The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, wi...
Saved in:
Published in | FEMS microbiology reviews Vol. 38; no. 3; pp. 380 - 392 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2014
Oxford University Press Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation.
By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization.
By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. |
---|---|
AbstractList | Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N‐ and C‐terminal regions of the SMC protein coming together, with a c. 50‐nm‐long antiparallel coiled‐coil separating the head from a dimerization ‘hinge’. Dimerization gives both V‐ and O‐shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation.
By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. [PUBLICATION ABSTRACT] Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c . 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. |
Author | Sherratt, David Nolivos, Sophie |
Author_xml | – sequence: 1 givenname: Sophie surname: Nolivos fullname: Nolivos, Sophie organization: Department of Biochemistry, University of Oxford, Oxford, UK – sequence: 2 givenname: David surname: Sherratt fullname: Sherratt, David email: david.sherratt@bioch.ox.ac.uk organization: Department of Biochemistry, University of Oxford, Oxford, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24118085$$D View this record in MEDLINE/PubMed https://hal.science/hal-01893655$$DView record in HAL |
BookMark | eNqNkt1r1TAYxsOYbGfTa--k4I0K3ZI2b5rsQhgH54QzhG1eeBXSNLWZbXNM2un-e9N1OxyHoLkJvPk9T96vA7Tbu94g9JLgIxLPMYGCpkwU7IhkmMIOWmwiu2iBCeMpoxT20UEINxhjEAB7aD-jhHDMYYG-XjcmKZUejLeqTXTjXeeC68xJorxu7GD0MHqTqL5KImVdn7h6S3B1sbx_i3fa2u8m0a5bt-aXCc_Rs1q1wbx4uA_Rl7MP18vzdPX546fl6SrVLAdIueIFyykHUpemzEpaCQFK4JwpRqAWhFCMNae0rjWjKq-KQsQaBQdWZDyv8kP0fvZdj2VnKm36watWrr3tlL-TTln550tvG_nN3UqaAeQ4iwZvZ4Pmiez8dCWnGCZc5AzglkT2zcNn3v0YTRhkZ4M2bat648YgCeQUCyay4j_QTAgaa58yeP0EvXGj72PXJgqT6AkTdTxT2rsQvKk3yRIsp22Q0-zlNHt5vw1R8Wq7NRv-cfwRgBn4aVtz9y8_eXZx-Wj8bta5cf1XVbqVxW_O6smc |
CODEN | FMREE4 |
CitedBy_id | crossref_primary_10_1093_molbev_msab034 crossref_primary_10_1073_pnas_2022078118 crossref_primary_10_3389_fmicb_2020_00588 crossref_primary_10_1016_j_dnarep_2018_11_011 crossref_primary_10_1016_j_tig_2015_01_003 crossref_primary_10_7554_eLife_46564 crossref_primary_10_1016_j_mib_2014_09_018 crossref_primary_10_1111_mmi_14583 crossref_primary_10_1016_j_cell_2019_08_036 crossref_primary_10_3390_ijms222413432 crossref_primary_10_1111_mmi_14467 crossref_primary_10_1016_j_molcel_2020_04_026 crossref_primary_10_1093_nar_gkz696 crossref_primary_10_1098_rsob_150005 crossref_primary_10_1016_j_molcel_2017_01_026 crossref_primary_10_31857_S004137712306007X crossref_primary_10_1134_S0006297924040023 crossref_primary_10_7554_eLife_62243 crossref_primary_10_1146_annurev_cellbio_100814_125211 crossref_primary_10_1128_mBio_01001_13 crossref_primary_10_3390_biomedicines9091240 crossref_primary_10_1007_s00284_024_03640_w crossref_primary_10_1073_pnas_1414207111 crossref_primary_10_1016_j_tcb_2016_04_002 crossref_primary_10_1098_rsif_2018_0495 crossref_primary_10_3389_fmicb_2020_01247 crossref_primary_10_1038_s41467_021_25461_2 crossref_primary_10_1091_mbc_E18_08_0487 crossref_primary_10_3389_fmicb_2015_00075 crossref_primary_10_3390_ijms24055017 crossref_primary_10_1016_j_ceb_2015_05_008 crossref_primary_10_1242_jcs_243782 crossref_primary_10_3389_fmicb_2023_1107093 crossref_primary_10_1007_s00294_017_0735_2 crossref_primary_10_1016_j_bbrep_2022_101297 crossref_primary_10_1073_pnas_1505323112 crossref_primary_10_1038_s41467_024_49039_w crossref_primary_10_1042_BST20170168 crossref_primary_10_1016_j_cell_2017_12_027 crossref_primary_10_1093_femsre_fux044 crossref_primary_10_1038_nsmb_3507 crossref_primary_10_1128_ecosalplus_esp_0038_2020 crossref_primary_10_1186_s40168_023_01541_x crossref_primary_10_7554_eLife_70444 crossref_primary_10_1016_j_molcel_2020_02_003 crossref_primary_10_3390_microorganisms9050934 crossref_primary_10_1073_pnas_2209304119 crossref_primary_10_1111_mmi_15290 crossref_primary_10_1128_mBio_01999_14 crossref_primary_10_1002_prot_24778 crossref_primary_10_1038_s41598_022_04995_5 crossref_primary_10_2139_ssrn_4173437 crossref_primary_10_1038_s41586_020_2067_5 crossref_primary_10_1016_j_celrep_2020_108344 crossref_primary_10_1038_s41467_019_11242_5 crossref_primary_10_1007_s10096_015_2516_5 crossref_primary_10_1016_j_celrep_2017_10_014 crossref_primary_10_1093_femsre_fuac045 crossref_primary_10_1016_j_str_2017_02_008 crossref_primary_10_1128_mSphere_00238_20 crossref_primary_10_1038_ncomms10466 crossref_primary_10_1038_nphys4155 crossref_primary_10_1128_JB_00090_19 crossref_primary_10_1073_pnas_1609709113 crossref_primary_10_1021_ac5041346 crossref_primary_10_1111_mmi_14883 crossref_primary_10_1242_jcs_233783 crossref_primary_10_1016_j_jbc_2023_105466 crossref_primary_10_1099_mic_0_077685_0 crossref_primary_10_3389_fmicb_2019_00072 crossref_primary_10_7554_eLife_31522 crossref_primary_10_1128_MCB_00432_15 crossref_primary_10_1073_pnas_2222045120 crossref_primary_10_1016_j_molcel_2014_11_023 crossref_primary_10_1038_s41586_022_04546_y crossref_primary_10_1016_j_sbi_2016_01_006 crossref_primary_10_1007_s00253_022_12277_3 crossref_primary_10_1134_S1990519X23700074 crossref_primary_10_1371_journal_pgen_1010819 crossref_primary_10_1038_s41576_019_0185_4 crossref_primary_10_1042_BST20221395 crossref_primary_10_1073_pnas_1908067116 crossref_primary_10_1093_bib_bbaa172 crossref_primary_10_1098_rsob_200097 crossref_primary_10_1016_j_celrep_2017_08_026 crossref_primary_10_7554_eLife_91185_3 crossref_primary_10_1093_nar_gkac664 crossref_primary_10_1128_AEM_01771_20 crossref_primary_10_1016_j_cell_2018_01_014 crossref_primary_10_1007_s12268_016_0696_x crossref_primary_10_1016_j_celrep_2015_11_034 crossref_primary_10_1128_ecosalplus_esp_0001_2022 |
Cites_doi | 10.1007/s00792-009-0270-2 10.1111/j.1365-2958.2008.06586.x 10.1016/j.cub.2012.10.023 10.1038/nsmb.2488 10.1002/j.1460-2075.1982.tb01276.x 10.1016/j.cell.2008.10.050 10.1002/j.1460-2075.1991.tb07935.x 10.1111/j.1365-2958.2011.07763.x 10.1007/BF02174381 10.1242/jcs.120725 10.1016/j.bpj.2012.01.022 10.1101/gad.2037811 10.1083/jcb.142.6.1595 10.1016/j.cell.2008.01.044 10.1038/nrm3047 10.1038/nsmb.2525 10.1073/pnas.1008140107 10.1016/j.cell.2012.07.028 10.1128/JB.182.20.5898-5901.2000 10.1101/gad.12.9.1254 10.1128/JB.181.18.5860-5864.1999 10.1146/annurev.genet.34.1.21 10.1016/0923-2508(91)90029-A 10.1016/j.molcel.2011.07.034 10.1128/JB.184.19.5317-5322.2002 10.1093/nar/gkr749 10.1016/j.cub.2003.10.030 10.1093/genetics/122.1.47 10.1111/j.1365-2958.2009.06894.x 10.1186/1471-2121-6-28 10.1146/annurev-genet-110711-155421 10.1016/j.cell.2009.02.035 10.1111/j.1365-2958.2011.07836.x 10.1128/JB.00513-08 10.1128/JB.01315-07 10.1016/j.cell.2009.04.044 10.1128/JB.185.13.3690-3695.2003 10.1016/j.bbrc.2005.05.163 10.1128/JB.185.10.3068-3075.2003 10.1016/S0092-8674(00)81910-8 10.1186/2045-3701-2-5 10.1128/MCB.23.16.5638-5650.2003 10.1093/bioinformatics/btl336 10.1093/emboj/cdf314 10.1128/JB.00010-10 10.1016/j.molcel.2005.11.026 10.1083/jcb.123.6.1635 10.1016/S1097-2765(02)00515-4 10.1016/j.mib.2011.10.004 10.1111/j.1365-2958.2011.07722.x 10.1073/pnas.96.19.10661 10.1111/j.1365-2958.2006.05140.x 10.1128/jb.171.3.1496-1505.1989 10.1002/prot.22903 10.1002/prot.22664 10.1046/j.1365-2958.2001.02447.x 10.1016/S0092-8674(01)80007-6 10.1016/j.celrep.2013.04.005 10.1002/j.1460-2075.1992.tb05617.x 10.1016/j.cub.2003.10.036 10.1128/JB.00957-12 10.1016/j.cell.2006.08.048 10.1074/jbc.M606723200 10.1038/sj.emboj.7601562 10.1016/j.ceb.2012.10.013 10.1128/JB.180.23.6424-6428.1998 10.1126/science.1227126 10.1128/JB.00858-08 10.1016/j.str.2013.02.016 10.1046/j.1365-2958.1998.00919.x 10.1016/j.str.2012.09.010 10.1096/fasebj.6.9.1377140 10.1128/JB.02097-12 10.1016/j.cub.2010.12.004 10.1111/j.1365-2958.2004.04084.x 10.1007/BF00418488 10.1093/emboj/18.21.5873 10.1038/nature07098 10.1073/pnas.1008678107 10.1128/JB.01863-07 10.1016/j.plasmid.2011.08.003 10.1016/j.jmb.2011.08.009 10.1111/j.1365-2958.2007.05881.x 10.1038/sj.emboj.7600264 10.1128/JB.00313-06 10.1016/j.cell.2011.02.038 10.1038/nsmb.1410 10.1146/annurev.biochem.74.082803.133219 10.1016/j.bbrc.2009.06.019 10.1093/nar/gkq313 10.1038/emboj.2009.414 10.1073/pnas.030528397 |
ContentType | Journal Article |
Copyright | 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 2014 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved Distributed under a Creative Commons Attribution 4.0 International License 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. 2013 |
Copyright_xml | – notice: 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 2014 – notice: 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. – notice: Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. 2013 |
DBID | TOX 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1111/1574-6976.12045 |
DatabaseName | OUP_牛津大学出版社OA刊 Wiley-Blackwell Titles (Open access) Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Titles (Open access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: TOX name: OUP_牛津大学出版社OA刊 url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Architecture |
EISSN | 1574-6976 |
EndPage | 392 |
ExternalDocumentID | oai_HAL_hal_01893655v1 3290494771 10_1111_1574_6976_12045 24118085 FMR12045 10.1111/1574-6976.12045 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust funderid: WT099204 – fundername: Wellcome Trust grantid: WT099204 – fundername: Wellcome Trust |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1OC 1TH 29H 36B 4.4 48X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAHBH AAHHS AAIMJ AAMDB AAMVS AAOGV AAONW AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEUO ABIXL ABJNI ABLJU ABPTD ABQLI ABXVV ACCFJ ACFRR ACGFO ACGFS ACPRK ACUFI ACXQS ADBBV ADEZT ADGZP ADHKW ADHZD ADQBN ADRIX ADRTK ADVEK ADYVW AEEZP AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFBPY AFFZL AFGWE AFIYH AFOFC AFRAH AFXEN AFZJQ AGINJ AGSYK AHMBA AIWBW AJAOE AJBDE AJEEA AKRWK AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL AVWKF AXUDD AYOIW AZBYB BAFTC BAYMD BBNVY BCRHZ BDRZF BENPR BEYMZ BHONS BHPHI BQDIO BSWAC BY8 C45 CDBKE CS3 D-E D-F DAKXR DCZOG DILTD DR2 DU5 EBS EDH EJD EMB EMOBN ESTFP F00 F01 F04 F5P FDB FHSFR FLUFQ FOEOM FYUFA G-S G.N GAUVT GJXCC GODZA H.T H.X H13 HAR HOLLA HZI HZ~ IX1 J0M J21 K48 KAQDR KBUDW KOP KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M7P MK4 MM. N04 N05 N9A NF~ NLBLG NOMLY NVLIB O9- OAWHX ODMLO OIG OJQWA OK1 OVD P2P P2X P4D PAFKI PEELM Q.N Q11 Q5Y QB0 R.K RIG ROL ROX ROZ RUSNO RX1 RXO SUPJJ SV3 TEORI TLC TOX UB1 V8K W8V W99 WH7 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCN ZMT ~02 ~IA ~KM ~WT --K 1B1 1~5 24P 31~ 3V. 4G. 7-5 88E 8CJ 8FE 8FH 8FI 8FJ AAEDT AAJQQ AALRI AAQFI AAQXK AAWDT AAXUO ABEFU ABMAC ABSAR ABSMQ ABUWG ACBWZ ACIUM ACSCC ACUTJ ADMUD ADZOD AEQDE AFKRA AFULF AFYAG AHEFC AI. ANFBD ASAOO ATDFG BPHCQ BVXVI CAG CCPQU COF CXTWN D1J DC6 DFGAJ FEDTE FGOYB FIRID FZ0 HCIFZ HF~ HMCUK HVGLF IAG IAO IEP IHE IHR ISR ITC LK8 LW9 M1P M41 NQ- PQQKQ PROAC PSQYO R2- RPM RPZ SEW SIN SSZ TCN UKHRP VH1 WIN XPP Y6R ZXP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c6355-8a87634851fbeb2b4d995a9036a615f911400c844ffc64a3d77915798567283d3 |
IEDL.DBID | 24P |
ISSN | 0168-6445 1574-6976 |
IngestDate | Tue Sep 17 21:22:34 EDT 2024 Tue Oct 15 15:26:30 EDT 2024 Fri Oct 25 01:42:14 EDT 2024 Fri Oct 25 09:20:40 EDT 2024 Thu Oct 10 20:48:31 EDT 2024 Fri Aug 23 01:31:11 EDT 2024 Wed Oct 16 00:38:29 EDT 2024 Sat Aug 24 00:58:47 EDT 2024 Wed Sep 11 04:52:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | SMC condensin cohesin chromosome organization chromosome segregation chromosome |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Attribution 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6355-8a87634851fbeb2b4d995a9036a615f911400c844ffc64a3d77915798567283d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 PMCID: PMC4255302 |
ORCID | 0000-0001-6363-0761 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12045 |
PMID | 24118085 |
PQID | 1520134052 |
PQPubID | 986349 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255302 hal_primary_oai_HAL_hal_01893655v1 proquest_miscellaneous_1534096927 proquest_miscellaneous_1529947632 proquest_journals_1520134052 crossref_primary_10_1111_1574_6976_12045 pubmed_primary_24118085 wiley_primary_10_1111_1574_6976_12045_FMR12045 oup_primary_10_1111_1574-6976_12045 |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Delft |
PublicationTitle | FEMS microbiology reviews |
PublicationTitleAlternate | FEMS Microbiol Rev |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Oxford University Press Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Oxford University Press – name: Wiley-Blackwell |
References | 2008; 190 2013; 25 2010; 107 1997; 88 2013; 21 1991; 10 2005; 333 2013; 126 2013; 20 2004; 23 2003; 13 2011; 12 2012a; 194 2011; 14 1992; 11 2001; 40 1993; 123 1992; 6 1997; 91 1991; 142 2006; 60 2009; 13 1982; 1 2006; 21 2002; 184 2010; 29 2006; 22 1999; 18 1999; 181 2000; 97 1996; 250 2005; 74 2011; 21 1999; 96 2010; 192 2012b; 338 2011; 25 2006; 281 2006; 127 2007; 65 2012; 67 1985; 10 2012; 22 1998; 12 2012; 20 2013a; 195 2007; 26 2010; 78 1998; 180 2011; 412 1998; 29 2010; 38 2012; 102 2002; 9 2011; 82 2011; 81 2008; 15 2011; 79 2009; 136 2009; 137 2012; 150 2004; 52 2009; 74 2012; 2 2009; 191 2000; 34 2009; 71 2002; 21 1989; 122 2000; 182 1989; 171 2009; 386 2011; 44 2013b; 3 2005; 6 2008; 454 2008; 133 2012; 46 2011; 145 2006; 188 1998; 142 2003; 185 2012; 40 2003; 23 2015070911112619000_38.3.380.39 2015070911112619000_38.3.380.8 2015070911112619000_38.3.380.41 2015070911112619000_38.3.380.85 2015070911112619000_38.3.380.9 2015070911112619000_38.3.380.40 2015070911112619000_38.3.380.84 2015070911112619000_38.3.380.6 2015070911112619000_38.3.380.83 2015070911112619000_38.3.380.7 2015070911112619000_38.3.380.82 2015070911112619000_38.3.380.4 2015070911112619000_38.3.380.81 2015070911112619000_38.3.380.5 2015070911112619000_38.3.380.80 2015070911112619000_38.3.380.2 2015070911112619000_38.3.380.3 2015070911112619000_38.3.380.49 2015070911112619000_38.3.380.1 2015070911112619000_38.3.380.48 2015070911112619000_38.3.380.47 2015070911112619000_38.3.380.46 2015070911112619000_38.3.380.45 2015070911112619000_38.3.380.89 2015070911112619000_38.3.380.44 2015070911112619000_38.3.380.88 2015070911112619000_38.3.380.43 2015070911112619000_38.3.380.87 2015070911112619000_38.3.380.42 2015070911112619000_38.3.380.86 2015070911112619000_38.3.380.29 2015070911112619000_38.3.380.28 2015070911112619000_38.3.380.30 2015070911112619000_38.3.380.74 2015070911112619000_38.3.380.73 2015070911112619000_38.3.380.72 2015070911112619000_38.3.380.71 2015070911112619000_38.3.380.70 2015070911112619000_38.3.380.38 2015070911112619000_38.3.380.37 2015070911112619000_38.3.380.36 2015070911112619000_38.3.380.35 2015070911112619000_38.3.380.79 2015070911112619000_38.3.380.34 2015070911112619000_38.3.380.78 2015070911112619000_38.3.380.33 2015070911112619000_38.3.380.77 2015070911112619000_38.3.380.32 2015070911112619000_38.3.380.76 2015070911112619000_38.3.380.31 2015070911112619000_38.3.380.75 2015070911112619000_38.3.380.19 2015070911112619000_38.3.380.18 2015070911112619000_38.3.380.17 2015070911112619000_38.3.380.63 2015070911112619000_38.3.380.62 2015070911112619000_38.3.380.61 2015070911112619000_38.3.380.60 2015070911112619000_38.3.380.27 2015070911112619000_38.3.380.26 2015070911112619000_38.3.380.25 2015070911112619000_38.3.380.69 2015070911112619000_38.3.380.24 2015070911112619000_38.3.380.68 2015070911112619000_38.3.380.23 2015070911112619000_38.3.380.67 2015070911112619000_38.3.380.22 2015070911112619000_38.3.380.66 2015070911112619000_38.3.380.21 2015070911112619000_38.3.380.65 2015070911112619000_38.3.380.20 2015070911112619000_38.3.380.64 2015070911112619000_38.3.380.52 2015070911112619000_38.3.380.51 2015070911112619000_38.3.380.50 2015070911112619000_38.3.380.92 2015070911112619000_38.3.380.91 2015070911112619000_38.3.380.90 2015070911112619000_38.3.380.16 2015070911112619000_38.3.380.15 2015070911112619000_38.3.380.59 2015070911112619000_38.3.380.14 2015070911112619000_38.3.380.58 2015070911112619000_38.3.380.13 2015070911112619000_38.3.380.57 2015070911112619000_38.3.380.12 2015070911112619000_38.3.380.56 2015070911112619000_38.3.380.11 2015070911112619000_38.3.380.55 2015070911112619000_38.3.380.10 2015070911112619000_38.3.380.54 2015070911112619000_38.3.380.53 |
References_xml | – volume: 26 start-page: 1024 year: 2007 end-page: 1034 article-title: Reconstitution and subunit geometry of human condensin complexes publication-title: EMBO J – volume: 21 start-page: 3108 year: 2002 end-page: 3118 article-title: Cell cycle‐dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in that interact with SMC protein publication-title: EMBO J – volume: 185 start-page: 3690 year: 2003 end-page: 3695 article-title: Mutants suppressing novobiocin hypersensitivity of a mukB null mutation publication-title: J Bacteriol – volume: 25 start-page: 1091 year: 2011 end-page: 1104 article-title: Crystal structure of the Mre11–Rad50–ATPγS complex: understanding the interplay between Mre11 and Rad50 publication-title: Genes Dev – volume: 123 start-page: 1635 year: 1993 end-page: 1648 article-title: SMC1: an essential yeast gene encoding a putative head‐rod‐tail protein is required for nuclear division and defines a new ubiquitous protein family publication-title: J Cell Biol – volume: 20 start-page: 246 year: 2013 end-page: 249 article-title: Breaking symmetry in SMCs publication-title: Nat Struct Mol Biol – volume: 2 start-page: 5 year: 2012 article-title: The Smc complexes in DNA damage response publication-title: Cell Biosci – volume: 127 start-page: 523 year: 2006 end-page: 537 article-title: Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge publication-title: Cell – volume: 137 start-page: 685 year: 2009 end-page: 696 article-title: Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in publication-title: Cell – volume: 40 start-page: 914 year: 2012 end-page: 927 article-title: ATP driven structural changes of the bacterial Mre11: Rad50 catalytic head complex publication-title: Nucleic Acids Res – volume: 142 start-page: 1595 year: 1998 end-page: 1604 article-title: The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB Proteins: long, antiparallel coiled coils, folded at a flexible hinge publication-title: J Cell Biol – volume: 250 start-page: 241 year: 1996 end-page: 251 article-title: Identification of two new genes, mukE and mukF, involved in chromosome partitioning in publication-title: Mol Gen Genet – volume: 142 start-page: 189 year: 1991 end-page: 194 article-title: Mutants defective in chromosome partitioning in publication-title: Res Microbiol – volume: 13 start-page: 1930 year: 2003 end-page: 1940 article-title: A model for ATP hydrolysis‐dependent binding of cohesin to DNA publication-title: Curr Biol – volume: 67 start-page: 1 year: 2012 end-page: 14 article-title: Prokaryotic ParA‐ParB‐parS system links bacterial chromosome segregation with the cell cycle publication-title: Plasmid – volume: 190 start-page: 452 year: 2008 end-page: 456 article-title: A mycobacterial smc null mutant is proficient in DNA repair and long‐term survival publication-title: J Bacteriol – volume: 96 start-page: 10661 year: 1999 end-page: 10666 article-title: The smc gene is required for cell cycle progression and chromosome segregation publication-title: P Natl Acad Sci USA – volume: 107 start-page: 18826 year: 2010 end-page: 18831 article-title: Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in publication-title: P Natl Acad Sci USA – volume: 181 start-page: 5860 year: 1999 end-page: 5864 article-title: Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in publication-title: J Bacteriol – volume: 74 start-page: 810 year: 2009 end-page: 825 article-title: SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in publication-title: Mol Microbiol – volume: 71 start-page: 1031 year: 2009 end-page: 1042 article-title: KOPS‐guided DNA translocation by FtsK safeguards chromosome segregation publication-title: Mol Microbiol – volume: 191 start-page: 320 year: 2009 end-page: 332 article-title: Genetic interactions of smc, ftsK, and parB genes in and their developmental genome segregation phenotypes publication-title: J Bacteriol – volume: 9 start-page: 773 year: 2002 end-page: 788 article-title: Molecular architecture of SMC proteins and the yeast cohesin complex publication-title: Mol Cell – volume: 185 start-page: 3068 year: 2003 end-page: 3075 article-title: Cell‐Cycle‐regulated expression and subcellular localization of the SMC chromosome structural protein publication-title: J Bacteriol – volume: 14 start-page: 719 year: 2011 end-page: 725 article-title: Players between the worlds: multifunctional DNA translocases publication-title: Curr Opin Microbiol – volume: 29 start-page: 1126 year: 2010 end-page: 1135 article-title: Mechanics of DNA bridging by bacterial condensin MukBEF and in singulo publication-title: EMBO J – volume: 97 start-page: 1671 year: 2000 end-page: 1676 article-title: Suppression of chromosome segregation defects of muk mutants by mutations in topoisomerase I publication-title: P Natl Acad Sci USA – volume: 195 start-page: 2136 year: 2013a end-page: 2145 article-title: SMC condensation centers in are dynamic structures publication-title: J Bacteriol – volume: 23 start-page: 2664 year: 2004 end-page: 2673 article-title: Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins publication-title: EMBO J – volume: 10 start-page: 183 year: 1991 end-page: 193 article-title: The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of publication-title: EMBO J – volume: 20 start-page: 2076 year: 2012 end-page: 2089 article-title: Structural and functional characterization of an SMC‐like protein RecN: new insights into double‐strand break repair publication-title: Structure – volume: 145 start-page: 54 year: 2011 end-page: 66 article-title: The Mre11: Rad50 structure shows an ATP‐dependent molecular clamp in DNA double‐strand break repair publication-title: Cell – volume: 22 start-page: 1935 year: 2006 end-page: 1941 article-title: DomainSieve: a protein domain‐based screen that led to the identification of dam‐associated genes with potential link to DNA maintenance publication-title: Bioinformatics – volume: 74 start-page: 595 year: 2005 end-page: 648 article-title: The structure and function of SMC and kleisin complexes publication-title: Annu Rev Biochem – volume: 40 start-page: 835 year: 2001 end-page: 845 article-title: Different localization of SeqA‐bound nascent DNA clusters and MukF–MukE–MukB complex in cells publication-title: Mol Microbiol – volume: 88 start-page: 675 year: 1997 end-page: 684 article-title: Cell cycle‐dependent polar localization of chromosome partitioning proteins in publication-title: Cell – volume: 182 start-page: 5898 year: 2000 end-page: 5901 article-title: Null mutation of the dam or seqA gene suppresses temperature‐sensitive lethality but not hypersensitivity to novobiocin of muk null mutants publication-title: J Bacteriol – volume: 194 start-page: 4669 year: 2012a end-page: 4676 article-title: The SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication publication-title: J Bacteriol – volume: 102 start-page: 839 year: 2012 end-page: 848 article-title: Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope publication-title: Biophys J – volume: 180 start-page: 6424 year: 1998 end-page: 6428 article-title: Role of the C terminus of FtsK in chromosome segregation publication-title: J Bacteriol – volume: 15 start-page: 411 year: 2008 end-page: 418 article-title: MukB acts as a macromolecular clamp in DNA condensation publication-title: Nat Struct Mol Biol – volume: 6 start-page: 2660 year: 1992 end-page: 2666 article-title: ATP‐dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters publication-title: FASEB J – volume: 333 start-page: 694 year: 2005 end-page: 702 article-title: Comparison of MukB homodimer versus MukBEF complex molecular architectures by electron microscopy reveals a higher‐order multimerization publication-title: Biochem Biophys Res Commun – volume: 150 start-page: 961 year: 2012 end-page: 974 article-title: Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation publication-title: Cell – volume: 171 start-page: 1496 year: 1989 end-page: 1505 article-title: Chromosome partitioning in : novel mutants producing anucleate cells publication-title: J Bacteriol – volume: 137 start-page: 697 year: 2009 end-page: 707 article-title: Recruitment of SMC by ParB‐parS organizes the origin region and promotes efficient chromosome segregation publication-title: Cell – volume: 23 start-page: 5638 year: 2003 end-page: 5650 article-title: A prokaryotic condensin/cohesin‐like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring‐like structure publication-title: Mol Cell Biol – volume: 79 start-page: 558 year: 2011 end-page: 568 article-title: Structure and DNA‐binding activity of the SMC protein hinge domain publication-title: Proteins – volume: 60 start-page: 853 year: 2006 end-page: 869 article-title: The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in publication-title: Mol Microbiol – volume: 1 start-page: 945 year: 1982 end-page: 951 article-title: Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold publication-title: EMBO J – volume: 13 start-page: 1941 year: 2003 end-page: 1953 article-title: ATP hydrolysis is required for cohesin's association with chromosomes publication-title: Curr Biol – volume: 21 start-page: 12 year: 2011 end-page: 24 article-title: ATP hydrolysis is required for relocating cohesin from sites Occupied by its Scc2/4 loading complex publication-title: Curr Biol – volume: 6 start-page: 28 year: 2005 article-title: Dynamic assembly, localization and proteolysis of the SMC complex publication-title: BMC Cell Biol – volume: 81 start-page: 676 year: 2011 end-page: 688 article-title: SMC is recruited to oriC by ParB and promotes chromosome segregation in publication-title: Mol Microbiol – volume: 22 start-page: R1012 year: 2012 end-page: R1021 article-title: Condensin, chromatin crossbarring and chromosome condensation publication-title: Curr Biol – volume: 386 start-page: 415 year: 2009 end-page: 419 article-title: Structural and functional similarities between two bacterial chromosome compacting machineries publication-title: Biochem Biophys Res Commun – volume: 25 start-page: 63 year: 2013 end-page: 71 article-title: Cohesin, a chromatin engagement ring publication-title: Curr Opin Cell Biol – volume: 12 start-page: 90 year: 2011 end-page: 103 article-title: The MRE11 complex: starting from the ends publication-title: Nat Rev Mol Cell Biol – volume: 21 start-page: 581 year: 2013 end-page: 594 article-title: Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB publication-title: Structure – volume: 11 start-page: 5101 year: 1992 end-page: 5109 article-title: MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities publication-title: EMBO J – volume: 122 start-page: 47 year: 1989 end-page: 57 article-title: The yeast RAD50 gene encodes a predicted 153‐kD protein containing a purine nucleotide‐binding domain and two large heptad‐repeat regions publication-title: Genetics – volume: 281 start-page: 34208 year: 2006 end-page: 34217 article-title: Antagonistic interactions of kleisins and DNA with bacterial condensin MukB publication-title: J Biol Chem – volume: 192 start-page: 4067 year: 2010 end-page: 4073 article-title: Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci publication-title: J Bacteriol – volume: 3 start-page: 1483 year: 2013b end-page: 1492 article-title: The bacterial SMC complex displays two distinct modes of interaction with the chromosome publication-title: Cell Rep – volume: 65 start-page: 1485 year: 2007 end-page: 1492 article-title: MukB colocalizes with the oriC region and is required for organization of the two chromosome arms into separate cell halves publication-title: Mol Microbiol – volume: 21 start-page: 175 year: 2006 end-page: 186 article-title: Opening closed arms: long‐distance activation of SMC ATPase by hinge‐DNA interactions publication-title: Mol Cell – volume: 91 start-page: 35 year: 1997 end-page: 45 article-title: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids publication-title: Cell – volume: 188 start-page: 4431 year: 2006 end-page: 4441 article-title: Chromosome condensation in the absence of the Non‐SMC subunits of MukBEF publication-title: J Bacteriol – volume: 12 start-page: 1254 year: 1998 end-page: 1259 article-title: Characterization of a prokaryotic SMC protein involved in chromosome partitioning publication-title: Genes Dev – volume: 81 start-page: 881 year: 2011 end-page: 896 article-title: A new family of bacterial condensins publication-title: Mol Microbiol – volume: 136 start-page: 85 year: 2009 end-page: 96 article-title: Structural studies of a bacterial condensin complex reveal ATP‐dependent disruption of intersubunit interactions publication-title: Cell – volume: 191 start-page: 310 year: 2009 end-page: 319 article-title: SMC protein‐dependent chromosome condensation during aerial hyphal development in publication-title: J Bacteriol – volume: 412 start-page: 578 year: 2011 end-page: 590 article-title: The role of MukE in assembling a functional MukBEF complex publication-title: J Mol Biol – volume: 107 start-page: 18832 year: 2010 end-page: 18837 article-title: condensin MukB stimulates topoisomerase IV activity by a direct physical interaction publication-title: P Natl Acad Sci USA – volume: 20 start-page: 371 year: 2013 end-page: 379 article-title: An asymmetric SMC‐kleisin bridge in prokaryotic condensin publication-title: Nat Struct Mol Biol – volume: 126 start-page: 705 year: 2013 end-page: 713 article-title: Crystal clear insights into how the dynein motor moves publication-title: J Cell Sci – volume: 13 start-page: 827 year: 2009 end-page: 837 article-title: The SMC protein is dispensable for cell viability yet plays a role in DNA folding publication-title: Extremophiles – volume: 18 start-page: 5873 year: 1999 end-page: 5884 article-title: Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in publication-title: EMBO J – volume: 454 start-page: 297 year: 2008 end-page: 301 article-title: The cohesin ring concatenates sister DNA molecules publication-title: Nature – volume: 133 start-page: 90 year: 2008 end-page: 102 article-title: Independent positioning and action of replisomes in live cells publication-title: Cell – volume: 46 start-page: 121 year: 2012 end-page: 143 article-title: Chromosome replication and segregation in bacteria publication-title: Annu Rev Genet – volume: 78 start-page: 1483 year: 2010 end-page: 1490 article-title: Crystal structure of the MukB hinge domain with coiled‐coil stretches and its functional implications publication-title: Proteins – volume: 10 start-page: 15 year: 1985 end-page: 20 article-title: A mutant of with impaired maintenance of centromeric plasmids publication-title: Curr Genet – volume: 44 start-page: 97 year: 2011 end-page: 107 article-title: Cohesin's concatenation of sister DNAs maintains their intertwining publication-title: Mol Cell – volume: 184 start-page: 5317 year: 2002 end-page: 5322 article-title: Structural maintenance of chromosomes protein of affects supercoiling publication-title: J Bacteriol – volume: 338 start-page: 528 year: 2012b end-page: 531 article-title: architecture and action of bacterial structural maintenance of chromosome proteins publication-title: Science – volume: 38 start-page: W695 year: 2010 end-page: W699 article-title: A new bioinformatics analysis tools framework at EMBL–EBI publication-title: Nucleic Acids Res – volume: 29 start-page: 179 year: 1998 end-page: 187 article-title: A gene‐encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition publication-title: Mol Microbiol – volume: 82 start-page: 1359 year: 2011 end-page: 1374 article-title: An SMC ATPase mutant disrupts chromosome segregation in publication-title: Mol Microbiol – volume: 52 start-page: 1567 year: 2004 end-page: 1577 article-title: Anucleate and titan cell phenotypes caused by insertional inactivation of the structural maintenance of chromosomes (smc) gene in the archaeon publication-title: Mol Microbiol – volume: 34 start-page: 21 year: 2000 end-page: 59 article-title: Dynamic localization of bacterial and plasmid chromosomes publication-title: Annu Rev Genet – volume: 190 start-page: 3731 year: 2008 end-page: 3737 article-title: ATP‐induced shrinkage of DNA with MukB protein and the MukBEF complex of publication-title: J Bacteriol – ident: 2015070911112619000_38.3.380.9 doi: 10.1007/s00792-009-0270-2 – ident: 2015070911112619000_38.3.380.77 doi: 10.1111/j.1365-2958.2008.06586.x – ident: 2015070911112619000_38.3.380.81 doi: 10.1016/j.cub.2012.10.023 – ident: 2015070911112619000_38.3.380.13 doi: 10.1038/nsmb.2488 – ident: 2015070911112619000_38.3.380.84 doi: 10.1002/j.1460-2075.1982.tb01276.x – ident: 2015070911112619000_38.3.380.87 doi: 10.1016/j.cell.2008.10.050 – ident: 2015070911112619000_38.3.380.63 doi: 10.1002/j.1460-2075.1991.tb07935.x – ident: 2015070911112619000_38.3.380.71 doi: 10.1111/j.1365-2958.2011.07763.x – ident: 2015070911112619000_38.3.380.89 doi: 10.1007/BF02174381 – ident: 2015070911112619000_38.3.380.14 doi: 10.1242/jcs.120725 – ident: 2015070911112619000_38.3.380.21 doi: 10.1016/j.bpj.2012.01.022 – ident: 2015070911112619000_38.3.380.49 doi: 10.1101/gad.2037811 – ident: 2015070911112619000_38.3.380.55 doi: 10.1083/jcb.142.6.1595 – ident: 2015070911112619000_38.3.380.73 doi: 10.1016/j.cell.2008.01.044 – ident: 2015070911112619000_38.3.380.78 doi: 10.1038/nrm3047 – ident: 2015070911112619000_38.3.380.82 doi: 10.1038/nsmb.2525 – ident: 2015070911112619000_38.3.380.30 doi: 10.1073/pnas.1008140107 – ident: 2015070911112619000_38.3.380.15 doi: 10.1016/j.cell.2012.07.028 – ident: 2015070911112619000_38.3.380.67 doi: 10.1128/JB.182.20.5898-5901.2000 – ident: 2015070911112619000_38.3.380.12 doi: 10.1101/gad.12.9.1254 – ident: 2015070911112619000_38.3.380.11 doi: 10.1128/JB.181.18.5860-5864.1999 – ident: 2015070911112619000_38.3.380.31 doi: 10.1146/annurev.genet.34.1.21 – ident: 2015070911112619000_38.3.380.33 doi: 10.1016/0923-2508(91)90029-A – ident: 2015070911112619000_38.3.380.20 doi: 10.1016/j.molcel.2011.07.034 – ident: 2015070911112619000_38.3.380.50 doi: 10.1128/JB.184.19.5317-5322.2002 – ident: 2015070911112619000_38.3.380.59 doi: 10.1093/nar/gkr749 – ident: 2015070911112619000_38.3.380.86 doi: 10.1016/j.cub.2003.10.030 – ident: 2015070911112619000_38.3.380.2 doi: 10.1093/genetics/122.1.47 – ident: 2015070911112619000_38.3.380.40 doi: 10.1111/j.1365-2958.2009.06894.x – ident: 2015070911112619000_38.3.380.53 doi: 10.1186/1471-2121-6-28 – ident: 2015070911112619000_38.3.380.74 doi: 10.1146/annurev-genet-110711-155421 – ident: 2015070911112619000_38.3.380.25 doi: 10.1016/j.cell.2009.02.035 – ident: 2015070911112619000_38.3.380.76 doi: 10.1111/j.1365-2958.2011.07836.x – ident: 2015070911112619000_38.3.380.42 doi: 10.1128/JB.00513-08 – ident: 2015070911112619000_38.3.380.27 doi: 10.1128/JB.01315-07 – ident: 2015070911112619000_38.3.380.80 doi: 10.1016/j.cell.2009.04.044 – ident: 2015070911112619000_38.3.380.1 doi: 10.1128/JB.185.13.3690-3695.2003 – ident: 2015070911112619000_38.3.380.54 doi: 10.1016/j.bbrc.2005.05.163 – ident: 2015070911112619000_38.3.380.38 doi: 10.1128/JB.185.10.3068-3075.2003 – ident: 2015070911112619000_38.3.380.60 doi: 10.1016/S0092-8674(00)81910-8 – ident: 2015070911112619000_38.3.380.88 doi: 10.1186/2045-3701-2-5 – ident: 2015070911112619000_38.3.380.83 doi: 10.1128/MCB.23.16.5638-5650.2003 – ident: 2015070911112619000_38.3.380.10 doi: 10.1093/bioinformatics/btl336 – ident: 2015070911112619000_38.3.380.52 doi: 10.1093/emboj/cdf314 – ident: 2015070911112619000_38.3.380.92 doi: 10.1128/JB.00010-10 – ident: 2015070911112619000_38.3.380.35 doi: 10.1016/j.molcel.2005.11.026 – ident: 2015070911112619000_38.3.380.79 doi: 10.1083/jcb.123.6.1635 – ident: 2015070911112619000_38.3.380.28 doi: 10.1016/S1097-2765(02)00515-4 – ident: 2015070911112619000_38.3.380.39 doi: 10.1016/j.mib.2011.10.004 – ident: 2015070911112619000_38.3.380.58 doi: 10.1111/j.1365-2958.2011.07722.x – ident: 2015070911112619000_38.3.380.37 doi: 10.1073/pnas.96.19.10661 – ident: 2015070911112619000_38.3.380.46 doi: 10.1111/j.1365-2958.2006.05140.x – ident: 2015070911112619000_38.3.380.32 doi: 10.1128/jb.171.3.1496-1505.1989 – ident: 2015070911112619000_38.3.380.24 doi: 10.1002/prot.22903 – ident: 2015070911112619000_38.3.380.43 doi: 10.1002/prot.22664 – ident: 2015070911112619000_38.3.380.65 doi: 10.1046/j.1365-2958.2001.02447.x – ident: 2015070911112619000_38.3.380.56 doi: 10.1016/S0092-8674(01)80007-6 – ident: 2015070911112619000_38.3.380.8 doi: 10.1016/j.celrep.2013.04.005 – ident: 2015070911112619000_38.3.380.64 doi: 10.1002/j.1460-2075.1992.tb05617.x – ident: 2015070911112619000_38.3.380.4 doi: 10.1016/j.cub.2003.10.036 – ident: 2015070911112619000_38.3.380.5 doi: 10.1128/JB.00957-12 – ident: 2015070911112619000_38.3.380.26 doi: 10.1016/j.cell.2006.08.048 – ident: 2015070911112619000_38.3.380.69 doi: 10.1074/jbc.M606723200 – ident: 2015070911112619000_38.3.380.66 doi: 10.1038/sj.emboj.7601562 – ident: 2015070911112619000_38.3.380.72 doi: 10.1016/j.ceb.2012.10.013 – ident: 2015070911112619000_38.3.380.91 doi: 10.1128/JB.180.23.6424-6428.1998 – ident: 2015070911112619000_38.3.380.6 doi: 10.1126/science.1227126 – ident: 2015070911112619000_38.3.380.19 doi: 10.1128/JB.00858-08 – ident: 2015070911112619000_38.3.380.41 doi: 10.1016/j.str.2013.02.016 – ident: 2015070911112619000_38.3.380.61 doi: 10.1046/j.1365-2958.1998.00919.x – ident: 2015070911112619000_38.3.380.68 doi: 10.1016/j.str.2012.09.010 – ident: 2015070911112619000_38.3.380.3 doi: 10.1096/fasebj.6.9.1377140 – ident: 2015070911112619000_38.3.380.7 doi: 10.1128/JB.02097-12 – ident: 2015070911112619000_38.3.380.36 doi: 10.1016/j.cub.2010.12.004 – ident: 2015070911112619000_38.3.380.51 doi: 10.1111/j.1365-2958.2004.04084.x – ident: 2015070911112619000_38.3.380.45 doi: 10.1007/BF00418488 – ident: 2015070911112619000_38.3.380.90 doi: 10.1093/emboj/18.21.5873 – ident: 2015070911112619000_38.3.380.29 doi: 10.1038/nature07098 – ident: 2015070911112619000_38.3.380.47 doi: 10.1073/pnas.1008678107 – ident: 2015070911112619000_38.3.380.16 doi: 10.1128/JB.01863-07 – ident: 2015070911112619000_38.3.380.57 doi: 10.1016/j.plasmid.2011.08.003 – ident: 2015070911112619000_38.3.380.22 doi: 10.1016/j.jmb.2011.08.009 – ident: 2015070911112619000_38.3.380.18 doi: 10.1111/j.1365-2958.2007.05881.x – ident: 2015070911112619000_38.3.380.34 doi: 10.1038/sj.emboj.7600264 – ident: 2015070911112619000_38.3.380.85 doi: 10.1128/JB.00313-06 – ident: 2015070911112619000_38.3.380.44 doi: 10.1016/j.cell.2011.02.038 – ident: 2015070911112619000_38.3.380.17 doi: 10.1038/nsmb.1410 – ident: 2015070911112619000_38.3.380.62 doi: 10.1146/annurev.biochem.74.082803.133219 – ident: 2015070911112619000_38.3.380.48 doi: 10.1016/j.bbrc.2009.06.019 – ident: 2015070911112619000_38.3.380.23 doi: 10.1093/nar/gkq313 – ident: 2015070911112619000_38.3.380.70 doi: 10.1038/emboj.2009.414 – ident: 2015070911112619000_38.3.380.75 doi: 10.1073/pnas.030528397 |
SSID | ssj0005955 |
Score | 2.4866362 |
SecondaryResourceType | review_article |
Snippet | Abstract
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and... Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved... |
SourceID | pubmedcentral hal proquest crossref pubmed wiley oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 380 |
SubjectTerms | Architecture Bacteria Bacterial Proteins - chemistry Bacterial Proteins - metabolism chromosome chromosome organization chromosome segregation Chromosomes Chromosomes, Bacterial - chemistry Chromosomes, Bacterial - metabolism cohesin condensin Life Sciences Other Review SMC |
Title | The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12045 https://www.ncbi.nlm.nih.gov/pubmed/24118085 https://www.proquest.com/docview/1520134052 https://search.proquest.com/docview/1529947632 https://search.proquest.com/docview/1534096927 https://hal.science/hal-01893655 https://pubmed.ncbi.nlm.nih.gov/PMC4255302 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9RAEJ8IxsQXAopSAVOVB17W0Hb_8kbAy8V4xqAkJj40295ujgA944GBNz4Cn5FPwszu3dmK0fjSNt3ptp3O7Py2O_tbgC3pd5zOi4IZwx3jyktWcV8wq72src-sDCP4g4-yf8TffxWzbEKaCxP5IeY_3MgzQntNDm6rScvJM6E4kxhN32ZEqb4AD4k3hujzc_7pV5aHETGLUWqGoV9M2X0omee3CjqBaWFEaZGdKW8t5Hk_gbINbENk6i3D0hRSpnvRBlbggWuewKO4yOTVU_iGlpBWkZQZxeoRJeBNxmduN22PIqS2GaZxlkM69q0LPg_2Qxnub69vTo9PXBry0N2lm6zCUe_dl_0-my6pwGpCFkxbYqDjCLN8hX3qig-NEdZgGLMIbTy2fOjTtebc-1pyWwyVMqgno4VUCESGxTNYbMaNW4NUIXTQtbOau9BJ08q5nUo4DG91hW6ewPZMn-X3yJxRznocpPqSVF8G1SfwGvU9lyLG6_7eh5LO4T1MIYX4mSXwBj_HH6ti7ao2Zp-rnHrjBGXwWQuEpnkCr-bF6Ec0OGIbN74IMmiuqJy_ymAlRppcJfA8WsD8eRAJZRrxawKqYxudt-qWNMejwOeNzSat3ZRAtPd_aavsDQ7DwYv_vWAdHqMieMzX3IDF8x8XbhMx1Xn1MngNbg8O8ztTvBJ0 |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RIkQvUCiPLS0sjwMXR92sn9yqQhQg6aG0UqUeVl7HVqqWDSIJanviJ_Ab-SWM7STslooKcdpoPeusxzOez-vxZ4BX3G1Z2c5zohS1hArHSUldTrR03GiXaR5W8Pu7vHtAPxyyw9pemMgPsfjg5j0jjNfewf0H6ZqXZ0xQwjGctjLPqb4EN9Hpc398w9u93xRSTLGYxsglwdjPZvQ-PpvnUgWNyLQ09HmRjT1vNej5ZwZlHdmG0NS5C2beqJiRctKaTsqWubjE9_h_rV6FOzPkmm5HU7sHN2x1H27FsyzP1-AIDS4tI_czipmhz_Mbjz7bN2l9sSLV1SCNmynSkas98Km_E8rw-vP7j9PjE5uGdHd7ZscP4KDzbn-nS2YnNxDjAQyR2hPdUURzrsSpe0kHSjGtMFpqRFAOB1gcOoyk1DnDqc4HQihsmJKMC8Q7g_whLFejyj6GVCBCkcZqSW2YC0ph7VbJLEZRU-JoksDrea8VXyJBRzGf2HhdFV5XRdBVAi-wVxdSnli7u90r_D38D5Vzxr5lCbzETr-yKlKvamNuFMXM6ccog--aIwJuJ_B8UYzu6tdgdGVH0yCDXoHK-asMVqK4aosEHkU7W7wPAq5MIkxOQDQssNGqZkl1PAy04Tg6-yOiEogGdp22ik5_L_xY_9cHnsHt7n6_V_Te7358AiuoFBpTRDdgefJ1ajcRxk3Kp8FPfwFhyjZH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BVREX1BewPLePAxcjNusnNwREaUsQaouExGHl3bUV1HaDGkBw4yfwG_klHdtJ2KWIilOieNbZfDvj-Rx_HgN84nbTyFaaEqWoIVRYTnJqU6Kl5YW2ieZ-Bb97wDtH9MsxG6kJ3V6YUB9i_Iebiww_XrsAPyttLcgTJijhmE03EldSfRJeUCTjrnx-ix7eqzwUCypGLgmmfjas7uPEPA86aCSmyZ6TRTa2vNWY578Cyjqx9Zmp_Qpmh5Qy3g4-8BomTPUGXoZDJq_fwgl6QpyHosxoVvScAG_Q_2224voqQqyrMg67HOK-rV3wvbvj2_D17ub21-lPE3sdurkyg3dw1N77sdMhwyMVSOGYBZHaVaCjSLNsjnPqnJZKMa0wjWmkNhZHPozpQlJqbcGpTkshFOKkJOMCiUiZzsFU1a_MAsQCqYMsjJbU-EmaFMZs5sxgeityDPMI1kd4ZmehckY2mnE46DMHfeahj-AD4j22chWvO9v7mfsMv0OlnLHLJIKP-Dge7YrUu1oePa5sGI0DtMF7TZGatiJ4P27GOHKLI7oy_Qtvg-6K4Dxpg50orloigvngAeP7QSaUSOSvEYiGbzR-VbOlOu35et44bLqzmyII_v4_tLJ295t_s_jcC9Zg-nC3ne1_Pvi6BDOICQ3SzWWYOv9zYVaQXp3nqz6A_gLXqRQf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+bacterial+chromosome%3A+architecture+and+action+of+bacterial+SMC+and+SMC-like+complexes&rft.jtitle=FEMS+microbiology+reviews&rft.au=Nolivos%2C+Sophie&rft.au=Sherratt%2C+David&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0168-6445&rft.eissn=1574-6976&rft.volume=38&rft.issue=3&rft.spage=380&rft.epage=392&rft_id=info:doi/10.1111%2F1574-6976.12045&rft_id=info%3Apmid%2F24118085&rft.externalDBID=PMC4255302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-6445&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-6445&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-6445&client=summon |