Long-term prediction models for vision-threatening diabetic retinopathy using medical features from data warehouse

We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients wi...

Full description

Saved in:
Bibliographic Details
Published inScientific Reports Vol. 12; no. 1; pp. 8476 - 8
Main Authors Jo, Kwanhoon, Chang, Dong Jin, Min, Ji Won, Yoo, Young-Sik, Lyu, Byul, Kwon, Jin Woo, Baek, Jiwon
Format Journal Article
LanguageEnglish
Published London Springer Science and Business Media LLC 19.05.2022
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-12369-0

Cover

Loading…
Abstract We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
AbstractList Abstract We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
ArticleNumber 8476
Author Ji Won Min
Young-Sik Yoo
Kwanhoon Jo
Dong Jin Chang
Jin Woo Kwon
Jiwon Baek
Byul Lyu
Author_xml – sequence: 1
  givenname: Kwanhoon
  surname: Jo
  fullname: Jo, Kwanhoon
  organization: Department of Endocrinology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 2
  givenname: Dong Jin
  surname: Chang
  fullname: Chang, Dong Jin
  organization: Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 3
  givenname: Ji Won
  surname: Min
  fullname: Min, Ji Won
  organization: Department of Nephrology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 4
  givenname: Young-Sik
  surname: Yoo
  fullname: Yoo, Young-Sik
  organization: Department of Ophthalmology, Euijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 5
  givenname: Byul
  surname: Lyu
  fullname: Lyu, Byul
  organization: Department of Ophthalmology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 6
  givenname: Jin Woo
  surname: Kwon
  fullname: Kwon, Jin Woo
  organization: Department of Ophthalmology, St. Vincent Hospital, College of Medicine, The Catholic University of Korea
– sequence: 7
  givenname: Jiwon
  surname: Baek
  fullname: Baek, Jiwon
  email: md.jiwon@gmail.com
  organization: Department of Ophthalmology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Department of Ophthalmology, College of Medicine, The Catholic University of Korea
BackLink https://cir.nii.ac.jp/crid/1870302167791040896$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35589921$$D View this record in MEDLINE/PubMed
BookMark eNp9Uslu1TAUjVARLaU_wAJFggWbgOfEGyRUMVR6EhtYW459k-cqsR-2U9S_x2lKabuoFx7POXfweVkd-eChql5j9AEj2n1MDHPZNYiQBhMqZIOeVScEMd4QSsjRvf1xdZaS68uRYok69KI6ppx3UhJ8UsVd8GOTIc71IYJ1Jrvg6zlYmFI9hFhfuVRumryPoDN458faOt1DdqaOZfbhoPP-ul7S-jSvEnqqhwJeIhSJGOba6qzrPzrCPiwJXlXPBz0lOLtdT6tfX7_8PP_e7H58uzj_vGuMoDw3UnI9EI57zLHF1GA6UApGyn4ATMBqzpEgkolW9qQ1EhUa49JqhMCIwdLT6mLTtUFfqkN0s47XKminbi5CHJWOpYwJlGXAeiH6AQNiLStBSBmsNWwwdLCyaH3atA5LX2o04HPU0wPRhy_e7dUYrpTEWEqGisD7W4EYfi-QsppdMjBN2kNpiiJCtK1EmK_Qt4-gl2GJvrRqRYkWd4J1BfXmfkZ3qfz72gIgG8DEkFKE4Q6CkVotpDYLqWIhdWMhtcbuHpGMy3r1RKnKTU9T6UZNJY4fIf5P-0nWu43lnSux1hl3LaKI4LUhGDHUSUH_AhJn5no
CitedBy_id crossref_primary_10_1002_smll_202205754
crossref_primary_10_1016_j_eswa_2023_120206
crossref_primary_10_1007_s11517_022_02737_3
crossref_primary_10_1016_j_imu_2023_101285
crossref_primary_10_1007_s11831_024_10148_w
crossref_primary_10_1371_journal_pone_0305586
crossref_primary_10_1016_j_ajo_2024_07_012
Cites_doi 10.1167/iovs.61.14.14
10.1186/s12859-018-2277-0
10.1016/s0140-6736(11)60679-x
10.1186/s40662-015-0026-2
10.1136/bmjopen-2017-016280
10.1016/s2589-7500(20)30250-8
10.1001/jama.2017.18152
10.1016/j.jdiacomp.2010.12.002
10.1016/s0002-9394(01)01124-2
10.1097/MD.0000000000006754
10.1038/s41746-019-0172-3
10.3390/jpm11070665
10.1186/1472-6947-13-106
10.1136/bjophthalmol-2019-315333
10.1001/jamaophthalmol.2019.1052
10.2337/dc11-1909
10.1007/s00592-014-0602-2
10.1016/j.ophtha.2020.12.019
10.1097/ICU.0b013e328010948d
10.1111/ceo.12696
10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
10.1111/j.1464-5491.2009.02870.x
10.1038/s41746-019-0097-x
10.3341/kjo.2018.0034
10.1016/S0140-6736(09)62124-3
10.1016/S0140-6736(98)07019-6
10.1136/bmj.317.7160.703
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
2022. The Author(s).
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
DBID RYH
C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-12369-0
DatabaseName CiNii Complete
Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_d4e4b66bf1e0474c99222247c4fc3fd9
PMC9119940
35589921
10_1038_s41598_022_12369_0
Genre Journal Article
GrantInformation_xml – fundername: Bucheon St. Mary's Hospital
  grantid: 2021
  funderid: http://dx.doi.org/10.13039/501100003334
– fundername: Bucheon St. Mary's Hospital
  grantid: 2021
– fundername: ;
  grantid: 2021
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
RYH
SNYQT
UKHRP
3V.
88A
ACSMW
AJTQC
M0L
AAYXX
CITATION
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c635t-995af251b151d13c13f33ec99bfe12eda5506294679b27c90c63459da00ec6fd3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:08 EDT 2025
Thu Aug 21 14:07:32 EDT 2025
Fri Jul 11 10:06:36 EDT 2025
Sat Aug 23 12:55:24 EDT 2025
Mon Jul 21 06:00:29 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 04:16:29 EDT 2025
Fri Feb 21 02:36:49 EST 2025
Thu Jun 26 23:39:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-995af251b151d13c13f33ec99bfe12eda5506294679b27c90c63459da00ec6fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d4e4b66bf1e0474c99222247c4fc3fd9
PMID 35589921
PQID 2666718648
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d4e4b66bf1e0474c99222247c4fc3fd9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9119940
proquest_miscellaneous_2667790150
proquest_journals_2666718648
pubmed_primary_35589921
crossref_primary_10_1038_s41598_022_12369_0
crossref_citationtrail_10_1038_s41598_022_12369_0
springer_journals_10_1038_s41598_022_12369_0
nii_cinii_1870302167791040896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-19
PublicationDateYYYYMMDD 2022-05-19
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific Reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Springer Science and Business Media LLC
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Science and Business Media LLC
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Modjtahedi (CR27) 2021; 128
Lee, Wong, Sabanayagam (CR3) 2015; 2
Federation (CR5) 2019
Cheung, Mitchell, Wong (CR29) 2010; 376
Chew (CR30) 2006; 17
Liu (CR28) 2017; 7
Aiello, Cahill, Wong (CR19) 2001; 132
Tsao, Chan, Su (CR23) 2018; 19
CR31
Arcadu (CR15) 2019; 2
Ting (CR17) 2017; 318
Oh, Yoo, Park (CR10) 2013; 13
Rooney (CR22) 2015; 52
Grunwald (CR26) 2021; 105
Alberti, Zimmet (CR1) 1998; 15
Bora (CR14) 2021; 3
Min (CR21) 2020; 61
CR8
CR7
Jones, Edwards (CR6) 2010; 27
Yau (CR18) 2012; 35
Aronov (CR25) 2021
Ting, Cheung, Wong (CR4) 2016; 44
Ting (CR16) 2019; 2
Ha, Choi, Kim, Na, Park (CR20) 2019; 33
Danaei (CR2) 2011; 378
Semeraro (CR12) 2011; 25
Grunwald (CR9) 2019; 137
Ogunyemi, Kermah (CR13) 2015; 2015
Zhou, Zhang, Shi, Wang (CR24) 2017; 96
Hosseini, Maracy, Amini, Baradaran (CR11) 2009; 14
F Arcadu (12369_CR15) 2019; 2
N Cheung (12369_CR29) 2010; 376
S Jones (12369_CR6) 2010; 27
Y Zhou (12369_CR24) 2017; 96
JE Grunwald (12369_CR9) 2019; 137
D Rooney (12369_CR22) 2015; 52
M Aronov (12369_CR25) 2021
G Danaei (12369_CR2) 2011; 378
DSW Ting (12369_CR16) 2019; 2
JE Grunwald (12369_CR26) 2021; 105
BS Modjtahedi (12369_CR27) 2021; 128
DS Ting (12369_CR4) 2016; 44
M Ha (12369_CR20) 2019; 33
KG Alberti (12369_CR1) 1998; 15
ID Federation (12369_CR5) 2019
12369_CR31
LP Aiello (12369_CR19) 2001; 132
SM Hosseini (12369_CR11) 2009; 14
F Semeraro (12369_CR12) 2011; 25
JW Yau (12369_CR18) 2012; 35
EY Chew (12369_CR30) 2006; 17
HY Tsao (12369_CR23) 2018; 19
R Lee (12369_CR3) 2015; 2
12369_CR7
12369_CR8
A Bora (12369_CR14) 2021; 3
O Ogunyemi (12369_CR13) 2015; 2015
E Oh (12369_CR10) 2013; 13
DSW Ting (12369_CR17) 2017; 318
JW Min (12369_CR21) 2020; 61
Y Liu (12369_CR28) 2017; 7
References_xml – volume: 61
  start-page: 14
  year: 2020
  ident: CR21
  article-title: Relationship between retinal capillary nonperfusion area and renal function in patients with type 2 diabetes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.14.14
– volume: 19
  start-page: 283
  year: 2018
  ident: CR23
  article-title: Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-018-2277-0
– volume: 378
  start-page: 31
  year: 2011
  end-page: 40
  ident: CR2
  article-title: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants
  publication-title: Lancet
  doi: 10.1016/s0140-6736(11)60679-x
– volume: 2
  start-page: 17
  year: 2015
  end-page: 17
  ident: CR3
  article-title: Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss
  publication-title: Eye Vis. (Lond., Engl.)
  doi: 10.1186/s40662-015-0026-2
– volume: 7
  year: 2017
  ident: CR28
  article-title: Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: A cross-sectional study of 13 473 patients with type 2 diabetes mellitus in mainland China
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-016280
– volume: 3
  start-page: e10
  year: 2021
  end-page: e19
  ident: CR14
  article-title: Predicting the risk of developing diabetic retinopathy using deep learning
  publication-title: Lancet Digit. Health
  doi: 10.1016/s2589-7500(20)30250-8
– volume: 318
  start-page: 2211
  year: 2017
  end-page: 2223
  ident: CR17
  article-title: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 25
  start-page: 292
  year: 2011
  end-page: 297
  ident: CR12
  article-title: Predicting the risk of diabetic retinopathy in type 2 diabetic patients
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2010.12.002
– volume: 132
  start-page: 760
  year: 2001
  end-page: 776
  ident: CR19
  article-title: Systemic considerations in the management of diabetic retinopathy
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/s0002-9394(01)01124-2
– volume: 96
  start-page: e6754
  year: 2017
  end-page: e6754
  ident: CR24
  article-title: Body mass index and risk of diabetic retinopathy: A meta-analysis and systematic review
  publication-title: Medicine
  doi: 10.1097/MD.0000000000006754
– volume: 2015
  start-page: 983
  year: 2015
  end-page: 990
  ident: CR13
  article-title: Machine learning approaches for detecting diabetic retinopathy from clinical and public health records
  publication-title: AMIA Annu. Symp. Proc.
– volume: 2
  start-page: 92
  year: 2019
  ident: CR15
  article-title: Deep learning algorithm predicts diabetic retinopathy progression in individual patients
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0172-3
– year: 2021
  ident: CR25
  article-title: Retinal vascular signs as screening and prognostic factors for chronic kidney disease: A systematic review and meta-analysis of current evidence
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm11070665
– volume: 13
  start-page: 106
  year: 2013
  ident: CR10
  article-title: Diabetic retinopathy risk prediction for fundus examination using sparse learning: A cross-sectional study
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/1472-6947-13-106
– ident: CR8
– volume: 105
  start-page: 246
  year: 2021
  end-page: 252
  ident: CR26
  article-title: Progression of retinopathy and incidence of cardiovascular disease: Findings from the Chronic Renal Insufficiency Cohort Study
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2019-315333
– volume: 137
  start-page: 767
  year: 2019
  end-page: 774
  ident: CR9
  article-title: Association Between progression of retinopathy and concurrent progression of kidney disease: Findings from the chronic renal insufficiency cohort (CRIC) study
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2019.1052
– year: 2019
  ident: CR5
  publication-title: Diabetes Atlas
– volume: 35
  start-page: 556
  year: 2012
  end-page: 564
  ident: CR18
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– volume: 52
  start-page: 73
  year: 2015
  end-page: 80
  ident: CR22
  article-title: Body mass index and retinopathy in Asian populations with diabetes mellitus
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-014-0602-2
– volume: 128
  start-page: 1169
  year: 2021
  end-page: 1179
  ident: CR27
  article-title: Severity of diabetic retinopathy and the risk of future cerebrovascular disease, cardiovascular disease, and all-cause mortality
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.12.019
– volume: 17
  start-page: 519
  year: 2006
  end-page: 522
  ident: CR30
  article-title: Screening options for diabetic retinopathy
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0b013e328010948d
– ident: CR31
– volume: 44
  start-page: 260
  year: 2016
  end-page: 277
  ident: CR4
  article-title: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: A review
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.12696
– volume: 15
  start-page: 539
  year: 1998
  end-page: 553
  ident: CR1
  article-title: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation
  publication-title: Diabet. Med.
  doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
– volume: 27
  start-page: 249
  year: 2010
  end-page: 256
  ident: CR6
  article-title: Diabetic retinopathy screening: A systematic review of the economic evidence
  publication-title: Diabet. Med.
  doi: 10.1111/j.1464-5491.2009.02870.x
– ident: CR7
– volume: 2
  start-page: 24
  year: 2019
  ident: CR16
  article-title: Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: A multi-ethnic study
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0097-x
– volume: 33
  start-page: 46
  year: 2019
  end-page: 53
  ident: CR20
  article-title: Diabetic nephropathy in type 2 diabetic retinopathy requiring panretinal photocoagulation
  publication-title: Korean J. Ophthalmol.
  doi: 10.3341/kjo.2018.0034
– volume: 14
  start-page: 105
  year: 2009
  end-page: 110
  ident: CR11
  article-title: A risk score development for diabetic retinopathy screening in Isfahan-Iran
  publication-title: J. Res. Med. Sci.
– volume: 376
  start-page: 124
  year: 2010
  end-page: 136
  ident: CR29
  article-title: Diabetic retinopathy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)62124-3
– volume: 13
  start-page: 106
  year: 2013
  ident: 12369_CR10
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/1472-6947-13-106
– volume: 132
  start-page: 760
  year: 2001
  ident: 12369_CR19
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/s0002-9394(01)01124-2
– volume: 376
  start-page: 124
  year: 2010
  ident: 12369_CR29
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)62124-3
– volume: 27
  start-page: 249
  year: 2010
  ident: 12369_CR6
  publication-title: Diabet. Med.
  doi: 10.1111/j.1464-5491.2009.02870.x
– ident: 12369_CR8
  doi: 10.1016/S0140-6736(98)07019-6
– volume: 2
  start-page: 92
  year: 2019
  ident: 12369_CR15
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0172-3
– volume: 2
  start-page: 17
  year: 2015
  ident: 12369_CR3
  publication-title: Eye Vis. (Lond., Engl.)
  doi: 10.1186/s40662-015-0026-2
– volume: 318
  start-page: 2211
  year: 2017
  ident: 12369_CR17
  publication-title: JAMA
  doi: 10.1001/jama.2017.18152
– volume: 7
  year: 2017
  ident: 12369_CR28
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-016280
– volume: 19
  start-page: 283
  year: 2018
  ident: 12369_CR23
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-018-2277-0
– volume: 2
  start-page: 24
  year: 2019
  ident: 12369_CR16
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0097-x
– volume: 105
  start-page: 246
  year: 2021
  ident: 12369_CR26
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2019-315333
– volume: 2015
  start-page: 983
  year: 2015
  ident: 12369_CR13
  publication-title: AMIA Annu. Symp. Proc.
– volume: 96
  start-page: e6754
  year: 2017
  ident: 12369_CR24
  publication-title: Medicine
  doi: 10.1097/MD.0000000000006754
– volume: 137
  start-page: 767
  year: 2019
  ident: 12369_CR9
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2019.1052
– volume: 61
  start-page: 14
  year: 2020
  ident: 12369_CR21
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.14.14
– volume: 15
  start-page: 539
  year: 1998
  ident: 12369_CR1
  publication-title: Diabet. Med.
  doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
– volume: 14
  start-page: 105
  year: 2009
  ident: 12369_CR11
  publication-title: J. Res. Med. Sci.
– ident: 12369_CR31
– volume: 44
  start-page: 260
  year: 2016
  ident: 12369_CR4
  publication-title: Clin. Exp. Ophthalmol.
  doi: 10.1111/ceo.12696
– volume: 33
  start-page: 46
  year: 2019
  ident: 12369_CR20
  publication-title: Korean J. Ophthalmol.
  doi: 10.3341/kjo.2018.0034
– volume: 17
  start-page: 519
  year: 2006
  ident: 12369_CR30
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0b013e328010948d
– ident: 12369_CR7
  doi: 10.1136/bmj.317.7160.703
– volume: 378
  start-page: 31
  year: 2011
  ident: 12369_CR2
  publication-title: Lancet
  doi: 10.1016/s0140-6736(11)60679-x
– volume-title: Diabetes Atlas
  year: 2019
  ident: 12369_CR5
– volume: 52
  start-page: 73
  year: 2015
  ident: 12369_CR22
  publication-title: Acta Diabetol.
  doi: 10.1007/s00592-014-0602-2
– volume: 35
  start-page: 556
  year: 2012
  ident: 12369_CR18
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– volume: 25
  start-page: 292
  year: 2011
  ident: 12369_CR12
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2010.12.002
– volume: 3
  start-page: e10
  year: 2021
  ident: 12369_CR14
  publication-title: Lancet Digit. Health
  doi: 10.1016/s2589-7500(20)30250-8
– volume: 128
  start-page: 1169
  year: 2021
  ident: 12369_CR27
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2020.12.019
– year: 2021
  ident: 12369_CR25
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm11070665
SSID ssib045319080
ssib045319113
ssib045318930
ssib045319110
ssib045318929
ssib045318928
ssj0000529419
ssib045319075
Score 2.4025464
Snippet We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with...
Abstract We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8476
SubjectTerms 692/163/2743/137
692/499
692/699/2743/137
692/699/3161/3175
692/700
Accuracy
Blood pressure
Creatinine
Data warehouses
Data Warehousing
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2
Diabetic Retinopathy
Electronic medical records
Glomerular filtration rate
Glycated Hemoglobin
Hemoglobin
Humanities and Social Sciences
Humans
Learning algorithms
Machine learning
Medical records
Medicine
multidisciplinary
Patients
Performance evaluation
Prediction models
Primary care
Q
R
Retinopathy
Risk Factors
ROC Curve
Science
Science (multidisciplinary)
Vision
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpLTISN7CaxK_4CIiqQsCJSr1Zjh_dlWhSZbdC_ffM2Nmly_PCJYfEiSYzY8-XjOcbQl6qXjsvpGRCmsQET5H1yUXmOhFckF0tcx33p8_q5FR8OJNnN1p94Z6wQg9cFHcURBS9Un1qYi208MijCmFHe5E8TyGX7kHMu_ExVVi9WyMaM1fJ1Lw7WkGkwmqyFnt5cGVYvROJMmE_xJdhufwd1vx1y-RPedMcjo7vkbszjqRvivz3ya04PCC3S2fJ64dk-jgO5wyXXXo5YS4G9U9z25sVBZxKS005Wy8QNEb8OULLb9ilp1jYOIzYq_ia4r74c3pR0jk0xcwDCo-YxguKu0vpNzfFxXi1io_I6fH7L-9O2NxegXlAGWtmjHQJ4E0PQT803Dc8cR5BwX2KTRuDg48XBWpU2vSt9qaG28CiwdV19CoF_pjsDeMQnxIKK0HrlQ7KaCkCD13fBS2DaEMrnJehIs1G1dbP3OPYAuOrzTlw3tliHgvmsdk8tq7Iq-09l4V546-j36IFtyORNTufAF-ysy_Zf_lSRQ7B_iAhHpsOF8O2UVoDpBJ1Z1RFDjaeYeepvrKAcBQEeCW6irzYXoZJipkXN0SwAI5BXkcA3xV5UhxpKyny24MgTUX0jovtvMrulWG5yETgEKiMEfDM1xtn_CHWn1W1_z9U9YzcaXEuIY-tOSB76-kqHgI8W_fP80z8DvnTNBA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gRUbiBlaT2LHjEwJEVSHgRKW9WY4fuyu1yZJshfrvmXGyqZZHL3vYOJHjGc98mfF8Q8gb2SjrRFUxUenIBI-BNdEGZmvhra_qvEp13N--y9Mz8WVRLaaA2zAdq9zZxGSofecwRn4MjkSCHZWifr_5ybBrFGZXpxYat8kdpC7Djy-1UHOMBbNYotBTrUzO6-MB_BXWlJXY0YNLzfI9f5Ro-8HLtOv1vxDn3wcn_8ieJqd08oDcn9Ak_TCK_yG5FdpH5O7YX_LqMem_du2SofGlmx4zMigFmprfDBTQKh0ry9l2hdAxYIiEjsHYtaNY3th22LH4iuLp-CW9GJM6NIbEBgqP6LsLimdM6S_bh1V3OYQn5Ozk849Pp2xqssAcYI0t07qyEUBOA67fF9wVPHIenNZNDEUZvIVPGAnLKJVuSuV0DreBXL3N8-Bk9PwpOWi7NjwnFOxB6aTyUqtKeO7rpvaq8qL0pbCu8hkpdktt3MRAjo0wzk3KhPPajOIxIB6TxGPyjLyd79mM_Bs3jv6IEpxHInd2-qPrl2baisaLIBopm1iEXCjhkJkXgIxyIjoevc7IEcgfZoi_RY0msSykUgCsRF5rmZHDnWaYacMP5lo9M_J6vgxbFfMvtg0gARyD7I4AwTPybFSkeabIcg8TKTKi9lRs71X2r7TrVaIDB3eltYBnvtsp4_W0_r9UL25-i5fkXom7BHlq9SE52PaX4Qjg17Z5lfbYb-IxK4I
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDeBFhmJG1gk8Ss-woqqQsCJSr1Zjh-7K9Gkym5V9d8z4ySLFgoSlxwSO3JmbM8Xz8w3hLxRrXZeSMmENIkJniJrk4vMNSK4IJtS5jzur9_U6Zn4fC7PD0g958LkoP1MaZm36Tk67P0GDA0mg9VYioMrw-A3_Q5St2MY30Itducq6LkSlZnyY0re3NJ1zwZlqn6wLN16fRvK_DNY8jePaTZEJw_I_QlB0g_jmB-Sg9g9InfHmpI3j8nwpe-WDDdcejmgFwYlT3PBmw0FhErHbHK2XSFcjHgsQscD2LWnmNLY9Vil-IZiRPySXoyOHJpiFhe8YugvKMaV0ms3xFV_tYlPyNnJp--LUzYVVmAe8MWWGSNdAmDTgrkPFfcVT5xHb0ybYlXH4OC3RYEYlTZtrb0poRvoMriyjF6lwJ-Sw67v4nNCYQ-ovdJBGS1F4KFpm6BlEHWohfMyFKSaRW39xDqOxS9-2Oz95o0d1WNBPTarx5YFebvrczlybvyz9UfU4K4l8mXnG_2wtNP8sUFE0SrVpiqWQguPbLwAXrQXyfMUTEGOQf8wQrxWDW6DdaW0BjAlysaoghzNM8NOi3xjAdsoMO1KNAV5vXsMyxN9Lq6LoAFsg4yOALsL8mycSLuRIrM9DKQqiN6bYnufsv-kW68yBTiYKGMEvPPdPBl_Devvonrxf81fkns1rhrkqjVH5HA7XMVjgGDb9lVecz8Bnx0pMg
  priority: 102
  providerName: Springer Nature
Title Long-term prediction models for vision-threatening diabetic retinopathy using medical features from data warehouse
URI https://cir.nii.ac.jp/crid/1870302167791040896
https://link.springer.com/article/10.1038/s41598-022-12369-0
https://www.ncbi.nlm.nih.gov/pubmed/35589921
https://www.proquest.com/docview/2666718648
https://www.proquest.com/docview/2667790150
https://pubmed.ncbi.nlm.nih.gov/PMC9119940
https://doaj.org/article/d4e4b66bf1e0474c99222247c4fc3fd9
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiReEN8LbJWReANDPhw7fkCoqzZNFZsQUKlvUeKPttKWjLQT9L_nzkmKCgXxkkiJY118Z9_PH_c7Ql6JUhaapynjqXKMJ86y0hWWFRk3hUmzMPVx3BeX4nzCx9N0ukf6dEddAy53Tu0wn9SkuXr749v6A3T4923IePZuCU4IA8ViTNORCMVgCn8AnkliKoeLDu63XN-x4j7XB5KwMwATcRdHs7uaLV_lKf3BA1WLxS40-uehyt92Vr3DOntA7ndIkw5b03hI9mz1iNxtc0-uH5PmY13NGA7M9KbB3RrUEPWJcZYUkCxto87Zao6w0uLyCW0XaheaYuhjVWM24zXFk_Mzet1u-FBnPVMoVNHU1xTPn9LvRWPn9e3SPiGTs9Ovo3PWJWBgGnDIiimVFg4AUAmwwESJjhKXJFYrVTobxdYUML0R0KRCqjKWWoXwGejcFGFotXAmeUr2q7qyh4TCWBFrIY1QMuUmMVmZGZkaHpuYFzo1AYn6ps51x06OSTKucr9LnmR5q54c1JN79eRhQF5vvrlpuTn-WfoENbgpibza_kHdzPKum-aGW14KUbrIhlxyjay9AHKk5k4nzqiAHIP-QUK8RhkOl3EkpATQxcNMiYAc9ZaR97acAwYSAAEEzwLycvMaujHuzRSVBQ1gGWR-BHgekGetIW0kRQZ8ECQKiNwysa1f2X5TLeaeKhxcmVIc6nzTG-Mvsf7eVM__Q8wX5F6MXQWJbNUR2V81t_YY8NmqHJA7cioH5GA4HH8Zw_3k9PLTZ3g6EqOBX_MY-G75E6wPOE8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CLRgJThA1iR0nPiBEodWWblcItVJvaWI7uyvRZEm2qvZP8RuZyWOr5dFbLzkkjmVnxjNfPJ75AN7ILEq1CENXhCp3Bc-tm-WpddNYmNSEsRc2edxHYzk8EV9Pw9MN-NXnwtCxyt4mNobalJr2yHfQkUi0o1LEH-c_XWKNouhqT6HRqsWhXV7iL1v94eALyvdtEOzvHX8euh2rgKvRuS5cpcI0R6-eoa8zPtc-zzm3Wqkst35gTYqYXQbEPK-yINLKw9dwIib1PKtlbjj2ews2BUeoMIDN3b3xt--rXR2Kmwlfddk5Ho93avSQlMUWEIcIl8r11jxgQxSAfq2Yzf6Fcf8-qvlHvLZxg_v34V6HX9mnVuEewIYtHsLtltFy-QiqUVlMXDL3bF5RDIjkzhq6nZohPmZtLru7mBJYtbQpw9rt35lmlFBZlMSRvGR0Hn_CztswEsttU38Uu6jKc0anWtllWtlpeVHbx3ByIwJ4AoOiLOwzYGiBAi0jI1UUCsNNnMUmCo0ITCBSHRoH_P5TJ7qreU7UGz-SJvbO46QVT4LiSRrxJJ4D71bvzNuKH9e23iUJrlpSte7mRllNkm7xJ0ZYkUmZ5b71RCQ01QJG6BRpkWueG-XANsofR0hXPyYjHPgyihDKCS9W0oGtXjOSzsTUydWCcOD16jEaB4r4pIVFCVAbqieJoN-Bp60irUZKdfVxIL4D0ZqKrU1l_UkxmzYFyNFBKiWwz_e9Ml4N6_-f6vn1s3gFd4bHR6NkdDA-fAF3A1oxVCVXbcFgUV3YbQR_i-xlt-IYnN30Iv8NGctpKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYifQgpHgBNEktmPHB4SAMmppqThQaW4h8TIzEk2GZKpq_hq_jveyTDUsvfUyh4lj2X7L9-K3EfJSFio3IklCkWgfCu5dWPjchXkqbG6TNEraPO4vx3L_RHyeJJMt8mvIhcGwykEntoraVgbvyEcAJBL0qBTpyPdhEV_3xu8WP0PsIIWe1qGdRscih251Dp9vzduDPaD1K8bGn7593A_7DgOhAaBdhlonuQeELwD3bMxNzD3nzmhdeBczZ3Ow3yXDLvS6YMroCF6DTdk8ipyR3nKY9xq5rjjAJsiSmqj1_Q560ESs-zydiKejBrAS89kYdhPhUofRBha2LQMA4cr5_F_W7t9Bm394bltAHN8ht3tLlr7vWO8u2XLlPXKj6225uk_qo6qchqj46aJGbxByAG0b7zQULGXaZbWHyxmarQ6vZ2h3ETw3FFMrywq7Ja8oRuZP6WnnUKLetZVIYYq6OqUY30rP89rNqrPGPSAnV3L8D8l2WZXuMaGgi5iRykqtEmG5TYvUqsQKZpnITWIDEg9HnZm--jk24fiRtV54nmYdeTIgT9aSJ4sC8nr9zqKr_XHp6A9IwfVIrNvd_lHV06xXA5kVThRSFj52kVDCYFVgMKKUEd5wb3VAdoH-sEL8jVNUxyyWSoFRJ6JUy4DsDJyR9cqmyS5EIyAv1o9BTaDvJy8dUADHYGVJMP8D8qhjpPVKscI-LCQOiNpgsY2tbD4p57O2FDlApdYC5nwzMOPFsv5_VE8u38VzchNEOzs6OD58Sm4xFBgsl6t3yPayPnO7YAUui2etuFHy_arl-zcFOWv7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+prediction+models+for+vision-threatening+diabetic+retinopathy+using+medical+features+from+data+warehouse&rft.jtitle=Scientific+reports&rft.au=Jo%2C+Kwanhoon&rft.au=Chang%2C+Dong+Jin&rft.au=Min%2C+Ji+Won&rft.au=Yoo%2C+Young-Sik&rft.date=2022-05-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=8476&rft_id=info:doi/10.1038%2Fs41598-022-12369-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon