Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor
In this study, the authors show that MeCP2 interacts with the NCoR/SMRT co-repressor complex and that a discrete cluster of Rett syndrome–causing mutations in the C-terminal domain of MeCP2 disrupts this interaction, impairing transcriptional repression. Knock-in mice expressing one of these MeCP2 m...
Saved in:
Published in | Nature neuroscience Vol. 16; no. 7; pp. 898 - 902 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, the authors show that MeCP2 interacts with the NCoR/SMRT co-repressor complex and that a discrete cluster of Rett syndrome–causing mutations in the C-terminal domain of MeCP2 disrupts this interaction, impairing transcriptional repression. Knock-in mice expressing one of these MeCP2 missense mutations exhibit severe motor phenotypes.
Rett syndrome (RTT) is a severe neurological disorder that is caused by mutations in the
MECP2
gene. Many missense mutations causing RTT are clustered in the DNA-binding domain of MeCP2, suggesting that association with chromatin is critical for its function. We identified a second mutational cluster in a previously uncharacterized region of MeCP2. We found that RTT mutations in this region abolished the interaction between MeCP2 and the NCoR/SMRT co-repressor complexes. Mice bearing a common missense RTT mutation in this domain exhibited severe RTT-like phenotypes. Our data are compatible with the hypothesis that brain dysfunction in RTT is caused by a loss of the MeCP2 'bridge' between the NCoR/SMRT co-repressors and chromatin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 AUTHOR CONTRIBUTIONS M.J.L. carried out protein purification for mass spectrometry, deletion analysis and mutation analysis. R.E. performed protein purification for mass spectrometry and repression assays. C.M. produced Mecp2R306C-EGFP knock-in ES cells, performed neuronal differentiation and immunofluorescence analysis. J.N. performed in vitro protein binding assays. J.G. and J.S. produced Mecp2-EGFP knock-in mice and Mecp2T158M-EGFP ES cells. F.d.L.A. and J.R. performed mass spectrometry analysis. D.H.E., N.R.K., N.D.R. and M.E.G. generated and phenotyped Mecp2R306C knock-in mice. M.J.L., R.E. and A.B. wrote the manuscript. |
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn.3434 |