_CR31) 2012; 60 Q Shi (522_CR67) 2017; 9 GA Prieto (522_CR83) 2017; 37 N Quan (522_CR46) 2007; 21 D Mariat (522_CR102) 2009; 9 SP Gabbita (522_CR134) 2012; 9 H Keren-Shaul (522_CR28) 2017; 169 N Kim (522_CR163) 2021; 98 RM McManus (522_CR71) 2017; 9 522_CR108 522_CR118 M Schain (522_CR2) 2017; 17 A Lavelle (522_CR16) 2020; 17 E Distrutti (522_CR144) 2014; 9 MA Lynch (522_CR85) 2015; 1621 C Cavanagh (522_CR72) 2011; 6 F Scheperjans (522_CR123) 2015; 30 KEW Vendrik (522_CR165) 2020; 10 CA Findley (522_CR80) 2019; 11 HB Dodiya (522_CR164) 2022; 219 M Benoit (522_CR32) 2008; 181 Q Shi (522_CR66) 2015; 35 M Wang (522_CR162) 2021; 96 BL Sun (522_CR111) 2019; 70 A Hemonnot (522_CR58) 2019; 11 MS Albuquerque (522_CR78) 2015; 7 JW Kinney (522_CR68) 2018; 4 SA Liddelow (522_CR64) 2017; 541 A Broncel (522_CR170) 2020; 155 JF Cryan (522_CR11) 2020; 19 Y Jiang (522_CR77) 2021; 341 PM Smith (522_CR18) 2013; 341 A Ueda (522_CR90) 2021; 2 PK Shukla (522_CR109) 2021; 10 K Lepeta (522_CR3) 2017; 138 RA Sperling (522_CR54) 2013; 9 D Zhang (522_CR131) 2019; 133 B Engelhardt (522_CR25) 2017; 18 KY Ryu (522_CR41) 2019; 16 MR Minter (522_CR120) 2016; 6 M Guo (522_CR99) 2021; 80 ZQ Zhuang (522_CR96) 2018; 63 A Tomova (522_CR44) 2020; 214 TL Sudduth (522_CR60) 2013; 34 DJ Selkoe (522_CR74) 2016; 8 S Guntupalli (522_CR81) 2016; 2016 A Romo-Araiza (522_CR145) 2018; 10 Y Sun (522_CR132) 2020; 598 C Klein (522_CR1) 2011; 82 522_CR139 V Rothhammer (522_CR40) 2016; 22 522_CR136 M Boehme (522_CR114) 2021; 1 J Go (522_CR151) 2021; 86 BS Park (522_CR13) 2009; 458 P Honarpisheh (522_CR106) 2020; 21 S Krantic (522_CR53) 2017; 14 H González (522_CR33) 2014; 274 E Akbari (522_CR154) 2016; 8 S Ghosh (522_CR138) 2013; 33 B Curran (522_CR140) 2001; 108 T Harach (522_CR105) 2017; 7 B Mercante (522_CR166) 2018; 5 |
References_xml | – volume: 14 start-page: 388 year: 2015 ident: 522_CR86 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(15)70016-5 – volume: 1 start-page: 666 year: 2021 ident: 522_CR114 publication-title: Nat Aging doi: 10.1038/s43587-021-00093-9 – volume: 12 start-page: 43 year: 2017 ident: 522_CR59 publication-title: Mol Neurodegener doi: 10.1186/s13024-017-0184-x – ident: 522_CR39 doi: 10.1016/j.mcn.2020.103493 – volume: 17 start-page: 223 year: 2020 ident: 522_CR16 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/s41575-019-0258-z – volume: 9 start-page: 412 year: 2018 ident: 522_CR148 publication-title: Front Neurol doi: 10.3389/fneur.2018.00412 – volume: 18 start-page: 123 year: 2017 ident: 522_CR25 publication-title: Nat Immunol doi: 10.1038/ni.3666 – volume: 10 start-page: e59826 year: 2021 ident: 522_CR146 publication-title: ELife doi: 10.7554/eLife.59826 – ident: 522_CR136 doi: 10.1016/j.nbd.2009.01.006 – volume: 36 year: 2021 ident: 522_CR19 publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109332 – volume: 15 start-page: 1357 year: 2019 ident: 522_CR95 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2019.07.002 – volume: 43 start-page: 144 year: 2020 ident: 522_CR45 publication-title: Trends Neurosci doi: 10.1016/j.tins.2020.01.003 – volume: 9 start-page: 123 year: 2009 ident: 522_CR102 publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-123 – ident: 522_CR156 doi: 10.3389/fneur.2018.00662 – volume: 34 start-page: 1051 year: 2013 ident: 522_CR60 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2012.09.012 – volume: 25 start-page: 48 year: 2019 ident: 522_CR115 publication-title: J Neurogastroenterol Motil doi: 10.5056/jnm18087 – volume: 17 start-page: 25 year: 2017 ident: 522_CR2 publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-017-0733-2 – volume: 256 start-page: 95 year: 2019 ident: 522_CR20 publication-title: Handb Exp Pharmacol doi: 10.1007/164_2019_225 – volume: 8 start-page: 595 year: 2016 ident: 522_CR74 publication-title: EMBO Mol Med doi: 10.15252/emmm.201606210 – volume: 8 year: 2021 ident: 522_CR97 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2020.634069 – volume: 21 start-page: 1652 year: 2020 ident: 522_CR117 publication-title: Int J Mol Sci doi: 10.3390/ijms21051652 – volume: 7 start-page: 13537 year: 2017 ident: 522_CR88 publication-title: Sci Rep doi: 10.1038/s41598-017-13601-y – volume: 82 start-page: 994 year: 2011 ident: 522_CR1 publication-title: Nervenarzt doi: 10.1007/s00115-011-3258-y – volume: 99 start-page: 10843 year: 2002 ident: 522_CR153 publication-title: PNAS doi: 10.1073/pnas.162228299 – volume: 1621 start-page: 197 year: 2015 ident: 522_CR85 publication-title: Brain Res J doi: 10.1016/j.brainres.2014.08.040 – volume: 9 start-page: 99 year: 2012 ident: 522_CR134 publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-99 – volume: 2016 start-page: 3204519 year: 2016 ident: 522_CR81 publication-title: Neural Plast doi: 10.1155/2016/3204519 – volume: 13 start-page: 187 year: 2012 ident: 522_CR49 publication-title: Surg Infect (Larchmt) doi: 10.1089/sur.2012.126 – ident: 522_CR118 doi: 10.1016/j.xcrm.2020.100138 – volume: 7 start-page: 10411 year: 2017 ident: 522_CR121 publication-title: Sci Rep doi: 10.1038/s41598-017-11047-w – volume: 54 start-page: 499 year: 2021 ident: 522_CR24 publication-title: Immunity doi: 10.1016/j.immuni.2021.02.002 – volume: 341 year: 2021 ident: 522_CR77 publication-title: Chem Biol Interact doi: 10.1016/j.cbi.2021.109452 – volume: 139 start-page: 1237 year: 2016 ident: 522_CR141 publication-title: Brain doi: 10.1093/brain/awv408 – volume: 9 start-page: 3294 year: 2018 ident: 522_CR21 publication-title: Nat Commun doi: 10.1038/s41467-018-05470-4 – volume: 12 start-page: 7801 year: 2020 ident: 522_CR113 publication-title: Aging (Albany NY) doi: 10.18632/aging.103093 – volume: 9 start-page: 106 year: 2012 ident: 522_CR135 publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-106 – volume: 541 start-page: 481 year: 2017 ident: 522_CR64 publication-title: Nature doi: 10.1038/nature21029 – volume: 232 start-page: 39 year: 2021 ident: 522_CR7 publication-title: Immunol Lett doi: 10.1016/j.imlet.2021.02.001 – volume: 12 year: 2021 ident: 522_CR22 publication-title: Front Immunol doi: 10.3389/fimmu.2021.653208 – volume: 47 start-page: 566 year: 2017 ident: 522_CR30 publication-title: Immunity doi: 10.1016/j.immuni.2017.08.008 – volume: 7 start-page: 116 year: 2019 ident: 522_CR43 publication-title: Microbiome doi: 10.1186/s40168-019-0733-3 – volume: 4 start-page: 134 year: 2013 ident: 522_CR79 publication-title: Aging Dis – volume: 402 year: 2021 ident: 522_CR112 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2021.113125 – volume: 19 start-page: 179 year: 2020 ident: 522_CR11 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(19)30356-4 – volume: 169 start-page: 1276 year: 2017 ident: 522_CR28 publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 13 start-page: 650047 year: 2021 ident: 522_CR91 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.650047 – volume: 9 start-page: eaaf6295 year: 2017 ident: 522_CR67 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf6295 – volume: 11 start-page: 203 year: 2018 ident: 522_CR168 publication-title: J Inflamm Res doi: 10.2147/JIR.S163248 – volume: 60 start-page: 1223 year: 2017 ident: 522_CR126 publication-title: Sci China Life Sci doi: 10.1007/s11427-016-9001-4 – volume: 5 start-page: 10 year: 2010 ident: 522_CR100 publication-title: PLoS ONE doi: 10.1371/journal.pone.0010667 – volume: 15 start-page: 1106 year: 2018 ident: 522_CR155 publication-title: Curr Alzheimer Res doi: 10.2174/1389200219666180813144834 – volume: 164 year: 2020 ident: 522_CR142 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.105314 – volume: 37 start-page: 1197 year: 2017 ident: 522_CR83 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2774-16.2016 – ident: 522_CR57 doi: 10.1007/s00702-017-1831-7 – volume: 11 start-page: 1 year: 2019 ident: 522_CR80 publication-title: ASN Neuro doi: 10.1177/1759091419855541 – volume: 1693 start-page: 128 year: 2018 ident: 522_CR47 publication-title: Brain Res doi: 10.1016/j.brainres.2018.03.015 – volume: 10 start-page: 779 year: 2021 ident: 522_CR109 publication-title: Cells doi: 10.3390/cells10040779 – ident: 522_CR38 doi: 10.1016/j.neuint.2016.06.011 – volume: 15 start-page: 35 year: 2002 ident: 522_CR169 publication-title: Clin Anat doi: 10.1002/ca.1089 – volume: 15 start-page: 24 year: 2018 ident: 522_CR62 publication-title: J Neuroinflammation doi: 10.1186/s12974-018-1066-z – volume: 9 start-page: e106503 year: 2014 ident: 522_CR144 publication-title: PLoS ONE doi: 10.1371/journal.pone.0106503 – volume: 20 start-page: 145 year: 2017 ident: 522_CR8 publication-title: Nat Neurosci doi: 10.1038/nn.4476 – volume: 32 start-page: 66 year: 2016 ident: 522_CR124 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2016.08.019 – volume: 13 start-page: 138 year: 2020 ident: 522_CR76 publication-title: Front Mol Neurosci doi: 10.3389/fnmol.2020.00138 – volume: 367 start-page: 795 year: 2012 ident: 522_CR55 publication-title: New Engl J Med doi: 10.1056/NEJMoa1202753 – volume: 14 start-page: 2 year: 2017 ident: 522_CR53 publication-title: Curr Alzheimer Res doi: 10.2174/156720501401161201104858 – ident: 522_CR108 doi: 10.1155/2020/8456596 – volume: 312 start-page: G171 year: 2017 ident: 522_CR14 publication-title: Am J Physiol Gastrointest Liver Physiol doi: 10.1152/ajpgi.00048.2015 – volume: 108 start-page: 4586 year: 2011 ident: 522_CR101 publication-title: PNAS doi: 10.1073/pnas.1000097107 – volume: 16 start-page: 290 year: 2019 ident: 522_CR41 publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1561-x – volume: 35 start-page: 1676 year: 2012 ident: 522_CR42 publication-title: Inflammation doi: 10.1007/s10753-012-9484-z – volume: 10 start-page: 98 year: 2020 ident: 522_CR165 publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00098 – volume: 8 year: 2021 ident: 522_CR94 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2020.631460 – volume: 38 start-page: 62 year: 2013 ident: 522_CR147 publication-title: Neuropsychopharmacol doi: 10.1038/npp.2012.86 – volume: 78 start-page: 683 year: 2020 ident: 522_CR119 publication-title: J Alzheimers Dis doi: 10.3233/JAD-200306 – volume: 30 start-page: 1159 year: 2020 ident: 522_CR129 publication-title: Brain Pathol doi: 10.1111/bpa.12908 – volume: 80 start-page: 299 year: 2021 ident: 522_CR99 publication-title: J Alzheimers Dis doi: 10.3233/JAD-201040 – volume: 8 start-page: 1715 year: 2020 ident: 522_CR89 publication-title: Microorganisms doi: 10.3390/microorganisms8111715 – volume: 7 start-page: 12015 year: 2016 ident: 522_CR127 publication-title: Nat Commun doi: 10.1038/ncomms12015 – ident: 522_CR159 doi: 10.3389/fbioe.2020.537847 – volume: 131 start-page: 32 year: 2018 ident: 522_CR160 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2018.03.012 – volume: 11 start-page: 1765 year: 2019 ident: 522_CR104 publication-title: Nutrients doi: 10.3390/nu11081765 – volume: 11 start-page: 233 year: 2019 ident: 522_CR58 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2019.00233 – ident: 522_CR171 doi: 10.4088/jcp.v67n0801 – volume: 556 start-page: 332 year: 2018 ident: 522_CR35 publication-title: Nature doi: 10.1038/s41586-018-0023-4 – volume: 33 start-page: 5053 year: 2013 ident: 522_CR138 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4361-12.2013 – volume: 7 start-page: 41802 year: 2017 ident: 522_CR105 publication-title: Sci Rep doi: 10.1038/srep41802 – volume: 22 start-page: 586 year: 2016 ident: 522_CR40 publication-title: Nat Med doi: 10.1038/nm.4106 – volume: 96 start-page: 227 year: 2021 ident: 522_CR162 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2021.06.003 – volume: 574 start-page: 543 year: 2019 ident: 522_CR50 publication-title: Nature doi: 10.1038/s41586-019-1644-y – volume: 70 year: 2021 ident: 522_CR51 publication-title: Ageing Res Rev doi: 10.1016/j.arr.2021.101396 – volume: 7 start-page: 2426 year: 2017 ident: 522_CR149 publication-title: Sci Rep doi: 10.1038/s41598-017-02587-2 – volume: 11 start-page: 25 year: 2020 ident: 522_CR37 publication-title: Front Endocrinol doi: 10.3389/fendo.2020.00025 – volume: 139 start-page: 1252 year: 2016 ident: 522_CR73 publication-title: Brain doi: 10.1093/brain/aww017 – volume: 331 start-page: 337 year: 2011 ident: 522_CR17 publication-title: Science doi: 10.1126/science.1198469 – volume: 458 start-page: 1191 year: 2009 ident: 522_CR13 publication-title: Nature doi: 10.1038/nature07830 – volume: 352 start-page: 712 year: 2016 ident: 522_CR65 publication-title: Sceince doi: 10.1126/science.aad8373 – volume: 212 start-page: 1803 year: 2015 ident: 522_CR70 publication-title: J Exp Med doi: 10.1084/jem.20150478 – volume: 19 start-page: 1019 year: 2009 ident: 522_CR84 publication-title: Hippocampus doi: 10.1002/hipo.20591 – volume: 6 start-page: 757 year: 2011 ident: 522_CR72 publication-title: Future Neurol doi: 10.2217/fnl.11.50 – volume: 98 start-page: 357 year: 2021 ident: 522_CR163 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2021.09.002 – ident: 522_CR139 doi: 10.4049/jimmunol.1100620 – volume: 108 start-page: 83 year: 2001 ident: 522_CR140 publication-title: Neuroscience doi: 10.1016/s0306-4522(01)00405-5 – volume: 63 start-page: 1337 year: 2018 ident: 522_CR96 publication-title: J Alzheimers Dis doi: 10.3233/JAD-180176 – volume: 8 start-page: 380 year: 2014 ident: 522_CR63 publication-title: Front Cell Neurosci doi: 10.3389/fncel.2014.00380 – volume: 9 start-page: 54 year: 2013 ident: 522_CR54 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2012.241 – volume: 22 start-page: R733 year: 2012 ident: 522_CR12 publication-title: Curr Biol doi: 10.1016/j.cub.2012.07.029 – volume: 66 start-page: 464 year: 2018 ident: 522_CR110 publication-title: Lett Appl Microbiol doi: 10.1111/lam.12882 – volume: 133 start-page: 2168 year: 2019 ident: 522_CR131 publication-title: Blood doi: 10.1182/blood-2018-11-844555 – volume: 61 start-page: 355 year: 2007 ident: 522_CR158 publication-title: Eur J Clin Nutr doi: 10.1038/sj.ejcn.1602546 – volume: 115 start-page: E4843 year: 2018 ident: 522_CR48 publication-title: PNAS doi: 10.1073/pnas.1719083115 – volume: 5 start-page: 10 year: 2018 ident: 522_CR166 publication-title: Medicines (Basel) doi: 10.3390/medicines5010010 – volume: 341 start-page: 569 year: 2013 ident: 522_CR18 publication-title: Science doi: 10.1126/science.1241165 – volume: 2 year: 2021 ident: 522_CR90 publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100398 – volume: 23 start-page: 716 year: 2018 ident: 522_CR4 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.05.003 – volume: 14 start-page: 575 year: 2020 ident: 522_CR9 publication-title: Front Neurosci doi: 10.3389/fnins.2020.00575 – volume: 75 start-page: 1232 year: 2020 ident: 522_CR116 publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/glz262 – volume: 9 start-page: 189 year: 2019 ident: 522_CR161 publication-title: Transl Psychiatry doi: 10.1038/s41398-019-0525-3 – volume: 38 start-page: 597 year: 2020 ident: 522_CR26 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-102319-103410 – volume: 80 start-page: 633 year: 2019 ident: 522_CR98 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2019.05.008 – volume: 86 start-page: 96 year: 2021 ident: 522_CR151 publication-title: Nutr Res doi: 10.1016/j.nutres.2020.12.010 – volume: 8 start-page: 256 year: 2016 ident: 522_CR154 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2016.00256 – volume: 4 start-page: 575 year: 2018 ident: 522_CR68 publication-title: Alzheimers Dement doi: 10.1016/j.trci.2018.06.014 – volume: 214 year: 2020 ident: 522_CR44 publication-title: Physiol Behav doi: 10.1016/j.physbeh.2019.112745 – volume: 35 start-page: 13029 year: 2015 ident: 522_CR66 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1698-15.2015 – volume: 219 year: 2022 ident: 522_CR164 publication-title: J Exp Med doi: 10.1084/jem.20200895 – volume: 6 start-page: 30028 year: 2016 ident: 522_CR120 publication-title: Sci Rep doi: 10.1038/srep30028 – volume: 47 start-page: 41 year: 2016 ident: 522_CR61 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.07.009 – volume: 84 start-page: 87 year: 2004 ident: 522_CR82 publication-title: Physiol Rev doi: 10.1152/physrev.00014.2003 – volume: 70 start-page: 399 year: 2019 ident: 522_CR111 publication-title: J Alzheimers Dis doi: 10.3233/JAD-181220 – volume: 18 start-page: 759 year: 2018 ident: 522_CR29 publication-title: Nat Rev Immunol doi: 10.1038/s41577-018-0051-1 – volume: 167 start-page: 1469 year: 2016 ident: 522_CR125 publication-title: Cell doi: 10.1016/j.cell.2016.11.018 – ident: 522_CR52 – volume: 17 start-page: 25 year: 2020 ident: 522_CR5 publication-title: J Neuroinflammation doi: 10.1186/s12974-020-1705-z – volume: 7 start-page: 30 year: 2015 ident: 522_CR78 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2015.00030 – volume: 14 start-page: 372 year: 2013 ident: 522_CR23 publication-title: Nat Immunol doi: 10.1038/ni.2552 – volume: 12 start-page: 628 year: 2020 ident: 522_CR152 publication-title: Aging doi: 10.18632/aging.102645 – volume: 138 start-page: 785 year: 2017 ident: 522_CR3 publication-title: J Neurochem doi: 10.1111/jnc.13713 – volume: 30 start-page: 350 year: 2015 ident: 522_CR123 publication-title: Mov Disord doi: 10.1002/mds.26069 – volume: 274 start-page: 1 year: 2014 ident: 522_CR33 publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2014.07.012 – volume: 49 start-page: 60 year: 2017 ident: 522_CR92 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.08.019 – volume: 21 start-page: 1711 year: 2020 ident: 522_CR106 publication-title: Int J Mol Sci doi: 10.3390/ijms21051711 – volume: 12 start-page: 114 year: 2015 ident: 522_CR34 publication-title: J Neuroinflammation doi: 10.1186/s12974-015-0332-6 – volume: 212 start-page: 1811 year: 2015 ident: 522_CR69 publication-title: J Exp Med doi: 10.1084/jem.20150479 – volume: 598 start-page: 4209 year: 2020 ident: 522_CR132 publication-title: The Journal of Physiolofy doi: 10.1113/JP279919 – volume: 10 start-page: e00632 year: 2019 ident: 522_CR93 publication-title: ASM Journals doi: 10.1128/mBio.00632-19 – ident: 522_CR75 doi: 10.1515/revneuro-2019-0058 – volume: 27 start-page: 36 year: 2021 ident: 522_CR27 publication-title: CNS Neurosci & Ther doi: 10.1111/cns.13569 – volume: 181 start-page: 3733 year: 2008 ident: 522_CR32 publication-title: J Immunol doi: 10.4049/jimmunol.181.6.3733 – volume: 18 start-page: 965 year: 2015 ident: 522_CR36 publication-title: Nat Neurosci doi: 10.1038/nn.4030 – volume: 21 start-page: 727 year: 2007 ident: 522_CR46 publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2007.05.005 – ident: 522_CR56 doi: 10.1126/science.1072994 – volume: 60 start-page: 251 year: 2012 ident: 522_CR31 publication-title: Ther Exp (Warsz) doi: 10.1007/s00005-012-0181-2 – volume: 178 start-page: 829 year: 2007 ident: 522_CR137 publication-title: J Cell Biol doi: 10.1083/jcb.200705042 – volume: 38 start-page: 147 year: 2020 ident: 522_CR15 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-071219-125715 – volume: 114 start-page: 10713 year: 2017 ident: 522_CR128 publication-title: PNAS doi: 10.1073/pnas.1711235114 – volume: 328 start-page: 98 year: 2019 ident: 522_CR6 publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2019.01.004 – volume: 15 start-page: 595583 year: 2021 ident: 522_CR107 publication-title: Front Neurosci doi: 10.3389/fnins.2021.595583 – volume: 102 start-page: 81 year: 2017 ident: 522_CR133 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2017.02.010 – volume: 55 start-page: 7987 year: 2018 ident: 522_CR150 publication-title: Mol Neurobiol doi: 10.1007/s12035-018-0973-4 – volume: 51 start-page: 5 year: 2002 ident: 522_CR103 publication-title: J Med Microbiol doi: 10.1099/0022-1317-51-5-448 – volume: 9 start-page: 14 year: 2017 ident: 522_CR71 publication-title: Alzheimer’s Res Ther doi: 10.1186/s13195-017-0241-2 – volume: 93 start-page: 815 year: 2015 ident: 522_CR87 publication-title: J Neurosci Res doi: 10.1002/jnr.23540 – volume: 17 start-page: 689 year: 2021 ident: 522_CR10 publication-title: Nat Rev Neurol doi: 10.1038/s41582-021-00549-x – volume: 6 start-page: 70 year: 2019 ident: 522_CR157 publication-title: J Prev Alzheimers Dis doi: 10.14283/jpad.2018.32 – volume: 13 start-page: 612 year: 2017 ident: 522_CR130 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2017.111 – volume: 10 start-page: 416 year: 2018 ident: 522_CR145 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00416 – volume: 155 start-page: 37 year: 2020 ident: 522_CR170 publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2019.11.011 – volume: 28 start-page: 201 year: 2020 ident: 522_CR143 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.008 – volume: 236 start-page: 588 year: 2020 ident: 522_CR167 publication-title: J Anat doi: 10.1111/joa.13122 – volume: 216 start-page: 1542 year: 2019 ident: 522_CR122 publication-title: J Exp Med doi: 10.1084/jem.20182386 |
SSID | ssj0047005 |
Score | 2.6510582 |
SecondaryResourceType | review_article |
Snippet | The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest... Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data... Background: The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data... Abstract Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept.... |
SourceID | doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 19 |
SubjectTerms | Alzheimer Disease - pathology Alzheimer's disease Analysis Brain - pathology Cognitive Dysfunction - pathology Gastrointestinal Microbiome - physiology Gut microbiota Gut microbiota, Synaptic dysfunction, Alzheimer’s disease, Peripheral immunomodulation, Neuroinflammation Humans Inflammation Life Sciences Medical research Medicine, Experimental Microbiota Microbiota (Symbiotic organisms) Neuroinflammation Neuroinflammatory Diseases Neurons Neurophysiology Peripheral immunomodulation Review Synaptic dysfunction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgT1wQsPwEFmQQggOKtv5JYnMriFWFWE6stBdkOXaiVtp10aZdqXviNbj1WfooPAkzdlptQIILtyp2UmfmG884nvlMyEsPLkYxMCRWOZtLUbpc-8LBr7Zyra1Htcd65-PP5eREfjwtTq8d9YU5YYkeOAnuUGiYW2WtrXZCCqtrzlpmuVRcN7VOdeTg87aLqTQHywrAtS2RUeVhh9tzMsfMdfwOynM-cEORrX83J9-cYkrkn_Hm72mT1_zQ0R1yuw8g6TgN_C650YR7ZH8cYPF8vqKvaEzpjN_K98nX41niWVpYOgubdSSvBEgBClLF4mZtg9-su1WwMHU46lcdOjpsekstbedu2dF5oOOzq2kzO28ufn7_0dF-U-c-OTn68OX9JO_PU8gdhBWLXFvOvCsdE97WquZV3Raula0SrLVCOqZ9BU7NiaKqvAOZg-hVOxo56aUvm0I8IHthHppHhForkPMRfDtzsmBe17DukJ41XFoHUV1G2Fa8xvVk43jmxZmJiw5VmqQSAyoxUSWGZ-TN7p5viWrjr73fodZ2PZEmO14A8JgePOZf4MnIa9S5QWOG4Tnb1yTASyItlhmXGk_JhbA0IweDnmCEbtD8AlAzGMxk_MngtZGo4nb1JcvI8y2oDN6P6W2hmS87w0tRKmTClxl5mEC2exZEyFIxCWOtBvAb_NmwJcymkSgcHqkgBH38P0T1hNzi0X4w3fOA7C0uls1TiMcW9bNoer8APDEyqg priority: 102 providerName: Directory of Open Access Journals |
Title | Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35248147 https://www.proquest.com/docview/2636889434 https://hal.science/hal-03702829 https://pubmed.ncbi.nlm.nih.gov/PMC8898063 https://doaj.org/article/391234b9a9c343a9b21f1a24829eb907 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELb2R0J7QcDyE1iqgBAcUCCOnThBQiiLdlVVdIWASr0gy7ETWqmbQtMiyonX4NZn6aPwJMw4abWBFQdOieKf2J4Zz9gef0PIIwMqJqYgSFRo5XEWaS8xoYa3QuhCZX5m8L5z_yzqDnhvGA53yCbcUTOA1aVLO4wnNZhNnn37snwFAv_SCnwcPa_w8I176JeOu5yBB1PyPmgmgREN-nx7qsAFJG8uzlxa7oBcAYOExxSjrVzQUxbOfztp747QZ_Jvg_RPv8oLiur0GrnaWJhuWrPEdbKTlzfIYVrC6vp86T52rc-n3Uw_JB_74xqIaa7ccbleWXRLGAVgk_pK43qlSrNeVctSwdyiXbOsUBNi0gtXucVULyp3Wrrp5PsoH5_ns18_flZuc-pzkwxOTz687npNwAVPg90x9xIVUKMjTZlRWZwFIitCXfAiZrRQjGuaGAFaT7NQCKN5BrZlEBe-r7nhJspDdovsldMyv0NcpRiCQoLyp5qH1CQZLEy4oXnAlQazzyF0M7xSN2jkGBRjIu2qJI5kTR0J1JGWOjJwyNNtmc81Fsc_cx8j1bY5EUfbfpjOPslGLCWDHjDoiEo040wlWUALqoADgiTPEl845AnSXCL_QfO0ai4tQCcRN0umUYJhdMFudchRKydIqW4lPwSuaTWmm76R-M1nwp5nf6UOebBhKonl0f-tzKeLSgYRi2KEyucOuV0z2bauDcc6RLTYr_Wzdko5HlkkcagyBhv17n-XvEcOAis_6AR6RPbms0V-H6y0edYhu2IoOmQ_TXvve_A8Pjl7-65j9zw6Vix_AyyUQK8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiota+in%C2%A0neuroinflammation%C2%A0and%C2%A0synaptic+dysfunction%3A+a+focus+on+Alzheimer%E2%80%99s+disease&rft.jtitle=Molecular+neurodegeneration&rft.au=Bairamian%2C+Diane&rft.au=Sha%2C+Sha&rft.au=Rolhion%2C+Nathalie&rft.au=Sokol%2C+Harry&rft.date=2022-03-05&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=17&rft_id=info:doi/10.1186%2Fs13024-022-00522-2&rft_id=info%3Apmid%2F35248147&rft.externalDocID=PMC8898063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon |