Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency
Highlights The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flex...
Saved in:
Published in | Nano-micro letters Vol. 13; no. 1; pp. 44 - 14 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
The PEDOT:PSS flexible electrodes with a unique CF
3
SO
3
H treatment exhibited high electrical characteristics and stability.
An energy level tuning effect was induced to create a suitable work function.
Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability.
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF
3
SO
3
H). Through a low-concentration and low-temperature CF
3
SO
3
H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq
−1
(minimum value: 32 Ω sq
−1
), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. |
---|---|
AbstractList | Highlights
The PEDOT:PSS flexible electrodes with a unique CF
3
SO
3
H treatment exhibited high electrical characteristics and stability.
An energy level tuning effect was induced to create a suitable work function.
Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability.
Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF
3
SO
3
H). Through a low-concentration and low-temperature CF
3
SO
3
H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq
−1
(minimum value: 32 Ω sq
−1
), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. HighlightsThe PEDOT:PSS flexible electrodes with a unique CF3SO3H treatment exhibited high electrical characteristics and stability.An energy level tuning effect was induced to create a suitable work function.Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability.Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect was induced to create a suitable work function. Flexible organic solar cells yielded a record-high efficiency of 16.61%, a high flexibility, and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF 3 SO 3 H). Through a low-concentration and low-temperature CF 3 SO 3 H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq −1 (minimum value: 32 Ω sq −1 ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF SO H). Through a low-concentration and low-temperature CF SO H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq (minimum value: 32 Ω sq ), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq-1 (minimum value: 32 Ω sq-1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq-1 (minimum value: 32 Ω sq-1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability. |
ArticleNumber | 44 |
Author | Li, Yongfang Zhang, Zhiguo Xu, Bingang Fan, Xi Wang, Jinzhao Ai, Ling Hui, Kwun Nam Wan, Juanyong Fang, Junfeng Song, Weijie Xia, Yonggao |
Author_xml | – sequence: 1 givenname: Juanyong surname: Wan fullname: Wan, Juanyong organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 2 givenname: Yonggao surname: Xia fullname: Xia, Yonggao organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 3 givenname: Junfeng surname: Fang fullname: Fang, Junfeng email: jffang@phy.ecnu.edu.cn organization: School of Physics and Electronics Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University – sequence: 4 givenname: Zhiguo surname: Zhang fullname: Zhang, Zhiguo email: zgzhangwhu@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology – sequence: 5 givenname: Bingang surname: Xu fullname: Xu, Bingang organization: Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University – sequence: 6 givenname: Jinzhao surname: Wang fullname: Wang, Jinzhao organization: Department of Material Science and Engineering, Hubei University – sequence: 7 givenname: Ling surname: Ai fullname: Ai, Ling organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 8 givenname: Weijie surname: Song fullname: Song, Weijie organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 9 givenname: Kwun Nam surname: Hui fullname: Hui, Kwun Nam organization: Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau – sequence: 10 givenname: Xi surname: Fan fullname: Fan, Xi email: fanxi@nimte.ac.cn organization: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences – sequence: 11 givenname: Yongfang surname: Li fullname: Li, Yongfang organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138225$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CALCEkLin-jnNBqlZbqFSpSJSz5TiTrSuvvdgJ0H-PQ0qhPezBsuV55p3x-H1ZHYQYoKpeE3xKMG4-ZI4VxTWeFxZS1uxZdUSJwLUQghyUMyOklg2Wh9VJzq7DgvKGNoK_qA4ZJ0xRKo4q_zX6aXQx1F9StJAz9Og6mZB3JkEY0SqGfrKjCxu09mDHFHvIaIgJnXv45ToP6CptTHAWFSWT0Aq8z-inG28QkaeSvEPrYXDWQbB3r6rng_EZTu734-rb-fp69bm-vPp0sTq7rK1kYqyJlQM3g8BUQY87YXpjWtFYMkgujAEpFWOALR4sltJaTIHzgQpDbYmojh1XF4tuH82t3iW3NelOR-P0n4uYNtqk0VkPumg02NCOdIRwKnnbd8KCbKXglBPBitbHRWs3dVvobRlKMv6R6ONIcDd6E39oRVQjGC0C7-8FUvw-QR711mVbpmQCxClrWiox0Yq2KejbJ-htnFIooyoUU6qlhdtL8UbMblAz9eb_vh8a_vv1BaALYFPMOcHwgBCsZ4vpxWIaz2u2mJ6noZ4kWTea2T_l7c7vT2VLai51wgbSv7b3ZP0GSHfjfQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_146038 crossref_primary_10_1002_ange_202208815 crossref_primary_10_1021_acsami_4c02319 crossref_primary_10_1002_solr_202100830 crossref_primary_10_1021_acsaem_3c02001 crossref_primary_10_1002_adma_202110276 crossref_primary_10_1016_j_esci_2024_100305 crossref_primary_10_1021_acs_chemrev_3c00305 crossref_primary_10_1039_D3QM01349A crossref_primary_10_1021_acsami_1c18866 crossref_primary_10_1016_j_cej_2022_136270 crossref_primary_10_1002_smll_202201628 crossref_primary_10_1016_j_apenergy_2024_123397 crossref_primary_10_1002_advs_202405099 crossref_primary_10_1021_acsami_4c19958 crossref_primary_10_1039_D2TA09874A crossref_primary_10_1002_aenm_202102526 crossref_primary_10_3389_fchem_2021_807538 crossref_primary_10_1002_adma_202406879 crossref_primary_10_1002_adma_202309379 crossref_primary_10_1002_adfm_202411815 crossref_primary_10_1002_solr_202400206 crossref_primary_10_1360_SSC_2022_0126 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1016_j_carbon_2022_06_007 crossref_primary_10_1002_advs_202402158 crossref_primary_10_1166_jno_2021_2983 crossref_primary_10_1002_adma_202200044 crossref_primary_10_1039_D1TC03434K crossref_primary_10_1021_acsami_3c09984 crossref_primary_10_1002_aenm_202200129 crossref_primary_10_1039_D3MA00711A crossref_primary_10_1002_smll_202406773 crossref_primary_10_1016_j_flatc_2024_100627 crossref_primary_10_1002_aenm_202100875 crossref_primary_10_3390_polym14132735 crossref_primary_10_1002_anie_202207397 crossref_primary_10_1002_solr_202300342 crossref_primary_10_1016_j_wees_2024_03_001 crossref_primary_10_1002_adfm_202203641 crossref_primary_10_1016_j_orgel_2022_106438 crossref_primary_10_1016_j_mtcomm_2024_110018 crossref_primary_10_1002_adfm_202414317 crossref_primary_10_1039_D4TA07622B crossref_primary_10_1002_adfm_202200694 crossref_primary_10_1002_anie_202211600 crossref_primary_10_1002_marc_202200049 crossref_primary_10_1016_j_rser_2024_114740 crossref_primary_10_1039_D3TA03213B crossref_primary_10_1016_j_jechem_2021_04_024 crossref_primary_10_1007_s10854_022_09760_y crossref_primary_10_1002_adma_202201623 crossref_primary_10_1002_adfm_202417740 crossref_primary_10_1007_s40820_023_01208_0 crossref_primary_10_1016_j_optmat_2023_113870 crossref_primary_10_1109_JPHOTOV_2021_3113317 crossref_primary_10_1002_adom_202302947 crossref_primary_10_1007_s40820_023_01241_z crossref_primary_10_1016_j_nanoen_2024_110174 crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1002_adfm_202417537 crossref_primary_10_1007_s40820_024_01442_0 crossref_primary_10_1007_s40820_023_01057_x crossref_primary_10_1007_s40843_023_2843_8 crossref_primary_10_1002_ange_202207397 crossref_primary_10_1088_2058_8585_ac32aa crossref_primary_10_1002_ange_202211600 crossref_primary_10_1002_cey2_579 crossref_primary_10_1039_D2TA08644A crossref_primary_10_1002_admt_202301810 crossref_primary_10_1002_advs_202105288 crossref_primary_10_1038_s41528_022_00166_8 crossref_primary_10_1002_flm2_30 crossref_primary_10_3390_su17051820 crossref_primary_10_1002_adfm_202306793 crossref_primary_10_1002_anie_202208815 crossref_primary_10_1021_acsami_1c16550 crossref_primary_10_1021_acsami_4c12238 crossref_primary_10_1016_j_matchemphys_2022_126916 crossref_primary_10_1016_j_esci_2022_10_010 crossref_primary_10_1021_acsanm_1c02677 crossref_primary_10_1063_5_0124743 crossref_primary_10_1002_adfm_202214392 crossref_primary_10_1002_adma_202305562 crossref_primary_10_1016_j_orgel_2022_106736 crossref_primary_10_1021_acsami_4c07526 crossref_primary_10_1002_adma_202212236 crossref_primary_10_1002_ente_202100595 crossref_primary_10_1016_j_orgel_2021_106237 crossref_primary_10_1021_acsaem_2c01145 crossref_primary_10_1021_acsami_3c01519 crossref_primary_10_1002_advs_202301585 crossref_primary_10_1021_acs_macromol_1c02111 crossref_primary_10_1007_s11426_024_2079_5 crossref_primary_10_1039_D4TA02282C |
Cites_doi | 10.1016/j.jpowsour.2009.01.086 10.1002/adom.202000669 10.1021/cm203216m 10.1002/aenm.201701569 10.1038/ncomms7503 10.1021/acs.nanolett.5b02490 10.1038/ncomms10214 10.1038/ncomms9830 10.1073/pnas.1509958112 10.1016/S1369-7021(12)70019-6 10.1021/ma9905674 10.1016/j.joule.2019.01.004 10.1126/science.270.5243.1789 10.1002/adma.201304611 10.1038/s41928-019-0315-1 10.1002/adma.200800338 10.1016/j.joule.2019.06.011 10.1002/adma.201505473 10.1021/acsami.6b01389 10.1016/j.nanoen.2016.08.038 10.1038/539488a 10.1021/acsami.5b03309 10.1023/A:1005197030188 10.1038/NMAT4388 10.1002/adma.201908478 10.1016/j.displa.2013.08.007 10.1002/adfm.201000164 10.1002/adma.201104795 10.1002/adma.201800075 10.1021/acsami.5b03171 10.1126/sciadv.1602076 10.1021/acsami.5b02830 10.1002/adfm.201002290 10.1002/adfm.200400016 10.1038/s41467-020-16509-w 10.1002/aelm.201800654 10.1038/d41586-018-06788-1 10.1002/adma.201601197 10.1002/advs.201900813 10.1021/cm070398z 10.1039/C1JM12954F 10.1016/j.solmat.2007.04.031 10.1002/adma.201502947 10.1002/aelm.201500121 10.1002/adma.201205337 10.1002/adfm.201200225 10.1063/1.96937 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00566-3 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_0fc70a2b1b1142649db5ce6965424153 PMC8187532 34138225 10_1007_s40820_020_00566_3 |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c635t-1c6f4af5028ed0b5adaa957c1f645aae66833e0c0fc066cc02e44f25a2c6838b3 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:30:11 EDT 2025 Thu Aug 21 17:44:42 EDT 2025 Fri Jul 11 03:40:42 EDT 2025 Wed Aug 13 11:32:27 EDT 2025 Wed Aug 13 06:26:14 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Fri Feb 21 02:44:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Trifluoromethanesulfonic acid doping Solution-processed transparent conducting electrode Solution processing Flexible organic solar cell PEDOT:PSS |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c635t-1c6f4af5028ed0b5adaa957c1f645aae66833e0c0fc066cc02e44f25a2c6838b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/0fc70a2b1b1142649db5ce6965424153 |
PMID | 34138225 |
PQID | 2475005685 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fc70a2b1b1142649db5ce6965424153 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8187532 proquest_miscellaneous_2542359597 proquest_journals_2538892595 proquest_journals_2475005685 pubmed_primary_34138225 crossref_primary_10_1007_s40820_020_00566_3 crossref_citationtrail_10_1007_s40820_020_00566_3 springer_journals_10_1007_s40820_020_00566_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2021 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Zhang, Cicoira (CR8) 2018; 561 Wang, Zhu, Pfattner, Yan, Jin (CR12) 2017; 3 Kim, Sachse, Machala, May, Müller-Meskamp (CR23) 2011; 21 Kang, Kim, Kim, Kwon, Kim (CR17) 2016; 28 Oh, Kim, Baik, Jeong (CR30) 2016; 28 Cheng, Pascoe, Huang, Peng (CR10) 2016; 539 Zhang, Wu, Li, Ono, Qi (CR13) 2018; 8 Ouyang (CR31) 2013; 34 Garreau, Louarn, Buisson, Froyer, Lefrant (CR45) 1999; 32 Ouyang, Chu, Chen, Xu, Yang (CR44) 2005; 15 Jung, Jo (CR47) 2010; 20 Bießmann, Saxena, Hohn, Hossain, Veinot (CR39) 2019; 5 Qu, Zuo, Chen, Shi, Zhang (CR2) 2020; 8 Søndergaard, Hӧsel, Angmo, Larsen-Olsen, Krebs (CR18) 2012; 15 Carmo, Roepke, Roth, dos Santos, Poco (CR42) 2009; 191 Worfolk, Andrews, Park, Reinspach, Liu (CR32) 2015; 112 Liu, You, Xie, Tang, Yan (CR29) 2016; 28 Kang, Jung, Jeong, Kim, Lee (CR16) 2015; 6 Jeon, Chiba, Delacou, Guo, Kaskela (CR28) 2015; 15 Kaltenbrunner, Adam, Głowacki, Drack, Schwödiauer (CR7) 2015; 14 Dӧbbelin, Marcilla, Salsamendi, Pozo-Gonzalo, Carrasco (CR35) 2007; 19 Fan, Nie, Tsai, Wang, Huang (CR21) 2019; 6 Tang (CR1) 1986; 48 Li, Meng, Yang, Xu, Hong (CR11) 2016; 7 Fan, Wang, Wang, Liu, Wang (CR27) 2015; 7 Meng, Ge, Li, Tong, Liu (CR40) 2015; 7 Sun, Li, Xia, Chang, Ouyang (CR26) 2015; 7 Na, Kim, Jo, Kim (CR20) 2008; 20 Yeon, Yun, Kim, Lim (CR38) 2015; 1 Nguyen-Trung, Palmer, Begun, Peiffert, Mesmer (CR43) 2000; 29 Granqvist (CR19) 2007; 91 Hu, Meng, Zhang, Zhang, Cai (CR22) 2019; 3 Zhao, Wang, Bae, Lee, Mun (CR9) 2015; 6 Lipomi, Lee, Vosgueritchian, Tee, Bolander (CR33) 2012; 24 Liu, Li, Yan (CR14) 2013; 25 Kee, Kim, Kim, Park, Jang (CR34) 2016; 28 Li, Jiang, Shuai, Wang, Meng (CR41) 2012; 22 Sun, Chang, Meng, Wan, Gao (CR6) 2019; 2 Yao, Qiu, Zhang, Xue, Wang (CR4) 2020; 11 Xia, Sun, Ouyang (CR24) 2012; 24 Yuan, Zhang, Zhou, Zhang, Yip (CR46) 2019; 3 Badre, Marquant, Alsayed, Hough (CR36) 2012; 22 Song, Fan, Xu, Yan, Cui (CR37) 2018; 30 Yu, Gao, Hummelen, Wudl, Heeger (CR3) 1995; 270 Fan, Xu, Liu, Cui, Wang (CR15) 2016; 8 Kim, Kee, Lee, Lee, Kahng (CR25) 2014; 26 Chen, Xu, Zeng, Gu, Chen (CR5) 2020; 32 SI Na (566_CR20) 2008; 20 XT Hu (566_CR22) 2019; 3 DJ Lipomi (566_CR33) 2012; 24 JW Jung (566_CR47) 2010; 20 C Badre (566_CR36) 2012; 22 H Kang (566_CR16) 2015; 6 R Søndergaard (566_CR18) 2012; 15 CW Tang (566_CR1) 1986; 48 Y Wang (566_CR12) 2017; 3 YW Li (566_CR11) 2016; 7 YH Kim (566_CR23) 2011; 21 BJ Worfolk (566_CR32) 2015; 112 M Carmo (566_CR42) 2009; 191 YB Cheng (566_CR10) 2016; 539 YK Zhang (566_CR13) 2018; 8 X Li (566_CR41) 2012; 22 YN Sun (566_CR6) 2019; 2 ZK Liu (566_CR29) 2016; 28 G Zhao (566_CR9) 2015; 6 S Kee (566_CR34) 2016; 28 X Fan (566_CR15) 2016; 8 CG Granqvist (566_CR19) 2007; 91 XB Chen (566_CR5) 2020; 32 SM Zhang (566_CR8) 2018; 561 YJ Xia (566_CR24) 2012; 24 G Yu (566_CR3) 1995; 270 J Yuan (566_CR46) 2019; 3 C Nguyen-Trung (566_CR43) 2000; 29 M Kaltenbrunner (566_CR7) 2015; 14 TY Qu (566_CR2) 2020; 8 JY Ouyang (566_CR44) 2005; 15 JY Ouyang (566_CR31) 2013; 34 ZK Liu (566_CR14) 2013; 25 K Sun (566_CR26) 2015; 7 W Song (566_CR37) 2018; 30 J Yao (566_CR4) 2020; 11 JY Oh (566_CR30) 2016; 28 C Yeon (566_CR38) 2015; 1 M Dӧbbelin (566_CR35) 2007; 19 I Jeon (566_CR28) 2015; 15 W Meng (566_CR40) 2015; 7 X Fan (566_CR21) 2019; 6 N Kim (566_CR25) 2014; 26 L Bießmann (566_CR39) 2019; 5 S Garreau (566_CR45) 1999; 32 X Fan (566_CR27) 2015; 7 H Kang (566_CR17) 2016; 28 |
References_xml | – volume: 191 start-page: 330 year: 2009 end-page: 337 ident: CR42 article-title: A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.086 – volume: 8 start-page: 2000669 year: 2020 ident: CR2 article-title: Biomimetic electrodes for flexible organic solar cells with efficiencies over 16% publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000669 – volume: 24 start-page: 373 year: 2012 end-page: 382 ident: CR33 article-title: Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates publication-title: Chem. Mater. doi: 10.1021/cm203216m – volume: 8 start-page: 1701569 year: 2018 ident: CR13 article-title: Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701569 – volume: 6 start-page: 6503 year: 2015 ident: CR16 article-title: Polymer-metal hybrid transparent electrodes for flexible electronics publication-title: Nat. Commun. doi: 10.1038/ncomms7503 – volume: 15 start-page: 6665 year: 2015 end-page: 6671 ident: CR28 article-title: Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02490 – volume: 7 start-page: 75 year: 2016 end-page: 81 ident: CR11 article-title: High-efficiency robust perovskite solar cells on ultrathin flexible substrates publication-title: Nat. Commun. doi: 10.1038/ncomms10214 – volume: 6 start-page: 8830 year: 2015 ident: CR9 article-title: Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms9830 – volume: 112 start-page: 14138 year: 2015 end-page: 14143 ident: CR32 article-title: Ultrahigh electrical conductivity in solution-sheared polymeric transparent films publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509958112 – volume: 15 start-page: 36 year: 2012 end-page: 49 ident: CR18 article-title: Roll-to-roll fabrication of polymer solar cells publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70019-6 – volume: 32 start-page: 6807 year: 1999 end-page: 6812 ident: CR45 article-title: In situ spectroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT) publication-title: Macromolecules doi: 10.1021/ma9905674 – volume: 3 start-page: 1140 year: 2019 ident: CR46 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 270 start-page: 1789 year: 1995 ident: CR3 article-title: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor heterojunctions publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 26 start-page: 2268 year: 2014 end-page: 2272 ident: CR25 article-title: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization publication-title: Adv. Mater. doi: 10.1002/adma.201304611 – volume: 2 start-page: 513 year: 2019 end-page: 520 ident: CR6 article-title: Flexible organic photovoltaics based on water-processed silver nanowire electrodes publication-title: Nat. Electron. doi: 10.1038/s41928-019-0315-1 – volume: 20 start-page: 4061 year: 2008 end-page: 4067 ident: CR20 article-title: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes publication-title: Adv. Mater. doi: 10.1002/adma.200800338 – volume: 3 start-page: 2205 year: 2019 ident: CR22 article-title: A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2019.06.011 – volume: 28 start-page: 8625 year: 2016 end-page: 8631 ident: CR34 article-title: Controlling molecular ordering in aqueous conducting polymers using ionic liquids publication-title: Adv. Mater. doi: 10.1002/adma.201505473 – volume: 8 start-page: 14029 year: 2016 end-page: 14036 ident: CR15 article-title: Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01389 – volume: 28 start-page: 151 year: 2016 end-page: 157 ident: CR29 article-title: Ultrathin and flexible perovskite solar cells with graphene transparent electrodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.038 – volume: 539 start-page: 488 year: 2016 ident: CR10 article-title: Print flexible solar cells publication-title: Nature doi: 10.1038/539488a – volume: 7 start-page: 14089 year: 2015 end-page: 14094 ident: CR40 article-title: Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03309 – volume: 29 start-page: 101 year: 2000 end-page: 129 ident: CR43 article-title: Aqueous uranyl complexes 1. Raman spectroscopic study of the hydrolysis of uranyl(VI) in solutions of trifluoromethanesulfonic acid and/or tetramethylammonium hydroxide at 25 °C and 0.1 MPa publication-title: J. Solut. Chem. doi: 10.1023/A:1005197030188 – volume: 14 start-page: 1032 year: 2015 end-page: 1039 ident: CR7 article-title: Flexible high power-per-weight perovskite solar cells with chromium oxide−metal contacts for improved stability in air publication-title: Nat. Mater. doi: 10.1038/NMAT4388 – volume: 32 start-page: 1908478 year: 2020 ident: CR5 article-title: Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode publication-title: Adv. Mater. doi: 10.1002/adma.201908478 – volume: 34 start-page: 423 year: 2013 end-page: 436 ident: CR31 article-title: "Secondary doping" methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices publication-title: Displays doi: 10.1016/j.displa.2013.08.007 – volume: 20 start-page: 2355 year: 2010 ident: CR47 article-title: Annealing-free high efficiency and large area polymer solar cells fabricated by a roller painting process publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000164 – volume: 24 start-page: 2436 year: 2012 end-page: 2440 ident: CR24 article-title: Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices publication-title: Adv. Mater. doi: 10.1002/adma.201104795 – volume: 30 start-page: 1800075 year: 2018 ident: CR37 article-title: All solution-processed metal oxide-free flexible organic solar cells with over 10% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201800075 – volume: 7 start-page: 15314 year: 2015 end-page: 15320 ident: CR26 article-title: Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03171 – volume: 3 start-page: e1602076 year: 2017 ident: CR12 article-title: A highly stretchable, transparent, and conductive polymer publication-title: Sci. Adv. doi: 10.1126/sciadv.1602076 – volume: 7 start-page: 16287 year: 2015 end-page: 16295 ident: CR27 article-title: Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT:PSS electrodes on plastic substrates publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02830 – volume: 21 start-page: 1076 year: 2011 end-page: 1081 ident: CR23 article-title: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002290 – volume: 15 start-page: 203 year: 2005 end-page: 208 ident: CR44 article-title: High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400016 – volume: 11 start-page: 2726 year: 2020 ident: CR4 article-title: Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-020-16509-w – volume: 5 start-page: 1800654 year: 2019 ident: CR39 article-title: Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800654 – volume: 561 start-page: 466 year: 2018 end-page: 467 ident: CR8 article-title: Flexible self-powered biosensors publication-title: Nature doi: 10.1038/d41586-018-06788-1 – volume: 28 start-page: 7821 year: 2016 end-page: 7861 ident: CR17 article-title: Bulk-heterojunction organic solar cells: five core technologies for their commercialization publication-title: Adv. Mater. doi: 10.1002/adma.201601197 – volume: 6 start-page: 1900813 year: 2019 ident: CR21 article-title: PEDOT:PSS for flexible and stretchable electronics: modifications, strategies and applications publication-title: Adv. Sci. doi: 10.1002/advs.201900813 – volume: 19 start-page: 2147 year: 2007 end-page: 2149 ident: CR35 article-title: Influence of ionic liquids on the electrical conductivity and morphology of PEDOT:PSS films publication-title: Chem. Mater. doi: 10.1021/cm070398z – volume: 22 start-page: 1283 year: 2012 end-page: 1289 ident: CR41 article-title: Sulfonated copolymers with SO H and COOH groups for the hydrolysis of polysaccharides publication-title: J. Mater. Chem. doi: 10.1039/C1JM12954F – volume: 91 start-page: 1529 year: 2007 end-page: 1598 ident: CR19 article-title: Transparent conductors as solar energy materials: a panoramic review publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2007.04.031 – volume: 28 start-page: 4455 year: 2016 ident: CR30 article-title: Conducting polymer dough for deformable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201502947 – volume: 1 start-page: 1500121 year: 2015 ident: CR38 article-title: PEDOT:PSS films with greatly enhanced conductivity via nitric acid treatment at room temperature and their application as Pt/TCO-free counter electrodes in dye-sensitized solar cells publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500121 – volume: 25 start-page: 4296 year: 2013 end-page: 4301 ident: CR14 article-title: Package-free flexible organic solar cells with graphene top electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201205337 – volume: 22 start-page: 2723 year: 2012 end-page: 2727 ident: CR36 article-title: Highly conductive poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200225 – volume: 48 start-page: 183 year: 1986 end-page: 185 ident: CR1 article-title: Two-layer organic photovoltaic cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.96937 – volume: 539 start-page: 488 year: 2016 ident: 566_CR10 publication-title: Nature doi: 10.1038/539488a – volume: 3 start-page: 1140 year: 2019 ident: 566_CR46 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 3 start-page: e1602076 year: 2017 ident: 566_CR12 publication-title: Sci. Adv. doi: 10.1126/sciadv.1602076 – volume: 15 start-page: 6665 year: 2015 ident: 566_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02490 – volume: 1 start-page: 1500121 year: 2015 ident: 566_CR38 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201500121 – volume: 34 start-page: 423 year: 2013 ident: 566_CR31 publication-title: Displays doi: 10.1016/j.displa.2013.08.007 – volume: 6 start-page: 8830 year: 2015 ident: 566_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms9830 – volume: 32 start-page: 1908478 year: 2020 ident: 566_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201908478 – volume: 24 start-page: 373 year: 2012 ident: 566_CR33 publication-title: Chem. Mater. doi: 10.1021/cm203216m – volume: 21 start-page: 1076 year: 2011 ident: 566_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002290 – volume: 6 start-page: 1900813 year: 2019 ident: 566_CR21 publication-title: Adv. Sci. doi: 10.1002/advs.201900813 – volume: 26 start-page: 2268 year: 2014 ident: 566_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201304611 – volume: 28 start-page: 4455 year: 2016 ident: 566_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201502947 – volume: 32 start-page: 6807 year: 1999 ident: 566_CR45 publication-title: Macromolecules doi: 10.1021/ma9905674 – volume: 24 start-page: 2436 year: 2012 ident: 566_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.201104795 – volume: 7 start-page: 16287 year: 2015 ident: 566_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02830 – volume: 22 start-page: 2723 year: 2012 ident: 566_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200225 – volume: 2 start-page: 513 year: 2019 ident: 566_CR6 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0315-1 – volume: 191 start-page: 330 year: 2009 ident: 566_CR42 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.086 – volume: 11 start-page: 2726 year: 2020 ident: 566_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16509-w – volume: 561 start-page: 466 year: 2018 ident: 566_CR8 publication-title: Nature doi: 10.1038/d41586-018-06788-1 – volume: 28 start-page: 151 year: 2016 ident: 566_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.038 – volume: 15 start-page: 36 year: 2012 ident: 566_CR18 publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70019-6 – volume: 22 start-page: 1283 year: 2012 ident: 566_CR41 publication-title: J. Mater. Chem. doi: 10.1039/C1JM12954F – volume: 5 start-page: 1800654 year: 2019 ident: 566_CR39 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800654 – volume: 25 start-page: 4296 year: 2013 ident: 566_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201205337 – volume: 19 start-page: 2147 year: 2007 ident: 566_CR35 publication-title: Chem. Mater. doi: 10.1021/cm070398z – volume: 91 start-page: 1529 year: 2007 ident: 566_CR19 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2007.04.031 – volume: 8 start-page: 1701569 year: 2018 ident: 566_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701569 – volume: 8 start-page: 14029 year: 2016 ident: 566_CR15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01389 – volume: 20 start-page: 2355 year: 2010 ident: 566_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000164 – volume: 15 start-page: 203 year: 2005 ident: 566_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400016 – volume: 6 start-page: 6503 year: 2015 ident: 566_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms7503 – volume: 7 start-page: 15314 year: 2015 ident: 566_CR26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03171 – volume: 28 start-page: 7821 year: 2016 ident: 566_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201601197 – volume: 3 start-page: 2205 year: 2019 ident: 566_CR22 publication-title: Joule doi: 10.1016/j.joule.2019.06.011 – volume: 7 start-page: 75 year: 2016 ident: 566_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms10214 – volume: 7 start-page: 14089 year: 2015 ident: 566_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03309 – volume: 112 start-page: 14138 year: 2015 ident: 566_CR32 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509958112 – volume: 28 start-page: 8625 year: 2016 ident: 566_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201505473 – volume: 48 start-page: 183 year: 1986 ident: 566_CR1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.96937 – volume: 14 start-page: 1032 year: 2015 ident: 566_CR7 publication-title: Nat. Mater. doi: 10.1038/NMAT4388 – volume: 8 start-page: 2000669 year: 2020 ident: 566_CR2 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000669 – volume: 30 start-page: 1800075 year: 2018 ident: 566_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201800075 – volume: 270 start-page: 1789 year: 1995 ident: 566_CR3 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 20 start-page: 4061 year: 2008 ident: 566_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.200800338 – volume: 29 start-page: 101 year: 2000 ident: 566_CR43 publication-title: J. Solut. Chem. doi: 10.1023/A:1005197030188 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.5409212 |
Snippet | Highlights
The PEDOT:PSS flexible electrodes with a unique CF
3
SO
3
H treatment exhibited high electrical characteristics and stability.
An energy level... Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization,... HighlightsThe PEDOT:PSS flexible electrodes with a unique CF3SO3H treatment exhibited high electrical characteristics and stability.An energy level tuning... The PEDOT:PSS flexible electrodes with a unique CF 3 SO 3 H treatment exhibited high electrical characteristics and stability. An energy level tuning effect... Abstract Nonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Anodes Commercialization Conducting polymers Efficiency Electrodes Energy levels Engineering Flexibility Flexible organic solar cell Low temperature Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Organic Solar Cells PEDOT:PSS Photovoltaic cells Solar cells Solution processing Solution-processed transparent conducting electrode Thermal stability Triflic acid Trifluoromethanesulfonic acid doping Wettability Work functions |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8WahICPBCQyO40dyQnS1q4pDhYBKvUW24xSkKCnd7f9nxnGSLpQe9rKe7NqZseezPfMNIW98qYPjxrGiCI5J6zJWliKwoIRRyjhwMTHK91gfncgvp-o0HbhtUljluCbGhbruPZ6RfxQSfBt460J9Ov_NsGoU3q6mEhq3yT4swQVsvvYPV8dfv40WJQxWZprvCbG8srzCViOR2yWfCc0UEpiZmSdTwb9Cn-V0ahPZcWLqMeCijGnDdcrEifl4WL2ZM9yRYVc1y3e8XSwKcB2S_Tcg869b2ejs1vfJvYRS6efBrB6QW6F7SO5e4S58RNrxQI2lXINQ04EpHdPLtnTZd0glC7J0NZTaqcOGAkSma-TgdG2gQx6op99xe02XoW03FM-FaaY_6OwtXUV6C8wNfUxO1qsfyyOWSjcwDwhmyzKvG2kbBegl1NwpW1tbKuOzRktlbdC6yPPAPW88YB7vuQhSNkJZ4aGlcPkTstf1XXhGaOYMd9LVIAf6y33JNaBC3zTByaL29YJk4yuufOI1x_IabTUxMke1VBw_qJYqX5B30zPnA6vHjdKHqLlJEhm54xf9xVmVJngFIzHcCpc5zE7Wsqyd8kGXWBAMQBL8yMGo9yotE5tqNurrm8EbFSVsUKH59dQM8x8vdWwX-kuUAUAMEqVZkKeDFU0dRYQCABCeNjv2tTOS3Zbu18_IMQ44DjayYkHej5Y4d-v_b-r5zYN8Qe4IDAmK0UAHZG97cRleAqbbuldp4v4BF489lA priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAKM-FtjISnMDIdvxIjrDaVcWBC1TqLbIdB5CiLOpu_z8zjpN0YUHqIZf1ZONkxplv4plvCHkTKhM9t56VZfRMOS9YVcnIopZWa-vBxaQs3y_m_EJ9vtSXuShsO2a7j1uS6U09Fbtha2TOMNxB_krDirvknobYHe16OXOOS4vdmOa9QWyprG4w1CjkcylmEjONpGV25sbUUoFPz052ANEWt69SlzohmLHc5Oqbw9Pa83CpEcAh9Pp3EuYfO7HJwa0fkYcZmdKPgykdkzuxf0we3OArfEK68SMay_UFsaEDOzqWlO3octMjfSzI0tXQXqeJWwqwmK6Rd9N3kQ61n4F-xZCaLmPXbSl-C6bCfDDiLV0lSgusB31KLtarb8tzlts1sACoZcdEMK1yrQbEEhvutWucq7QNojVKOxeNKYsi8sDbADgnBC6jUq3UTgYYKX3xjBz1mz6-IFR4y73yDciB_opQcQNIMLRt9KpsQrMgYnzEdchc5thSo6snFuaklprjgWqpiwV5N53za2Dy-K_0J9TcJIks3OmHzdX3Oi_qGu7Ecie98FiRbFTVeB2iqbAJGAAj-JOTUe91fjVsazAvjRcp9eFh8EBlBUEpDL-ehmHN40aO6-PmGmUABINEZRfk-WBF00QRlQDog7Ptnn3t3cn-SP_zR-IVB-wGwatckPejJc7T-veTenk78VfkvsS0oJQRdEKOdlfX8RRw3c6fpWX8G8iPOMg priority: 102 providerName: Springer Nature |
Title | Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency |
URI | https://link.springer.com/article/10.1007/s40820-020-00566-3 https://www.ncbi.nlm.nih.gov/pubmed/34138225 https://www.proquest.com/docview/2475005685 https://www.proquest.com/docview/2538892595 https://www.proquest.com/docview/2542359597 https://pubmed.ncbi.nlm.nih.gov/PMC8187532 https://doaj.org/article/0fc70a2b1b1142649db5ce6965424153 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucAB8SawVEaCExhsx4_kuA0NKw4rBKy0t8h2HIFUpYh2_z8zTpq2sMCFQ1spM1HTmUnnczzzDSEvQmmi59azooieKecFK0sZWdTSam09pJhU5XtmTs_Vhwt9sTfqC2vCBnrgwXBveRcsd9ILj12fRpWt1yGaEgctQfJJPJ-Q8_YWUxBJ0uJEpt3-II5VVnssNQo5XfIdkZlG4jK748fUUkFeHxPtAKQtbmGlSXVCMGO5GTtwUh8eTm3mDFdiSK1pWH6Q5dIwgKsQ7O-FmL_sxqYkV98ht0d0Sk8Gq9wl12J_j9za4yy8T5bbB2ls7DGILR0Y0rGtbEOrVY8UsqBLF8OInTauKUBjWiP3pl9GOvR_BvoZl9W0isvlmuLzYCrMGyNe0kWitcCe0AfkvF58qU7ZOLKBBUAuGyaC6ZTrNKCW2HKvXetcqW0QnVHauWhMkeeRB_AqYJ0QuIxKdVI7GUBS-PwhOepXfXxMqPCWe-Vb0AP_5aHkBtBg6LroVdGGNiNia-ImjHzmOFZj2UxMzMktDccXuqXJM_JqOuf7wObxV-05em7SRCbudADisxnjs_lXfGbkeOv3Zvx7WDcQXhq_pNBXiyELFSUsTEH8fBLDfY-bOa6Pq0vUASAMGqXNyKMhiqYLRWQCwA_OtgfxdfBLDiX9t6-JWxzwGyxgZUZebyNxd1l_ttST_2Gpp-SmxIKhVCt0TI42Py7jM0B8Gz8j14v6_YzcOJm_m9fwOV-cffwERyup8N1Us3T7_wTCyEki |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuFAkaiJzA4jh_JASFYdtnS0gut1FuIHadFWiWluxXiT_EbmXFeXSi99bCX9SSKPeOZz4_5hpAXLtXecmNZknjLZG4jlqbCM6-EUcpYCDHhlu-unu3LzwfqYI387nJh8Fpl5xODoy5qh3vkb4SE2AbROlHvjn8wrBqFp6tdCY3GLLb9r5-wZFu83foI-t0UYjrZG89YW1WAOQiuSxY5Xcq8VBBYfcGtyos8T5VxUamlynOvdRLHnjteOgjHznHhpSyFyoWDlsTG8N4r5KqM4xRnVDL91NmvMFgHajiVxGLO8gw3jkQmmXigT1NIl2YGVk4FfYQRkv0eUeDiCYnOgMIipg3Xbd5PyP7DWtGc4foPB0azeCW2hhIE5-Hmf69__nUGHELr9Ba52WJi-r4x4ttkzVd3yI0zTIl3ybzbvmNtZoMvaMPLjslsSzquKySuBVk6aQr7FH5BAZDTKTJ-2rmnTdapo19xMU_Hfj5fUNyFppF-raNNOglkGpiJeo_sX4pK75P1qq78Q0Ija7iVtgA50F_sUq4Bg7qy9FYmhStGJOqGOHMtizoW85hnPf9zUEvG8YdqyeIRedk_c9xwiFwo_QE110si_3f4oz45zFp3kkFPDM-FjSzmQmuZFlY5r1MsPwaQDF6y0ek9a53SIhum0PnNEPuSFJbD0Py8bwZvg0dIeeXrU5QB-A0SqRmRB40V9R-KeAjgJjxtVuxrpSerLdX3o8BoDqgRls1iRF51ljh81v9H6tHFnXxGrs32vuxkO1u724_JdYGXkcI9pA2yvjw59U8ATS7t0zCFKfl22T7jD3Z-edQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgeEO8uFDASnMCt7fiRHGHZVXmoQoJKvUWx4wBSlK266f9nxnntwoLEYS_xJOtkxplv4plvCHnpMxMct46laXBMFU6wLJOBBS2t1taBi4lZvqfm5Ex9PNfnG1X8Mdt92JLsahqQpalpjy_K6ngsfMM2yZxh6INcloYl18kNiFQEJvXNJ_5xabEz07RPiO2V1QZbjUJul2QiNNNIYGYnnkwtFfj33uF2gNriVlbsWCcEM5abvhJn97S2vF1sCrALyf6ZkPnbrmx0dss75HaPUunbzqzukmuhuUf2N7gL75N6-KDG-lqDUNKOKR3Ly1o6XzVIJQuydNG12inDmgJEpkvk4HR1oF0dqKdfMbym81DXa4rfhakwR0a8ootIb4G1oQ_I2XLxbX7C-tYNzAOCaZnwplJFpQG9hJI7XZRFkWnrRWWULopgTJokgXteecA83nMZlKqkLqSHkdQlD8les2rCAaHCWe6UK0EO9Jf4jBtAhb6qglNp6csZEcMjzn3Pa47tNep8ZGSOask5_lAteTIjr8dzLjpWj39Kv0PNjZLIyB0PrC6_5_0Cz-FOLC-kEw6rk43KSqd9MBk2BAOQBBc5HPSe96-JdQ7mpfFPUr17GLxRmkGACsMvxmFY_7ipUzRhdYUyAIhBIrMz8qizonGiiFAAAMLZdsu-tu5ke6T5-SNyjAOOg0BWzsibwRKnaf39ST3-P_Hn5OaX98v884fTT0_ILYnZQjFR6JDstZdX4SnAvdY9iyv6F_EKP_k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution-Processed+Transparent+Conducting+Electrodes+for+Flexible+Organic+Solar+Cells+with+16.61%25+Efficiency&rft.jtitle=Nano-micro+letters&rft.au=Wan%2C+Juanyong&rft.au=Xia%2C+Yonggao&rft.au=Fang%2C+Junfeng&rft.au=Zhang%2C+Zhiguo&rft.date=2021-12-01&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00566-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40820_020_00566_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |