Long-term prediction models for vision-threatening diabetic retinopathy using medical features from data warehouse
We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients wi...
Saved in:
Published in | Scientific Reports Vol. 12; no. 1; pp. 8476 - 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Science and Business Media LLC
19.05.2022
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-12369-0 |
Cover
Loading…
Abstract | We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care. |
---|---|
AbstractList | Abstract We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care. We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care. We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care. We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care. |
ArticleNumber | 8476 |
Author | Ji Won Min Young-Sik Yoo Kwanhoon Jo Dong Jin Chang Jin Woo Kwon Jiwon Baek Byul Lyu |
Author_xml | – sequence: 1 givenname: Kwanhoon surname: Jo fullname: Jo, Kwanhoon organization: Department of Endocrinology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 2 givenname: Dong Jin surname: Chang fullname: Chang, Dong Jin organization: Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 3 givenname: Ji Won surname: Min fullname: Min, Ji Won organization: Department of Nephrology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 4 givenname: Young-Sik surname: Yoo fullname: Yoo, Young-Sik organization: Department of Ophthalmology, Euijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 5 givenname: Byul surname: Lyu fullname: Lyu, Byul organization: Department of Ophthalmology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 6 givenname: Jin Woo surname: Kwon fullname: Kwon, Jin Woo organization: Department of Ophthalmology, St. Vincent Hospital, College of Medicine, The Catholic University of Korea – sequence: 7 givenname: Jiwon surname: Baek fullname: Baek, Jiwon email: md.jiwon@gmail.com organization: Department of Ophthalmology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Department of Ophthalmology, College of Medicine, The Catholic University of Korea |
BackLink | https://cir.nii.ac.jp/crid/1870302167791040896$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35589921$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uslu1TAUjVARLaU_wAJFggWbgOfEGyRUMVR6EhtYW459k-cqsR-2U9S_x2lKabuoFx7POXfweVkd-eChql5j9AEj2n1MDHPZNYiQBhMqZIOeVScEMd4QSsjRvf1xdZaS68uRYok69KI6ppx3UhJ8UsVd8GOTIc71IYJ1Jrvg6zlYmFI9hFhfuVRumryPoDN458faOt1DdqaOZfbhoPP-ul7S-jSvEnqqhwJeIhSJGOba6qzrPzrCPiwJXlXPBz0lOLtdT6tfX7_8PP_e7H58uzj_vGuMoDw3UnI9EI57zLHF1GA6UApGyn4ATMBqzpEgkolW9qQ1EhUa49JqhMCIwdLT6mLTtUFfqkN0s47XKminbi5CHJWOpYwJlGXAeiH6AQNiLStBSBmsNWwwdLCyaH3atA5LX2o04HPU0wPRhy_e7dUYrpTEWEqGisD7W4EYfi-QsppdMjBN2kNpiiJCtK1EmK_Qt4-gl2GJvrRqRYkWd4J1BfXmfkZ3qfz72gIgG8DEkFKE4Q6CkVotpDYLqWIhdWMhtcbuHpGMy3r1RKnKTU9T6UZNJY4fIf5P-0nWu43lnSux1hl3LaKI4LUhGDHUSUH_AhJn5no |
CitedBy_id | crossref_primary_10_1002_smll_202205754 crossref_primary_10_1016_j_eswa_2023_120206 crossref_primary_10_1007_s11517_022_02737_3 crossref_primary_10_1016_j_imu_2023_101285 crossref_primary_10_1007_s11831_024_10148_w crossref_primary_10_1371_journal_pone_0305586 crossref_primary_10_1016_j_ajo_2024_07_012 |
Cites_doi | 10.1167/iovs.61.14.14 10.1186/s12859-018-2277-0 10.1016/s0140-6736(11)60679-x 10.1186/s40662-015-0026-2 10.1136/bmjopen-2017-016280 10.1016/s2589-7500(20)30250-8 10.1001/jama.2017.18152 10.1016/j.jdiacomp.2010.12.002 10.1016/s0002-9394(01)01124-2 10.1097/MD.0000000000006754 10.1038/s41746-019-0172-3 10.3390/jpm11070665 10.1186/1472-6947-13-106 10.1136/bjophthalmol-2019-315333 10.1001/jamaophthalmol.2019.1052 10.2337/dc11-1909 10.1007/s00592-014-0602-2 10.1016/j.ophtha.2020.12.019 10.1097/ICU.0b013e328010948d 10.1111/ceo.12696 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S 10.1111/j.1464-5491.2009.02870.x 10.1038/s41746-019-0097-x 10.3341/kjo.2018.0034 10.1016/S0140-6736(09)62124-3 10.1016/S0140-6736(98)07019-6 10.1136/bmj.317.7160.703 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. corrected publication 2022 2022. The Author(s). The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022, corrected publication 2022 |
Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022, corrected publication 2022 |
DBID | RYH C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-12369-0 |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_d4e4b66bf1e0474c99222247c4fc3fd9 PMC9119940 35589921 10_1038_s41598_022_12369_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Bucheon St. Mary's Hospital grantid: 2021 funderid: http://dx.doi.org/10.13039/501100003334 – fundername: Bucheon St. Mary's Hospital grantid: 2021 – fundername: ; grantid: 2021 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM RYH SNYQT UKHRP 3V. 88A ACSMW AJTQC M0L AAYXX CITATION NPM PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-995af251b151d13c13f33ec99bfe12eda5506294679b27c90c63459da00ec6fd3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:08 EDT 2025 Thu Aug 21 14:07:32 EDT 2025 Fri Jul 11 10:06:36 EDT 2025 Sat Aug 23 12:55:24 EDT 2025 Mon Jul 21 06:00:29 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 04:16:29 EDT 2025 Fri Feb 21 02:36:49 EST 2025 Thu Jun 26 23:39:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-995af251b151d13c13f33ec99bfe12eda5506294679b27c90c63459da00ec6fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/d4e4b66bf1e0474c99222247c4fc3fd9 |
PMID | 35589921 |
PQID | 2666718648 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4e4b66bf1e0474c99222247c4fc3fd9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119940 proquest_miscellaneous_2667790150 proquest_journals_2666718648 pubmed_primary_35589921 crossref_primary_10_1038_s41598_022_12369_0 crossref_citationtrail_10_1038_s41598_022_12369_0 springer_journals_10_1038_s41598_022_12369_0 nii_cinii_1870302167791040896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-19 |
PublicationDateYYYYMMDD | 2022-05-19 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific Reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Modjtahedi (CR27) 2021; 128 Lee, Wong, Sabanayagam (CR3) 2015; 2 Federation (CR5) 2019 Cheung, Mitchell, Wong (CR29) 2010; 376 Chew (CR30) 2006; 17 Liu (CR28) 2017; 7 Aiello, Cahill, Wong (CR19) 2001; 132 Tsao, Chan, Su (CR23) 2018; 19 CR31 Arcadu (CR15) 2019; 2 Ting (CR17) 2017; 318 Oh, Yoo, Park (CR10) 2013; 13 Rooney (CR22) 2015; 52 Grunwald (CR26) 2021; 105 Alberti, Zimmet (CR1) 1998; 15 Bora (CR14) 2021; 3 Min (CR21) 2020; 61 CR8 CR7 Jones, Edwards (CR6) 2010; 27 Yau (CR18) 2012; 35 Aronov (CR25) 2021 Ting, Cheung, Wong (CR4) 2016; 44 Ting (CR16) 2019; 2 Ha, Choi, Kim, Na, Park (CR20) 2019; 33 Danaei (CR2) 2011; 378 Semeraro (CR12) 2011; 25 Grunwald (CR9) 2019; 137 Ogunyemi, Kermah (CR13) 2015; 2015 Zhou, Zhang, Shi, Wang (CR24) 2017; 96 Hosseini, Maracy, Amini, Baradaran (CR11) 2009; 14 F Arcadu (12369_CR15) 2019; 2 N Cheung (12369_CR29) 2010; 376 S Jones (12369_CR6) 2010; 27 Y Zhou (12369_CR24) 2017; 96 JE Grunwald (12369_CR9) 2019; 137 D Rooney (12369_CR22) 2015; 52 M Aronov (12369_CR25) 2021 G Danaei (12369_CR2) 2011; 378 DSW Ting (12369_CR16) 2019; 2 JE Grunwald (12369_CR26) 2021; 105 BS Modjtahedi (12369_CR27) 2021; 128 DS Ting (12369_CR4) 2016; 44 M Ha (12369_CR20) 2019; 33 KG Alberti (12369_CR1) 1998; 15 ID Federation (12369_CR5) 2019 12369_CR31 LP Aiello (12369_CR19) 2001; 132 SM Hosseini (12369_CR11) 2009; 14 F Semeraro (12369_CR12) 2011; 25 JW Yau (12369_CR18) 2012; 35 EY Chew (12369_CR30) 2006; 17 HY Tsao (12369_CR23) 2018; 19 R Lee (12369_CR3) 2015; 2 12369_CR7 12369_CR8 A Bora (12369_CR14) 2021; 3 O Ogunyemi (12369_CR13) 2015; 2015 E Oh (12369_CR10) 2013; 13 DSW Ting (12369_CR17) 2017; 318 JW Min (12369_CR21) 2020; 61 Y Liu (12369_CR28) 2017; 7 |
References_xml | – volume: 61 start-page: 14 year: 2020 ident: CR21 article-title: Relationship between retinal capillary nonperfusion area and renal function in patients with type 2 diabetes publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.61.14.14 – volume: 19 start-page: 283 year: 2018 ident: CR23 article-title: Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms publication-title: BMC Bioinform. doi: 10.1186/s12859-018-2277-0 – volume: 378 start-page: 31 year: 2011 end-page: 40 ident: CR2 article-title: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants publication-title: Lancet doi: 10.1016/s0140-6736(11)60679-x – volume: 2 start-page: 17 year: 2015 end-page: 17 ident: CR3 article-title: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss publication-title: Eye Vis. (Lond., Engl.) doi: 10.1186/s40662-015-0026-2 – volume: 7 year: 2017 ident: CR28 article-title: Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: A cross-sectional study of 13 473 patients with type 2 diabetes mellitus in mainland China publication-title: BMJ Open doi: 10.1136/bmjopen-2017-016280 – volume: 3 start-page: e10 year: 2021 end-page: e19 ident: CR14 article-title: Predicting the risk of developing diabetic retinopathy using deep learning publication-title: Lancet Digit. Health doi: 10.1016/s2589-7500(20)30250-8 – volume: 318 start-page: 2211 year: 2017 end-page: 2223 ident: CR17 article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 25 start-page: 292 year: 2011 end-page: 297 ident: CR12 article-title: Predicting the risk of diabetic retinopathy in type 2 diabetic patients publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2010.12.002 – volume: 132 start-page: 760 year: 2001 end-page: 776 ident: CR19 article-title: Systemic considerations in the management of diabetic retinopathy publication-title: Am. J. Ophthalmol. doi: 10.1016/s0002-9394(01)01124-2 – volume: 96 start-page: e6754 year: 2017 end-page: e6754 ident: CR24 article-title: Body mass index and risk of diabetic retinopathy: A meta-analysis and systematic review publication-title: Medicine doi: 10.1097/MD.0000000000006754 – volume: 2015 start-page: 983 year: 2015 end-page: 990 ident: CR13 article-title: Machine learning approaches for detecting diabetic retinopathy from clinical and public health records publication-title: AMIA Annu. Symp. Proc. – volume: 2 start-page: 92 year: 2019 ident: CR15 article-title: Deep learning algorithm predicts diabetic retinopathy progression in individual patients publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0172-3 – year: 2021 ident: CR25 article-title: Retinal vascular signs as screening and prognostic factors for chronic kidney disease: A systematic review and meta-analysis of current evidence publication-title: J. Pers. Med. doi: 10.3390/jpm11070665 – volume: 13 start-page: 106 year: 2013 ident: CR10 article-title: Diabetic retinopathy risk prediction for fundus examination using sparse learning: A cross-sectional study publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/1472-6947-13-106 – ident: CR8 – volume: 105 start-page: 246 year: 2021 end-page: 252 ident: CR26 article-title: Progression of retinopathy and incidence of cardiovascular disease: Findings from the Chronic Renal Insufficiency Cohort Study publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2019-315333 – volume: 137 start-page: 767 year: 2019 end-page: 774 ident: CR9 article-title: Association Between progression of retinopathy and concurrent progression of kidney disease: Findings from the chronic renal insufficiency cohort (CRIC) study publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2019.1052 – year: 2019 ident: CR5 publication-title: Diabetes Atlas – volume: 35 start-page: 556 year: 2012 end-page: 564 ident: CR18 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care doi: 10.2337/dc11-1909 – volume: 52 start-page: 73 year: 2015 end-page: 80 ident: CR22 article-title: Body mass index and retinopathy in Asian populations with diabetes mellitus publication-title: Acta Diabetol. doi: 10.1007/s00592-014-0602-2 – volume: 128 start-page: 1169 year: 2021 end-page: 1179 ident: CR27 article-title: Severity of diabetic retinopathy and the risk of future cerebrovascular disease, cardiovascular disease, and all-cause mortality publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.12.019 – volume: 17 start-page: 519 year: 2006 end-page: 522 ident: CR30 article-title: Screening options for diabetic retinopathy publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0b013e328010948d – ident: CR31 – volume: 44 start-page: 260 year: 2016 end-page: 277 ident: CR4 article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: A review publication-title: Clin. Exp. Ophthalmol. doi: 10.1111/ceo.12696 – volume: 15 start-page: 539 year: 1998 end-page: 553 ident: CR1 article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation publication-title: Diabet. Med. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – volume: 27 start-page: 249 year: 2010 end-page: 256 ident: CR6 article-title: Diabetic retinopathy screening: A systematic review of the economic evidence publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.2009.02870.x – ident: CR7 – volume: 2 start-page: 24 year: 2019 ident: CR16 article-title: Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: A multi-ethnic study publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0097-x – volume: 33 start-page: 46 year: 2019 end-page: 53 ident: CR20 article-title: Diabetic nephropathy in type 2 diabetic retinopathy requiring panretinal photocoagulation publication-title: Korean J. Ophthalmol. doi: 10.3341/kjo.2018.0034 – volume: 14 start-page: 105 year: 2009 end-page: 110 ident: CR11 article-title: A risk score development for diabetic retinopathy screening in Isfahan-Iran publication-title: J. Res. Med. Sci. – volume: 376 start-page: 124 year: 2010 end-page: 136 ident: CR29 article-title: Diabetic retinopathy publication-title: Lancet doi: 10.1016/S0140-6736(09)62124-3 – volume: 13 start-page: 106 year: 2013 ident: 12369_CR10 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/1472-6947-13-106 – volume: 132 start-page: 760 year: 2001 ident: 12369_CR19 publication-title: Am. J. Ophthalmol. doi: 10.1016/s0002-9394(01)01124-2 – volume: 376 start-page: 124 year: 2010 ident: 12369_CR29 publication-title: Lancet doi: 10.1016/S0140-6736(09)62124-3 – volume: 27 start-page: 249 year: 2010 ident: 12369_CR6 publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.2009.02870.x – ident: 12369_CR8 doi: 10.1016/S0140-6736(98)07019-6 – volume: 2 start-page: 92 year: 2019 ident: 12369_CR15 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0172-3 – volume: 2 start-page: 17 year: 2015 ident: 12369_CR3 publication-title: Eye Vis. (Lond., Engl.) doi: 10.1186/s40662-015-0026-2 – volume: 318 start-page: 2211 year: 2017 ident: 12369_CR17 publication-title: JAMA doi: 10.1001/jama.2017.18152 – volume: 7 year: 2017 ident: 12369_CR28 publication-title: BMJ Open doi: 10.1136/bmjopen-2017-016280 – volume: 19 start-page: 283 year: 2018 ident: 12369_CR23 publication-title: BMC Bioinform. doi: 10.1186/s12859-018-2277-0 – volume: 2 start-page: 24 year: 2019 ident: 12369_CR16 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0097-x – volume: 105 start-page: 246 year: 2021 ident: 12369_CR26 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2019-315333 – volume: 2015 start-page: 983 year: 2015 ident: 12369_CR13 publication-title: AMIA Annu. Symp. Proc. – volume: 96 start-page: e6754 year: 2017 ident: 12369_CR24 publication-title: Medicine doi: 10.1097/MD.0000000000006754 – volume: 137 start-page: 767 year: 2019 ident: 12369_CR9 publication-title: JAMA Ophthalmol. doi: 10.1001/jamaophthalmol.2019.1052 – volume: 61 start-page: 14 year: 2020 ident: 12369_CR21 publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.61.14.14 – volume: 15 start-page: 539 year: 1998 ident: 12369_CR1 publication-title: Diabet. Med. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S – volume: 14 start-page: 105 year: 2009 ident: 12369_CR11 publication-title: J. Res. Med. Sci. – ident: 12369_CR31 – volume: 44 start-page: 260 year: 2016 ident: 12369_CR4 publication-title: Clin. Exp. Ophthalmol. doi: 10.1111/ceo.12696 – volume: 33 start-page: 46 year: 2019 ident: 12369_CR20 publication-title: Korean J. Ophthalmol. doi: 10.3341/kjo.2018.0034 – volume: 17 start-page: 519 year: 2006 ident: 12369_CR30 publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0b013e328010948d – ident: 12369_CR7 doi: 10.1136/bmj.317.7160.703 – volume: 378 start-page: 31 year: 2011 ident: 12369_CR2 publication-title: Lancet doi: 10.1016/s0140-6736(11)60679-x – volume-title: Diabetes Atlas year: 2019 ident: 12369_CR5 – volume: 52 start-page: 73 year: 2015 ident: 12369_CR22 publication-title: Acta Diabetol. doi: 10.1007/s00592-014-0602-2 – volume: 35 start-page: 556 year: 2012 ident: 12369_CR18 publication-title: Diabetes Care doi: 10.2337/dc11-1909 – volume: 25 start-page: 292 year: 2011 ident: 12369_CR12 publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2010.12.002 – volume: 3 start-page: e10 year: 2021 ident: 12369_CR14 publication-title: Lancet Digit. Health doi: 10.1016/s2589-7500(20)30250-8 – volume: 128 start-page: 1169 year: 2021 ident: 12369_CR27 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2020.12.019 – year: 2021 ident: 12369_CR25 publication-title: J. Pers. Med. doi: 10.3390/jpm11070665 |
SSID | ssib045319080 ssib045319113 ssib045318930 ssib045319110 ssib045318929 ssib045318928 ssj0000529419 ssib045319075 |
Score | 2.4025464 |
Snippet | We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with... Abstract We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8476 |
SubjectTerms | 692/163/2743/137 692/499 692/699/2743/137 692/699/3161/3175 692/700 Accuracy Blood pressure Creatinine Data warehouses Data Warehousing Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 Diabetic Retinopathy Electronic medical records Glomerular filtration rate Glycated Hemoglobin Hemoglobin Humanities and Social Sciences Humans Learning algorithms Machine learning Medical records Medicine multidisciplinary Patients Performance evaluation Prediction models Primary care Q R Retinopathy Risk Factors ROC Curve Science Science (multidisciplinary) Vision |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpLTISN7CaxK_4CIiqQsCJSr1Zjh_dlWhSZbdC_ffM2Nmly_PCJYfEiSYzY8-XjOcbQl6qXjsvpGRCmsQET5H1yUXmOhFckF0tcx33p8_q5FR8OJNnN1p94Z6wQg9cFHcURBS9Un1qYi208MijCmFHe5E8TyGX7kHMu_ExVVi9WyMaM1fJ1Lw7WkGkwmqyFnt5cGVYvROJMmE_xJdhufwd1vx1y-RPedMcjo7vkbszjqRvivz3ya04PCC3S2fJ64dk-jgO5wyXXXo5YS4G9U9z25sVBZxKS005Wy8QNEb8OULLb9ilp1jYOIzYq_ia4r74c3pR0jk0xcwDCo-YxguKu0vpNzfFxXi1io_I6fH7L-9O2NxegXlAGWtmjHQJ4E0PQT803Dc8cR5BwX2KTRuDg48XBWpU2vSt9qaG28CiwdV19CoF_pjsDeMQnxIKK0HrlQ7KaCkCD13fBS2DaEMrnJehIs1G1dbP3OPYAuOrzTlw3tliHgvmsdk8tq7Iq-09l4V546-j36IFtyORNTufAF-ysy_Zf_lSRQ7B_iAhHpsOF8O2UVoDpBJ1Z1RFDjaeYeepvrKAcBQEeCW6irzYXoZJipkXN0SwAI5BXkcA3xV5UhxpKyny24MgTUX0jovtvMrulWG5yETgEKiMEfDM1xtn_CHWn1W1_z9U9YzcaXEuIY-tOSB76-kqHgI8W_fP80z8DvnTNBA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gRUbiBlaT2LHjEwJEVSHgRKW9WY4fuyu1yZJshfrvmXGyqZZHL3vYOJHjGc98mfF8Q8gb2SjrRFUxUenIBI-BNdEGZmvhra_qvEp13N--y9Mz8WVRLaaA2zAdq9zZxGSofecwRn4MjkSCHZWifr_5ybBrFGZXpxYat8kdpC7Djy-1UHOMBbNYotBTrUzO6-MB_BXWlJXY0YNLzfI9f5Ro-8HLtOv1vxDn3wcn_8ieJqd08oDcn9Ak_TCK_yG5FdpH5O7YX_LqMem_du2SofGlmx4zMigFmprfDBTQKh0ry9l2hdAxYIiEjsHYtaNY3th22LH4iuLp-CW9GJM6NIbEBgqP6LsLimdM6S_bh1V3OYQn5Ozk849Pp2xqssAcYI0t07qyEUBOA67fF9wVPHIenNZNDEUZvIVPGAnLKJVuSuV0DreBXL3N8-Bk9PwpOWi7NjwnFOxB6aTyUqtKeO7rpvaq8qL0pbCu8hkpdktt3MRAjo0wzk3KhPPajOIxIB6TxGPyjLyd79mM_Bs3jv6IEpxHInd2-qPrl2baisaLIBopm1iEXCjhkJkXgIxyIjoevc7IEcgfZoi_RY0msSykUgCsRF5rmZHDnWaYacMP5lo9M_J6vgxbFfMvtg0gARyD7I4AwTPybFSkeabIcg8TKTKi9lRs71X2r7TrVaIDB3eltYBnvtsp4_W0_r9UL25-i5fkXom7BHlq9SE52PaX4Qjg17Z5lfbYb-IxK4I priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDeBFhmJG1gk8Ss-woqqQsCJSr1Zjh-7K9Gkym5V9d8z4ySLFgoSlxwSO3JmbM8Xz8w3hLxRrXZeSMmENIkJniJrk4vMNSK4IJtS5jzur9_U6Zn4fC7PD0g958LkoP1MaZm36Tk67P0GDA0mg9VYioMrw-A3_Q5St2MY30Itducq6LkSlZnyY0re3NJ1zwZlqn6wLN16fRvK_DNY8jePaTZEJw_I_QlB0g_jmB-Sg9g9InfHmpI3j8nwpe-WDDdcejmgFwYlT3PBmw0FhErHbHK2XSFcjHgsQscD2LWnmNLY9Vil-IZiRPySXoyOHJpiFhe8YugvKMaV0ms3xFV_tYlPyNnJp--LUzYVVmAe8MWWGSNdAmDTgrkPFfcVT5xHb0ybYlXH4OC3RYEYlTZtrb0poRvoMriyjF6lwJ-Sw67v4nNCYQ-ovdJBGS1F4KFpm6BlEHWohfMyFKSaRW39xDqOxS9-2Oz95o0d1WNBPTarx5YFebvrczlybvyz9UfU4K4l8mXnG_2wtNP8sUFE0SrVpiqWQguPbLwAXrQXyfMUTEGOQf8wQrxWDW6DdaW0BjAlysaoghzNM8NOi3xjAdsoMO1KNAV5vXsMyxN9Lq6LoAFsg4yOALsL8mycSLuRIrM9DKQqiN6bYnufsv-kW68yBTiYKGMEvPPdPBl_Devvonrxf81fkns1rhrkqjVH5HA7XMVjgGDb9lVecz8Bnx0pMg priority: 102 providerName: Springer Nature |
Title | Long-term prediction models for vision-threatening diabetic retinopathy using medical features from data warehouse |
URI | https://cir.nii.ac.jp/crid/1870302167791040896 https://link.springer.com/article/10.1038/s41598-022-12369-0 https://www.ncbi.nlm.nih.gov/pubmed/35589921 https://www.proquest.com/docview/2666718648 https://www.proquest.com/docview/2667790150 https://pubmed.ncbi.nlm.nih.gov/PMC9119940 https://doaj.org/article/d4e4b66bf1e0474c99222247c4fc3fd9 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN8LbJWReANDPhw7fkCoqzZNFZsQUKlvUeKPttKWjLQT9L_nzkmKCgXxkkiJY118Z9_PH_c7Ql6JUhaapynjqXKMJ86y0hWWFRk3hUmzMPVx3BeX4nzCx9N0ukf6dEddAy53Tu0wn9SkuXr749v6A3T4923IePZuCU4IA8ViTNORCMVgCn8AnkliKoeLDu63XN-x4j7XB5KwMwATcRdHs7uaLV_lKf3BA1WLxS40-uehyt92Vr3DOntA7ndIkw5b03hI9mz1iNxtc0-uH5PmY13NGA7M9KbB3RrUEPWJcZYUkCxto87Zao6w0uLyCW0XaheaYuhjVWM24zXFk_Mzet1u-FBnPVMoVNHU1xTPn9LvRWPn9e3SPiGTs9Ovo3PWJWBgGnDIiimVFg4AUAmwwESJjhKXJFYrVTobxdYUML0R0KRCqjKWWoXwGejcFGFotXAmeUr2q7qyh4TCWBFrIY1QMuUmMVmZGZkaHpuYFzo1AYn6ps51x06OSTKucr9LnmR5q54c1JN79eRhQF5vvrlpuTn-WfoENbgpibza_kHdzPKum-aGW14KUbrIhlxyjay9AHKk5k4nzqiAHIP-QUK8RhkOl3EkpATQxcNMiYAc9ZaR97acAwYSAAEEzwLycvMaujHuzRSVBQ1gGWR-BHgekGetIW0kRQZ8ECQKiNwysa1f2X5TLeaeKhxcmVIc6nzTG-Mvsf7eVM__Q8wX5F6MXQWJbNUR2V81t_YY8NmqHJA7cioH5GA4HH8Zw_3k9PLTZ3g6EqOBX_MY-G75E6wPOE8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CLRgJThA1iR0nPiBEodWWblcItVJvaWI7uyvRZEm2qvZP8RuZyWOr5dFbLzkkjmVnxjNfPJ75AN7ILEq1CENXhCp3Bc-tm-WpddNYmNSEsRc2edxHYzk8EV9Pw9MN-NXnwtCxyt4mNobalJr2yHfQkUi0o1LEH-c_XWKNouhqT6HRqsWhXV7iL1v94eALyvdtEOzvHX8euh2rgKvRuS5cpcI0R6-eoa8zPtc-zzm3Wqkst35gTYqYXQbEPK-yINLKw9dwIib1PKtlbjj2ews2BUeoMIDN3b3xt--rXR2Kmwlfddk5Ho93avSQlMUWEIcIl8r11jxgQxSAfq2Yzf6Fcf8-qvlHvLZxg_v34V6HX9mnVuEewIYtHsLtltFy-QiqUVlMXDL3bF5RDIjkzhq6nZohPmZtLru7mBJYtbQpw9rt35lmlFBZlMSRvGR0Hn_CztswEsttU38Uu6jKc0anWtllWtlpeVHbx3ByIwJ4AoOiLOwzYGiBAi0jI1UUCsNNnMUmCo0ITCBSHRoH_P5TJ7qreU7UGz-SJvbO46QVT4LiSRrxJJ4D71bvzNuKH9e23iUJrlpSte7mRllNkm7xJ0ZYkUmZ5b71RCQ01QJG6BRpkWueG-XANsofR0hXPyYjHPgyihDKCS9W0oGtXjOSzsTUydWCcOD16jEaB4r4pIVFCVAbqieJoN-Bp60irUZKdfVxIL4D0ZqKrU1l_UkxmzYFyNFBKiWwz_e9Ml4N6_-f6vn1s3gFd4bHR6NkdDA-fAF3A1oxVCVXbcFgUV3YbQR_i-xlt-IYnN30Iv8NGctpKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYifQgpHgBNEktmPHB4SAMmppqThQaW4h8TIzEk2GZKpq_hq_jveyTDUsvfUyh4lj2X7L9-K3EfJSFio3IklCkWgfCu5dWPjchXkqbG6TNEraPO4vx3L_RHyeJJMt8mvIhcGwykEntoraVgbvyEcAJBL0qBTpyPdhEV_3xu8WP0PsIIWe1qGdRscih251Dp9vzduDPaD1K8bGn7593A_7DgOhAaBdhlonuQeELwD3bMxNzD3nzmhdeBczZ3Ow3yXDLvS6YMroCF6DTdk8ipyR3nKY9xq5rjjAJsiSmqj1_Q560ESs-zydiKejBrAS89kYdhPhUofRBha2LQMA4cr5_F_W7t9Bm394bltAHN8ht3tLlr7vWO8u2XLlPXKj6225uk_qo6qchqj46aJGbxByAG0b7zQULGXaZbWHyxmarQ6vZ2h3ETw3FFMrywq7Ja8oRuZP6WnnUKLetZVIYYq6OqUY30rP89rNqrPGPSAnV3L8D8l2WZXuMaGgi5iRykqtEmG5TYvUqsQKZpnITWIDEg9HnZm--jk24fiRtV54nmYdeTIgT9aSJ4sC8nr9zqKr_XHp6A9IwfVIrNvd_lHV06xXA5kVThRSFj52kVDCYFVgMKKUEd5wb3VAdoH-sEL8jVNUxyyWSoFRJ6JUy4DsDJyR9cqmyS5EIyAv1o9BTaDvJy8dUADHYGVJMP8D8qhjpPVKscI-LCQOiNpgsY2tbD4p57O2FDlApdYC5nwzMOPFsv5_VE8u38VzchNEOzs6OD58Sm4xFBgsl6t3yPayPnO7YAUui2etuFHy_arl-zcFOWv7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+prediction+models+for+vision-threatening+diabetic+retinopathy+using+medical+features+from+data+warehouse&rft.jtitle=Scientific+reports&rft.au=Jo%2C+Kwanhoon&rft.au=Chang%2C+Dong+Jin&rft.au=Min%2C+Ji+Won&rft.au=Yoo%2C+Young-Sik&rft.date=2022-05-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=8476&rft_id=info:doi/10.1038%2Fs41598-022-12369-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |