The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes

Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, wi...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology reviews Vol. 38; no. 3; pp. 380 - 392
Main Authors Nolivos, Sophie, Sherratt, David
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2014
Oxford University Press
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization.
AbstractList Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N‐ and C‐terminal regions of the SMC protein coming together, with a c. 50‐nm‐long antiparallel coiled‐coil separating the head from a dimerization ‘hinge’. Dimerization gives both V‐ and O‐shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization.
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation.
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization.
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase 'head' domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization 'hinge'. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. [PUBLICATION ABSTRACT]
Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization. By reviewing the properties of SMC complexes in all three domains of life, we assess their likely common biochemical mechanism of action and propose how this might relate to the functions of bacterial SMC complexes in chromosome segregation and chromosome organization.
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c . 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation.
Author Sherratt, David
Nolivos, Sophie
Author_xml – sequence: 1
  givenname: Sophie
  surname: Nolivos
  fullname: Nolivos, Sophie
  organization: Department of Biochemistry, University of Oxford, Oxford, UK
– sequence: 2
  givenname: David
  surname: Sherratt
  fullname: Sherratt, David
  email: david.sherratt@bioch.ox.ac.uk
  organization: Department of Biochemistry, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24118085$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01893655$$DView record in HAL
BookMark eNqNkt1r1TAYxsOYbGfTa--k4I0K3ZI2b5rsQhgH54QzhG1eeBXSNLWZbXNM2un-e9N1OxyHoLkJvPk9T96vA7Tbu94g9JLgIxLPMYGCpkwU7IhkmMIOWmwiu2iBCeMpoxT20UEINxhjEAB7aD-jhHDMYYG-XjcmKZUejLeqTXTjXeeC68xJorxu7GD0MHqTqL5KImVdn7h6S3B1sbx_i3fa2u8m0a5bt-aXCc_Rs1q1wbx4uA_Rl7MP18vzdPX546fl6SrVLAdIueIFyykHUpemzEpaCQFK4JwpRqAWhFCMNae0rjWjKq-KQsQaBQdWZDyv8kP0fvZdj2VnKm36watWrr3tlL-TTln550tvG_nN3UqaAeQ4iwZvZ4Pmiez8dCWnGCZc5AzglkT2zcNn3v0YTRhkZ4M2bat648YgCeQUCyay4j_QTAgaa58yeP0EvXGj72PXJgqT6AkTdTxT2rsQvKk3yRIsp22Q0-zlNHt5vw1R8Wq7NRv-cfwRgBn4aVtz9y8_eXZx-Wj8bta5cf1XVbqVxW_O6smc
CODEN FMREE4
CitedBy_id crossref_primary_10_1093_molbev_msab034
crossref_primary_10_1073_pnas_2022078118
crossref_primary_10_3389_fmicb_2020_00588
crossref_primary_10_1016_j_dnarep_2018_11_011
crossref_primary_10_1016_j_tig_2015_01_003
crossref_primary_10_7554_eLife_46564
crossref_primary_10_1016_j_mib_2014_09_018
crossref_primary_10_1111_mmi_14583
crossref_primary_10_1016_j_cell_2019_08_036
crossref_primary_10_3390_ijms222413432
crossref_primary_10_1111_mmi_14467
crossref_primary_10_1016_j_molcel_2020_04_026
crossref_primary_10_1093_nar_gkz696
crossref_primary_10_1098_rsob_150005
crossref_primary_10_1016_j_molcel_2017_01_026
crossref_primary_10_31857_S004137712306007X
crossref_primary_10_1134_S0006297924040023
crossref_primary_10_7554_eLife_62243
crossref_primary_10_1146_annurev_cellbio_100814_125211
crossref_primary_10_1128_mBio_01001_13
crossref_primary_10_3390_biomedicines9091240
crossref_primary_10_1007_s00284_024_03640_w
crossref_primary_10_1073_pnas_1414207111
crossref_primary_10_1016_j_tcb_2016_04_002
crossref_primary_10_1098_rsif_2018_0495
crossref_primary_10_3389_fmicb_2020_01247
crossref_primary_10_1038_s41467_021_25461_2
crossref_primary_10_1091_mbc_E18_08_0487
crossref_primary_10_3389_fmicb_2015_00075
crossref_primary_10_3390_ijms24055017
crossref_primary_10_1016_j_ceb_2015_05_008
crossref_primary_10_1242_jcs_243782
crossref_primary_10_3389_fmicb_2023_1107093
crossref_primary_10_1007_s00294_017_0735_2
crossref_primary_10_1016_j_bbrep_2022_101297
crossref_primary_10_1073_pnas_1505323112
crossref_primary_10_1038_s41467_024_49039_w
crossref_primary_10_1042_BST20170168
crossref_primary_10_1016_j_cell_2017_12_027
crossref_primary_10_1093_femsre_fux044
crossref_primary_10_1038_nsmb_3507
crossref_primary_10_1128_ecosalplus_esp_0038_2020
crossref_primary_10_1186_s40168_023_01541_x
crossref_primary_10_7554_eLife_70444
crossref_primary_10_1016_j_molcel_2020_02_003
crossref_primary_10_3390_microorganisms9050934
crossref_primary_10_1073_pnas_2209304119
crossref_primary_10_1111_mmi_15290
crossref_primary_10_1128_mBio_01999_14
crossref_primary_10_1002_prot_24778
crossref_primary_10_1038_s41598_022_04995_5
crossref_primary_10_2139_ssrn_4173437
crossref_primary_10_1038_s41586_020_2067_5
crossref_primary_10_1016_j_celrep_2020_108344
crossref_primary_10_1038_s41467_019_11242_5
crossref_primary_10_1007_s10096_015_2516_5
crossref_primary_10_1016_j_celrep_2017_10_014
crossref_primary_10_1093_femsre_fuac045
crossref_primary_10_1016_j_str_2017_02_008
crossref_primary_10_1128_mSphere_00238_20
crossref_primary_10_1038_ncomms10466
crossref_primary_10_1038_nphys4155
crossref_primary_10_1128_JB_00090_19
crossref_primary_10_1073_pnas_1609709113
crossref_primary_10_1021_ac5041346
crossref_primary_10_1111_mmi_14883
crossref_primary_10_1242_jcs_233783
crossref_primary_10_1016_j_jbc_2023_105466
crossref_primary_10_1099_mic_0_077685_0
crossref_primary_10_3389_fmicb_2019_00072
crossref_primary_10_7554_eLife_31522
crossref_primary_10_1128_MCB_00432_15
crossref_primary_10_1073_pnas_2222045120
crossref_primary_10_1016_j_molcel_2014_11_023
crossref_primary_10_1038_s41586_022_04546_y
crossref_primary_10_1016_j_sbi_2016_01_006
crossref_primary_10_1007_s00253_022_12277_3
crossref_primary_10_1134_S1990519X23700074
crossref_primary_10_1371_journal_pgen_1010819
crossref_primary_10_1038_s41576_019_0185_4
crossref_primary_10_1042_BST20221395
crossref_primary_10_1073_pnas_1908067116
crossref_primary_10_1093_bib_bbaa172
crossref_primary_10_1098_rsob_200097
crossref_primary_10_1016_j_celrep_2017_08_026
crossref_primary_10_7554_eLife_91185_3
crossref_primary_10_1093_nar_gkac664
crossref_primary_10_1128_AEM_01771_20
crossref_primary_10_1016_j_cell_2018_01_014
crossref_primary_10_1007_s12268_016_0696_x
crossref_primary_10_1016_j_celrep_2015_11_034
crossref_primary_10_1128_ecosalplus_esp_0001_2022
Cites_doi 10.1007/s00792-009-0270-2
10.1111/j.1365-2958.2008.06586.x
10.1016/j.cub.2012.10.023
10.1038/nsmb.2488
10.1002/j.1460-2075.1982.tb01276.x
10.1016/j.cell.2008.10.050
10.1002/j.1460-2075.1991.tb07935.x
10.1111/j.1365-2958.2011.07763.x
10.1007/BF02174381
10.1242/jcs.120725
10.1016/j.bpj.2012.01.022
10.1101/gad.2037811
10.1083/jcb.142.6.1595
10.1016/j.cell.2008.01.044
10.1038/nrm3047
10.1038/nsmb.2525
10.1073/pnas.1008140107
10.1016/j.cell.2012.07.028
10.1128/JB.182.20.5898-5901.2000
10.1101/gad.12.9.1254
10.1128/JB.181.18.5860-5864.1999
10.1146/annurev.genet.34.1.21
10.1016/0923-2508(91)90029-A
10.1016/j.molcel.2011.07.034
10.1128/JB.184.19.5317-5322.2002
10.1093/nar/gkr749
10.1016/j.cub.2003.10.030
10.1093/genetics/122.1.47
10.1111/j.1365-2958.2009.06894.x
10.1186/1471-2121-6-28
10.1146/annurev-genet-110711-155421
10.1016/j.cell.2009.02.035
10.1111/j.1365-2958.2011.07836.x
10.1128/JB.00513-08
10.1128/JB.01315-07
10.1016/j.cell.2009.04.044
10.1128/JB.185.13.3690-3695.2003
10.1016/j.bbrc.2005.05.163
10.1128/JB.185.10.3068-3075.2003
10.1016/S0092-8674(00)81910-8
10.1186/2045-3701-2-5
10.1128/MCB.23.16.5638-5650.2003
10.1093/bioinformatics/btl336
10.1093/emboj/cdf314
10.1128/JB.00010-10
10.1016/j.molcel.2005.11.026
10.1083/jcb.123.6.1635
10.1016/S1097-2765(02)00515-4
10.1016/j.mib.2011.10.004
10.1111/j.1365-2958.2011.07722.x
10.1073/pnas.96.19.10661
10.1111/j.1365-2958.2006.05140.x
10.1128/jb.171.3.1496-1505.1989
10.1002/prot.22903
10.1002/prot.22664
10.1046/j.1365-2958.2001.02447.x
10.1016/S0092-8674(01)80007-6
10.1016/j.celrep.2013.04.005
10.1002/j.1460-2075.1992.tb05617.x
10.1016/j.cub.2003.10.036
10.1128/JB.00957-12
10.1016/j.cell.2006.08.048
10.1074/jbc.M606723200
10.1038/sj.emboj.7601562
10.1016/j.ceb.2012.10.013
10.1128/JB.180.23.6424-6428.1998
10.1126/science.1227126
10.1128/JB.00858-08
10.1016/j.str.2013.02.016
10.1046/j.1365-2958.1998.00919.x
10.1016/j.str.2012.09.010
10.1096/fasebj.6.9.1377140
10.1128/JB.02097-12
10.1016/j.cub.2010.12.004
10.1111/j.1365-2958.2004.04084.x
10.1007/BF00418488
10.1093/emboj/18.21.5873
10.1038/nature07098
10.1073/pnas.1008678107
10.1128/JB.01863-07
10.1016/j.plasmid.2011.08.003
10.1016/j.jmb.2011.08.009
10.1111/j.1365-2958.2007.05881.x
10.1038/sj.emboj.7600264
10.1128/JB.00313-06
10.1016/j.cell.2011.02.038
10.1038/nsmb.1410
10.1146/annurev.biochem.74.082803.133219
10.1016/j.bbrc.2009.06.019
10.1093/nar/gkq313
10.1038/emboj.2009.414
10.1073/pnas.030528397
ContentType Journal Article
Copyright 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 2014
2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
Distributed under a Creative Commons Attribution 4.0 International License
2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. 2013
Copyright_xml – notice: 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved 2014
– notice: 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
– notice: Copyright © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies. 2013
DBID TOX
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1111/1574-6976.12045
DatabaseName OUP_牛津大学出版社OA刊
Wiley-Blackwell Titles (Open access)
Wiley-Blackwell Backfiles (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Genetics Abstracts
Genetics Abstracts


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: TOX
  name: OUP_牛津大学出版社OA刊
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Architecture
EISSN 1574-6976
EndPage 392
ExternalDocumentID oai_HAL_hal_01893655v1
3290494771
10_1111_1574_6976_12045
24118085
FMR12045
10.1111/1574-6976.12045
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Wellcome Trust
  funderid: WT099204
– fundername: Wellcome Trust
  grantid: WT099204
– fundername: Wellcome Trust
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
1TH
29H
36B
4.4
48X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAHBH
AAHHS
AAIMJ
AAMDB
AAMVS
AAOGV
AAONW
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEUO
ABIXL
ABJNI
ABLJU
ABPTD
ABQLI
ABXVV
ACCFJ
ACFRR
ACGFO
ACGFS
ACPRK
ACUFI
ACXQS
ADBBV
ADEZT
ADGZP
ADHKW
ADHZD
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEEZP
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFBPY
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFZJQ
AGINJ
AGSYK
AHMBA
AIWBW
AJAOE
AJBDE
AJEEA
AKRWK
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
AVWKF
AXUDD
AYOIW
AZBYB
BAFTC
BAYMD
BBNVY
BCRHZ
BDRZF
BENPR
BEYMZ
BHONS
BHPHI
BQDIO
BSWAC
BY8
C45
CDBKE
CS3
D-E
D-F
DAKXR
DCZOG
DILTD
DR2
DU5
EBS
EDH
EJD
EMB
EMOBN
ESTFP
F00
F01
F04
F5P
FDB
FHSFR
FLUFQ
FOEOM
FYUFA
G-S
G.N
GAUVT
GJXCC
GODZA
H.T
H.X
H13
HAR
HOLLA
HZI
HZ~
IX1
J0M
J21
K48
KAQDR
KBUDW
KOP
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M7P
MK4
MM.
N04
N05
N9A
NF~
NLBLG
NOMLY
NVLIB
O9-
OAWHX
ODMLO
OIG
OJQWA
OK1
OVD
P2P
P2X
P4D
PAFKI
PEELM
Q.N
Q11
Q5Y
QB0
R.K
RIG
ROL
ROX
ROZ
RUSNO
RX1
RXO
SUPJJ
SV3
TEORI
TLC
TOX
UB1
V8K
W8V
W99
WH7
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCN
ZMT
~02
~IA
~KM
~WT
--K
1B1
1~5
24P
31~
3V.
4G.
7-5
88E
8CJ
8FE
8FH
8FI
8FJ
AAEDT
AAJQQ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
ABEFU
ABMAC
ABSAR
ABSMQ
ABUWG
ACBWZ
ACIUM
ACSCC
ACUTJ
ADMUD
ADZOD
AEQDE
AFKRA
AFULF
AFYAG
AHEFC
AI.
ANFBD
ASAOO
ATDFG
BPHCQ
BVXVI
CAG
CCPQU
COF
CXTWN
D1J
DC6
DFGAJ
FEDTE
FGOYB
FIRID
FZ0
HCIFZ
HF~
HMCUK
HVGLF
IAG
IAO
IEP
IHE
IHR
ISR
ITC
LK8
LW9
M1P
M41
NQ-
PQQKQ
PROAC
PSQYO
R2-
RPM
RPZ
SEW
SIN
SSZ
TCN
UKHRP
VH1
WIN
XPP
Y6R
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c6355-8a87634851fbeb2b4d995a9036a615f911400c844ffc64a3d77915798567283d3
IEDL.DBID 24P
ISSN 0168-6445
1574-6976
IngestDate Tue Sep 17 21:22:34 EDT 2024
Tue Oct 15 15:26:30 EDT 2024
Fri Oct 25 01:42:14 EDT 2024
Fri Oct 25 09:20:40 EDT 2024
Thu Oct 10 20:48:31 EDT 2024
Fri Aug 23 01:31:11 EDT 2024
Wed Oct 16 00:38:29 EDT 2024
Sat Aug 24 00:58:47 EDT 2024
Wed Sep 11 04:52:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords SMC
condensin
cohesin
chromosome organization
chromosome segregation
chromosome
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/3.0/) which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Attribution
2013 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6355-8a87634851fbeb2b4d995a9036a615f911400c844ffc64a3d77915798567283d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-3
ObjectType-Review-1
PMCID: PMC4255302
ORCID 0000-0001-6363-0761
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12045
PMID 24118085
PQID 1520134052
PQPubID 986349
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4255302
hal_primary_oai_HAL_hal_01893655v1
proquest_miscellaneous_1534096927
proquest_miscellaneous_1529947632
proquest_journals_1520134052
crossref_primary_10_1111_1574_6976_12045
pubmed_primary_24118085
wiley_primary_10_1111_1574_6976_12045_FMR12045
oup_primary_10_1111_1574-6976_12045
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Delft
PublicationTitle FEMS microbiology reviews
PublicationTitleAlternate FEMS Microbiol Rev
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Oxford University Press
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Oxford University Press
– name: Wiley-Blackwell
References 2008; 190
2013; 25
2010; 107
1997; 88
2013; 21
1991; 10
2005; 333
2013; 126
2013; 20
2004; 23
2003; 13
2011; 12
2012a; 194
2011; 14
1992; 11
2001; 40
1993; 123
1992; 6
1997; 91
1991; 142
2006; 60
2009; 13
1982; 1
2006; 21
2002; 184
2010; 29
2006; 22
1999; 18
1999; 181
2000; 97
1996; 250
2005; 74
2011; 21
1999; 96
2010; 192
2012b; 338
2011; 25
2006; 281
2006; 127
2007; 65
2012; 67
1985; 10
2012; 22
1998; 12
2012; 20
2013a; 195
2007; 26
2010; 78
1998; 180
2011; 412
1998; 29
2010; 38
2012; 102
2002; 9
2011; 82
2011; 81
2008; 15
2011; 79
2009; 136
2009; 137
2012; 150
2004; 52
2009; 74
2012; 2
2009; 191
2000; 34
2009; 71
2002; 21
1989; 122
2000; 182
1989; 171
2009; 386
2011; 44
2013b; 3
2005; 6
2008; 454
2008; 133
2012; 46
2011; 145
2006; 188
1998; 142
2003; 185
2012; 40
2003; 23
2015070911112619000_38.3.380.39
2015070911112619000_38.3.380.8
2015070911112619000_38.3.380.41
2015070911112619000_38.3.380.85
2015070911112619000_38.3.380.9
2015070911112619000_38.3.380.40
2015070911112619000_38.3.380.84
2015070911112619000_38.3.380.6
2015070911112619000_38.3.380.83
2015070911112619000_38.3.380.7
2015070911112619000_38.3.380.82
2015070911112619000_38.3.380.4
2015070911112619000_38.3.380.81
2015070911112619000_38.3.380.5
2015070911112619000_38.3.380.80
2015070911112619000_38.3.380.2
2015070911112619000_38.3.380.3
2015070911112619000_38.3.380.49
2015070911112619000_38.3.380.1
2015070911112619000_38.3.380.48
2015070911112619000_38.3.380.47
2015070911112619000_38.3.380.46
2015070911112619000_38.3.380.45
2015070911112619000_38.3.380.89
2015070911112619000_38.3.380.44
2015070911112619000_38.3.380.88
2015070911112619000_38.3.380.43
2015070911112619000_38.3.380.87
2015070911112619000_38.3.380.42
2015070911112619000_38.3.380.86
2015070911112619000_38.3.380.29
2015070911112619000_38.3.380.28
2015070911112619000_38.3.380.30
2015070911112619000_38.3.380.74
2015070911112619000_38.3.380.73
2015070911112619000_38.3.380.72
2015070911112619000_38.3.380.71
2015070911112619000_38.3.380.70
2015070911112619000_38.3.380.38
2015070911112619000_38.3.380.37
2015070911112619000_38.3.380.36
2015070911112619000_38.3.380.35
2015070911112619000_38.3.380.79
2015070911112619000_38.3.380.34
2015070911112619000_38.3.380.78
2015070911112619000_38.3.380.33
2015070911112619000_38.3.380.77
2015070911112619000_38.3.380.32
2015070911112619000_38.3.380.76
2015070911112619000_38.3.380.31
2015070911112619000_38.3.380.75
2015070911112619000_38.3.380.19
2015070911112619000_38.3.380.18
2015070911112619000_38.3.380.17
2015070911112619000_38.3.380.63
2015070911112619000_38.3.380.62
2015070911112619000_38.3.380.61
2015070911112619000_38.3.380.60
2015070911112619000_38.3.380.27
2015070911112619000_38.3.380.26
2015070911112619000_38.3.380.25
2015070911112619000_38.3.380.69
2015070911112619000_38.3.380.24
2015070911112619000_38.3.380.68
2015070911112619000_38.3.380.23
2015070911112619000_38.3.380.67
2015070911112619000_38.3.380.22
2015070911112619000_38.3.380.66
2015070911112619000_38.3.380.21
2015070911112619000_38.3.380.65
2015070911112619000_38.3.380.20
2015070911112619000_38.3.380.64
2015070911112619000_38.3.380.52
2015070911112619000_38.3.380.51
2015070911112619000_38.3.380.50
2015070911112619000_38.3.380.92
2015070911112619000_38.3.380.91
2015070911112619000_38.3.380.90
2015070911112619000_38.3.380.16
2015070911112619000_38.3.380.15
2015070911112619000_38.3.380.59
2015070911112619000_38.3.380.14
2015070911112619000_38.3.380.58
2015070911112619000_38.3.380.13
2015070911112619000_38.3.380.57
2015070911112619000_38.3.380.12
2015070911112619000_38.3.380.56
2015070911112619000_38.3.380.11
2015070911112619000_38.3.380.55
2015070911112619000_38.3.380.10
2015070911112619000_38.3.380.54
2015070911112619000_38.3.380.53
References_xml – volume: 26
  start-page: 1024
  year: 2007
  end-page: 1034
  article-title: Reconstitution and subunit geometry of human condensin complexes
  publication-title: EMBO J
– volume: 21
  start-page: 3108
  year: 2002
  end-page: 3118
  article-title: Cell cycle‐dependent localization of two novel prokaryotic chromosome segregation and condensation proteins in that interact with SMC protein
  publication-title: EMBO J
– volume: 185
  start-page: 3690
  year: 2003
  end-page: 3695
  article-title: Mutants suppressing novobiocin hypersensitivity of a mukB null mutation
  publication-title: J Bacteriol
– volume: 25
  start-page: 1091
  year: 2011
  end-page: 1104
  article-title: Crystal structure of the Mre11–Rad50–ATPγS complex: understanding the interplay between Mre11 and Rad50
  publication-title: Genes Dev
– volume: 123
  start-page: 1635
  year: 1993
  end-page: 1648
  article-title: SMC1: an essential yeast gene encoding a putative head‐rod‐tail protein is required for nuclear division and defines a new ubiquitous protein family
  publication-title: J Cell Biol
– volume: 20
  start-page: 246
  year: 2013
  end-page: 249
  article-title: Breaking symmetry in SMCs
  publication-title: Nat Struct Mol Biol
– volume: 2
  start-page: 5
  year: 2012
  article-title: The Smc complexes in DNA damage response
  publication-title: Cell Biosci
– volume: 127
  start-page: 523
  year: 2006
  end-page: 537
  article-title: Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
  publication-title: Cell
– volume: 137
  start-page: 685
  year: 2009
  end-page: 696
  article-title: Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in
  publication-title: Cell
– volume: 40
  start-page: 914
  year: 2012
  end-page: 927
  article-title: ATP driven structural changes of the bacterial Mre11: Rad50 catalytic head complex
  publication-title: Nucleic Acids Res
– volume: 142
  start-page: 1595
  year: 1998
  end-page: 1604
  article-title: The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB Proteins: long, antiparallel coiled coils, folded at a flexible hinge
  publication-title: J Cell Biol
– volume: 250
  start-page: 241
  year: 1996
  end-page: 251
  article-title: Identification of two new genes, mukE and mukF, involved in chromosome partitioning in
  publication-title: Mol Gen Genet
– volume: 142
  start-page: 189
  year: 1991
  end-page: 194
  article-title: Mutants defective in chromosome partitioning in
  publication-title: Res Microbiol
– volume: 13
  start-page: 1930
  year: 2003
  end-page: 1940
  article-title: A model for ATP hydrolysis‐dependent binding of cohesin to DNA
  publication-title: Curr Biol
– volume: 67
  start-page: 1
  year: 2012
  end-page: 14
  article-title: Prokaryotic ParA‐ParB‐parS system links bacterial chromosome segregation with the cell cycle
  publication-title: Plasmid
– volume: 190
  start-page: 452
  year: 2008
  end-page: 456
  article-title: A mycobacterial smc null mutant is proficient in DNA repair and long‐term survival
  publication-title: J Bacteriol
– volume: 96
  start-page: 10661
  year: 1999
  end-page: 10666
  article-title: The smc gene is required for cell cycle progression and chromosome segregation
  publication-title: P Natl Acad Sci USA
– volume: 107
  start-page: 18826
  year: 2010
  end-page: 18831
  article-title: Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in
  publication-title: P Natl Acad Sci USA
– volume: 181
  start-page: 5860
  year: 1999
  end-page: 5864
  article-title: Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in
  publication-title: J Bacteriol
– volume: 74
  start-page: 810
  year: 2009
  end-page: 825
  article-title: SpoIIIE and a novel type of DNA translocase, SftA, couple chromosome segregation with cell division in
  publication-title: Mol Microbiol
– volume: 71
  start-page: 1031
  year: 2009
  end-page: 1042
  article-title: KOPS‐guided DNA translocation by FtsK safeguards chromosome segregation
  publication-title: Mol Microbiol
– volume: 191
  start-page: 320
  year: 2009
  end-page: 332
  article-title: Genetic interactions of smc, ftsK, and parB genes in and their developmental genome segregation phenotypes
  publication-title: J Bacteriol
– volume: 9
  start-page: 773
  year: 2002
  end-page: 788
  article-title: Molecular architecture of SMC proteins and the yeast cohesin complex
  publication-title: Mol Cell
– volume: 185
  start-page: 3068
  year: 2003
  end-page: 3075
  article-title: Cell‐Cycle‐regulated expression and subcellular localization of the SMC chromosome structural protein
  publication-title: J Bacteriol
– volume: 14
  start-page: 719
  year: 2011
  end-page: 725
  article-title: Players between the worlds: multifunctional DNA translocases
  publication-title: Curr Opin Microbiol
– volume: 29
  start-page: 1126
  year: 2010
  end-page: 1135
  article-title: Mechanics of DNA bridging by bacterial condensin MukBEF and in singulo
  publication-title: EMBO J
– volume: 97
  start-page: 1671
  year: 2000
  end-page: 1676
  article-title: Suppression of chromosome segregation defects of muk mutants by mutations in topoisomerase I
  publication-title: P Natl Acad Sci USA
– volume: 195
  start-page: 2136
  year: 2013a
  end-page: 2145
  article-title: SMC condensation centers in are dynamic structures
  publication-title: J Bacteriol
– volume: 23
  start-page: 2664
  year: 2004
  end-page: 2673
  article-title: Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins
  publication-title: EMBO J
– volume: 10
  start-page: 183
  year: 1991
  end-page: 193
  article-title: The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of
  publication-title: EMBO J
– volume: 20
  start-page: 2076
  year: 2012
  end-page: 2089
  article-title: Structural and functional characterization of an SMC‐like protein RecN: new insights into double‐strand break repair
  publication-title: Structure
– volume: 145
  start-page: 54
  year: 2011
  end-page: 66
  article-title: The Mre11: Rad50 structure shows an ATP‐dependent molecular clamp in DNA double‐strand break repair
  publication-title: Cell
– volume: 22
  start-page: 1935
  year: 2006
  end-page: 1941
  article-title: DomainSieve: a protein domain‐based screen that led to the identification of dam‐associated genes with potential link to DNA maintenance
  publication-title: Bioinformatics
– volume: 74
  start-page: 595
  year: 2005
  end-page: 648
  article-title: The structure and function of SMC and kleisin complexes
  publication-title: Annu Rev Biochem
– volume: 40
  start-page: 835
  year: 2001
  end-page: 845
  article-title: Different localization of SeqA‐bound nascent DNA clusters and MukF–MukE–MukB complex in cells
  publication-title: Mol Microbiol
– volume: 88
  start-page: 675
  year: 1997
  end-page: 684
  article-title: Cell cycle‐dependent polar localization of chromosome partitioning proteins in
  publication-title: Cell
– volume: 182
  start-page: 5898
  year: 2000
  end-page: 5901
  article-title: Null mutation of the dam or seqA gene suppresses temperature‐sensitive lethality but not hypersensitivity to novobiocin of muk null mutants
  publication-title: J Bacteriol
– volume: 194
  start-page: 4669
  year: 2012a
  end-page: 4676
  article-title: The SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication
  publication-title: J Bacteriol
– volume: 102
  start-page: 839
  year: 2012
  end-page: 848
  article-title: Using DNA as a fiducial marker to study SMC complex interactions with the atomic force microscope
  publication-title: Biophys J
– volume: 180
  start-page: 6424
  year: 1998
  end-page: 6428
  article-title: Role of the C terminus of FtsK in chromosome segregation
  publication-title: J Bacteriol
– volume: 15
  start-page: 411
  year: 2008
  end-page: 418
  article-title: MukB acts as a macromolecular clamp in DNA condensation
  publication-title: Nat Struct Mol Biol
– volume: 6
  start-page: 2660
  year: 1992
  end-page: 2666
  article-title: ATP‐dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters
  publication-title: FASEB J
– volume: 333
  start-page: 694
  year: 2005
  end-page: 702
  article-title: Comparison of MukB homodimer versus MukBEF complex molecular architectures by electron microscopy reveals a higher‐order multimerization
  publication-title: Biochem Biophys Res Commun
– volume: 150
  start-page: 961
  year: 2012
  end-page: 974
  article-title: Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation
  publication-title: Cell
– volume: 171
  start-page: 1496
  year: 1989
  end-page: 1505
  article-title: Chromosome partitioning in : novel mutants producing anucleate cells
  publication-title: J Bacteriol
– volume: 137
  start-page: 697
  year: 2009
  end-page: 707
  article-title: Recruitment of SMC by ParB‐parS organizes the origin region and promotes efficient chromosome segregation
  publication-title: Cell
– volume: 23
  start-page: 5638
  year: 2003
  end-page: 5650
  article-title: A prokaryotic condensin/cohesin‐like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring‐like structure
  publication-title: Mol Cell Biol
– volume: 79
  start-page: 558
  year: 2011
  end-page: 568
  article-title: Structure and DNA‐binding activity of the SMC protein hinge domain
  publication-title: Proteins
– volume: 60
  start-page: 853
  year: 2006
  end-page: 869
  article-title: The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in
  publication-title: Mol Microbiol
– volume: 1
  start-page: 945
  year: 1982
  end-page: 951
  article-title: Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold
  publication-title: EMBO J
– volume: 13
  start-page: 1941
  year: 2003
  end-page: 1953
  article-title: ATP hydrolysis is required for cohesin's association with chromosomes
  publication-title: Curr Biol
– volume: 21
  start-page: 12
  year: 2011
  end-page: 24
  article-title: ATP hydrolysis is required for relocating cohesin from sites Occupied by its Scc2/4 loading complex
  publication-title: Curr Biol
– volume: 6
  start-page: 28
  year: 2005
  article-title: Dynamic assembly, localization and proteolysis of the SMC complex
  publication-title: BMC Cell Biol
– volume: 81
  start-page: 676
  year: 2011
  end-page: 688
  article-title: SMC is recruited to oriC by ParB and promotes chromosome segregation in
  publication-title: Mol Microbiol
– volume: 22
  start-page: R1012
  year: 2012
  end-page: R1021
  article-title: Condensin, chromatin crossbarring and chromosome condensation
  publication-title: Curr Biol
– volume: 386
  start-page: 415
  year: 2009
  end-page: 419
  article-title: Structural and functional similarities between two bacterial chromosome compacting machineries
  publication-title: Biochem Biophys Res Commun
– volume: 25
  start-page: 63
  year: 2013
  end-page: 71
  article-title: Cohesin, a chromatin engagement ring
  publication-title: Curr Opin Cell Biol
– volume: 12
  start-page: 90
  year: 2011
  end-page: 103
  article-title: The MRE11 complex: starting from the ends
  publication-title: Nat Rev Mol Cell Biol
– volume: 21
  start-page: 581
  year: 2013
  end-page: 594
  article-title: Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB
  publication-title: Structure
– volume: 11
  start-page: 5101
  year: 1992
  end-page: 5109
  article-title: MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities
  publication-title: EMBO J
– volume: 122
  start-page: 47
  year: 1989
  end-page: 57
  article-title: The yeast RAD50 gene encodes a predicted 153‐kD protein containing a purine nucleotide‐binding domain and two large heptad‐repeat regions
  publication-title: Genetics
– volume: 281
  start-page: 34208
  year: 2006
  end-page: 34217
  article-title: Antagonistic interactions of kleisins and DNA with bacterial condensin MukB
  publication-title: J Biol Chem
– volume: 192
  start-page: 4067
  year: 2010
  end-page: 4073
  article-title: Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci
  publication-title: J Bacteriol
– volume: 3
  start-page: 1483
  year: 2013b
  end-page: 1492
  article-title: The bacterial SMC complex displays two distinct modes of interaction with the chromosome
  publication-title: Cell Rep
– volume: 65
  start-page: 1485
  year: 2007
  end-page: 1492
  article-title: MukB colocalizes with the oriC region and is required for organization of the two chromosome arms into separate cell halves
  publication-title: Mol Microbiol
– volume: 21
  start-page: 175
  year: 2006
  end-page: 186
  article-title: Opening closed arms: long‐distance activation of SMC ATPase by hinge‐DNA interactions
  publication-title: Mol Cell
– volume: 91
  start-page: 35
  year: 1997
  end-page: 45
  article-title: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
  publication-title: Cell
– volume: 188
  start-page: 4431
  year: 2006
  end-page: 4441
  article-title: Chromosome condensation in the absence of the Non‐SMC subunits of MukBEF
  publication-title: J Bacteriol
– volume: 12
  start-page: 1254
  year: 1998
  end-page: 1259
  article-title: Characterization of a prokaryotic SMC protein involved in chromosome partitioning
  publication-title: Genes Dev
– volume: 81
  start-page: 881
  year: 2011
  end-page: 896
  article-title: A new family of bacterial condensins
  publication-title: Mol Microbiol
– volume: 136
  start-page: 85
  year: 2009
  end-page: 96
  article-title: Structural studies of a bacterial condensin complex reveal ATP‐dependent disruption of intersubunit interactions
  publication-title: Cell
– volume: 191
  start-page: 310
  year: 2009
  end-page: 319
  article-title: SMC protein‐dependent chromosome condensation during aerial hyphal development in
  publication-title: J Bacteriol
– volume: 412
  start-page: 578
  year: 2011
  end-page: 590
  article-title: The role of MukE in assembling a functional MukBEF complex
  publication-title: J Mol Biol
– volume: 107
  start-page: 18832
  year: 2010
  end-page: 18837
  article-title: condensin MukB stimulates topoisomerase IV activity by a direct physical interaction
  publication-title: P Natl Acad Sci USA
– volume: 20
  start-page: 371
  year: 2013
  end-page: 379
  article-title: An asymmetric SMC‐kleisin bridge in prokaryotic condensin
  publication-title: Nat Struct Mol Biol
– volume: 126
  start-page: 705
  year: 2013
  end-page: 713
  article-title: Crystal clear insights into how the dynein motor moves
  publication-title: J Cell Sci
– volume: 13
  start-page: 827
  year: 2009
  end-page: 837
  article-title: The SMC protein is dispensable for cell viability yet plays a role in DNA folding
  publication-title: Extremophiles
– volume: 18
  start-page: 5873
  year: 1999
  end-page: 5884
  article-title: Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in
  publication-title: EMBO J
– volume: 454
  start-page: 297
  year: 2008
  end-page: 301
  article-title: The cohesin ring concatenates sister DNA molecules
  publication-title: Nature
– volume: 133
  start-page: 90
  year: 2008
  end-page: 102
  article-title: Independent positioning and action of replisomes in live cells
  publication-title: Cell
– volume: 46
  start-page: 121
  year: 2012
  end-page: 143
  article-title: Chromosome replication and segregation in bacteria
  publication-title: Annu Rev Genet
– volume: 78
  start-page: 1483
  year: 2010
  end-page: 1490
  article-title: Crystal structure of the MukB hinge domain with coiled‐coil stretches and its functional implications
  publication-title: Proteins
– volume: 10
  start-page: 15
  year: 1985
  end-page: 20
  article-title: A mutant of with impaired maintenance of centromeric plasmids
  publication-title: Curr Genet
– volume: 44
  start-page: 97
  year: 2011
  end-page: 107
  article-title: Cohesin's concatenation of sister DNAs maintains their intertwining
  publication-title: Mol Cell
– volume: 184
  start-page: 5317
  year: 2002
  end-page: 5322
  article-title: Structural maintenance of chromosomes protein of affects supercoiling
  publication-title: J Bacteriol
– volume: 338
  start-page: 528
  year: 2012b
  end-page: 531
  article-title: architecture and action of bacterial structural maintenance of chromosome proteins
  publication-title: Science
– volume: 38
  start-page: W695
  year: 2010
  end-page: W699
  article-title: A new bioinformatics analysis tools framework at EMBL–EBI
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 179
  year: 1998
  end-page: 187
  article-title: A gene‐encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition
  publication-title: Mol Microbiol
– volume: 82
  start-page: 1359
  year: 2011
  end-page: 1374
  article-title: An SMC ATPase mutant disrupts chromosome segregation in
  publication-title: Mol Microbiol
– volume: 52
  start-page: 1567
  year: 2004
  end-page: 1577
  article-title: Anucleate and titan cell phenotypes caused by insertional inactivation of the structural maintenance of chromosomes (smc) gene in the archaeon
  publication-title: Mol Microbiol
– volume: 34
  start-page: 21
  year: 2000
  end-page: 59
  article-title: Dynamic localization of bacterial and plasmid chromosomes
  publication-title: Annu Rev Genet
– volume: 190
  start-page: 3731
  year: 2008
  end-page: 3737
  article-title: ATP‐induced shrinkage of DNA with MukB protein and the MukBEF complex of
  publication-title: J Bacteriol
– ident: 2015070911112619000_38.3.380.9
  doi: 10.1007/s00792-009-0270-2
– ident: 2015070911112619000_38.3.380.77
  doi: 10.1111/j.1365-2958.2008.06586.x
– ident: 2015070911112619000_38.3.380.81
  doi: 10.1016/j.cub.2012.10.023
– ident: 2015070911112619000_38.3.380.13
  doi: 10.1038/nsmb.2488
– ident: 2015070911112619000_38.3.380.84
  doi: 10.1002/j.1460-2075.1982.tb01276.x
– ident: 2015070911112619000_38.3.380.87
  doi: 10.1016/j.cell.2008.10.050
– ident: 2015070911112619000_38.3.380.63
  doi: 10.1002/j.1460-2075.1991.tb07935.x
– ident: 2015070911112619000_38.3.380.71
  doi: 10.1111/j.1365-2958.2011.07763.x
– ident: 2015070911112619000_38.3.380.89
  doi: 10.1007/BF02174381
– ident: 2015070911112619000_38.3.380.14
  doi: 10.1242/jcs.120725
– ident: 2015070911112619000_38.3.380.21
  doi: 10.1016/j.bpj.2012.01.022
– ident: 2015070911112619000_38.3.380.49
  doi: 10.1101/gad.2037811
– ident: 2015070911112619000_38.3.380.55
  doi: 10.1083/jcb.142.6.1595
– ident: 2015070911112619000_38.3.380.73
  doi: 10.1016/j.cell.2008.01.044
– ident: 2015070911112619000_38.3.380.78
  doi: 10.1038/nrm3047
– ident: 2015070911112619000_38.3.380.82
  doi: 10.1038/nsmb.2525
– ident: 2015070911112619000_38.3.380.30
  doi: 10.1073/pnas.1008140107
– ident: 2015070911112619000_38.3.380.15
  doi: 10.1016/j.cell.2012.07.028
– ident: 2015070911112619000_38.3.380.67
  doi: 10.1128/JB.182.20.5898-5901.2000
– ident: 2015070911112619000_38.3.380.12
  doi: 10.1101/gad.12.9.1254
– ident: 2015070911112619000_38.3.380.11
  doi: 10.1128/JB.181.18.5860-5864.1999
– ident: 2015070911112619000_38.3.380.31
  doi: 10.1146/annurev.genet.34.1.21
– ident: 2015070911112619000_38.3.380.33
  doi: 10.1016/0923-2508(91)90029-A
– ident: 2015070911112619000_38.3.380.20
  doi: 10.1016/j.molcel.2011.07.034
– ident: 2015070911112619000_38.3.380.50
  doi: 10.1128/JB.184.19.5317-5322.2002
– ident: 2015070911112619000_38.3.380.59
  doi: 10.1093/nar/gkr749
– ident: 2015070911112619000_38.3.380.86
  doi: 10.1016/j.cub.2003.10.030
– ident: 2015070911112619000_38.3.380.2
  doi: 10.1093/genetics/122.1.47
– ident: 2015070911112619000_38.3.380.40
  doi: 10.1111/j.1365-2958.2009.06894.x
– ident: 2015070911112619000_38.3.380.53
  doi: 10.1186/1471-2121-6-28
– ident: 2015070911112619000_38.3.380.74
  doi: 10.1146/annurev-genet-110711-155421
– ident: 2015070911112619000_38.3.380.25
  doi: 10.1016/j.cell.2009.02.035
– ident: 2015070911112619000_38.3.380.76
  doi: 10.1111/j.1365-2958.2011.07836.x
– ident: 2015070911112619000_38.3.380.42
  doi: 10.1128/JB.00513-08
– ident: 2015070911112619000_38.3.380.27
  doi: 10.1128/JB.01315-07
– ident: 2015070911112619000_38.3.380.80
  doi: 10.1016/j.cell.2009.04.044
– ident: 2015070911112619000_38.3.380.1
  doi: 10.1128/JB.185.13.3690-3695.2003
– ident: 2015070911112619000_38.3.380.54
  doi: 10.1016/j.bbrc.2005.05.163
– ident: 2015070911112619000_38.3.380.38
  doi: 10.1128/JB.185.10.3068-3075.2003
– ident: 2015070911112619000_38.3.380.60
  doi: 10.1016/S0092-8674(00)81910-8
– ident: 2015070911112619000_38.3.380.88
  doi: 10.1186/2045-3701-2-5
– ident: 2015070911112619000_38.3.380.83
  doi: 10.1128/MCB.23.16.5638-5650.2003
– ident: 2015070911112619000_38.3.380.10
  doi: 10.1093/bioinformatics/btl336
– ident: 2015070911112619000_38.3.380.52
  doi: 10.1093/emboj/cdf314
– ident: 2015070911112619000_38.3.380.92
  doi: 10.1128/JB.00010-10
– ident: 2015070911112619000_38.3.380.35
  doi: 10.1016/j.molcel.2005.11.026
– ident: 2015070911112619000_38.3.380.79
  doi: 10.1083/jcb.123.6.1635
– ident: 2015070911112619000_38.3.380.28
  doi: 10.1016/S1097-2765(02)00515-4
– ident: 2015070911112619000_38.3.380.39
  doi: 10.1016/j.mib.2011.10.004
– ident: 2015070911112619000_38.3.380.58
  doi: 10.1111/j.1365-2958.2011.07722.x
– ident: 2015070911112619000_38.3.380.37
  doi: 10.1073/pnas.96.19.10661
– ident: 2015070911112619000_38.3.380.46
  doi: 10.1111/j.1365-2958.2006.05140.x
– ident: 2015070911112619000_38.3.380.32
  doi: 10.1128/jb.171.3.1496-1505.1989
– ident: 2015070911112619000_38.3.380.24
  doi: 10.1002/prot.22903
– ident: 2015070911112619000_38.3.380.43
  doi: 10.1002/prot.22664
– ident: 2015070911112619000_38.3.380.65
  doi: 10.1046/j.1365-2958.2001.02447.x
– ident: 2015070911112619000_38.3.380.56
  doi: 10.1016/S0092-8674(01)80007-6
– ident: 2015070911112619000_38.3.380.8
  doi: 10.1016/j.celrep.2013.04.005
– ident: 2015070911112619000_38.3.380.64
  doi: 10.1002/j.1460-2075.1992.tb05617.x
– ident: 2015070911112619000_38.3.380.4
  doi: 10.1016/j.cub.2003.10.036
– ident: 2015070911112619000_38.3.380.5
  doi: 10.1128/JB.00957-12
– ident: 2015070911112619000_38.3.380.26
  doi: 10.1016/j.cell.2006.08.048
– ident: 2015070911112619000_38.3.380.69
  doi: 10.1074/jbc.M606723200
– ident: 2015070911112619000_38.3.380.66
  doi: 10.1038/sj.emboj.7601562
– ident: 2015070911112619000_38.3.380.72
  doi: 10.1016/j.ceb.2012.10.013
– ident: 2015070911112619000_38.3.380.91
  doi: 10.1128/JB.180.23.6424-6428.1998
– ident: 2015070911112619000_38.3.380.6
  doi: 10.1126/science.1227126
– ident: 2015070911112619000_38.3.380.19
  doi: 10.1128/JB.00858-08
– ident: 2015070911112619000_38.3.380.41
  doi: 10.1016/j.str.2013.02.016
– ident: 2015070911112619000_38.3.380.61
  doi: 10.1046/j.1365-2958.1998.00919.x
– ident: 2015070911112619000_38.3.380.68
  doi: 10.1016/j.str.2012.09.010
– ident: 2015070911112619000_38.3.380.3
  doi: 10.1096/fasebj.6.9.1377140
– ident: 2015070911112619000_38.3.380.7
  doi: 10.1128/JB.02097-12
– ident: 2015070911112619000_38.3.380.36
  doi: 10.1016/j.cub.2010.12.004
– ident: 2015070911112619000_38.3.380.51
  doi: 10.1111/j.1365-2958.2004.04084.x
– ident: 2015070911112619000_38.3.380.45
  doi: 10.1007/BF00418488
– ident: 2015070911112619000_38.3.380.90
  doi: 10.1093/emboj/18.21.5873
– ident: 2015070911112619000_38.3.380.29
  doi: 10.1038/nature07098
– ident: 2015070911112619000_38.3.380.47
  doi: 10.1073/pnas.1008678107
– ident: 2015070911112619000_38.3.380.16
  doi: 10.1128/JB.01863-07
– ident: 2015070911112619000_38.3.380.57
  doi: 10.1016/j.plasmid.2011.08.003
– ident: 2015070911112619000_38.3.380.22
  doi: 10.1016/j.jmb.2011.08.009
– ident: 2015070911112619000_38.3.380.18
  doi: 10.1111/j.1365-2958.2007.05881.x
– ident: 2015070911112619000_38.3.380.34
  doi: 10.1038/sj.emboj.7600264
– ident: 2015070911112619000_38.3.380.85
  doi: 10.1128/JB.00313-06
– ident: 2015070911112619000_38.3.380.44
  doi: 10.1016/j.cell.2011.02.038
– ident: 2015070911112619000_38.3.380.17
  doi: 10.1038/nsmb.1410
– ident: 2015070911112619000_38.3.380.62
  doi: 10.1146/annurev.biochem.74.082803.133219
– ident: 2015070911112619000_38.3.380.48
  doi: 10.1016/j.bbrc.2009.06.019
– ident: 2015070911112619000_38.3.380.23
  doi: 10.1093/nar/gkq313
– ident: 2015070911112619000_38.3.380.70
  doi: 10.1038/emboj.2009.414
– ident: 2015070911112619000_38.3.380.75
  doi: 10.1073/pnas.030528397
SSID ssj0005955
Score 2.4866362
SecondaryResourceType review_article
Snippet Abstract Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and...
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
wiley
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 380
SubjectTerms Architecture
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
chromosome
chromosome organization
chromosome segregation
Chromosomes
Chromosomes, Bacterial - chemistry
Chromosomes, Bacterial - metabolism
cohesin
condensin
Life Sciences
Other
Review
SMC
Title The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1574-6976.12045
https://www.ncbi.nlm.nih.gov/pubmed/24118085
https://www.proquest.com/docview/1520134052
https://search.proquest.com/docview/1529947632
https://search.proquest.com/docview/1534096927
https://hal.science/hal-01893655
https://pubmed.ncbi.nlm.nih.gov/PMC4255302
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fT9RAEJ8IxsQXAopSAVOVB17W0Hb_8kbAy8V4xqAkJj40295ujgA944GBNz4Cn5FPwszu3dmK0fjSNt3ptp3O7Py2O_tbgC3pd5zOi4IZwx3jyktWcV8wq72src-sDCP4g4-yf8TffxWzbEKaCxP5IeY_3MgzQntNDm6rScvJM6E4kxhN32ZEqb4AD4k3hujzc_7pV5aHETGLUWqGoV9M2X0omee3CjqBaWFEaZGdKW8t5Hk_gbINbENk6i3D0hRSpnvRBlbggWuewKO4yOTVU_iGlpBWkZQZxeoRJeBNxmduN22PIqS2GaZxlkM69q0LPg_2Qxnub69vTo9PXBry0N2lm6zCUe_dl_0-my6pwGpCFkxbYqDjCLN8hX3qig-NEdZgGLMIbTy2fOjTtebc-1pyWwyVMqgno4VUCESGxTNYbMaNW4NUIXTQtbOau9BJ08q5nUo4DG91hW6ewPZMn-X3yJxRznocpPqSVF8G1SfwGvU9lyLG6_7eh5LO4T1MIYX4mSXwBj_HH6ti7ao2Zp-rnHrjBGXwWQuEpnkCr-bF6Ec0OGIbN74IMmiuqJy_ymAlRppcJfA8WsD8eRAJZRrxawKqYxudt-qWNMejwOeNzSat3ZRAtPd_aavsDQ7DwYv_vWAdHqMieMzX3IDF8x8XbhMx1Xn1MngNbg8O8ztTvBJ0
link.rule.ids 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RIkQvUCiPLS0sjwMXR92sn9yqQhQg6aG0UqUeVl7HVqqWDSIJanviJ_Ab-SWM7STslooKcdpoPeusxzOez-vxZ4BX3G1Z2c5zohS1hArHSUldTrR03GiXaR5W8Pu7vHtAPxyyw9pemMgPsfjg5j0jjNfewf0H6ZqXZ0xQwjGctjLPqb4EN9Hpc398w9u93xRSTLGYxsglwdjPZvQ-PpvnUgWNyLQ09HmRjT1vNej5ZwZlHdmG0NS5C2beqJiRctKaTsqWubjE9_h_rV6FOzPkmm5HU7sHN2x1H27FsyzP1-AIDS4tI_czipmhz_Mbjz7bN2l9sSLV1SCNmynSkas98Km_E8rw-vP7j9PjE5uGdHd7ZscP4KDzbn-nS2YnNxDjAQyR2hPdUURzrsSpe0kHSjGtMFpqRFAOB1gcOoyk1DnDqc4HQihsmJKMC8Q7g_whLFejyj6GVCBCkcZqSW2YC0ph7VbJLEZRU-JoksDrea8VXyJBRzGf2HhdFV5XRdBVAi-wVxdSnli7u90r_D38D5Vzxr5lCbzETr-yKlKvamNuFMXM6ccog--aIwJuJ_B8UYzu6tdgdGVH0yCDXoHK-asMVqK4aosEHkU7W7wPAq5MIkxOQDQssNGqZkl1PAy04Tg6-yOiEogGdp22ik5_L_xY_9cHnsHt7n6_V_Te7358AiuoFBpTRDdgefJ1ajcRxk3Kp8FPfwFhyjZH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4BVREX1BewPLePAxcjNusnNwREaUsQaouExGHl3bUV1HaDGkBw4yfwG_klHdtJ2KWIilOieNbZfDvj-Rx_HgN84nbTyFaaEqWoIVRYTnJqU6Kl5YW2ieZ-Bb97wDtH9MsxG6kJ3V6YUB9i_Iebiww_XrsAPyttLcgTJijhmE03EldSfRJeUCTjrnx-ix7eqzwUCypGLgmmfjas7uPEPA86aCSmyZ6TRTa2vNWY578Cyjqx9Zmp_Qpmh5Qy3g4-8BomTPUGXoZDJq_fwgl6QpyHosxoVvScAG_Q_2224voqQqyrMg67HOK-rV3wvbvj2_D17ub21-lPE3sdurkyg3dw1N77sdMhwyMVSOGYBZHaVaCjSLNsjnPqnJZKMa0wjWmkNhZHPozpQlJqbcGpTkshFOKkJOMCiUiZzsFU1a_MAsQCqYMsjJbU-EmaFMZs5sxgeityDPMI1kd4ZmehckY2mnE46DMHfeahj-AD4j22chWvO9v7mfsMv0OlnLHLJIKP-Dge7YrUu1oePa5sGI0DtMF7TZGatiJ4P27GOHKLI7oy_Qtvg-6K4Dxpg50orloigvngAeP7QSaUSOSvEYiGbzR-VbOlOu35et44bLqzmyII_v4_tLJ295t_s_jcC9Zg-nC3ne1_Pvi6BDOICQ3SzWWYOv9zYVaQXp3nqz6A_gLXqRQf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+bacterial+chromosome%3A+architecture+and+action+of+bacterial+SMC+and+SMC-like+complexes&rft.jtitle=FEMS+microbiology+reviews&rft.au=Nolivos%2C+Sophie&rft.au=Sherratt%2C+David&rft.date=2014-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0168-6445&rft.eissn=1574-6976&rft.volume=38&rft.issue=3&rft.spage=380&rft.epage=392&rft_id=info:doi/10.1111%2F1574-6976.12045&rft_id=info%3Apmid%2F24118085&rft.externalDBID=PMC4255302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-6445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-6445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-6445&client=summon