Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows
Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop du...
Saved in:
Published in | Nature Communications Vol. 13; no. 1; pp. 1946 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Science and Business Media LLC
11.04.2022
Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal–insulator–metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.
Perovskite microcells can be applied to various types of optoelectronic devices. Here, authors report high efficiency perovskite microcells fabricated using swelling-induced crack propagation and demonstrate solar windows using the microcells. |
---|---|
AbstractList | Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal-insulator-metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal-insulator-metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity. Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal-insulator-metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity. Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal–insulator–metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity. Perovskite microcells can be applied to various types of optoelectronic devices. Here, authors report high efficiency perovskite microcells fabricated using swelling-induced crack propagation and demonstrate solar windows using the microcells. Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and solar cells. Although several perovskite fabrication methods have been researched, perovskite microcells without a significant efficiency drop during the patterning and fabrication process could not be developed yet. We herein report the fabrication of high-efficiency perovskite microcells using swelling-induced crack propagation and the application of the microcells to colored solar windows. The key procedure is a swelling-induced lift-off process that leads to patterned perovskite films with high-quality interfaces. Thus, a power conversion efficiency (PCE) of 20.1 % could be achieved with the perovskite microcell, which is nearly same as the PCE of our unpatterned perovskite photovoltaic device (PV). The semi-transparent PV based on microcells exhibited a light utilization efficiency of 4.67 and a color rendering index of 97.5 %. The metal–insulator–metal structure deposited on the semi-transparent PV enabled to fabricate solar windows with vivid colors and high color purity.Perovskite microcells can be applied to various types of optoelectronic devices. Here, authors report high efficiency perovskite microcells fabricated using swelling-induced crack propagation and demonstrate solar windows using the microcells. Perovskite microcells can be applied to various types of optoelectronic devices. Here, authors report high efficiency perovskite microcells fabricated using swelling-induced crack propagation and demonstrate solar windows using the microcells. |
ArticleNumber | 1946 |
Author | Woongchan Lee Joo Hwan Ko Jinhong Park Yeong Jae Kim Young Min Song Huiwon Yun Dae-Hyeong Kim Young Jin Yoo Dong Hoe Kim |
Author_xml | – sequence: 1 givenname: Woongchan surname: Lee fullname: Lee, Woongchan organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University – sequence: 2 givenname: Young Jin orcidid: 0000-0002-6490-2324 surname: Yoo fullname: Yoo, Young Jin organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology – sequence: 3 givenname: Jinhong surname: Park fullname: Park, Jinhong organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University – sequence: 4 givenname: Joo Hwan surname: Ko fullname: Ko, Joo Hwan organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology – sequence: 5 givenname: Yeong Jae surname: Kim fullname: Kim, Yeong Jae organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology – sequence: 6 givenname: Huiwon surname: Yun fullname: Yun, Huiwon organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University – sequence: 7 givenname: Dong Hoe orcidid: 0000-0001-8909-2076 surname: Kim fullname: Kim, Dong Hoe email: donghoekim@korea.ac.kr organization: Department of Materials Science and Engineering, Korea University – sequence: 8 givenname: Young Min orcidid: 0000-0002-4473-6883 surname: Song fullname: Song, Young Min email: ymsong@gist.ac.kr organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology – sequence: 9 givenname: Dae-Hyeong orcidid: 0000-0002-4722-1893 surname: Kim fullname: Kim, Dae-Hyeong email: dkim98@snu.ac.kr organization: Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Department of Materials Science and Engineering, Seoul National University |
BackLink | https://cir.nii.ac.jp/crid/1874243915830148224$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35410337$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URNuhf4AFigSLbgJ-xbE3SKjiUakSLGBt3dhOcJuxBzvpiP56PJMW2i66sZ3rcz6d-N5jdBBicAi9IvgdwUy-z5xw0daY0poqgWl98wwdUcxJTVrKDu6dD9FJzr7DvGFEYUVeoEPW8AJh7REy312K1_nKT65ae5OiceOYqx665A1MzlZz9mGo8rbUy6H2wc6mlE0Cc1VtUtzAAJOPoepjqkwcYyq3OY6Qqm0Rx21-iZ73MGZ3cruv0M_Pn36cfa0vvn05P_t4URvBmqlm0FsGqhFUYIs7EBL3TljLOcPMAu1bQgVXzPSEEmcAiFWEN1a1krKWEbZC5wvXRrjUm-TXkP7oCF7vCzENGtLkzei0En0PFgsuMefc8k40nYCOFh5ngraF9WFhbeZu7axxYUowPoA-vAn-lx7itVYYE9E0BXB6C0jx9-zypNc-7x4Xgotz1rtfaaTCJfsKvXkkvYxzCuWp9ipKJJayqF7fT_Qvyl0vi0AugtLFnJPrtfHTvjUloB81wXo3OXqZHF0mR-8nR98UK31kvaM_aWKLKRdxGFz6H_tJ19vFFbwvAXcrkS2nnCnSSIYJl7R8_AUzQ-D7 |
CitedBy_id | crossref_primary_10_3390_nano13020319 crossref_primary_10_1126_sciadv_add0697 crossref_primary_10_1039_D4RA00324A crossref_primary_10_1126_scirobotics_adk6903 crossref_primary_10_1021_acs_jpclett_4c02278 crossref_primary_10_1002_admt_202302043 crossref_primary_10_1016_j_isci_2022_104727 crossref_primary_10_1021_acsomega_3c00440 crossref_primary_10_1039_D3EE00646H crossref_primary_10_1021_acs_nanolett_3c02119 crossref_primary_10_1039_D2TA08362K crossref_primary_10_1016_j_matt_2023_05_007 crossref_primary_10_1002_aelm_202201271 crossref_primary_10_1002_solr_202300333 crossref_primary_10_1021_acsami_2c12131 crossref_primary_10_1016_j_matt_2023_05_043 crossref_primary_10_1038_s43246_024_00491_7 crossref_primary_10_1016_j_mtener_2025_101867 crossref_primary_10_1021_acsami_3c03804 crossref_primary_10_1080_15599612_2024_2334293 crossref_primary_10_34133_research_0027 crossref_primary_10_1007_s42247_023_00482_3 |
Cites_doi | 10.1021/acsnano.6b05535 10.1021/acs.jpclett.5b02558 10.1038/s41560-017-0016-9 10.1021/acs.nanolett.6b04587 10.1063/1.326355 10.1002/adma.201601603 10.1002/aenm.201702116 10.1021/acs.nanolett.7b00722 10.1021/acsami.9b17241 10.1002/adma.201702902 10.1002/aenm.201301315 10.1002/adma.201305172 10.1021/acsnano.8b09592 10.1016/j.xcrp.2020.100143 10.1063/1.3506702 10.1063/1.4738896 10.1016/j.orgel.2014.04.011 10.1002/adma.202001999 10.1021/acsami.9b14125 10.1038/nphoton.2015.156 10.1021/nn4052309 10.1126/sciadv.1500613 10.1002/admt.201900752 10.1038/s41586-018-0536-x 10.1002/col.10051 10.1021/acs.nanolett.0c00701 10.1126/sciadv.abc4959 10.1038/srep00591 10.1016/j.nanoen.2020.105146 10.1038/s41467-018-05583-w 10.1039/C7EE02185B 10.1038/s41377-019-0234-y 10.1039/C5EE03255E 10.1039/C5EE02194D 10.1364/OME.9.002046 10.1002/adma.201604510 10.1016/j.joule.2019.11.008 10.1126/science.aav7911 10.1364/OME.9.003342 10.1364/OME.9.004178 10.1038/nphoton.2015.175 10.1038/s41560-020-00749-7 10.1002/adfm.202006283 10.1002/smll.201000079 10.1021/jz502367k 10.1126/science.aaa9272 10.1016/j.joule.2018.12.022 10.1007/s40820-018-0235-z |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RYH C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-29602-z |
DatabaseName | CiNii Complete Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_96ffad06480444d4b65b6ab214543627 PMC9001655 35410337 10_1038_s41467_022_29602_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718 funderid: https://doi.org/10.13039/501100003725 – fundername: Institute for basic science (Korea, Republic of), IBS-R006-A1 – fundername: Ministry of Knowledge Economy | Korea Institute of Energy Technology Evaluation and Planning (KETEP) grantid: 20183010014310 funderid: https://doi.org/10.13039/501100007053 – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718 – fundername: Ministry of Knowledge Economy | Korea Institute of Energy Technology Evaluation and Planning (KETEP) grantid: 20183010014310 – fundername: ; – fundername: ; grantid: 20183010014310 – fundername: ; grantid: NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718; NRF-2021M3H4A1A04086552, NRF-2020R1A2C1102718 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM RYH SNYQT SV3 TSG UKHRP 3V. ACSMW AJTQC AAYXX CITATION NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-3afd3a956260d0ba680fe6dd44303da2f7126493cf121ecaa1d9145d978237313 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:29 EDT 2025 Thu Aug 21 18:31:40 EDT 2025 Fri Jul 11 11:26:08 EDT 2025 Wed Aug 13 07:36:57 EDT 2025 Wed Feb 19 02:26:42 EST 2025 Tue Jul 01 04:17:47 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 21 02:38:18 EST 2025 Thu Jun 26 23:22:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-3afd3a956260d0ba680fe6dd44303da2f7126493cf121ecaa1d9145d978237313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4473-6883 0000-0001-8909-2076 0000-0002-6490-2324 0000-0002-4722-1893 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-29602-z |
PMID | 35410337 |
PQID | 2649218088 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_96ffad06480444d4b65b6ab214543627 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9001655 proquest_miscellaneous_2649589082 proquest_journals_2649218088 pubmed_primary_35410337 crossref_citationtrail_10_1038_s41467_022_29602_z crossref_primary_10_1038_s41467_022_29602_z springer_journals_10_1038_s41467_022_29602_z nii_cinii_1874243915830148224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-11 |
PublicationDateYYYYMMDD | 2022-04-11 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature Communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Springer Science and Business Media LLC Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Coburn, Winters (CR44) 1979; 50 Kang (CR18) 2019; 8 Traverse, Pandey, Barr, Lunt (CR19) 2017; 2 Bett (CR46) 2019; 11 Camgöz, Yener, Güvenç (CR52) 2002; 27 Tong (CR3) 2019; 364 Xing (CR9) 2021; 31 Eperon (CR15) 2015; 6 Lee (CR12) 2017; 29 Mescher (CR23) 2014; 15 Lunt (CR24) 2012; 101 Yeom (CR50) 2020; 77 Kim (CR40) 2019; 11 Chen (CR51) 2019; 11 Kim (CR1) 2012; 2 Park (CR38) 2018; 561 Rolston (CR36) 2018; 8 CR47 Lee (CR20) 2020; 1 Yi (CR43) 2016; 9 Yoo (CR48) 2019; 9 Wu (CR16) 2017; 17 Gomard (CR49) 2010; 108 Wehrenfenning (CR4) 2014; 26 Gu (CR29) 2016; 28 Kim, Yoo, Ko, Kim, Song (CR41) 2019; 9 Kim, Lim, Lee (CR45) 2016; 9 He (CR8) 2017; 29 Leem (CR39) 2014; 4 Zou (CR32) 2020; 20 Song, Jang, Yu, Lee (CR37) 2010; 6 Wang (CR11) 2019; 5 CR13 Fang (CR5) 2015; 9 Watson, Rolston, Printz, Dauskardt (CR35) 2017; 10 Yang (CR2) 2015; 348 Eperon, Burlakov, Goriely, Snaith (CR14) 2014; 8 Wang (CR30) 2016; 10 Jang (CR34) 2021; 6 Lin, Armin, Burn, Meredith (CR6) 2015; 9 Waleed (CR28) 2017; 17 Lin (CR26) 2019; 13 Yang, Liu, Lunt (CR21) 2019; 3 Alias (CR31) 2016; 7 CR22 Harwell (CR27) 2019; 13 Munoz (CR42) 2019; 9 Lee (CR17) 2020; 4 Park (CR33) 2018; 9 Wang (CR10) 2020; 32 Du (CR7) 2020; 6 Wang (CR25) 2015; 1 D Xing (29602_CR9) 2021; 31 Y-W Jang (29602_CR34) 2021; 6 Q Lin (29602_CR6) 2015; 9 H Wang (29602_CR30) 2016; 10 JW Leem (29602_CR39) 2014; 4 P Munoz (29602_CR42) 2019; 9 GE Eperon (29602_CR14) 2014; 8 C Wehrenfenning (29602_CR4) 2014; 26 DH Kim (29602_CR41) 2019; 9 J Harwell (29602_CR27) 2019; 13 RR Lunt (29602_CR24) 2012; 101 N Rolston (29602_CR36) 2018; 8 JS Du (29602_CR7) 2020; 6 W Lee (29602_CR12) 2017; 29 MS Alias (29602_CR31) 2016; 7 YA Wang (29602_CR11) 2019; 5 JW Coburn (29602_CR44) 1979; 50 K Lee (29602_CR20) 2020; 1 M Kim (29602_CR40) 2019; 11 CJ Traverse (29602_CR19) 2017; 2 B-W Park (29602_CR33) 2018; 9 29602_CR22 G Wang (29602_CR25) 2015; 1 AJ Bett (29602_CR46) 2019; 11 WS Yang (29602_CR2) 2015; 348 L Gu (29602_CR29) 2016; 28 C Yang (29602_CR21) 2019; 3 J Wu (29602_CR16) 2017; 17 X He (29602_CR8) 2017; 29 HR Yeom (29602_CR50) 2020; 77 D Chen (29602_CR51) 2019; 11 Y Fang (29602_CR5) 2015; 9 29602_CR47 SB Kang (29602_CR18) 2019; 8 J Mescher (29602_CR23) 2014; 15 BL Watson (29602_CR35) 2017; 10 29602_CR13 N Camgöz (29602_CR52) 2002; 27 S Park (29602_CR38) 2018; 561 C Yi (29602_CR43) 2016; 9 YJ Yoo (29602_CR48) 2019; 9 K Wang (29602_CR10) 2020; 32 G Gomard (29602_CR49) 2010; 108 A Waleed (29602_CR28) 2017; 17 K Lee (29602_CR17) 2020; 4 YM Song (29602_CR37) 2010; 6 GE Eperon (29602_CR15) 2015; 6 H Kim (29602_CR45) 2016; 9 J Tong (29602_CR3) 2019; 364 H-S Kim (29602_CR1) 2012; 2 C-H Lin (29602_CR26) 2019; 13 C Zou (29602_CR32) 2020; 20 |
References_xml | – volume: 10 start-page: 10921 year: 2016 end-page: 10928 ident: CR30 article-title: Nanoimprinted perovskite nanograting photodetector with improved efficiency publication-title: ACS Nano doi: 10.1021/acsnano.6b05535 – ident: CR22 – volume: 7 start-page: 137 year: 2016 end-page: 142 ident: CR31 article-title: Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02558 – volume: 2 start-page: 849 year: 2017 end-page: 860 ident: CR19 article-title: Emergence of highly transparent photovoltaics for distributed applications publication-title: Nat. Energy doi: 10.1038/s41560-017-0016-9 – volume: 17 start-page: 523 year: 2017 end-page: 530 ident: CR28 article-title: Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates publication-title: Nano lett. doi: 10.1021/acs.nanolett.6b04587 – volume: 50 start-page: 3189 year: 1979 end-page: 3196 ident: CR44 article-title: Ion‐ and electron‐assisted gas‐surface chemistry—An important effect in plasma etching publication-title: J. Appl. Phys. doi: 10.1063/1.326355 – volume: 28 start-page: 9713 year: 2016 end-page: 9721 ident: CR29 article-title: 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires publication-title: Adv. Mater. doi: 10.1002/adma.201601603 – volume: 8 start-page: 1702116 year: 2018 ident: CR36 article-title: Effect of cation composition on the mechanical stability of perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702116 – volume: 17 start-page: 3563 year: 2017 end-page: 3569 ident: CR16 article-title: Pinhole-free hybrid perovskite film with arbitrarily-shaped micro-patterns for functional optoelectronic devices publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00722 – volume: 11 start-page: 45796 year: 2019 end-page: 45804 ident: CR46 article-title: Semi-transparent perovskite solar cells with ITO directly sputtered on Spiro-OMeTAD for tandem applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17241 – volume: 29 start-page: 1702902 year: 2017 ident: CR12 article-title: High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array publication-title: Adv. Mater. doi: 10.1002/adma.201702902 – volume: 4 start-page: 1301315 year: 2014 ident: CR39 article-title: Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned PDMS films publication-title: Adv. Energy Maters. doi: 10.1002/aenm.201301315 – volume: 26 start-page: 1584 year: 2014 end-page: 1589 ident: CR4 article-title: High charge carrier mobilities and lifetimes in organolead trihalide perovskites publication-title: Adv. Mater. doi: 10.1002/adma.201305172 – volume: 13 start-page: 3823 year: 2019 end-page: 3829 ident: CR27 article-title: Patterning multicolor hybrid perovskite films via top-down lithography publication-title: ACS Nano doi: 10.1021/acsnano.8b09592 – volume: 1 start-page: 100143 year: 2020 ident: CR20 article-title: The development of transparent photovoltaics publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100143 – volume: 108 start-page: 123102 year: 2010 ident: CR49 article-title: Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.3506702 – volume: 101 start-page: 043902 year: 2012 ident: CR24 article-title: Theoretical limits for visibly transparent photovoltaics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4738896 – volume: 15 start-page: 1476 year: 2014 end-page: 1480 ident: CR23 article-title: Design rules for semi-transparent organic tandem solar cells for window integration publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.04.011 – volume: 32 start-page: 2001999 year: 2020 ident: CR10 article-title: Wettability-guided screen printing of perovskite microlaser arrays for current-driven displays publication-title: Adv. Maters. doi: 10.1002/adma.202001999 – volume: 11 start-page: 41668 year: 2019 end-page: 41675 ident: CR51 article-title: Dynamic tunable color display based on metal–insulator–metal resonator with polymer brush insulator layer as signal transducer publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.9b14125 – volume: 9 start-page: 679 year: 2015 end-page: 686 ident: CR5 article-title: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.156 – volume: 8 start-page: 591 year: 2014 end-page: 598 ident: CR14 article-title: Neutral color semitransparent microstructured perovskite solar cells publication-title: ACS Nano doi: 10.1021/nn4052309 – volume: 1 start-page: e1500613 year: 2015 ident: CR25 article-title: Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics publication-title: Sci. Adv. doi: 10.1126/sciadv.1500613 – volume: 5 start-page: 1900752 year: 2019 ident: CR11 article-title: Spin-on-patterning of Sn–Pb perovskite photodiodes on IGZO transistor arrays for fast active-matrix near-infrared imaging publication-title: Adv. Maters. Technol. doi: 10.1002/admt.201900752 – volume: 561 start-page: 516 year: 2018 end-page: 521 ident: CR38 article-title: Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics publication-title: Nature doi: 10.1038/s41586-018-0536-x – ident: CR47 – volume: 27 start-page: 199 year: 2002 end-page: 207 ident: CR52 article-title: Effects of hue, saturation, and brightness on preference publication-title: Color Res. Appl. doi: 10.1002/col.10051 – volume: 20 start-page: 3710 year: 2020 end-page: 3717 ident: CR32 article-title: Photolithographic patterning of perovskite thin films for multicolor display applications publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00701 – volume: 6 start-page: eabc4959 year: 2020 ident: CR7 article-title: Halide perovskite nanocrystal arrays: Multiplexed synthesis and size-dependent emission publication-title: Sci. Adv. doi: 10.1126/sciadv.abc4959 – volume: 2 year: 2012 ident: CR1 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 13 start-page: 1168 year: 2019 end-page: 1176 ident: CR26 article-title: Orthogonal lithography for halide perovskite optoelectronic nanodevices publication-title: ACS Nano – volume: 3 start-page: 1 year: 2019 end-page: 6 ident: CR21 article-title: How to accurately report transparent luminescent solar concentrators publication-title: Joule – volume: 11 start-page: 1 year: 2019 end-page: 10 ident: CR40 article-title: Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells publication-title: Nano-Micro Lett. – volume: 77 start-page: 105146 year: 2020 ident: CR50 article-title: Aesthetic and colorful: Dichroic polymer solar cells using high-performance Fabry-Perot etalon electrodes with a unique Sb2O3 cavity publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105146 – volume: 9 year: 2018 ident: CR33 article-title: Understanding how excess lead iodide precursor improves halide perovskite solar cell performance publication-title: Nat. Commun. doi: 10.1038/s41467-018-05583-w – volume: 10 start-page: 2500 year: 2017 end-page: 2508 ident: CR35 article-title: Scaffold-reinforced perovskite compound solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02185B – volume: 8 start-page: 1 year: 2019 end-page: 13 ident: CR18 article-title: Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0234-y – volume: 9 start-page: 656 year: 2016 end-page: 662 ident: CR43 article-title: Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03255E – volume: 9 start-page: 12 year: 2016 end-page: 30 ident: CR45 article-title: Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02194D – volume: 9 start-page: 2046 year: 2019 end-page: 2056 ident: CR42 article-title: Double metal layer lift-off process for the robust fabrication of plasmonic nano-antenna arrays on dielectric substrates using e-beam lithography publication-title: Optical Mater. Express doi: 10.1364/OME.9.002046 – volume: 29 start-page: 1604510 year: 2017 ident: CR8 article-title: Patterning multicolored microdisk laser arrays of cesium lead halide perovskite publication-title: Adv. Mater. doi: 10.1002/adma.201604510 – volume: 4 start-page: 235 year: 2020 end-page: 246 ident: CR17 article-title: Neutral-colored transparent crystalline silicon photovoltaics publication-title: Joule doi: 10.1016/j.joule.2019.11.008 – volume: 364 start-page: 475 year: 2019 end-page: 479 ident: CR3 article-title: Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells publication-title: Science doi: 10.1126/science.aav7911 – volume: 9 start-page: 3342 year: 2019 end-page: 3351 ident: CR41 article-title: Standard red green blue (sRGB) color representation with a tailored dual-resonance mode in metal/dielectric stacks publication-title: Opt. Mater. Express doi: 10.1364/OME.9.003342 – volume: 9 start-page: 4178 year: 2019 end-page: 4186 ident: CR48 article-title: Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials publication-title: Opt. Mater. Express doi: 10.1364/OME.9.004178 – volume: 9 start-page: 687 year: 2015 end-page: 694 ident: CR6 article-title: Filterless narrowband visible photodetectors publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.175 – ident: CR13 – volume: 6 start-page: 63 year: 2021 end-page: 71 ident: CR34 article-title: Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth publication-title: Nat. Energy doi: 10.1038/s41560-020-00749-7 – volume: 31 start-page: 2006283 year: 2021 ident: CR9 article-title: Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006283 – volume: 6 start-page: 984 year: 2010 end-page: 987 ident: CR37 article-title: Bioinspired parabola subwavelength structures for improved broadband antireflection publication-title: Small doi: 10.1002/smll.201000079 – volume: 6 start-page: 129 year: 2015 end-page: 138 ident: CR15 article-title: Efficient, Semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502367k – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: CR2 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science doi: 10.1126/science.aaa9272 – volume: 29 start-page: 1702902 year: 2017 ident: 29602_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201702902 – volume: 11 start-page: 45796 year: 2019 ident: 29602_CR46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b17241 – ident: 29602_CR22 – volume: 9 start-page: 679 year: 2015 ident: 29602_CR5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.156 – volume: 4 start-page: 235 year: 2020 ident: 29602_CR17 publication-title: Joule doi: 10.1016/j.joule.2019.11.008 – volume: 77 start-page: 105146 year: 2020 ident: 29602_CR50 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105146 – volume: 6 start-page: 63 year: 2021 ident: 29602_CR34 publication-title: Nat. Energy doi: 10.1038/s41560-020-00749-7 – volume: 13 start-page: 3823 year: 2019 ident: 29602_CR27 publication-title: ACS Nano doi: 10.1021/acsnano.8b09592 – volume: 10 start-page: 10921 year: 2016 ident: 29602_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.6b05535 – volume: 8 start-page: 1 year: 2019 ident: 29602_CR18 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0234-y – volume: 9 start-page: 4178 year: 2019 ident: 29602_CR48 publication-title: Opt. Mater. Express doi: 10.1364/OME.9.004178 – volume: 17 start-page: 3563 year: 2017 ident: 29602_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00722 – ident: 29602_CR13 – volume: 1 start-page: e1500613 year: 2015 ident: 29602_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500613 – volume: 9 start-page: 3342 year: 2019 ident: 29602_CR41 publication-title: Opt. Mater. Express doi: 10.1364/OME.9.003342 – volume: 32 start-page: 2001999 year: 2020 ident: 29602_CR10 publication-title: Adv. Maters. doi: 10.1002/adma.202001999 – volume: 29 start-page: 1604510 year: 2017 ident: 29602_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201604510 – volume: 9 year: 2018 ident: 29602_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05583-w – volume: 28 start-page: 9713 year: 2016 ident: 29602_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201601603 – volume: 8 start-page: 1702116 year: 2018 ident: 29602_CR36 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702116 – volume: 3 start-page: 1 year: 2019 ident: 29602_CR21 publication-title: Joule doi: 10.1016/j.joule.2018.12.022 – volume: 4 start-page: 1301315 year: 2014 ident: 29602_CR39 publication-title: Adv. Energy Maters. doi: 10.1002/aenm.201301315 – volume: 561 start-page: 516 year: 2018 ident: 29602_CR38 publication-title: Nature doi: 10.1038/s41586-018-0536-x – volume: 6 start-page: 129 year: 2015 ident: 29602_CR15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502367k – volume: 8 start-page: 591 year: 2014 ident: 29602_CR14 publication-title: ACS Nano doi: 10.1021/nn4052309 – volume: 20 start-page: 3710 year: 2020 ident: 29602_CR32 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00701 – volume: 9 start-page: 687 year: 2015 ident: 29602_CR6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.175 – volume: 11 start-page: 1 year: 2019 ident: 29602_CR40 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0235-z – volume: 15 start-page: 1476 year: 2014 ident: 29602_CR23 publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.04.011 – volume: 2 year: 2012 ident: 29602_CR1 publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 31 start-page: 2006283 year: 2021 ident: 29602_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006283 – volume: 364 start-page: 475 year: 2019 ident: 29602_CR3 publication-title: Science doi: 10.1126/science.aav7911 – volume: 50 start-page: 3189 year: 1979 ident: 29602_CR44 publication-title: J. Appl. Phys. doi: 10.1063/1.326355 – volume: 13 start-page: 1168 year: 2019 ident: 29602_CR26 publication-title: ACS Nano – volume: 9 start-page: 12 year: 2016 ident: 29602_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02194D – volume: 27 start-page: 199 year: 2002 ident: 29602_CR52 publication-title: Color Res. Appl. doi: 10.1002/col.10051 – ident: 29602_CR47 – volume: 348 start-page: 1234 year: 2015 ident: 29602_CR2 publication-title: Science doi: 10.1126/science.aaa9272 – volume: 6 start-page: eabc4959 year: 2020 ident: 29602_CR7 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc4959 – volume: 17 start-page: 523 year: 2017 ident: 29602_CR28 publication-title: Nano lett. doi: 10.1021/acs.nanolett.6b04587 – volume: 9 start-page: 656 year: 2016 ident: 29602_CR43 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03255E – volume: 5 start-page: 1900752 year: 2019 ident: 29602_CR11 publication-title: Adv. Maters. Technol. doi: 10.1002/admt.201900752 – volume: 26 start-page: 1584 year: 2014 ident: 29602_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201305172 – volume: 6 start-page: 984 year: 2010 ident: 29602_CR37 publication-title: Small doi: 10.1002/smll.201000079 – volume: 1 start-page: 100143 year: 2020 ident: 29602_CR20 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2020.100143 – volume: 10 start-page: 2500 year: 2017 ident: 29602_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02185B – volume: 2 start-page: 849 year: 2017 ident: 29602_CR19 publication-title: Nat. Energy doi: 10.1038/s41560-017-0016-9 – volume: 9 start-page: 2046 year: 2019 ident: 29602_CR42 publication-title: Optical Mater. Express doi: 10.1364/OME.9.002046 – volume: 11 start-page: 41668 year: 2019 ident: 29602_CR51 publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.9b14125 – volume: 101 start-page: 043902 year: 2012 ident: 29602_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4738896 – volume: 7 start-page: 137 year: 2016 ident: 29602_CR31 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02558 – volume: 108 start-page: 123102 year: 2010 ident: 29602_CR49 publication-title: J. Appl. Phys. doi: 10.1063/1.3506702 |
SSID | ssib045319091 ssib045319092 ssib045319082 ssib045319083 ssib045319084 ssj0000391844 |
Score | 2.5045037 |
Snippet | Perovskite microcells have a great potential to be applied to diverse types of optoelectronic devices including light-emitting diodes, photodetectors, and... Perovskite microcells can be applied to various types of optoelectronic devices. Here, authors report high efficiency perovskite microcells fabricated using... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer nii |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1946 |
SubjectTerms | 142/126 639/301/299/946 639/301/930/543 Color Crack propagation Efficiency Energy conversion efficiency Fabrication Humanities and Social Sciences Interfaces Light emitting diodes multidisciplinary Optoelectronic devices Perovskites Photovoltaic cells Photovoltaics Propagation Q Science Science (multidisciplinary) Solar cells Swelling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CLTISN7C6fiR2joCoKiQQByr1ZvkVWAHZarOlan99Z5zs0uV54bKK1o4ymRnPwxl_A_CMgoDUtoFnoyLXylvurek4GkufmjpJU-AY3r1vDo_02-P6-EqrL6oJG-GBR8btt03X-YSO0xKyWdKhqUPjAwFsazS-5Rw5-rwryVSxwarF1EVPp2Rmyu4PutgEKl6XGLVLfrHliQpgP_qXfj7_Xaz5a8nkT99Nizs6uAU3pziSvRzpvw3Xcn8Hro-dJc_vQvyQl4vvA23Nsm9Uc0cb9APrfChtgXJiVPD-iQ20d4cXHFNzFHJicenjF4aUoaEpQmMY1TKCtl7i6ECJMDvDyYuz4R4cHbz5-PqQT_0UeMSwYsWV75LymBBhDpNmwTd21uUmJa3RjyUvOyMwPGpV7IQUOXovUotsTphoSmWUUPdhp1_0-SEwKYMyyQeCntE-mzYqIaOY2Zgx3zahArHmrYsT2Dj1vPjqykdvZd0oD4fycEUe7qKC55t7Tkaojb_OfkUi28wkmOzyByqPm5TH_Ut5KthDgSOF9EvdCSUdRK4t5ZlUXlvB7loV3LS2B0c8wsAIzXMFTzfDuCpJkr7Pi9NxTm2pnXwFD0bN2VCqao3vpPDhZkuntl5le6Sffy7I3y1F6HVdwYu19v0g68-sevQ_WPUYbkhaPARzKXZhZ7U8zXsYj63Ck7L0LgH5lCyT priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gRUbiBlbXj8TOCQFiqZBAHKjUm-VXygpISrKlor-eGSebann0sorWXq3teY8n3xDyDJ2AWNeeJS0DU9IZ5oxuGChLF6syCp3hGD58rA4O1fuj8mhKuA1TWeVGJ2ZFHbuAOfJ9MNw1mCMQipcnPxh2jcLb1amFxlVyjYOlwZIus3w351gQ_dwoNb0rs5Bmf1BZM2AJuwDfXbDzLXuUYfvByrSr1b88zr8LJ_-4Pc1GaXmL3Jy8SfpqJP9tciW1d8j1sb_kr7skfEp993PABC39jpV3mKYfaON8bg6UIsWy92M6YAYPHhgE6EDqSEPvwlcKKwN1k0lHwbelCHDdw-iA4TA9g8nd2XCPHC7ffn5zwKauCiyAc7Fm0jVROgiLIJKJC-8qs2hSFaNSYM2iE43meNYyNFzwFJzjseYKCKoR10ZyeZ_stF2bHhIqhJc6Oo8ANMolXQfJReALExJE3doXhG_O1oYJchw7X3yz-epbGjvSwwI9bKaHPS_I8_k3JyPgxqWzXyPJ5pkIlp2_6PpjO8meraumcRF8L4PgeFH5qvSV84jRrsB-64LsAcFhhfiJPQoFvo5cGow2sci2ILsbVrCThA_2gh8L8nQeBtlESro2dafjnNJgU_mCPBg5Z16pLBXsScKf6y2e2trK9ki7-pLxv2v008uyIC823HexrP8f1aPLd_GY3BAoFghjyXfJzro_TXvgb639kyxUvwGoBCUr priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qi-CL-G1qKyv4psHbj2Q3j6dYyoEiaKFvy36lHmoiybXF_vXObD7ktAq-hCO74TY7Mzu_2cz-hpDnCAJCVbk8KuFzKazOrVZ1DoulDWURuEp0DO_el8cncnVanO4QPp2FSUn7idIyLdNTdtirXiaTxtxzDqCb51c3yB5StYNu7y2Xq4-reWcFOc-1lOMJmYXQ1zy85YUSWT_4lma9vg5n_pku-ds30-SKju6Q2yOGpMth1HfJTmzukZtDVckf94n_ELv2osdtWfoN8-1wc76ntXWpJFAMFJPdz2iP-3bwI4ewHAQcqO-s_0JhZLDIJIFRQLQUaa07aO0xCKaX0Lm97B-Qk6O3n94c52MthdwDpNjkwtZBWAiGIH4JC2dLvahjGYKU4MOC5bViAI0q4WvGWfTWslAxCWJUyGYjmHhIdpu2iY8J5dwJFaxD2hlpo6q8YNyzhfYRYm3lMsKmuTV-JBrHehdfTfrgLbQZ5GFAHibJw1xl5MX8zPeBZuOfvV-jyOaeSJGdbrTdmRlVxlRlXdsAiEsjJV6QrixcaR0ys0vw2iojhyBwGCFesTIhx0PIhcYYE1NrM3IwqYIZ7bo3OEcAimBpzsizuRksEiVpm9ieD30KjaXkM_Jo0Jx5pKKQ8E4C_lxt6dTWq2y3NOvPifW7QnReFBl5OWnfr2H9far2_6_7E3KLo5kgmSU7ILub7jweAurauKejmf0ESbAkzA priority: 102 providerName: Springer Nature |
Title | Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows |
URI | https://cir.nii.ac.jp/crid/1874243915830148224 https://link.springer.com/article/10.1038/s41467-022-29602-z https://www.ncbi.nlm.nih.gov/pubmed/35410337 https://www.proquest.com/docview/2649218088 https://www.proquest.com/docview/2649589082 https://pubmed.ncbi.nlm.nih.gov/PMC9001655 https://doaj.org/article/96ffad06480444d4b65b6ab214543627 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED_tQ0i8IL4JbJWReINAYzux84BQV61MlTZNQKW-RU6cjMJIIOkY21_PnZO26ijwktaJq9q-u9zv_PE7gBcEAmwcp36uROZLYbRvtCp8fFkaG4WWK0fHcHwSHU3keBpOt2CR7qgbwGZjaEf5pCb1-etfP67eocG_bY-M6zeNdOZO-9I5AnLuX2_DLnomRRkNjldwX5K-9VdcLl1Z3CjL9fKKS6Yr8-UcDrGraym7szibm7Lm71xaAPRi5Wy2CdH-uTHzxuqsc3qju3CnQ6ts0KrXPdj6Yu7DrTZ_5dUDyE7zuvrZ0AQw-0Y7-2gZoGGFSV3yodwy2lZ_xhqaIcQv_qy0qEqWZbXJvjJsGb7OnGowxM6MCLRrfNqQTNglVq4um4cwGR1-Gh75XdYGP0PwMveFKawwGHZhpGT7qYl0v8gja6VEb2kNL1SAICwWWRHwIM-MCWwcSFQYRbw5IhCPYKesyvwJMM5ToaxJieBGmlzFmQh4FvR1lmNUr1IPgsXYJllHaU6ZNc4Tt7QudNLKI0F5JE4eybUHL5e_-d4Sevyz9gGJbFmTyLjdjao-SzrbTuKoKIxFbKeJfM_KNArTyKTEAS8RHygP9lHg2EK6Ug5ETsedQ03RLG3i9WBvoQrJwgASGiOEX-gEPHi-fIy2T5I0ZV5dtHVCTSrtweNWc5YtFaHEPgn8c7WmU2tdWX9Szj47fvGY4oAw9ODVQvtWzfr7UD39Ty-fwW1OdkE8mcEe7Mzri3wfAd087cG2miq86tH7HuwOBuOPY_w8ODw5_YB3h9Gw56ZKes6afwPoST9e |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AC0aCE0Sd2M52QIhtmNJFHFqpN-PYThkBSUmmjNofxW_kPSeZalh662UUjT0T22-3n78H8JScAJvnRehSYUIpdBbqLC1DVJbaJrHlqYdj2NlNJvvy40F8sAK_hrswlFY56ESvqG1taI98Aw13juYIheLV0Y-QqkbR6epQQqNjiy13MseQrX25-Q7p-4zz8fu9t5OwryoQGjSus1Do0gqNYQF68nZU6CQblS6xVkrU5lbzMo3oXcKUEY-c0TqyeSRxQinhuohI4P9egstSoCWnm-njD4s9HUJbz6Ts7-aMRLbRSq-JKGWeY6zAw9Ml--fLBKBVq6bTf3m4fydq_nFa643g-AZc771X9rpjt5uw4qpbcKWrZ3lyG8wn19Q_W9oQZt8p04-OBVpW6sIXI3KWUZr9IWtpxxAfwmllkbUsM402XxmODNWbZxWGvjQjQO0GW1sKv9kcO9fz9g7sX8h634XVqq7cfWCcFyK1uiDAG6ldmhsRcRONMuMwyk-LAKJhbZXpIc6p0sY35Y_aRaY6eiikh_L0UKcBPF_85qgD-Di39xsi2aIngXP7L-rmUPWyrvKkLLVFXy8jMD4riyQuEl0QJrxEfyENYB0JjiOkT6qJyOn6c5xRdEtJvQGsDaygeo3SqjP-D-DJohl1AVFSV64-7vrEGRWxD-BexzmLkYpY4pwEvjxd4qmlqSy3VNMvHm88p7ggjgN4MXDf2bD-v1QPzp_FY7g62dvZVtubu1sP4RonESEIzWgNVmfNsVtHX29WPPICxuDzRUv0byQjYPU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO4ENjASPEHUxnZuDwgxtmpjUFWISXsLju2MCkhG0lFtP41fxzlO0qlc9raXKqrdxva528ffAXhGToBJ09y3sdC-FCrxVRIXPipLZaLQ8NjBMXyYRLsH8t1heLgGv_q7MJRW2etEp6hNpWmPfIiGO0VzhEIxLLq0iOn2-PXxD58qSNFJa19Oo2WRfXu6wPCtebW3jbR-zvl459PbXb-rMOBrNLRzX6jCCIUhAnr1ZpSrKBkVNjJGStTsRvEiDui9QhcBD6xWKjBpIHFyMWG8iEDg_16B9ZiiogGsb-1Mph-XOzyEvZ5I2d3UGYlk2EinlyiBnmPkwP2zFWvoigagjStns3_5u3-nbf5xdutM4vgm3Oh8WfamZb5bsGbL23C1rW55egf01NbVz4a2h9l3yvujQ4KGFSp3pYmsYZR0f8Qa2j_EB39WGmQ0w3St9FeGI0Nl5xiHoWfNCF67xtaGgnG2wM7VorkLB5ey4vdgUFalfQCM81zERuUEfyOVjVMtAq6DUaItxvxx7kHQr22mO8BzqrvxLXMH7yLJWnpkSI_M0SM78-DF8jfHLdzHhb23iGTLngTV7b6o6qOsk_wsjYpCGfT8EoLmMzKPwjxSOSHES_QeYg82keA4QvqkComcLkOHCcW6lOLrwUbPClmnX5rsXBo8eLpsRs1AlFSlrU7aPmFCJe09uN9yznKkIpQ4J4Evj1d4amUqqy3l7ItDH08pSghDD1723Hc-rP8v1cOLZ_EErqE0Z-_3JvuP4DonCSE8zWADBvP6xG6i4zfPH3cSxuDzZQv1b85FZoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+microcells+fabricated+using+swelling-induced+crack+propagation+for+colored+solar+windows&rft.jtitle=Nature+Communications&rft.au=Woongchan+Lee&rft.au=Young+Jin+Yoo&rft.au=Jinhong+Park&rft.au=Joo+Hwan+Ko&rft.date=2022-04-11&rft.pub=Springer+Science+and+Business+Media+LLC&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-29602-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |