Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease

The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and...

Full description

Saved in:
Bibliographic Details
Published inMolecular neurodegeneration Vol. 17; no. 1; pp. 19 - 23
Main Authors Bairamian, Diane, Sha, Sha, Rolhion, Nathalie, Sokol, Harry, Dorothée, Guillaume, Lemere, Cynthia A., Krantic, Slavica
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.03.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
AbstractList The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve.BACKGROUNDThe implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve.The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction.MAIN MESSAGESThe putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction.There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.CONCLUSIONSThere is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
Background: The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages: The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions: There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
Abstract Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer’s disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer’s disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer’s disease but still require further investigation.
Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. Main messages The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. Conclusions There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation. Keywords: Gut microbiota, Synaptic dysfunction, Alzheimer's disease, Peripheral immunomodulation, Neuroinflammation
The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
ArticleNumber 19
Audience Academic
Author Sokol, Harry
Lemere, Cynthia A.
Dorothée, Guillaume
Bairamian, Diane
Sha, Sha
Rolhion, Nathalie
Krantic, Slavica
Author_xml – sequence: 1
  givenname: Diane
  surname: Bairamian
  fullname: Bairamian, Diane
– sequence: 2
  givenname: Sha
  surname: Sha
  fullname: Sha, Sha
– sequence: 3
  givenname: Nathalie
  surname: Rolhion
  fullname: Rolhion, Nathalie
– sequence: 4
  givenname: Harry
  surname: Sokol
  fullname: Sokol, Harry
– sequence: 5
  givenname: Guillaume
  surname: Dorothée
  fullname: Dorothée, Guillaume
– sequence: 6
  givenname: Cynthia A.
  surname: Lemere
  fullname: Lemere, Cynthia A.
– sequence: 7
  givenname: Slavica
  orcidid: 0000-0002-0785-4549
  surname: Krantic
  fullname: Krantic, Slavica
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35248147$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03702829$$DView record in HAL
BookMark eNp9kstu1DAUhi1URNuBF2CBIrGBRYpvuZgF0qgqtNIgNrBEluPLjKvEHuKk0rDiNbrrs_RReBLOTFrUqRCKlFjH__-dY-c_RgchBovQS4JPCKnLd4kwTHmOKc0xLuBNn6AjUhU4J4yWBw_Wh-g4pUuMeQXCZ-iQFZTXhFdH6Ptnr_vY-DiozIfbm2DHPvrgWtV1avARSiqY25u0CWo9eJ2ZTXJj0Nut95nKXNRjymLI5u3PlfWd7X__uk6Z8cmqZJ-jp061yb64-87Qt49nX0_P88WXTxen80WuS1YMuVCUGF1qwoxq6oZWjSu0465mxCnGNRGmYpxoVlSV0bwRgtDaYay54aa0BZuhi4lrorqU6953qt_IqLzcFWK_lKqH6VsrGXgZIJTQjDMlGkocUXAdVNhG4ApYHybWemw6a7QNQ6_aPej-TvAruYxXsq5FjUsGgLcTYPXIdj5fyG0NswpT6HdFQPvmrlkff4w2DbLzSdu2VcHGMUlashK4HEadodeTdKngGPCLInTXW7mcl0IUuMb19iZO_qGCx9jOa8iP81DfM7x6eNy_A99HBAT1JICcpNRbJ7UfdtEAsm8lwXKbRjmlUUIa5S6NkoKVPrLe0_9j-gMze-Pi
CitedBy_id crossref_primary_10_1007_s12035_024_04368_1
crossref_primary_10_17816_KMJ567814
crossref_primary_10_1007_s12035_024_04322_1
crossref_primary_10_5937_arhfarm74_46612
crossref_primary_10_1186_s13052_025_01874_3
crossref_primary_10_1186_s13195_022_01062_z
crossref_primary_10_3389_fimmu_2025_1533343
crossref_primary_10_1186_s12866_024_03188_6
crossref_primary_10_31083_j_jin2202038
crossref_primary_10_3389_fnins_2023_1130730
crossref_primary_10_1038_s41598_024_60580_y
crossref_primary_10_1038_s41401_023_01147_x
crossref_primary_10_1111_cns_14480
crossref_primary_10_1016_j_arr_2025_102659
crossref_primary_10_3390_cells13030286
crossref_primary_10_1080_19490976_2024_2389319
crossref_primary_10_1016_j_bbi_2024_12_027
crossref_primary_10_1016_j_bcp_2022_115213
crossref_primary_10_3389_fnut_2022_1012076
crossref_primary_10_3390_nu16213586
crossref_primary_10_3389_fmed_2024_1410246
crossref_primary_10_3390_ijms252011272
crossref_primary_10_1007_s13659_022_00354_z
crossref_primary_10_1080_19490976_2024_2412376
crossref_primary_10_3389_fncom_2022_986591
crossref_primary_10_1016_j_ijbiomac_2024_134939
crossref_primary_10_1016_j_lfs_2023_122132
crossref_primary_10_1007_s40520_023_02409_8
crossref_primary_10_1016_j_jep_2025_119323
crossref_primary_10_3390_nu16091288
crossref_primary_10_3390_brainsci14121224
crossref_primary_10_1016_j_ejphar_2023_176305
crossref_primary_10_1016_j_mad_2023_111787
crossref_primary_10_3389_fnagi_2022_968444
crossref_primary_10_1111_ejn_16450
crossref_primary_10_1016_j_arr_2022_101831
crossref_primary_10_1016_j_fbio_2025_106189
crossref_primary_10_1186_s13024_024_00720_0
crossref_primary_10_1007_s40520_024_02718_6
crossref_primary_10_1021_acschemneuro_4c00293
crossref_primary_10_4103_1673_5374_389745
crossref_primary_10_1016_j_arr_2024_102481
crossref_primary_10_14336_AD_2024_0134
crossref_primary_10_1016_j_ibneur_2024_01_008
crossref_primary_10_1186_s13024_023_00635_2
crossref_primary_10_3389_fnagi_2024_1402347
crossref_primary_10_34922_AE_2024_37_4_016
crossref_primary_10_1016_j_lfs_2023_122022
crossref_primary_10_3390_fermentation9080762
crossref_primary_10_3390_nu16060852
crossref_primary_10_3390_foods12244428
crossref_primary_10_1080_19490976_2024_2387794
crossref_primary_10_1007_s11357_024_01284_z
crossref_primary_10_3390_medicina59071337
crossref_primary_10_1039_D3FO01893H
crossref_primary_10_2174_0113816128264312231101110307
crossref_primary_10_1016_j_ijbiomac_2024_134494
crossref_primary_10_3390_metabo12121222
crossref_primary_10_3390_jcm12041650
crossref_primary_10_1016_j_scib_2024_09_005
crossref_primary_10_1016_j_ijbiomac_2025_141850
crossref_primary_10_1016_j_bbi_2024_08_022
crossref_primary_10_1016_j_dci_2024_105274
crossref_primary_10_1186_s40035_024_00459_0
crossref_primary_10_1007_s40495_023_00325_z
crossref_primary_10_12938_bmfh_2024_022
crossref_primary_10_3390_cells11132023
crossref_primary_10_3389_fragi_2024_1395649
crossref_primary_10_1093_ejendo_lvae139
crossref_primary_10_3233_ADR_220047
crossref_primary_10_3389_fnins_2022_1002266
crossref_primary_10_1016_j_biopha_2023_114474
crossref_primary_10_1016_j_pbb_2025_173972
crossref_primary_10_3233_JAD_240597
crossref_primary_10_7759_cureus_73681
crossref_primary_10_1002_EXP_20230154
crossref_primary_10_1016_j_arr_2024_102544
crossref_primary_10_1016_j_arr_2025_102685
crossref_primary_10_1016_j_jhazmat_2024_136739
crossref_primary_10_1002_mnfr_202200652
crossref_primary_10_1016_j_arr_2023_102084
crossref_primary_10_3389_fphar_2022_898360
crossref_primary_10_1016_j_prp_2023_154740
crossref_primary_10_3390_ijms25179379
crossref_primary_10_3390_microbiolres14040131
crossref_primary_10_3390_microorganisms12040634
crossref_primary_10_1016_j_ejphar_2024_177022
crossref_primary_10_1111_cns_14840
crossref_primary_10_37349_emed_2022_00097
crossref_primary_10_1515_revneuro_2024_0090
crossref_primary_10_4103_NRR_NRR_D_23_01979
crossref_primary_10_1007_s12035_024_04513_w
crossref_primary_10_1111_ijfs_17380
crossref_primary_10_1515_revneuro_2023_0006
crossref_primary_10_3389_fradi_2022_895088
crossref_primary_10_1016_j_phymed_2024_156150
crossref_primary_10_1007_s11427_022_2276_6
crossref_primary_10_1016_j_crfs_2023_100533
crossref_primary_10_1038_s41598_024_56989_0
crossref_primary_10_12677_acm_2024_1482282
crossref_primary_10_14283_jpad_2024_119
crossref_primary_10_3390_ijms232314924
crossref_primary_10_1002_imt2_70006
crossref_primary_10_1016_j_jff_2023_105764
crossref_primary_10_1016_j_exger_2024_112371
crossref_primary_10_3390_nu16142366
crossref_primary_10_1007_s12035_024_04498_6
crossref_primary_10_1177_13872877241313140
crossref_primary_10_3389_fphar_2023_1178596
crossref_primary_10_1016_j_ijbiomac_2024_131869
crossref_primary_10_1016_j_ibneur_2024_12_008
crossref_primary_10_1148_radiol_233019
crossref_primary_10_3390_brainsci14090950
crossref_primary_10_1038_s41380_024_02510_y
crossref_primary_10_3389_fimmu_2024_1383464
crossref_primary_10_1021_acs_jafc_3c06238
crossref_primary_10_1002_ddr_22096
crossref_primary_10_1080_17460913_2024_2417608
crossref_primary_10_3389_fimmu_2024_1462003
crossref_primary_10_1186_s13024_023_00595_7
crossref_primary_10_3390_ijms26062440
crossref_primary_10_1016_j_biopha_2024_117277
crossref_primary_10_2174_0126667975291873240506111439
crossref_primary_10_3390_antiox14020139
crossref_primary_10_1016_j_apsb_2025_03_008
crossref_primary_10_3389_fpsyt_2022_872594
crossref_primary_10_2147_JIR_S383853
crossref_primary_10_1002_ibra_12065
crossref_primary_10_1016_j_jneuroim_2024_578374
crossref_primary_10_1007_s00216_022_04207_z
crossref_primary_10_1080_19490976_2023_2282790
crossref_primary_10_1177_25424823241309024
crossref_primary_10_26508_lsa_202302529
crossref_primary_10_3389_fcimb_2024_1348279
crossref_primary_10_1016_j_phymed_2024_155394
crossref_primary_10_1186_s40168_024_02001_w
crossref_primary_10_3233_ADR_220097
crossref_primary_10_1016_j_jpha_2024_101043
crossref_primary_10_31083_j_jin2206148
crossref_primary_10_1016_j_xcrp_2025_102458
crossref_primary_10_1055_s_0043_1771459
crossref_primary_10_3389_fphar_2022_975784
crossref_primary_10_3390_life14101234
crossref_primary_10_1111_cns_70259
crossref_primary_10_1016_j_arr_2023_102035
crossref_primary_10_1080_07853890_2024_2411011
crossref_primary_10_3389_fnagi_2023_1305790
crossref_primary_10_1111_cns_70091
crossref_primary_10_1007_s00109_023_02289_5
crossref_primary_10_1016_j_bbi_2024_04_002
crossref_primary_10_1111_febs_17365
crossref_primary_10_1177_17562848241301574
crossref_primary_10_1186_s12974_025_03352_3
crossref_primary_10_1186_s12951_022_01642_z
crossref_primary_10_3389_fgene_2023_1230245
crossref_primary_10_3389_fphar_2024_1416502
crossref_primary_10_3389_fnhum_2025_1548701
crossref_primary_10_1186_s13195_024_01471_2
crossref_primary_10_1016_j_jep_2025_119424
crossref_primary_10_1021_acs_jafc_4c08548
crossref_primary_10_3390_biomedicines11102802
crossref_primary_10_1016_j_biopha_2023_114312
crossref_primary_10_1016_j_isci_2023_106744
crossref_primary_10_2147_JIR_S422114
crossref_primary_10_1186_s13195_023_01285_8
crossref_primary_10_1016_j_nbd_2023_106295
crossref_primary_10_2147_JPR_S416253
crossref_primary_10_1177_03000605251314817
crossref_primary_10_3390_biomedicines11020408
crossref_primary_10_3233_JAD_215422
Cites_doi 10.1016/S1474-4422(15)70016-5
10.1038/s43587-021-00093-9
10.1186/s13024-017-0184-x
10.1016/j.mcn.2020.103493
10.1038/s41575-019-0258-z
10.3389/fneur.2018.00412
10.1038/ni.3666
10.7554/eLife.59826
10.1016/j.nbd.2009.01.006
10.1016/j.celrep.2021.109332
10.1016/j.jalz.2019.07.002
10.1016/j.tins.2020.01.003
10.1186/1471-2180-9-123
10.3389/fneur.2018.00662
10.1016/j.neurobiolaging.2012.09.012
10.5056/jnm18087
10.1007/s11910-017-0733-2
10.1007/164_2019_225
10.15252/emmm.201606210
10.3389/fcell.2020.634069
10.3390/ijms21051652
10.1038/s41598-017-13601-y
10.1007/s00115-011-3258-y
10.1073/pnas.162228299
10.1016/j.brainres.2014.08.040
10.1186/1742-2094-9-99
10.1155/2016/3204519
10.1089/sur.2012.126
10.1016/j.xcrm.2020.100138
10.1038/s41598-017-11047-w
10.1016/j.immuni.2021.02.002
10.1016/j.cbi.2021.109452
10.1093/brain/awv408
10.1038/s41467-018-05470-4
10.18632/aging.103093
10.1186/1742-2094-9-106
10.1038/nature21029
10.1016/j.imlet.2021.02.001
10.3389/fimmu.2021.653208
10.1016/j.immuni.2017.08.008
10.1186/s40168-019-0733-3
10.1016/j.bbr.2021.113125
10.1016/S1474-4422(19)30356-4
10.1016/j.cell.2017.05.018
10.3389/fnagi.2021.650047
10.1126/scitranslmed.aaf6295
10.2147/JIR.S163248
10.1007/s11427-016-9001-4
10.1371/journal.pone.0010667
10.2174/1389200219666180813144834
10.1016/j.phrs.2020.105314
10.1523/JNEUROSCI.2774-16.2016
10.1007/s00702-017-1831-7
10.1177/1759091419855541
10.1016/j.brainres.2018.03.015
10.3390/cells10040779
10.1016/j.neuint.2016.06.011
10.1002/ca.1089
10.1186/s12974-018-1066-z
10.1371/journal.pone.0106503
10.1038/nn.4476
10.1016/j.parkreldis.2016.08.019
10.3389/fnmol.2020.00138
10.1056/NEJMoa1202753
10.2174/156720501401161201104858
10.1155/2020/8456596
10.1152/ajpgi.00048.2015
10.1073/pnas.1000097107
10.1186/s12974-019-1561-x
10.1007/s10753-012-9484-z
10.3389/fcimb.2020.00098
10.3389/fcell.2020.631460
10.1038/npp.2012.86
10.3233/JAD-200306
10.1111/bpa.12908
10.3233/JAD-201040
10.3390/microorganisms8111715
10.1038/ncomms12015
10.3389/fbioe.2020.537847
10.1016/j.phrs.2018.03.012
10.3390/nu11081765
10.3389/fnagi.2019.00233
10.4088/jcp.v67n0801
10.1038/s41586-018-0023-4
10.1523/JNEUROSCI.4361-12.2013
10.1038/srep41802
10.1038/nm.4106
10.1016/j.bbi.2021.06.003
10.1038/s41586-019-1644-y
10.1016/j.arr.2021.101396
10.1038/s41598-017-02587-2
10.3389/fendo.2020.00025
10.1093/brain/aww017
10.1126/science.1198469
10.1038/nature07830
10.1126/science.aad8373
10.1084/jem.20150478
10.1002/hipo.20591
10.2217/fnl.11.50
10.1016/j.bbi.2021.09.002
10.4049/jimmunol.1100620
10.1016/s0306-4522(01)00405-5
10.3233/JAD-180176
10.3389/fncel.2014.00380
10.1038/nrneurol.2012.241
10.1016/j.cub.2012.07.029
10.1111/lam.12882
10.1182/blood-2018-11-844555
10.1038/sj.ejcn.1602546
10.1073/pnas.1719083115
10.3390/medicines5010010
10.1126/science.1241165
10.1016/j.xcrm.2021.100398
10.1016/j.chom.2018.05.003
10.3389/fnins.2020.00575
10.1093/gerona/glz262
10.1038/s41398-019-0525-3
10.1146/annurev-immunol-102319-103410
10.1016/j.bbi.2019.05.008
10.1016/j.nutres.2020.12.010
10.3389/fnagi.2016.00256
10.1016/j.trci.2018.06.014
10.1016/j.physbeh.2019.112745
10.1523/JNEUROSCI.1698-15.2015
10.1084/jem.20200895
10.1038/srep30028
10.1016/j.neurobiolaging.2016.07.009
10.1152/physrev.00014.2003
10.3233/JAD-181220
10.1038/s41577-018-0051-1
10.1016/j.cell.2016.11.018
10.1186/s12974-020-1705-z
10.3389/fnagi.2015.00030
10.1038/ni.2552
10.18632/aging.102645
10.1111/jnc.13713
10.1002/mds.26069
10.1016/j.jneuroim.2014.07.012
10.1016/j.neurobiolaging.2016.08.019
10.3390/ijms21051711
10.1186/s12974-015-0332-6
10.1084/jem.20150479
10.1113/JP279919
10.1128/mBio.00632-19
10.1515/revneuro-2019-0058
10.1111/cns.13569
10.4049/jimmunol.181.6.3733
10.1038/nn.4030
10.1016/j.bbi.2007.05.005
10.1126/science.1072994
10.1007/s00005-012-0181-2
10.1083/jcb.200705042
10.1146/annurev-immunol-071219-125715
10.1073/pnas.1711235114
10.1016/j.jneuroim.2019.01.004
10.3389/fnins.2021.595583
10.1016/j.nbd.2017.02.010
10.1007/s12035-018-0973-4
10.1099/0022-1317-51-5-448
10.1186/s13195-017-0241-2
10.1002/jnr.23540
10.1038/s41582-021-00549-x
10.14283/jpad.2018.32
10.1038/nrneurol.2017.111
10.3389/fnagi.2018.00416
10.1016/j.brainresbull.2019.11.011
10.1016/j.chom.2020.06.008
10.1111/joa.13122
10.1084/jem.20182386
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s13024-022-00522-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 23
ExternalDocumentID oai_doaj_org_article_391234b9a9c343a9b21f1a24829eb907
PMC8898063
oai_HAL_hal_03702829v1
A699508085
35248147
10_1186_s13024_022_00522_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: RF1 AG060057
– fundername: Shared Services Center NASA
  grantid: 80NSSC18K0810
– fundername: ;
  grantid: MicIAD
– fundername: ;
  grantid: MicAD
– fundername: ;
  grantid: 80NSSC18K0810
– fundername: ;
  grantid: RF1 AG060057
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
7X8
1XC
VOOES
5PM
PUEGO
ID FETCH-LOGICAL-c635t-9a21dc6c13dab8b27bf5cf4f831fa34c19d7341c3577dc4b99128f00c4d4d6e53
IEDL.DBID M48
ISSN 1750-1326
IngestDate Wed Aug 27 00:59:40 EDT 2025
Thu Aug 21 14:31:35 EDT 2025
Fri May 09 12:11:04 EDT 2025
Fri Jul 11 05:49:56 EDT 2025
Tue Jun 17 21:45:42 EDT 2025
Tue Jun 10 20:43:31 EDT 2025
Mon Jul 21 05:45:54 EDT 2025
Tue Jul 01 01:59:05 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gut microbiota
Neuroinflammation
Alzheimer’s disease
Peripheral immunomodulation
Synaptic dysfunction
Gut microbiota Synaptic dysfunction Alzheimer's disease Peripheral immunomodulation Neuroinflammation
Alzheimer's disease
Language English
License 2022. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-9a21dc6c13dab8b27bf5cf4f831fa34c19d7341c3577dc4b99128f00c4d4d6e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMCID: PMC8898063
ORCID 0000-0002-0785-4549
0000-0001-5763-3632
0000-0002-2914-1822
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13024-022-00522-2
PMID 35248147
PQID 2636889434
PQPubID 23479
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_391234b9a9c343a9b21f1a24829eb907
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8898063
hal_primary_oai_HAL_hal_03702829v1
proquest_miscellaneous_2636889434
gale_infotracmisc_A699508085
gale_infotracacademiconefile_A699508085
pubmed_primary_35248147
crossref_citationtrail_10_1186_s13024_022_00522_2
crossref_primary_10_1186_s13024_022_00522_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-05
PublicationDateYYYYMMDD 2022-03-05
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References Y Kobayashi (522_CR157) 2019; 6
AV Colombo (522_CR146) 2021; 10
MJ Claesson (522_CR101) 2011; 108
JM Huston (522_CR49) 2012; 13
J Wang (522_CR130) 2017; 13
Y Shi (522_CR29) 2018; 18
Z Ling (522_CR97) 2021; 8
W Li (522_CR126) 2017; 60
522_CR75
M Govindarajulu (522_CR76) 2020; 13
O Mossad (522_CR129) 2020; 30
P Fang (522_CR143) 2020; 28
S Prokop (522_CR69) 2015; 212
C Chu (522_CR50) 2019; 574
JP Haran (522_CR93) 2019; 10
N Salazar (522_CR104) 2019; 11
JL McCarville (522_CR15) 2020; 38
MR Minter (522_CR121) 2017; 7
HB Dodiya (522_CR122) 2019; 216
Y Xin (522_CR148) 2018; 9
M Marizzoni (522_CR119) 2020; 78
R Goutagny (522_CR79) 2013; 4
E Biagi (522_CR100) 2010; 5
MF Munoz-Pinto (522_CR51) 2021; 70
RP Friedland (522_CR117) 2020; 21
JM Wells (522_CR14) 2017; 312
P Strandwitz (522_CR47) 2018; 1693
J Sun (522_CR161) 2019; 9
522_CR159
MF Butt (522_CR167) 2020; 236
S Zhu (522_CR5) 2020; 17
522_CR156
TP Zanos (522_CR48) 2018; 115
AG Efthymiou (522_CR59) 2017; 12
L Hamelin (522_CR73) 2016; 139
AC Wendeln (522_CR35) 2018; 556
Y Yan (522_CR24) 2021; 54
DO Seo (522_CR116) 2020; 75
K Atarashi (522_CR17) 2011; 331
ET Peuker (522_CR169) 2002; 15
YP Silva (522_CR37) 2020; 11
RJ Bateman (522_CR55) 2012; 367
NM Vogt (522_CR88) 2017; 7
QJ Wang (522_CR152) 2020; 12
ICM Hoogland (522_CR34) 2015; 12
ID Vainchtein (522_CR45) 2020; 43
ML Wu (522_CR112) 2021; 402
F Orsini (522_CR63) 2014; 8
J Li (522_CR7) 2021; 232
C Dansokho (522_CR141) 2016; 139
RN O’Callaghan (522_CR84) 2009; 19
D Erny (522_CR36) 2015; 18
B Li (522_CR95) 2019; 15
Z Liu (522_CR9) 2020; 14
M Biagioli (522_CR20) 2019; 256
522_CR52
Y Zhang (522_CR43) 2019; 7
HM Roager (522_CR21) 2018; 9
KP MacPherson (522_CR133) 2017; 102
522_CR56
522_CR57
L Dupraz (522_CR19) 2021; 36
A Hammad (522_CR62) 2018; 15
RB DeMattos (522_CR153) 2002; 99
S Wu (522_CR91) 2021; 13
PC Bello-Medina (522_CR107) 2021; 15
MJ Hopkins (522_CR103) 2002; 51
K Kowalski (522_CR115) 2019; 25
HM Grifka-Walk (522_CR22) 2021; 12
BM Bettcher (522_CR10) 2021; 17
D Benton (522_CR158) 2007; 61
MA Lynch (522_CR82) 2004; 84
C Cavanagh (522_CR61) 2016; 47
AM Wall (522_CR87) 2015; 93
S Stojanov (522_CR89) 2020; 8
C Bäuerl (522_CR110) 2018; 66
F Leblhuber (522_CR155) 2018; 15
522_CR171
TC Fung (522_CR8) 2017; 20
E Cekanaviciute (522_CR128) 2017; 114
MT Heneka (522_CR86) 2015; 14
NH Varvel (522_CR70) 2015; 212
A Cattaneo (522_CR92) 2017; 49
P He (522_CR137) 2007; 178
D Tweedie (522_CR135) 2012; 9
Y Li (522_CR113) 2020; 12
D Okin (522_CR12) 2012; 22
S Krasemann (522_CR30) 2017; 47
S Jangi (522_CR127) 2016; 7
RL Johnson (522_CR168) 2018; 11
MM Unger (522_CR124) 2016; 32
K Hirota (522_CR23) 2013; 14
L Peixoto (522_CR147) 2013; 38
L Bonfili (522_CR149) 2017; 7
T Liu (522_CR42) 2012; 35
P Liu (522_CR98) 2019; 80
L Bonfili (522_CR150) 2018; 55
A Agus (522_CR4) 2018; 23
SR Sarkar (522_CR6) 2019; 328
F Pistollato (522_CR160) 2018; 131
522_CR38
522_CR39
Z Ling (522_CR94) 2021; 8
S Hong (522_CR65) 2016; 352
TR Sampson (522_CR125) 2016; 167
K Alves de Lima (522_CR26) 2020; 38
T Doifode (522_CR142) 2020; 164
P Li (522_CR27) 2021; 27
MM Varnum (522_CR31) 2012; 60
Q Shi (522_CR67) 2017; 9
GA Prieto (522_CR83) 2017; 37
N Quan (522_CR46) 2007; 21
D Mariat (522_CR102) 2009; 9
SP Gabbita (522_CR134) 2012; 9
H Keren-Shaul (522_CR28) 2017; 169
N Kim (522_CR163) 2021; 98
RM McManus (522_CR71) 2017; 9
522_CR108
522_CR118
M Schain (522_CR2) 2017; 17
A Lavelle (522_CR16) 2020; 17
E Distrutti (522_CR144) 2014; 9
MA Lynch (522_CR85) 2015; 1621
C Cavanagh (522_CR72) 2011; 6
F Scheperjans (522_CR123) 2015; 30
KEW Vendrik (522_CR165) 2020; 10
CA Findley (522_CR80) 2019; 11
HB Dodiya (522_CR164) 2022; 219
M Benoit (522_CR32) 2008; 181
Q Shi (522_CR66) 2015; 35
M Wang (522_CR162) 2021; 96
BL Sun (522_CR111) 2019; 70
A Hemonnot (522_CR58) 2019; 11
MS Albuquerque (522_CR78) 2015; 7
JW Kinney (522_CR68) 2018; 4
SA Liddelow (522_CR64) 2017; 541
A Broncel (522_CR170) 2020; 155
JF Cryan (522_CR11) 2020; 19
Y Jiang (522_CR77) 2021; 341
PM Smith (522_CR18) 2013; 341
A Ueda (522_CR90) 2021; 2
PK Shukla (522_CR109) 2021; 10
K Lepeta (522_CR3) 2017; 138
RA Sperling (522_CR54) 2013; 9
D Zhang (522_CR131) 2019; 133
B Engelhardt (522_CR25) 2017; 18
KY Ryu (522_CR41) 2019; 16
MR Minter (522_CR120) 2016; 6
M Guo (522_CR99) 2021; 80
ZQ Zhuang (522_CR96) 2018; 63
A Tomova (522_CR44) 2020; 214
TL Sudduth (522_CR60) 2013; 34
DJ Selkoe (522_CR74) 2016; 8
S Guntupalli (522_CR81) 2016; 2016
A Romo-Araiza (522_CR145) 2018; 10
Y Sun (522_CR132) 2020; 598
C Klein (522_CR1) 2011; 82
522_CR139
V Rothhammer (522_CR40) 2016; 22
522_CR136
M Boehme (522_CR114) 2021; 1
J Go (522_CR151) 2021; 86
BS Park (522_CR13) 2009; 458
P Honarpisheh (522_CR106) 2020; 21
S Krantic (522_CR53) 2017; 14
H González (522_CR33) 2014; 274
E Akbari (522_CR154) 2016; 8
S Ghosh (522_CR138) 2013; 33
B Curran (522_CR140) 2001; 108
T Harach (522_CR105) 2017; 7
B Mercante (522_CR166) 2018; 5
References_xml – volume: 14
  start-page: 388
  year: 2015
  ident: 522_CR86
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)70016-5
– volume: 1
  start-page: 666
  year: 2021
  ident: 522_CR114
  publication-title: Nat Aging
  doi: 10.1038/s43587-021-00093-9
– volume: 12
  start-page: 43
  year: 2017
  ident: 522_CR59
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0184-x
– ident: 522_CR39
  doi: 10.1016/j.mcn.2020.103493
– volume: 17
  start-page: 223
  year: 2020
  ident: 522_CR16
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-019-0258-z
– volume: 9
  start-page: 412
  year: 2018
  ident: 522_CR148
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.00412
– volume: 18
  start-page: 123
  year: 2017
  ident: 522_CR25
  publication-title: Nat Immunol
  doi: 10.1038/ni.3666
– volume: 10
  start-page: e59826
  year: 2021
  ident: 522_CR146
  publication-title: ELife
  doi: 10.7554/eLife.59826
– ident: 522_CR136
  doi: 10.1016/j.nbd.2009.01.006
– volume: 36
  year: 2021
  ident: 522_CR19
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109332
– volume: 15
  start-page: 1357
  year: 2019
  ident: 522_CR95
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2019.07.002
– volume: 43
  start-page: 144
  year: 2020
  ident: 522_CR45
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2020.01.003
– volume: 9
  start-page: 123
  year: 2009
  ident: 522_CR102
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-9-123
– ident: 522_CR156
  doi: 10.3389/fneur.2018.00662
– volume: 34
  start-page: 1051
  year: 2013
  ident: 522_CR60
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2012.09.012
– volume: 25
  start-page: 48
  year: 2019
  ident: 522_CR115
  publication-title: J Neurogastroenterol Motil
  doi: 10.5056/jnm18087
– volume: 17
  start-page: 25
  year: 2017
  ident: 522_CR2
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-017-0733-2
– volume: 256
  start-page: 95
  year: 2019
  ident: 522_CR20
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/164_2019_225
– volume: 8
  start-page: 595
  year: 2016
  ident: 522_CR74
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201606210
– volume: 8
  year: 2021
  ident: 522_CR97
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2020.634069
– volume: 21
  start-page: 1652
  year: 2020
  ident: 522_CR117
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21051652
– volume: 7
  start-page: 13537
  year: 2017
  ident: 522_CR88
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13601-y
– volume: 82
  start-page: 994
  year: 2011
  ident: 522_CR1
  publication-title: Nervenarzt
  doi: 10.1007/s00115-011-3258-y
– volume: 99
  start-page: 10843
  year: 2002
  ident: 522_CR153
  publication-title: PNAS
  doi: 10.1073/pnas.162228299
– volume: 1621
  start-page: 197
  year: 2015
  ident: 522_CR85
  publication-title: Brain Res J
  doi: 10.1016/j.brainres.2014.08.040
– volume: 9
  start-page: 99
  year: 2012
  ident: 522_CR134
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-99
– volume: 2016
  start-page: 3204519
  year: 2016
  ident: 522_CR81
  publication-title: Neural Plast
  doi: 10.1155/2016/3204519
– volume: 13
  start-page: 187
  year: 2012
  ident: 522_CR49
  publication-title: Surg Infect (Larchmt)
  doi: 10.1089/sur.2012.126
– ident: 522_CR118
  doi: 10.1016/j.xcrm.2020.100138
– volume: 7
  start-page: 10411
  year: 2017
  ident: 522_CR121
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11047-w
– volume: 54
  start-page: 499
  year: 2021
  ident: 522_CR24
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.02.002
– volume: 341
  year: 2021
  ident: 522_CR77
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2021.109452
– volume: 139
  start-page: 1237
  year: 2016
  ident: 522_CR141
  publication-title: Brain
  doi: 10.1093/brain/awv408
– volume: 9
  start-page: 3294
  year: 2018
  ident: 522_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05470-4
– volume: 12
  start-page: 7801
  year: 2020
  ident: 522_CR113
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103093
– volume: 9
  start-page: 106
  year: 2012
  ident: 522_CR135
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-9-106
– volume: 541
  start-page: 481
  year: 2017
  ident: 522_CR64
  publication-title: Nature
  doi: 10.1038/nature21029
– volume: 232
  start-page: 39
  year: 2021
  ident: 522_CR7
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2021.02.001
– volume: 12
  year: 2021
  ident: 522_CR22
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.653208
– volume: 47
  start-page: 566
  year: 2017
  ident: 522_CR30
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.08.008
– volume: 7
  start-page: 116
  year: 2019
  ident: 522_CR43
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0733-3
– volume: 4
  start-page: 134
  year: 2013
  ident: 522_CR79
  publication-title: Aging Dis
– volume: 402
  year: 2021
  ident: 522_CR112
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2021.113125
– volume: 19
  start-page: 179
  year: 2020
  ident: 522_CR11
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(19)30356-4
– volume: 169
  start-page: 1276
  year: 2017
  ident: 522_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 13
  start-page: 650047
  year: 2021
  ident: 522_CR91
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2021.650047
– volume: 9
  start-page: eaaf6295
  year: 2017
  ident: 522_CR67
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf6295
– volume: 11
  start-page: 203
  year: 2018
  ident: 522_CR168
  publication-title: J Inflamm Res
  doi: 10.2147/JIR.S163248
– volume: 60
  start-page: 1223
  year: 2017
  ident: 522_CR126
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-016-9001-4
– volume: 5
  start-page: 10
  year: 2010
  ident: 522_CR100
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010667
– volume: 15
  start-page: 1106
  year: 2018
  ident: 522_CR155
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1389200219666180813144834
– volume: 164
  year: 2020
  ident: 522_CR142
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2020.105314
– volume: 37
  start-page: 1197
  year: 2017
  ident: 522_CR83
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2774-16.2016
– ident: 522_CR57
  doi: 10.1007/s00702-017-1831-7
– volume: 11
  start-page: 1
  year: 2019
  ident: 522_CR80
  publication-title: ASN Neuro
  doi: 10.1177/1759091419855541
– volume: 1693
  start-page: 128
  year: 2018
  ident: 522_CR47
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2018.03.015
– volume: 10
  start-page: 779
  year: 2021
  ident: 522_CR109
  publication-title: Cells
  doi: 10.3390/cells10040779
– ident: 522_CR38
  doi: 10.1016/j.neuint.2016.06.011
– volume: 15
  start-page: 35
  year: 2002
  ident: 522_CR169
  publication-title: Clin Anat
  doi: 10.1002/ca.1089
– volume: 15
  start-page: 24
  year: 2018
  ident: 522_CR62
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-018-1066-z
– volume: 9
  start-page: e106503
  year: 2014
  ident: 522_CR144
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0106503
– volume: 20
  start-page: 145
  year: 2017
  ident: 522_CR8
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4476
– volume: 32
  start-page: 66
  year: 2016
  ident: 522_CR124
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2016.08.019
– volume: 13
  start-page: 138
  year: 2020
  ident: 522_CR76
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2020.00138
– volume: 367
  start-page: 795
  year: 2012
  ident: 522_CR55
  publication-title: New Engl J Med
  doi: 10.1056/NEJMoa1202753
– volume: 14
  start-page: 2
  year: 2017
  ident: 522_CR53
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720501401161201104858
– ident: 522_CR108
  doi: 10.1155/2020/8456596
– volume: 312
  start-page: G171
  year: 2017
  ident: 522_CR14
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00048.2015
– volume: 108
  start-page: 4586
  year: 2011
  ident: 522_CR101
  publication-title: PNAS
  doi: 10.1073/pnas.1000097107
– volume: 16
  start-page: 290
  year: 2019
  ident: 522_CR41
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1561-x
– volume: 35
  start-page: 1676
  year: 2012
  ident: 522_CR42
  publication-title: Inflammation
  doi: 10.1007/s10753-012-9484-z
– volume: 10
  start-page: 98
  year: 2020
  ident: 522_CR165
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2020.00098
– volume: 8
  year: 2021
  ident: 522_CR94
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2020.631460
– volume: 38
  start-page: 62
  year: 2013
  ident: 522_CR147
  publication-title: Neuropsychopharmacol
  doi: 10.1038/npp.2012.86
– volume: 78
  start-page: 683
  year: 2020
  ident: 522_CR119
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-200306
– volume: 30
  start-page: 1159
  year: 2020
  ident: 522_CR129
  publication-title: Brain Pathol
  doi: 10.1111/bpa.12908
– volume: 80
  start-page: 299
  year: 2021
  ident: 522_CR99
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-201040
– volume: 8
  start-page: 1715
  year: 2020
  ident: 522_CR89
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111715
– volume: 7
  start-page: 12015
  year: 2016
  ident: 522_CR127
  publication-title: Nat Commun
  doi: 10.1038/ncomms12015
– ident: 522_CR159
  doi: 10.3389/fbioe.2020.537847
– volume: 131
  start-page: 32
  year: 2018
  ident: 522_CR160
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2018.03.012
– volume: 11
  start-page: 1765
  year: 2019
  ident: 522_CR104
  publication-title: Nutrients
  doi: 10.3390/nu11081765
– volume: 11
  start-page: 233
  year: 2019
  ident: 522_CR58
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2019.00233
– ident: 522_CR171
  doi: 10.4088/jcp.v67n0801
– volume: 556
  start-page: 332
  year: 2018
  ident: 522_CR35
  publication-title: Nature
  doi: 10.1038/s41586-018-0023-4
– volume: 33
  start-page: 5053
  year: 2013
  ident: 522_CR138
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4361-12.2013
– volume: 7
  start-page: 41802
  year: 2017
  ident: 522_CR105
  publication-title: Sci Rep
  doi: 10.1038/srep41802
– volume: 22
  start-page: 586
  year: 2016
  ident: 522_CR40
  publication-title: Nat Med
  doi: 10.1038/nm.4106
– volume: 96
  start-page: 227
  year: 2021
  ident: 522_CR162
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2021.06.003
– volume: 574
  start-page: 543
  year: 2019
  ident: 522_CR50
  publication-title: Nature
  doi: 10.1038/s41586-019-1644-y
– volume: 70
  year: 2021
  ident: 522_CR51
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2021.101396
– volume: 7
  start-page: 2426
  year: 2017
  ident: 522_CR149
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02587-2
– volume: 11
  start-page: 25
  year: 2020
  ident: 522_CR37
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2020.00025
– volume: 139
  start-page: 1252
  year: 2016
  ident: 522_CR73
  publication-title: Brain
  doi: 10.1093/brain/aww017
– volume: 331
  start-page: 337
  year: 2011
  ident: 522_CR17
  publication-title: Science
  doi: 10.1126/science.1198469
– volume: 458
  start-page: 1191
  year: 2009
  ident: 522_CR13
  publication-title: Nature
  doi: 10.1038/nature07830
– volume: 352
  start-page: 712
  year: 2016
  ident: 522_CR65
  publication-title: Sceince
  doi: 10.1126/science.aad8373
– volume: 212
  start-page: 1803
  year: 2015
  ident: 522_CR70
  publication-title: J Exp Med
  doi: 10.1084/jem.20150478
– volume: 19
  start-page: 1019
  year: 2009
  ident: 522_CR84
  publication-title: Hippocampus
  doi: 10.1002/hipo.20591
– volume: 6
  start-page: 757
  year: 2011
  ident: 522_CR72
  publication-title: Future Neurol
  doi: 10.2217/fnl.11.50
– volume: 98
  start-page: 357
  year: 2021
  ident: 522_CR163
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2021.09.002
– ident: 522_CR139
  doi: 10.4049/jimmunol.1100620
– volume: 108
  start-page: 83
  year: 2001
  ident: 522_CR140
  publication-title: Neuroscience
  doi: 10.1016/s0306-4522(01)00405-5
– volume: 63
  start-page: 1337
  year: 2018
  ident: 522_CR96
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-180176
– volume: 8
  start-page: 380
  year: 2014
  ident: 522_CR63
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2014.00380
– volume: 9
  start-page: 54
  year: 2013
  ident: 522_CR54
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2012.241
– volume: 22
  start-page: R733
  year: 2012
  ident: 522_CR12
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.07.029
– volume: 66
  start-page: 464
  year: 2018
  ident: 522_CR110
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12882
– volume: 133
  start-page: 2168
  year: 2019
  ident: 522_CR131
  publication-title: Blood
  doi: 10.1182/blood-2018-11-844555
– volume: 61
  start-page: 355
  year: 2007
  ident: 522_CR158
  publication-title: Eur J Clin Nutr
  doi: 10.1038/sj.ejcn.1602546
– volume: 115
  start-page: E4843
  year: 2018
  ident: 522_CR48
  publication-title: PNAS
  doi: 10.1073/pnas.1719083115
– volume: 5
  start-page: 10
  year: 2018
  ident: 522_CR166
  publication-title: Medicines (Basel)
  doi: 10.3390/medicines5010010
– volume: 341
  start-page: 569
  year: 2013
  ident: 522_CR18
  publication-title: Science
  doi: 10.1126/science.1241165
– volume: 2
  year: 2021
  ident: 522_CR90
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100398
– volume: 23
  start-page: 716
  year: 2018
  ident: 522_CR4
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.05.003
– volume: 14
  start-page: 575
  year: 2020
  ident: 522_CR9
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00575
– volume: 75
  start-page: 1232
  year: 2020
  ident: 522_CR116
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glz262
– volume: 9
  start-page: 189
  year: 2019
  ident: 522_CR161
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-019-0525-3
– volume: 38
  start-page: 597
  year: 2020
  ident: 522_CR26
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-102319-103410
– volume: 80
  start-page: 633
  year: 2019
  ident: 522_CR98
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2019.05.008
– volume: 86
  start-page: 96
  year: 2021
  ident: 522_CR151
  publication-title: Nutr Res
  doi: 10.1016/j.nutres.2020.12.010
– volume: 8
  start-page: 256
  year: 2016
  ident: 522_CR154
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2016.00256
– volume: 4
  start-page: 575
  year: 2018
  ident: 522_CR68
  publication-title: Alzheimers Dement
  doi: 10.1016/j.trci.2018.06.014
– volume: 214
  year: 2020
  ident: 522_CR44
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2019.112745
– volume: 35
  start-page: 13029
  year: 2015
  ident: 522_CR66
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1698-15.2015
– volume: 219
  year: 2022
  ident: 522_CR164
  publication-title: J Exp Med
  doi: 10.1084/jem.20200895
– volume: 6
  start-page: 30028
  year: 2016
  ident: 522_CR120
  publication-title: Sci Rep
  doi: 10.1038/srep30028
– volume: 47
  start-page: 41
  year: 2016
  ident: 522_CR61
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.07.009
– volume: 84
  start-page: 87
  year: 2004
  ident: 522_CR82
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00014.2003
– volume: 70
  start-page: 399
  year: 2019
  ident: 522_CR111
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-181220
– volume: 18
  start-page: 759
  year: 2018
  ident: 522_CR29
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-018-0051-1
– volume: 167
  start-page: 1469
  year: 2016
  ident: 522_CR125
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.018
– ident: 522_CR52
– volume: 17
  start-page: 25
  year: 2020
  ident: 522_CR5
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-020-1705-z
– volume: 7
  start-page: 30
  year: 2015
  ident: 522_CR78
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2015.00030
– volume: 14
  start-page: 372
  year: 2013
  ident: 522_CR23
  publication-title: Nat Immunol
  doi: 10.1038/ni.2552
– volume: 12
  start-page: 628
  year: 2020
  ident: 522_CR152
  publication-title: Aging
  doi: 10.18632/aging.102645
– volume: 138
  start-page: 785
  year: 2017
  ident: 522_CR3
  publication-title: J Neurochem
  doi: 10.1111/jnc.13713
– volume: 30
  start-page: 350
  year: 2015
  ident: 522_CR123
  publication-title: Mov Disord
  doi: 10.1002/mds.26069
– volume: 274
  start-page: 1
  year: 2014
  ident: 522_CR33
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2014.07.012
– volume: 49
  start-page: 60
  year: 2017
  ident: 522_CR92
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.08.019
– volume: 21
  start-page: 1711
  year: 2020
  ident: 522_CR106
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21051711
– volume: 12
  start-page: 114
  year: 2015
  ident: 522_CR34
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-015-0332-6
– volume: 212
  start-page: 1811
  year: 2015
  ident: 522_CR69
  publication-title: J Exp Med
  doi: 10.1084/jem.20150479
– volume: 598
  start-page: 4209
  year: 2020
  ident: 522_CR132
  publication-title: The Journal of Physiolofy
  doi: 10.1113/JP279919
– volume: 10
  start-page: e00632
  year: 2019
  ident: 522_CR93
  publication-title: ASM Journals
  doi: 10.1128/mBio.00632-19
– ident: 522_CR75
  doi: 10.1515/revneuro-2019-0058
– volume: 27
  start-page: 36
  year: 2021
  ident: 522_CR27
  publication-title: CNS Neurosci & Ther
  doi: 10.1111/cns.13569
– volume: 181
  start-page: 3733
  year: 2008
  ident: 522_CR32
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.6.3733
– volume: 18
  start-page: 965
  year: 2015
  ident: 522_CR36
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4030
– volume: 21
  start-page: 727
  year: 2007
  ident: 522_CR46
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2007.05.005
– ident: 522_CR56
  doi: 10.1126/science.1072994
– volume: 60
  start-page: 251
  year: 2012
  ident: 522_CR31
  publication-title: Ther Exp (Warsz)
  doi: 10.1007/s00005-012-0181-2
– volume: 178
  start-page: 829
  year: 2007
  ident: 522_CR137
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200705042
– volume: 38
  start-page: 147
  year: 2020
  ident: 522_CR15
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-071219-125715
– volume: 114
  start-page: 10713
  year: 2017
  ident: 522_CR128
  publication-title: PNAS
  doi: 10.1073/pnas.1711235114
– volume: 328
  start-page: 98
  year: 2019
  ident: 522_CR6
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2019.01.004
– volume: 15
  start-page: 595583
  year: 2021
  ident: 522_CR107
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.595583
– volume: 102
  start-page: 81
  year: 2017
  ident: 522_CR133
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2017.02.010
– volume: 55
  start-page: 7987
  year: 2018
  ident: 522_CR150
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-018-0973-4
– volume: 51
  start-page: 5
  year: 2002
  ident: 522_CR103
  publication-title: J Med Microbiol
  doi: 10.1099/0022-1317-51-5-448
– volume: 9
  start-page: 14
  year: 2017
  ident: 522_CR71
  publication-title: Alzheimer’s Res Ther
  doi: 10.1186/s13195-017-0241-2
– volume: 93
  start-page: 815
  year: 2015
  ident: 522_CR87
  publication-title: J Neurosci Res
  doi: 10.1002/jnr.23540
– volume: 17
  start-page: 689
  year: 2021
  ident: 522_CR10
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-021-00549-x
– volume: 6
  start-page: 70
  year: 2019
  ident: 522_CR157
  publication-title: J Prev Alzheimers Dis
  doi: 10.14283/jpad.2018.32
– volume: 13
  start-page: 612
  year: 2017
  ident: 522_CR130
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2017.111
– volume: 10
  start-page: 416
  year: 2018
  ident: 522_CR145
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00416
– volume: 155
  start-page: 37
  year: 2020
  ident: 522_CR170
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2019.11.011
– volume: 28
  start-page: 201
  year: 2020
  ident: 522_CR143
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.06.008
– volume: 236
  start-page: 588
  year: 2020
  ident: 522_CR167
  publication-title: J Anat
  doi: 10.1111/joa.13122
– volume: 216
  start-page: 1542
  year: 2019
  ident: 522_CR122
  publication-title: J Exp Med
  doi: 10.1084/jem.20182386
SSID ssj0047005
Score 2.6510582
SecondaryResourceType review_article
Snippet The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest...
Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data...
Background: The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data...
Abstract Background The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept....
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Alzheimer Disease - pathology
Alzheimer's disease
Analysis
Brain - pathology
Cognitive Dysfunction - pathology
Gastrointestinal Microbiome - physiology
Gut microbiota
Gut microbiota, Synaptic dysfunction, Alzheimer’s disease, Peripheral immunomodulation, Neuroinflammation
Humans
Inflammation
Life Sciences
Medical research
Medicine, Experimental
Microbiota
Microbiota (Symbiotic organisms)
Neuroinflammation
Neuroinflammatory Diseases
Neurons
Neurophysiology
Peripheral immunomodulation
Review
Synaptic dysfunction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELZgT1wQsPwEFmQQggOKtv5JYnMriFWFWE6stBdkOXaiVtp10aZdqXviNbj1WfooPAkzdlptQIILtyp2UmfmG884nvlMyEsPLkYxMCRWOZtLUbpc-8LBr7Zyra1Htcd65-PP5eREfjwtTq8d9YU5YYkeOAnuUGiYW2WtrXZCCqtrzlpmuVRcN7VOdeTg87aLqTQHywrAtS2RUeVhh9tzMsfMdfwOynM-cEORrX83J9-cYkrkn_Hm72mT1_zQ0R1yuw8g6TgN_C650YR7ZH8cYPF8vqKvaEzpjN_K98nX41niWVpYOgubdSSvBEgBClLF4mZtg9-su1WwMHU46lcdOjpsekstbedu2dF5oOOzq2kzO28ufn7_0dF-U-c-OTn68OX9JO_PU8gdhBWLXFvOvCsdE97WquZV3Raula0SrLVCOqZ9BU7NiaKqvAOZg-hVOxo56aUvm0I8IHthHppHhForkPMRfDtzsmBe17DukJ41XFoHUV1G2Fa8xvVk43jmxZmJiw5VmqQSAyoxUSWGZ-TN7p5viWrjr73fodZ2PZEmO14A8JgePOZf4MnIa9S5QWOG4Tnb1yTASyItlhmXGk_JhbA0IweDnmCEbtD8AlAzGMxk_MngtZGo4nb1JcvI8y2oDN6P6W2hmS87w0tRKmTClxl5mEC2exZEyFIxCWOtBvAb_NmwJcymkSgcHqkgBH38P0T1hNzi0X4w3fOA7C0uls1TiMcW9bNoer8APDEyqg
  priority: 102
  providerName: Directory of Open Access Journals
Title Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/35248147
https://www.proquest.com/docview/2636889434
https://hal.science/hal-03702829
https://pubmed.ncbi.nlm.nih.gov/PMC8898063
https://doaj.org/article/391234b9a9c343a9b21f1a24829eb907
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELb2R0J7QcDyE1iqgBAcUCCOnThBQiiLdlVVdIWASr0gy7ETWqmbQtMiyonX4NZn6aPwJMw4abWBFQdOieKf2J4Zz9gef0PIIwMqJqYgSFRo5XEWaS8xoYa3QuhCZX5m8L5z_yzqDnhvGA53yCbcUTOA1aVLO4wnNZhNnn37snwFAv_SCnwcPa_w8I176JeOu5yBB1PyPmgmgREN-nx7qsAFJG8uzlxa7oBcAYOExxSjrVzQUxbOfztp747QZ_Jvg_RPv8oLiur0GrnaWJhuWrPEdbKTlzfIYVrC6vp86T52rc-n3Uw_JB_74xqIaa7ccbleWXRLGAVgk_pK43qlSrNeVctSwdyiXbOsUBNi0gtXucVULyp3Wrrp5PsoH5_ns18_flZuc-pzkwxOTz687npNwAVPg90x9xIVUKMjTZlRWZwFIitCXfAiZrRQjGuaGAFaT7NQCKN5BrZlEBe-r7nhJspDdovsldMyv0NcpRiCQoLyp5qH1CQZLEy4oXnAlQazzyF0M7xSN2jkGBRjIu2qJI5kTR0J1JGWOjJwyNNtmc81Fsc_cx8j1bY5EUfbfpjOPslGLCWDHjDoiEo040wlWUALqoADgiTPEl845AnSXCL_QfO0ai4tQCcRN0umUYJhdMFudchRKydIqW4lPwSuaTWmm76R-M1nwp5nf6UOebBhKonl0f-tzKeLSgYRi2KEyucOuV0z2bauDcc6RLTYr_Wzdko5HlkkcagyBhv17n-XvEcOAis_6AR6RPbms0V-H6y0edYhu2IoOmQ_TXvve_A8Pjl7-65j9zw6Vix_AyyUQK8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiota+in%C2%A0neuroinflammation%C2%A0and%C2%A0synaptic+dysfunction%3A+a+focus+on+Alzheimer%E2%80%99s+disease&rft.jtitle=Molecular+neurodegeneration&rft.au=Bairamian%2C+Diane&rft.au=Sha%2C+Sha&rft.au=Rolhion%2C+Nathalie&rft.au=Sokol%2C+Harry&rft.date=2022-03-05&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=17&rft_id=info:doi/10.1186%2Fs13024-022-00522-2&rft_id=info%3Apmid%2F35248147&rft.externalDocID=PMC8898063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon