Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency

Highlights The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flex...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 44 - 14
Main Authors Wan, Juanyong, Xia, Yonggao, Fang, Junfeng, Zhang, Zhiguo, Xu, Bingang, Wang, Jinzhao, Ai, Ling, Song, Weijie, Hui, Kwun Nam, Fan, Xi, Li, Yongfang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
AbstractList Highlights The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
HighlightsThe PEDOT:PSS flexible electrodes with a unique CF3SO3H treatment exhibited high electrical characteristics and stability.An energy level tuning effect was induced to create a suitable work function.Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability.Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF SO H). Through a low-concentration and low-temperature CF SO H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq (minimum value: 32 Ω sq ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq-1 (minimum value: 32 Ω sq-1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq-1 (minimum value: 32 Ω sq-1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.
ArticleNumber 44
Author Li, Yongfang
Zhang, Zhiguo
Xu, Bingang
Fan, Xi
Wang, Jinzhao
Ai, Ling
Hui, Kwun Nam
Wan, Juanyong
Fang, Junfeng
Song, Weijie
Xia, Yonggao
Author_xml – sequence: 1
  givenname: Juanyong
  surname: Wan
  fullname: Wan, Juanyong
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 2
  givenname: Yonggao
  surname: Xia
  fullname: Xia, Yonggao
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 3
  givenname: Junfeng
  surname: Fang
  fullname: Fang, Junfeng
  email: jffang@phy.ecnu.edu.cn
  organization: School of Physics and Electronics Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University
– sequence: 4
  givenname: Zhiguo
  surname: Zhang
  fullname: Zhang, Zhiguo
  email: zgzhangwhu@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology
– sequence: 5
  givenname: Bingang
  surname: Xu
  fullname: Xu, Bingang
  organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University
– sequence: 6
  givenname: Jinzhao
  surname: Wang
  fullname: Wang, Jinzhao
  organization: Department of Material Science and Engineering, Hubei University
– sequence: 7
  givenname: Ling
  surname: Ai
  fullname: Ai, Ling
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 8
  givenname: Weijie
  surname: Song
  fullname: Song, Weijie
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 9
  givenname: Kwun Nam
  surname: Hui
  fullname: Hui, Kwun Nam
  organization: Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau
– sequence: 10
  givenname: Xi
  surname: Fan
  fullname: Fan, Xi
  email: fanxi@nimte.ac.cn
  organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
– sequence: 11
  givenname: Yongfang
  surname: Li
  fullname: Li, Yongfang
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138225$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALCEkLin-jnNBqlZbqFSpSJSz5TiTrSuvvdgJ0H-PQ0qhPezBsuV55p3x-H1ZHYQYoKpeE3xKMG4-ZI4VxTWeFxZS1uxZdUSJwLUQghyUMyOklg2Wh9VJzq7DgvKGNoK_qA4ZJ0xRKo4q_zX6aXQx1F9StJAz9Og6mZB3JkEY0SqGfrKjCxu09mDHFHvIaIgJnXv45ToP6CptTHAWFSWT0Aq8z-inG28QkaeSvEPrYXDWQbB3r6rng_EZTu734-rb-fp69bm-vPp0sTq7rK1kYqyJlQM3g8BUQY87YXpjWtFYMkgujAEpFWOALR4sltJaTIHzgQpDbYmojh1XF4tuH82t3iW3NelOR-P0n4uYNtqk0VkPumg02NCOdIRwKnnbd8KCbKXglBPBitbHRWs3dVvobRlKMv6R6ONIcDd6E39oRVQjGC0C7-8FUvw-QR711mVbpmQCxClrWiox0Yq2KejbJ-htnFIooyoUU6qlhdtL8UbMblAz9eb_vh8a_vv1BaALYFPMOcHwgBCsZ4vpxWIaz2u2mJ6noZ4kWTea2T_l7c7vT2VLai51wgbSv7b3ZP0GSHfjfQ
CitedBy_id crossref_primary_10_1016_j_cej_2023_146038
crossref_primary_10_1002_ange_202208815
crossref_primary_10_1021_acsami_4c02319
crossref_primary_10_1002_solr_202100830
crossref_primary_10_1021_acsaem_3c02001
crossref_primary_10_1002_adma_202110276
crossref_primary_10_1016_j_esci_2024_100305
crossref_primary_10_1021_acs_chemrev_3c00305
crossref_primary_10_1039_D3QM01349A
crossref_primary_10_1021_acsami_1c18866
crossref_primary_10_1016_j_cej_2022_136270
crossref_primary_10_1002_smll_202201628
crossref_primary_10_1016_j_apenergy_2024_123397
crossref_primary_10_1002_advs_202405099
crossref_primary_10_1021_acsami_4c19958
crossref_primary_10_1039_D2TA09874A
crossref_primary_10_1002_aenm_202102526
crossref_primary_10_3389_fchem_2021_807538
crossref_primary_10_1002_adma_202406879
crossref_primary_10_1002_adma_202309379
crossref_primary_10_1002_adfm_202411815
crossref_primary_10_1002_solr_202400206
crossref_primary_10_1360_SSC_2022_0126
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1016_j_carbon_2022_06_007
crossref_primary_10_1002_advs_202402158
crossref_primary_10_1166_jno_2021_2983
crossref_primary_10_1002_adma_202200044
crossref_primary_10_1039_D1TC03434K
crossref_primary_10_1021_acsami_3c09984
crossref_primary_10_1002_aenm_202200129
crossref_primary_10_1039_D3MA00711A
crossref_primary_10_1002_smll_202406773
crossref_primary_10_1016_j_flatc_2024_100627
crossref_primary_10_1002_aenm_202100875
crossref_primary_10_3390_polym14132735
crossref_primary_10_1002_anie_202207397
crossref_primary_10_1002_solr_202300342
crossref_primary_10_1016_j_wees_2024_03_001
crossref_primary_10_1002_adfm_202203641
crossref_primary_10_1016_j_orgel_2022_106438
crossref_primary_10_1016_j_mtcomm_2024_110018
crossref_primary_10_1002_adfm_202414317
crossref_primary_10_1039_D4TA07622B
crossref_primary_10_1002_adfm_202200694
crossref_primary_10_1002_anie_202211600
crossref_primary_10_1002_marc_202200049
crossref_primary_10_1016_j_rser_2024_114740
crossref_primary_10_1039_D3TA03213B
crossref_primary_10_1016_j_jechem_2021_04_024
crossref_primary_10_1007_s10854_022_09760_y
crossref_primary_10_1002_adma_202201623
crossref_primary_10_1002_adfm_202417740
crossref_primary_10_1007_s40820_023_01208_0
crossref_primary_10_1016_j_optmat_2023_113870
crossref_primary_10_1109_JPHOTOV_2021_3113317
crossref_primary_10_1002_adom_202302947
crossref_primary_10_1007_s40820_023_01241_z
crossref_primary_10_1016_j_nanoen_2024_110174
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1002_adfm_202417537
crossref_primary_10_1007_s40820_024_01442_0
crossref_primary_10_1007_s40820_023_01057_x
crossref_primary_10_1007_s40843_023_2843_8
crossref_primary_10_1002_ange_202207397
crossref_primary_10_1088_2058_8585_ac32aa
crossref_primary_10_1002_ange_202211600
crossref_primary_10_1002_cey2_579
crossref_primary_10_1039_D2TA08644A
crossref_primary_10_1002_admt_202301810
crossref_primary_10_1002_advs_202105288
crossref_primary_10_1038_s41528_022_00166_8
crossref_primary_10_1002_flm2_30
crossref_primary_10_3390_su17051820
crossref_primary_10_1002_adfm_202306793
crossref_primary_10_1002_anie_202208815
crossref_primary_10_1021_acsami_1c16550
crossref_primary_10_1021_acsami_4c12238
crossref_primary_10_1016_j_matchemphys_2022_126916
crossref_primary_10_1016_j_esci_2022_10_010
crossref_primary_10_1021_acsanm_1c02677
crossref_primary_10_1063_5_0124743
crossref_primary_10_1002_adfm_202214392
crossref_primary_10_1002_adma_202305562
crossref_primary_10_1016_j_orgel_2022_106736
crossref_primary_10_1021_acsami_4c07526
crossref_primary_10_1002_adma_202212236
crossref_primary_10_1002_ente_202100595
crossref_primary_10_1016_j_orgel_2021_106237
crossref_primary_10_1021_acsaem_2c01145
crossref_primary_10_1021_acsami_3c01519
crossref_primary_10_1002_advs_202301585
crossref_primary_10_1021_acs_macromol_1c02111
crossref_primary_10_1007_s11426_024_2079_5
crossref_primary_10_1039_D4TA02282C
Cites_doi 10.1016/j.jpowsour.2009.01.086
10.1002/adom.202000669
10.1021/cm203216m
10.1002/aenm.201701569
10.1038/ncomms7503
10.1021/acs.nanolett.5b02490
10.1038/ncomms10214
10.1038/ncomms9830
10.1073/pnas.1509958112
10.1016/S1369-7021(12)70019-6
10.1021/ma9905674
10.1016/j.joule.2019.01.004
10.1126/science.270.5243.1789
10.1002/adma.201304611
10.1038/s41928-019-0315-1
10.1002/adma.200800338
10.1016/j.joule.2019.06.011
10.1002/adma.201505473
10.1021/acsami.6b01389
10.1016/j.nanoen.2016.08.038
10.1038/539488a
10.1021/acsami.5b03309
10.1023/A:1005197030188
10.1038/NMAT4388
10.1002/adma.201908478
10.1016/j.displa.2013.08.007
10.1002/adfm.201000164
10.1002/adma.201104795
10.1002/adma.201800075
10.1021/acsami.5b03171
10.1126/sciadv.1602076
10.1021/acsami.5b02830
10.1002/adfm.201002290
10.1002/adfm.200400016
10.1038/s41467-020-16509-w
10.1002/aelm.201800654
10.1038/d41586-018-06788-1
10.1002/adma.201601197
10.1002/advs.201900813
10.1021/cm070398z
10.1039/C1JM12954F
10.1016/j.solmat.2007.04.031
10.1002/adma.201502947
10.1002/aelm.201500121
10.1002/adma.201205337
10.1002/adfm.201200225
10.1063/1.96937
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00566-3
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_0fc70a2b1b1142649db5ce6965424153
PMC8187532
34138225
10_1007_s40820_020_00566_3
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c635t-1c6f4af5028ed0b5adaa957c1f645aae66833e0c0fc066cc02e44f25a2c6838b3
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:30:11 EDT 2025
Thu Aug 21 17:44:42 EDT 2025
Fri Jul 11 03:40:42 EDT 2025
Wed Aug 13 11:32:27 EDT 2025
Wed Aug 13 06:26:14 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Tue Jul 01 00:55:45 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Fri Feb 21 02:44:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Trifluoromethanesulfonic acid doping
Solution-processed transparent conducting electrode
Solution processing
Flexible organic solar cell
PEDOT:PSS
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c635t-1c6f4af5028ed0b5adaa957c1f645aae66833e0c0fc066cc02e44f25a2c6838b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/0fc70a2b1b1142649db5ce6965424153
PMID 34138225
PQID 2475005685
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_0fc70a2b1b1142649db5ce6965424153
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187532
proquest_miscellaneous_2542359597
proquest_journals_2538892595
proquest_journals_2475005685
pubmed_primary_34138225
crossref_primary_10_1007_s40820_020_00566_3
crossref_citationtrail_10_1007_s40820_020_00566_3
springer_journals_10_1007_s40820_020_00566_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Zhang, Cicoira (CR8) 2018; 561
Wang, Zhu, Pfattner, Yan, Jin (CR12) 2017; 3
Kim, Sachse, Machala, May, Müller-Meskamp (CR23) 2011; 21
Kang, Kim, Kim, Kwon, Kim (CR17) 2016; 28
Oh, Kim, Baik, Jeong (CR30) 2016; 28
Cheng, Pascoe, Huang, Peng (CR10) 2016; 539
Zhang, Wu, Li, Ono, Qi (CR13) 2018; 8
Ouyang (CR31) 2013; 34
Garreau, Louarn, Buisson, Froyer, Lefrant (CR45) 1999; 32
Ouyang, Chu, Chen, Xu, Yang (CR44) 2005; 15
Jung, Jo (CR47) 2010; 20
Bießmann, Saxena, Hohn, Hossain, Veinot (CR39) 2019; 5
Qu, Zuo, Chen, Shi, Zhang (CR2) 2020; 8
Søndergaard, Hӧsel, Angmo, Larsen-Olsen, Krebs (CR18) 2012; 15
Carmo, Roepke, Roth, dos Santos, Poco (CR42) 2009; 191
Worfolk, Andrews, Park, Reinspach, Liu (CR32) 2015; 112
Liu, You, Xie, Tang, Yan (CR29) 2016; 28
Kang, Jung, Jeong, Kim, Lee (CR16) 2015; 6
Jeon, Chiba, Delacou, Guo, Kaskela (CR28) 2015; 15
Kaltenbrunner, Adam, Głowacki, Drack, Schwödiauer (CR7) 2015; 14
Dӧbbelin, Marcilla, Salsamendi, Pozo-Gonzalo, Carrasco (CR35) 2007; 19
Fan, Nie, Tsai, Wang, Huang (CR21) 2019; 6
Tang (CR1) 1986; 48
Li, Meng, Yang, Xu, Hong (CR11) 2016; 7
Fan, Wang, Wang, Liu, Wang (CR27) 2015; 7
Meng, Ge, Li, Tong, Liu (CR40) 2015; 7
Sun, Li, Xia, Chang, Ouyang (CR26) 2015; 7
Na, Kim, Jo, Kim (CR20) 2008; 20
Yeon, Yun, Kim, Lim (CR38) 2015; 1
Nguyen-Trung, Palmer, Begun, Peiffert, Mesmer (CR43) 2000; 29
Granqvist (CR19) 2007; 91
Hu, Meng, Zhang, Zhang, Cai (CR22) 2019; 3
Zhao, Wang, Bae, Lee, Mun (CR9) 2015; 6
Lipomi, Lee, Vosgueritchian, Tee, Bolander (CR33) 2012; 24
Liu, Li, Yan (CR14) 2013; 25
Kee, Kim, Kim, Park, Jang (CR34) 2016; 28
Li, Jiang, Shuai, Wang, Meng (CR41) 2012; 22
Sun, Chang, Meng, Wan, Gao (CR6) 2019; 2
Yao, Qiu, Zhang, Xue, Wang (CR4) 2020; 11
Xia, Sun, Ouyang (CR24) 2012; 24
Yuan, Zhang, Zhou, Zhang, Yip (CR46) 2019; 3
Badre, Marquant, Alsayed, Hough (CR36) 2012; 22
Song, Fan, Xu, Yan, Cui (CR37) 2018; 30
Yu, Gao, Hummelen, Wudl, Heeger (CR3) 1995; 270
Fan, Xu, Liu, Cui, Wang (CR15) 2016; 8
Kim, Kee, Lee, Lee, Kahng (CR25) 2014; 26
Chen, Xu, Zeng, Gu, Chen (CR5) 2020; 32
SI Na (566_CR20) 2008; 20
XT Hu (566_CR22) 2019; 3
DJ Lipomi (566_CR33) 2012; 24
JW Jung (566_CR47) 2010; 20
C Badre (566_CR36) 2012; 22
H Kang (566_CR16) 2015; 6
R Søndergaard (566_CR18) 2012; 15
CW Tang (566_CR1) 1986; 48
Y Wang (566_CR12) 2017; 3
YW Li (566_CR11) 2016; 7
YH Kim (566_CR23) 2011; 21
BJ Worfolk (566_CR32) 2015; 112
M Carmo (566_CR42) 2009; 191
YB Cheng (566_CR10) 2016; 539
YK Zhang (566_CR13) 2018; 8
X Li (566_CR41) 2012; 22
YN Sun (566_CR6) 2019; 2
ZK Liu (566_CR29) 2016; 28
G Zhao (566_CR9) 2015; 6
S Kee (566_CR34) 2016; 28
X Fan (566_CR15) 2016; 8
CG Granqvist (566_CR19) 2007; 91
XB Chen (566_CR5) 2020; 32
SM Zhang (566_CR8) 2018; 561
YJ Xia (566_CR24) 2012; 24
G Yu (566_CR3) 1995; 270
J Yuan (566_CR46) 2019; 3
C Nguyen-Trung (566_CR43) 2000; 29
M Kaltenbrunner (566_CR7) 2015; 14
TY Qu (566_CR2) 2020; 8
JY Ouyang (566_CR44) 2005; 15
JY Ouyang (566_CR31) 2013; 34
ZK Liu (566_CR14) 2013; 25
K Sun (566_CR26) 2015; 7
W Song (566_CR37) 2018; 30
J Yao (566_CR4) 2020; 11
JY Oh (566_CR30) 2016; 28
C Yeon (566_CR38) 2015; 1
M Dӧbbelin (566_CR35) 2007; 19
I Jeon (566_CR28) 2015; 15
W Meng (566_CR40) 2015; 7
X Fan (566_CR21) 2019; 6
N Kim (566_CR25) 2014; 26
L Bießmann (566_CR39) 2019; 5
S Garreau (566_CR45) 1999; 32
X Fan (566_CR27) 2015; 7
H Kang (566_CR17) 2016; 28
References_xml – volume: 191
  start-page: 330
  year: 2009
  end-page: 337
  ident: CR42
  article-title: A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.01.086
– volume: 8
  start-page: 2000669
  year: 2020
  ident: CR2
  article-title: Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000669
– volume: 24
  start-page: 373
  year: 2012
  end-page: 382
  ident: CR33
  article-title: Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates
  publication-title: Chem. Mater.
  doi: 10.1021/cm203216m
– volume: 8
  start-page: 1701569
  year: 2018
  ident: CR13
  article-title: Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701569
– volume: 6
  start-page: 6503
  year: 2015
  ident: CR16
  article-title: Polymer-metal hybrid transparent electrodes for flexible electronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7503
– volume: 15
  start-page: 6665
  year: 2015
  end-page: 6671
  ident: CR28
  article-title: Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02490
– volume: 7
  start-page: 75
  year: 2016
  end-page: 81
  ident: CR11
  article-title: High-efficiency robust perovskite solar cells on ultrathin flexible substrates
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10214
– volume: 6
  start-page: 8830
  year: 2015
  ident: CR9
  article-title: Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9830
– volume: 112
  start-page: 14138
  year: 2015
  end-page: 14143
  ident: CR32
  article-title: Ultrahigh electrical conductivity in solution-sheared polymeric transparent films
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1509958112
– volume: 15
  start-page: 36
  year: 2012
  end-page: 49
  ident: CR18
  article-title: Roll-to-roll fabrication of polymer solar cells
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70019-6
– volume: 32
  start-page: 6807
  year: 1999
  end-page: 6812
  ident: CR45
  article-title: In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT)
  publication-title: Macromolecules
  doi: 10.1021/ma9905674
– volume: 3
  start-page: 1140
  year: 2019
  ident: CR46
  article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 270
  start-page: 1789
  year: 1995
  ident: CR3
  article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 26
  start-page: 2268
  year: 2014
  end-page: 2272
  ident: CR25
  article-title: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304611
– volume: 2
  start-page: 513
  year: 2019
  end-page: 520
  ident: CR6
  article-title: Flexible organic photovoltaics based on water-processed silver nanowire electrodes
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0315-1
– volume: 20
  start-page: 4061
  year: 2008
  end-page: 4067
  ident: CR20
  article-title: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800338
– volume: 3
  start-page: 2205
  year: 2019
  ident: CR22
  article-title: A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.011
– volume: 28
  start-page: 8625
  year: 2016
  end-page: 8631
  ident: CR34
  article-title: Controlling molecular ordering in aqueous conducting polymers using ionic liquids
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505473
– volume: 8
  start-page: 14029
  year: 2016
  end-page: 14036
  ident: CR15
  article-title: Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01389
– volume: 28
  start-page: 151
  year: 2016
  end-page: 157
  ident: CR29
  article-title: Ultrathin and flexible perovskite solar cells with graphene transparent electrodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.038
– volume: 539
  start-page: 488
  year: 2016
  ident: CR10
  article-title: Print flexible solar cells
  publication-title: Nature
  doi: 10.1038/539488a
– volume: 7
  start-page: 14089
  year: 2015
  end-page: 14094
  ident: CR40
  article-title: Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03309
– volume: 29
  start-page: 101
  year: 2000
  end-page: 129
  ident: CR43
  article-title: Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 °C and 0.1 MPa
  publication-title: J. Solut. Chem.
  doi: 10.1023/A:1005197030188
– volume: 14
  start-page: 1032
  year: 2015
  end-page: 1039
  ident: CR7
  article-title: Flexible high power-per-weight perovskite solar cells with chromium oxide−metal contacts for improved stability in air
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT4388
– volume: 32
  start-page: 1908478
  year: 2020
  ident: CR5
  article-title: Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908478
– volume: 34
  start-page: 423
  year: 2013
  end-page: 436
  ident: CR31
  article-title: "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices
  publication-title: Displays
  doi: 10.1016/j.displa.2013.08.007
– volume: 20
  start-page: 2355
  year: 2010
  ident: CR47
  article-title: Annealing-free high efficiency and large area polymer solar cells fabricated by a roller painting process
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000164
– volume: 24
  start-page: 2436
  year: 2012
  end-page: 2440
  ident: CR24
  article-title: Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104795
– volume: 30
  start-page: 1800075
  year: 2018
  ident: CR37
  article-title: All solution-processed metal oxide-free flexible organic solar cells with over 10% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800075
– volume: 7
  start-page: 15314
  year: 2015
  end-page: 15320
  ident: CR26
  article-title: Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03171
– volume: 3
  start-page: e1602076
  year: 2017
  ident: CR12
  article-title: A highly stretchable, transparent, and conductive polymer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602076
– volume: 7
  start-page: 16287
  year: 2015
  end-page: 16295
  ident: CR27
  article-title: Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02830
– volume: 21
  start-page: 1076
  year: 2011
  end-page: 1081
  ident: CR23
  article-title: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002290
– volume: 15
  start-page: 203
  year: 2005
  end-page: 208
  ident: CR44
  article-title: High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400016
– volume: 11
  start-page: 2726
  year: 2020
  ident: CR4
  article-title: Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16509-w
– volume: 5
  start-page: 1800654
  year: 2019
  ident: CR39
  article-title: Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800654
– volume: 561
  start-page: 466
  year: 2018
  end-page: 467
  ident: CR8
  article-title: Flexible self-powered biosensors
  publication-title: Nature
  doi: 10.1038/d41586-018-06788-1
– volume: 28
  start-page: 7821
  year: 2016
  end-page: 7861
  ident: CR17
  article-title: Bulk-heterojunction organic solar cells: five core technologies for their commercialization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601197
– volume: 6
  start-page: 1900813
  year: 2019
  ident: CR21
  article-title: PEDOT:PSS for flexible and stretchable electronics: modifications, strategies and applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900813
– volume: 19
  start-page: 2147
  year: 2007
  end-page: 2149
  ident: CR35
  article-title: Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films
  publication-title: Chem. Mater.
  doi: 10.1021/cm070398z
– volume: 22
  start-page: 1283
  year: 2012
  end-page: 1289
  ident: CR41
  article-title: Sulfonated copolymers with SO H and COOH groups for the hydrolysis of polysaccharides
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM12954F
– volume: 91
  start-page: 1529
  year: 2007
  end-page: 1598
  ident: CR19
  article-title: Transparent conductors as solar energy materials: a panoramic review
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.04.031
– volume: 28
  start-page: 4455
  year: 2016
  ident: CR30
  article-title: Conducting polymer dough for deformable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502947
– volume: 1
  start-page: 1500121
  year: 2015
  ident: CR38
  article-title: PEDOT:PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dye-sensitized solar cells
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500121
– volume: 25
  start-page: 4296
  year: 2013
  end-page: 4301
  ident: CR14
  article-title: Package-free flexible organic solar cells with graphene top electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205337
– volume: 22
  start-page: 2723
  year: 2012
  end-page: 2727
  ident: CR36
  article-title: Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200225
– volume: 48
  start-page: 183
  year: 1986
  end-page: 185
  ident: CR1
  article-title: Two-layer organic photovoltaic cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96937
– volume: 539
  start-page: 488
  year: 2016
  ident: 566_CR10
  publication-title: Nature
  doi: 10.1038/539488a
– volume: 3
  start-page: 1140
  year: 2019
  ident: 566_CR46
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 3
  start-page: e1602076
  year: 2017
  ident: 566_CR12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602076
– volume: 15
  start-page: 6665
  year: 2015
  ident: 566_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02490
– volume: 1
  start-page: 1500121
  year: 2015
  ident: 566_CR38
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201500121
– volume: 34
  start-page: 423
  year: 2013
  ident: 566_CR31
  publication-title: Displays
  doi: 10.1016/j.displa.2013.08.007
– volume: 6
  start-page: 8830
  year: 2015
  ident: 566_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9830
– volume: 32
  start-page: 1908478
  year: 2020
  ident: 566_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908478
– volume: 24
  start-page: 373
  year: 2012
  ident: 566_CR33
  publication-title: Chem. Mater.
  doi: 10.1021/cm203216m
– volume: 21
  start-page: 1076
  year: 2011
  ident: 566_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002290
– volume: 6
  start-page: 1900813
  year: 2019
  ident: 566_CR21
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900813
– volume: 26
  start-page: 2268
  year: 2014
  ident: 566_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304611
– volume: 28
  start-page: 4455
  year: 2016
  ident: 566_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502947
– volume: 32
  start-page: 6807
  year: 1999
  ident: 566_CR45
  publication-title: Macromolecules
  doi: 10.1021/ma9905674
– volume: 24
  start-page: 2436
  year: 2012
  ident: 566_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104795
– volume: 7
  start-page: 16287
  year: 2015
  ident: 566_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02830
– volume: 22
  start-page: 2723
  year: 2012
  ident: 566_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200225
– volume: 2
  start-page: 513
  year: 2019
  ident: 566_CR6
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0315-1
– volume: 191
  start-page: 330
  year: 2009
  ident: 566_CR42
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.01.086
– volume: 11
  start-page: 2726
  year: 2020
  ident: 566_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16509-w
– volume: 561
  start-page: 466
  year: 2018
  ident: 566_CR8
  publication-title: Nature
  doi: 10.1038/d41586-018-06788-1
– volume: 28
  start-page: 151
  year: 2016
  ident: 566_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.038
– volume: 15
  start-page: 36
  year: 2012
  ident: 566_CR18
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70019-6
– volume: 22
  start-page: 1283
  year: 2012
  ident: 566_CR41
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM12954F
– volume: 5
  start-page: 1800654
  year: 2019
  ident: 566_CR39
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800654
– volume: 25
  start-page: 4296
  year: 2013
  ident: 566_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205337
– volume: 19
  start-page: 2147
  year: 2007
  ident: 566_CR35
  publication-title: Chem. Mater.
  doi: 10.1021/cm070398z
– volume: 91
  start-page: 1529
  year: 2007
  ident: 566_CR19
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2007.04.031
– volume: 8
  start-page: 1701569
  year: 2018
  ident: 566_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701569
– volume: 8
  start-page: 14029
  year: 2016
  ident: 566_CR15
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01389
– volume: 20
  start-page: 2355
  year: 2010
  ident: 566_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000164
– volume: 15
  start-page: 203
  year: 2005
  ident: 566_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400016
– volume: 6
  start-page: 6503
  year: 2015
  ident: 566_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7503
– volume: 7
  start-page: 15314
  year: 2015
  ident: 566_CR26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03171
– volume: 28
  start-page: 7821
  year: 2016
  ident: 566_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601197
– volume: 3
  start-page: 2205
  year: 2019
  ident: 566_CR22
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.011
– volume: 7
  start-page: 75
  year: 2016
  ident: 566_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10214
– volume: 7
  start-page: 14089
  year: 2015
  ident: 566_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03309
– volume: 112
  start-page: 14138
  year: 2015
  ident: 566_CR32
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1509958112
– volume: 28
  start-page: 8625
  year: 2016
  ident: 566_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505473
– volume: 48
  start-page: 183
  year: 1986
  ident: 566_CR1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96937
– volume: 14
  start-page: 1032
  year: 2015
  ident: 566_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT4388
– volume: 8
  start-page: 2000669
  year: 2020
  ident: 566_CR2
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000669
– volume: 30
  start-page: 1800075
  year: 2018
  ident: 566_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800075
– volume: 270
  start-page: 1789
  year: 1995
  ident: 566_CR3
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 20
  start-page: 4061
  year: 2008
  ident: 566_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800338
– volume: 29
  start-page: 101
  year: 2000
  ident: 566_CR43
  publication-title: J. Solut. Chem.
  doi: 10.1023/A:1005197030188
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5409212
Snippet Highlights The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level...
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization,...
HighlightsThe PEDOT:PSS flexible electrodes with a unique CF3SO3H treatment exhibited high electrical characteristics and stability.An energy level tuning...
The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect...
Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Anodes
Commercialization
Conducting polymers
Efficiency
Electrodes
Energy levels
Engineering
Flexibility
Flexible organic solar cell
Low temperature
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Organic Solar Cells
PEDOT:PSS
Photovoltaic cells
Solar cells
Solution processing
Solution-processed transparent conducting electrode
Thermal stability
Triflic acid
Trifluoromethanesulfonic acid doping
Wettability
Work functions
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8WahICPBCQyO40dyQnS1q4pDhYBKvUW24xSkKCnd7f9nxnGSLpQe9rKe7NqZseezPfMNIW98qYPjxrGiCI5J6zJWliKwoIRRyjhwMTHK91gfncgvp-o0HbhtUljluCbGhbruPZ6RfxQSfBt460J9Ov_NsGoU3q6mEhq3yT4swQVsvvYPV8dfv40WJQxWZprvCbG8srzCViOR2yWfCc0UEpiZmSdTwb9Cn-V0ahPZcWLqMeCijGnDdcrEifl4WL2ZM9yRYVc1y3e8XSwKcB2S_Tcg869b2ejs1vfJvYRS6efBrB6QW6F7SO5e4S58RNrxQI2lXINQ04EpHdPLtnTZd0glC7J0NZTaqcOGAkSma-TgdG2gQx6op99xe02XoW03FM-FaaY_6OwtXUV6C8wNfUxO1qsfyyOWSjcwDwhmyzKvG2kbBegl1NwpW1tbKuOzRktlbdC6yPPAPW88YB7vuQhSNkJZ4aGlcPkTstf1XXhGaOYMd9LVIAf6y33JNaBC3zTByaL29YJk4yuufOI1x_IabTUxMke1VBw_qJYqX5B30zPnA6vHjdKHqLlJEhm54xf9xVmVJngFIzHcCpc5zE7Wsqyd8kGXWBAMQBL8yMGo9yotE5tqNurrm8EbFSVsUKH59dQM8x8vdWwX-kuUAUAMEqVZkKeDFU0dRYQCABCeNjv2tTOS3Zbu18_IMQ44DjayYkHej5Y4d-v_b-r5zYN8Qe4IDAmK0UAHZG97cRleAqbbuldp4v4BF489lA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAKM-FtjISnMDIdvxIjrDaVcWBC1TqLbIdB5CiLOpu_z8zjpN0YUHqIZf1ZONkxplv4plvCHkTKhM9t56VZfRMOS9YVcnIopZWa-vBxaQs3y_m_EJ9vtSXuShsO2a7j1uS6U09Fbtha2TOMNxB_krDirvknobYHe16OXOOS4vdmOa9QWyprG4w1CjkcylmEjONpGV25sbUUoFPz052ANEWt69SlzohmLHc5Oqbw9Pa83CpEcAh9Pp3EuYfO7HJwa0fkYcZmdKPgykdkzuxf0we3OArfEK68SMay_UFsaEDOzqWlO3octMjfSzI0tXQXqeJWwqwmK6Rd9N3kQ61n4F-xZCaLmPXbSl-C6bCfDDiLV0lSgusB31KLtarb8tzlts1sACoZcdEMK1yrQbEEhvutWucq7QNojVKOxeNKYsi8sDbADgnBC6jUq3UTgYYKX3xjBz1mz6-IFR4y73yDciB_opQcQNIMLRt9KpsQrMgYnzEdchc5thSo6snFuaklprjgWqpiwV5N53za2Dy-K_0J9TcJIks3OmHzdX3Oi_qGu7Ecie98FiRbFTVeB2iqbAJGAAj-JOTUe91fjVsazAvjRcp9eFh8EBlBUEpDL-ehmHN40aO6-PmGmUABINEZRfk-WBF00QRlQDog7Ptnn3t3cn-SP_zR-IVB-wGwatckPejJc7T-veTenk78VfkvsS0oJQRdEKOdlfX8RRw3c6fpWX8G8iPOMg
  priority: 102
  providerName: Springer Nature
Title Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency
URI https://link.springer.com/article/10.1007/s40820-020-00566-3
https://www.ncbi.nlm.nih.gov/pubmed/34138225
https://www.proquest.com/docview/2475005685
https://www.proquest.com/docview/2538892595
https://www.proquest.com/docview/2542359597
https://pubmed.ncbi.nlm.nih.gov/PMC8187532
https://doaj.org/article/0fc70a2b1b1142649db5ce6965424153
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8SawVEaCExhsx4_kuA0NKw4rBKy0t8h2HIFUpYh2_z8zTpq2sMCFQ1spM1HTmUnnczzzDSEvQmmi59azooieKecFK0sZWdTSam09pJhU5XtmTs_Vhwt9sTfqC2vCBnrgwXBveRcsd9ILj12fRpWt1yGaEgctQfJJPJ-Q8_YWUxBJ0uJEpt3-II5VVnssNQo5XfIdkZlG4jK748fUUkFeHxPtAKQtbmGlSXVCMGO5GTtwUh8eTm3mDFdiSK1pWH6Q5dIwgKsQ7O-FmL_sxqYkV98ht0d0Sk8Gq9wl12J_j9za4yy8T5bbB2ls7DGILR0Y0rGtbEOrVY8UsqBLF8OInTauKUBjWiP3pl9GOvR_BvoZl9W0isvlmuLzYCrMGyNe0kWitcCe0AfkvF58qU7ZOLKBBUAuGyaC6ZTrNKCW2HKvXetcqW0QnVHauWhMkeeRB_AqYJ0QuIxKdVI7GUBS-PwhOepXfXxMqPCWe-Vb0AP_5aHkBtBg6LroVdGGNiNia-ImjHzmOFZj2UxMzMktDccXuqXJM_JqOuf7wObxV-05em7SRCbudADisxnjs_lXfGbkeOv3Zvx7WDcQXhq_pNBXiyELFSUsTEH8fBLDfY-bOa6Pq0vUASAMGqXNyKMhiqYLRWQCwA_OtgfxdfBLDiX9t6-JWxzwGyxgZUZebyNxd1l_ttST_2Gpp-SmxIKhVCt0TI42Py7jM0B8Gz8j14v6_YzcOJm_m9fwOV-cffwERyup8N1Us3T7_wTCyEki
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAkaiJzA4jh_JASFYdtnS0gut1FuIHadFWiWluxXiT_EbmXFeXSi99bCX9SSKPeOZz4_5hpAXLtXecmNZknjLZG4jlqbCM6-EUcpYCDHhlu-unu3LzwfqYI387nJh8Fpl5xODoy5qh3vkb4SE2AbROlHvjn8wrBqFp6tdCY3GLLb9r5-wZFu83foI-t0UYjrZG89YW1WAOQiuSxY5Xcq8VBBYfcGtyos8T5VxUamlynOvdRLHnjteOgjHznHhpSyFyoWDlsTG8N4r5KqM4xRnVDL91NmvMFgHajiVxGLO8gw3jkQmmXigT1NIl2YGVk4FfYQRkv0eUeDiCYnOgMIipg3Xbd5PyP7DWtGc4foPB0azeCW2hhIE5-Hmf69__nUGHELr9Ba52WJi-r4x4ttkzVd3yI0zTIl3ybzbvmNtZoMvaMPLjslsSzquKySuBVk6aQr7FH5BAZDTKTJ-2rmnTdapo19xMU_Hfj5fUNyFppF-raNNOglkGpiJeo_sX4pK75P1qq78Q0Ija7iVtgA50F_sUq4Bg7qy9FYmhStGJOqGOHMtizoW85hnPf9zUEvG8YdqyeIRedk_c9xwiFwo_QE110si_3f4oz45zFp3kkFPDM-FjSzmQmuZFlY5r1MsPwaQDF6y0ek9a53SIhum0PnNEPuSFJbD0Py8bwZvg0dIeeXrU5QB-A0SqRmRB40V9R-KeAjgJjxtVuxrpSerLdX3o8BoDqgRls1iRF51ljh81v9H6tHFnXxGrs32vuxkO1u724_JdYGXkcI9pA2yvjw59U8ATS7t0zCFKfl22T7jD3Z-edQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeEO8uFDASnMCt7fiRHGHZVXmoQoJKvUWx4wBSlK266f9nxnntwoLEYS_xJOtkxplv4plvCHnpMxMct46laXBMFU6wLJOBBS2t1taBi4lZvqfm5Ex9PNfnG1X8Mdt92JLsahqQpalpjy_K6ngsfMM2yZxh6INcloYl18kNiFQEJvXNJ_5xabEz07RPiO2V1QZbjUJul2QiNNNIYGYnnkwtFfj33uF2gNriVlbsWCcEM5abvhJn97S2vF1sCrALyf6ZkPnbrmx0dss75HaPUunbzqzukmuhuUf2N7gL75N6-KDG-lqDUNKOKR3Ly1o6XzVIJQuydNG12inDmgJEpkvk4HR1oF0dqKdfMbym81DXa4rfhakwR0a8ootIb4G1oQ_I2XLxbX7C-tYNzAOCaZnwplJFpQG9hJI7XZRFkWnrRWWULopgTJokgXteecA83nMZlKqkLqSHkdQlD8les2rCAaHCWe6UK0EO9Jf4jBtAhb6qglNp6csZEcMjzn3Pa47tNep8ZGSOask5_lAteTIjr8dzLjpWj39Kv0PNjZLIyB0PrC6_5_0Cz-FOLC-kEw6rk43KSqd9MBk2BAOQBBc5HPSe96-JdQ7mpfFPUr17GLxRmkGACsMvxmFY_7ipUzRhdYUyAIhBIrMz8qizonGiiFAAAMLZdsu-tu5ke6T5-SNyjAOOg0BWzsibwRKnaf39ST3-P_Hn5OaX98v884fTT0_ILYnZQjFR6JDstZdX4SnAvdY9iyv6F_EKP_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution-Processed+Transparent+Conducting+Electrodes+for+Flexible+Organic+Solar+Cells+with+16.61%25+Efficiency&rft.jtitle=Nano-micro+letters&rft.au=Wan%2C+Juanyong&rft.au=Xia%2C+Yonggao&rft.au=Fang%2C+Junfeng&rft.au=Zhang%2C+Zhiguo&rft.date=2021-12-01&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00566-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_020_00566_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon