Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features

Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, com...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced transportation Vol. 2020; no. 2020; pp. 1 - 11
Main Authors Jia, Di, Zhu, Hong, Jia, Guohui, Song, Weidong, Gao, Lin
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection.
AbstractList Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection.
Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F -score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection.
Audience Academic
Author Jia, Guohui
Song, Weidong
Gao, Lin
Jia, Di
Zhu, Hong
Author_xml – sequence: 1
  fullname: Jia, Di
– sequence: 2
  fullname: Zhu, Hong
– sequence: 3
  fullname: Jia, Guohui
– sequence: 4
  fullname: Song, Weidong
– sequence: 5
  fullname: Gao, Lin
BookMark eNqFktFvFCEQxjemJl6rbz6bTXzUbYGFBR4vV6tNavTB-kpm2dkt595yAlvjfy_nNmrMGUOAMPl9A3wzp8XJ5CcsiueUnFMqxAUjjFw0nDLRsEfFihHOqppqcVKsCNWyaiTTT4rTGLeE1Fpovio-r-fkd5CwKz_CPe5wSuUmgP1SXsIOBiwvMaFNzk_lbXTTkM-4L9_PY3LRwojlxk_3fpwPBIzlFUKaA8anxeMexojPHvaz4vbqzafNu-rmw9vrzfqmsk3NU9WCZcS2gvZENxIEx4YoCYRxyRW1klJQHeWd1bYXXQZ0LXtUWrS8bgWp67PiesnbediafXA7CN-NB2d-BnwYDITk7IgmG0TBInRSK66UVr3qOmCyoT20SvOc6-WSax_81xljMls_h_yraBgnssmTikxVCzXk3xs39T5luwacMMCYy9G7HF43VNdEMK4yf36Ez6PDnbNHBa__ELRzdh1jXqIb7lIcYI7xKG6DjzFg_8sFSsyhK8yhK8xDV2Sc_YVbl-BQvfwsN_5L9GoR3bmpg2_uf1e8WGjMDPbwm6ZSKMnqHxbM0AY
CitedBy_id crossref_primary_10_1088_1757_899X_1141_1_012028
crossref_primary_10_1016_j_measurement_2023_113252
crossref_primary_10_1016_j_measen_2024_101080
crossref_primary_10_3390_app14104142
crossref_primary_10_1155_2024_8846470
crossref_primary_10_1111_mice_13128
crossref_primary_10_1016_j_autcon_2023_104895
crossref_primary_10_1061_JCEMD4_COENG_13077
crossref_primary_10_1016_j_aei_2020_101182
crossref_primary_10_1016_j_autcon_2021_103755
crossref_primary_10_1016_j_oceaneng_2025_120582
crossref_primary_10_1177_14759217221150376
crossref_primary_10_1155_2022_1822585
crossref_primary_10_1155_2022_8965842
crossref_primary_10_1016_j_dsp_2020_102907
crossref_primary_10_32604_cmc_2023_035165
crossref_primary_10_1038_s41598_024_77173_4
crossref_primary_10_3390_rs14164037
crossref_primary_10_3390_s21030824
crossref_primary_10_1061__ASCE_ST_1943_541X_0003140
crossref_primary_10_3390_app10124230
crossref_primary_10_1080_10298436_2023_2255359
crossref_primary_10_1080_10298436_2024_2402838
crossref_primary_10_1016_j_conbuildmat_2024_134867
crossref_primary_10_1093_comjnl_bxac029
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_1007_s10489_024_05788_1
crossref_primary_10_1109_TITS_2023_3307286
crossref_primary_10_3390_asi7010011
crossref_primary_10_1016_j_compind_2022_103698
crossref_primary_10_1080_10298436_2023_2173754
crossref_primary_10_1007_s10209_021_00837_9
crossref_primary_10_1049_itr2_12173
crossref_primary_10_1109_TCYB_2021_3103885
crossref_primary_10_3390_s22229019
crossref_primary_10_1109_JIOT_2020_3024885
crossref_primary_10_48175_IJARSCT_3526
crossref_primary_10_1016_j_autcon_2021_103989
crossref_primary_10_1007_s10489_022_04212_w
crossref_primary_10_1016_j_engappai_2023_106142
crossref_primary_10_1061__ASCE_CF_1943_5509_0001652
crossref_primary_10_1155_2023_2069044
crossref_primary_10_3390_app12189156
crossref_primary_10_3390_s23073772
crossref_primary_10_1155_2020_5054740
crossref_primary_10_1016_j_autcon_2022_104190
crossref_primary_10_1088_1742_6596_2560_1_012045
crossref_primary_10_3390_rs15092400
crossref_primary_10_1109_ACCESS_2021_3125703
crossref_primary_10_3389_fmats_2022_1058407
crossref_primary_10_1155_2020_8829715
crossref_primary_10_3390_a15080281
crossref_primary_10_3390_math10132354
crossref_primary_10_1016_j_dsp_2024_104661
crossref_primary_10_1016_j_commatsci_2020_109996
crossref_primary_10_1016_j_ijtst_2023_11_005
crossref_primary_10_3390_infrastructures9120213
crossref_primary_10_1049_tje2_12317
crossref_primary_10_30932_1992_3252_2022_20_4_5
crossref_primary_10_1061__ASCE_AE_1943_5568_0000564
crossref_primary_10_1139_cjce_2022_0137
crossref_primary_10_1016_j_aej_2024_09_050
crossref_primary_10_1007_s11042_025_20729_x
crossref_primary_10_1155_2020_4190682
crossref_primary_10_30932_1992_3252_2024_22_2_5
crossref_primary_10_1109_TITS_2022_3171433
crossref_primary_10_1016_j_autcon_2021_103973
crossref_primary_10_1016_j_rineng_2022_100657
crossref_primary_10_1016_j_engappai_2023_107328
crossref_primary_10_3390_app132212299
crossref_primary_10_1016_j_eswa_2022_117980
crossref_primary_10_1109_TNNLS_2021_3062070
crossref_primary_10_1080_10298436_2023_2286461
crossref_primary_10_1155_2021_5586615
crossref_primary_10_3390_infrastructures8120170
crossref_primary_10_1007_s11042_022_13422_w
crossref_primary_10_3390_rs16060986
crossref_primary_10_3390_infrastructures10010023
crossref_primary_10_1186_s12938_022_01008_4
crossref_primary_10_1007_s10064_024_03710_0
crossref_primary_10_1117_1_JEI_31_3_033019
crossref_primary_10_1016_j_jtte_2023_02_001
Cites_doi 10.3390/s18061796
10.1109/TIP.2018.2878966
10.1061/(ASCE)CP.1943-5487.0000271
10.1111/mice.12297
10.1016/j.imavis.2011.10.003
10.1016/j.aei.2015.01.008
10.1109/TGRS.2018.2878510
10.1007/s11831-016-9194-z
10.1109/tits.2019.2891167
10.1109/TPAMI.2017.2699184
10.1177/0278364917710542
10.1016/j.optlaseng.2019.01.016
10.1016/j.cageo.2019.02.002
10.1186/s13640-017-0187-0
10.1109/tits.2015.2477675
10.1145/3065386
10.1109/5.726791
10.3390/s18093042
10.3390/s18103452
10.1016/j.patrec.2011.11.004
10.1061/(ASCE)TE.1943-5436.0000051
10.1155/2017/2823617
10.1155/2018/2365414
10.1109/TITS.2016.2552248
10.1109/TPAMI.2016.2644615
10.1109/TPAMI.2016.2572683
ContentType Journal Article
Copyright Copyright © 2020 Weidong Song et al.
COPYRIGHT 2020 John Wiley & Sons, Inc.
Copyright © 2020 Weidong Song et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2020 Weidong Song et al.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: Copyright © 2020 Weidong Song et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
DOA
DOI 10.1155/2020/6412562
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global (OCUL)
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList


CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Di Pace, Roberta
Editor_xml – sequence: 1
  givenname: Roberta
  surname: Di Pace
  fullname: Di Pace, Roberta
EndPage 11
ExternalDocumentID oai_doaj_org_article_1551acead79848898f8dda2761fab894
A619305248
10_1155_2020_6412562
1175872
GeographicLocations China
New Jersey
GeographicLocations_xml – name: New Jersey
– name: China
GrantInformation_xml – fundername: Key Natural Science Plan Fund of Liaoning Province
  grantid: 20170520141
– fundername: National Natural Science Foundation of China
  grantid: 41871379; 61601213
– fundername: Public Welfare Research Fund in Liaoning Province
  grantid: 20170003
GroupedDBID -~X
..I
05W
0R~
1OC
24P
29J
31~
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAEVG
AAFWJ
AAJEY
AAONW
AAZKR
ABDBF
ABDPE
ABJCF
ABUWG
ACBWZ
ACIWK
ACNCT
ACXQS
ADBBV
ADIZJ
ADJCN
AEIMD
AENEX
AFBPY
AFKRA
AFPKN
AFRAH
AHFXO
AI.
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAAKF
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
DU5
DWQXO
EBS
EJD
ESX
FEDTE
FRNLG
G-S
GODZA
GROUPED_DOAJ
H13
HCIFZ
HVGLF
HZ~
I-F
IAO
ICW
IOF
ITC
LITHE
LPU
M0C
M7S
MY~
N95
O9-
OK1
P2P
PIMPY
PQBIZ
PQBZA
PTHSS
PV9
RHX
RIWAO
RJQFR
RZL
SUPJJ
TN5
TUS
VH1
WBKPD
WH7
WIH
XI7
RHU
RHW
AAYXX
ACCMX
ACUHS
AEUYN
CITATION
PHGZM
PHGZT
PMFND
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
SOI
PUEGO
ID FETCH-LOGICAL-c634t-bac20cb51f0967a54e6087a0247481c711a8d14dc9cf5d7a5937fe895b43b5033
IEDL.DBID RHX
ISSN 0197-6729
IngestDate Wed Aug 27 01:22:59 EDT 2025
Sun Jul 13 03:52:24 EDT 2025
Fri Jun 13 00:05:36 EDT 2025
Tue Jun 10 21:03:02 EDT 2025
Fri May 23 02:36:21 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Tue Jul 01 00:34:08 EDT 2025
Sun Jun 02 18:55:01 EDT 2024
Tue Nov 26 16:44:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2020
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c634t-bac20cb51f0967a54e6087a0247481c711a8d14dc9cf5d7a5937fe895b43b5033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1871-8187
0000-0002-0245-8109
0000-0001-8402-5245
0000-0003-3527-9315
0000-0003-4631-4964
OpenAccessLink https://dx.doi.org/10.1155/2020/6412562
PQID 2407640715
PQPubID 1006382
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1551acead79848898f8dda2761fab894
proquest_journals_2407640715
gale_infotracgeneralonefile_A619305248
gale_infotracacademiconefile_A619305248
gale_businessinsightsgauss_A619305248
crossref_primary_10_1155_2020_6412562
crossref_citationtrail_10_1155_2020_6412562
hindawi_primary_10_1155_2020_6412562
emarefa_primary_1175872
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2020
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References 22
23
25
26
27
28
29
30
10
32
11
13
35
14
15
37
16
17
18
1
2
3
4
5
9
20
References_xml – ident: 28
  doi: 10.3390/s18061796
– ident: 30
  doi: 10.1109/TIP.2018.2878966
– ident: 14
  doi: 10.1061/(ASCE)CP.1943-5487.0000271
– ident: 26
  doi: 10.1111/mice.12297
– ident: 5
  doi: 10.1016/j.imavis.2011.10.003
– ident: 1
  doi: 10.1016/j.aei.2015.01.008
– ident: 32
  doi: 10.1109/TGRS.2018.2878510
– ident: 3
  doi: 10.1007/s11831-016-9194-z
– ident: 27
  doi: 10.1109/tits.2019.2891167
– ident: 35
  doi: 10.1109/TPAMI.2017.2699184
– ident: 23
  doi: 10.1177/0278364917710542
– ident: 13
  doi: 10.1016/j.optlaseng.2019.01.016
– ident: 18
  doi: 10.1016/j.cageo.2019.02.002
– ident: 2
  doi: 10.1186/s13640-017-0187-0
– ident: 10
  doi: 10.1109/tits.2015.2477675
– ident: 16
  doi: 10.1145/3065386
– ident: 22
  doi: 10.1109/5.726791
– ident: 29
  doi: 10.3390/s18093042
– ident: 25
  doi: 10.3390/s18103452
– ident: 11
  doi: 10.1016/j.patrec.2011.11.004
– ident: 4
  doi: 10.1061/(ASCE)TE.1943-5436.0000051
– ident: 9
  doi: 10.1155/2017/2823617
– ident: 17
  doi: 10.1155/2018/2365414
– ident: 15
  doi: 10.1109/TITS.2016.2552248
– ident: 37
  doi: 10.1109/TPAMI.2016.2644615
– ident: 20
  doi: 10.1109/TPAMI.2016.2572683
SSID ssj0039594
Score 2.4869072
Snippet Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of...
SourceID doaj
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Alliances
Artificial neural networks
Asphalt pavements
Automation
Computer vision
Cracks
Damage detection
Deep learning
Flaw detection
Maintenance and repair
Modules
Neural networks
Noise
Nonuniformity
Pavements
Pixels
Semantics
Spatial discrimination
Spatial resolution
Topology
Transportation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SEPQgWr_WVsmh6kGGbiYfkxzXbUsRFA9Wegv5miq2s6UzW_9938tk1y4qvXgZyPAgycvLe--Xj18I2TNJOsabWHmlIgAUFisHOKOqZainXCsvWgSKHz-p4xPx4VSe3njqC8-EjfTAo-L2MaS7AP1tjAZjM7rVMboa0HfrvDaZCRRi3gpMjT6YG2lGVm_TVAryx9WRdykR7U_3lYDAruqNYJQ5-_PFXAdlt_bRd78hOv75_Q9vnUPQ0UPyoOSOdDa2-RG5k7ptcv8Go-Bj8nW2HBaQhKZIP7tMBT7Q-ZULP-iBuwDXQQ_SkA9fdTQfFoByuqT5Fm4Po5XofNFdF2uEqjBBXAIgf0JOjg6_zI-r8nRCFRQXQ-WReTF4yVqAKI2TIqmpbhwE5EZoFhrGnI5MxGBCKyMIQJbSJm2kF9zjzuZTstUtuvScUOmc0kbFeuqliIo5zj1eLvSMMyV5mJB3Kx3aUHjF8XmLc5vxhZQWNW6Lxifk9Vr6cuTT-IfcexyOtQyyYOcfYBu22Ia9zTYm5FkZzN91QbqkG2wGDq4tL33Cp8e1kP7MLfvezgBVgh-shZ6Qt1kOZzt0KrhyaQFUg7xZG5JvNiTPRtbwvwnuFYO6RQG7K2uzxa30FuE37rwy-eJ_6GeH3MMqxxWlXbI1XC3TS8ixBv8qT6dfIAocTg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZgExI8IO4rDJSHAQ8oWp3Yjv2Eum7ThMQ0IYb2ZvmWDsGa0qTw9znHcToqbi-V0hwlrY_P5_P58h1C9lTghpaVz60QHggK9bkBnpEX3BXjUgrLaiSK70_FyTl7d8Ev0oRbm7ZVDpgYgdo3DufI95F54KIT5W8X33KsGoWrq6mExk2yDRAsgXxtHxydnn0YsLhUXPXq3qrKBeSRw9Z3zpH1j_cFgwFeFBuDUtTujwd0DVybNVbfukSW_OPzb6gdh6Lje-RuyiGzSe_0--RGmD8gd35RFnxIPk1WXQPJaPDZmYmS4F02XRr3JTs0VwAh2WHo4iaseRY3DcB1WGTxNG4LXgvZtJl_T70SXoWJ4gqI-SNyfnz0cXqSpxIKuRMl63KLCozOcloDVakMZ0GMZWVgYK6YpK6i1EhPmXfK1dyDAWQrdZCKW1ZaXOF8TLbmzTzskIwbI6QSvhhbzrygpiwtHjK0tKSCl25E3gxtqF3SF8cyF1915Bmca2xxnVp8RF6urRe9rsZf7A7QHWsbVMOOXzTLmU7BpTHtMw5iolISAEnJWnpvikrQ2lip2Ig8Sc68fhekTbLCn4HO1aniJ3y0OCfSzsyqbfUE2CXgYcHkiLyOdhj18KecSYcXoGlQP2vD8tWG5axXD_-T4V7qUP9pgN2ht-kEL62-Doan_779jNzGh_VzRrtkq1uuwnPIojr7IoXKT6QgFNs
  priority: 102
  providerName: ProQuest
Title Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features
URI https://search.emarefa.net/detail/BIM-1175872
https://dx.doi.org/10.1155/2020/6412562
https://www.proquest.com/docview/2407640715
https://doaj.org/article/1551acead79848898f8dda2761fab894
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCIk9IL5XGFUeBjygiDqxHfux61YqJKYJMdQ3y18Z07Z0WlL497lz3EIZCF4iObok7d357n7--JmQPRW4oWXlcyuEB4BCfW4AZ-QFd8WolMKyGoHixyMxO2Ef5nyeSJLam1P4kO0Qno_eCQaZGGPtbXAwBOWz-SrgloqrnsJbVbmAYnG1vv23ZzcyTyToj7twDbTNOiDf_YpQ-PvZjdAc8830AbmfCsVs3Fv2IbkVmkdk-xf6wMfky3jZLaDiDD47NpH3u8sm18adZwfmEuJEdhC6uNKqyeLKAGiHqyxuuW3BNCGbLJpvyfXgU1gNLgF9PyEn08PPk1mezknInShZl1ukWXSW0xrwSGU4C2IkKwPZt2KSuopSIz1l3ilXcw8CUJLUQSpuWWlxGvMp2WoWTdghGTdGSCV8MbKceUFNWVrcSWhpSQUv3YC8XelQu0QijmdZXOgIJjjXqHGdND4gr9bSVz15xl_k9tEcaxmkvI43wA106kEaazvjwPErJSHqKFlL701RCVobKxUbkGfJmD-_BbWRrPBnoHF1OtYTLi0OfLSnZtm2egwQEoJeweSAvIly2LXhTzmTdiiAapAka0Py9YbkaU8R_ifBveRQ_1DA7srbdIohrUasjdOslD__v7e8IPew2Q8Q7ZKt7noZXkLJ1NkhdJvp-yG5s394dPxpGAcehrET_QCznAyk
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEG8CBXxo4YCsZu3d9e4BoZAQUvoQhxb1ZvbltAKSEDtU_Cl-IzNrOyXiderFku2RH7Pz3N35hpBN5bmmaeZiI4SDBIW6WEOeESfcJt1UCsMKTBT3D8ToiL075sdr5EdbC4PbKlubGAy1m1qcI9_GzAMXnSh_NfsaY9coXF1tW2jUYrHrv59Byla-3BnA-G4lyfDNYX8UN10FYitSVsUGQQmt4bSA6D3TnHnRlZkGX5UxSW1GqZaOMmeVLbgDAnDghZeKG5YaXPSD514il1maKtQoOXzbWv5UcVVjiassFhC1thvtOcc5hu62YBBOiGTFBYZOAaEcWMO5XnqGKyeYk5-d_uYjguMb3iQ3mog16tUidous-cltcv0XHMM75ENvUU0h9PUueq8DAHkV9efafooG-gsYrGjgq7DlaxKFLQpw7mdRqP0tQUZ81J9OvjU6AK_CsHQx9-VdcnQhrL1H1ifTiX9AIq61kEq4pGs4c4LqNDVY0mhoSgVPbYe8aHmY2wbNHJtqfM5DVsN5jhzPG453yNaSelajePyF7jUOx5IGsbfDhel8nDeqnGOQqS1oYKYkmD8lC-mcTjJBC22kYh1yvxnM83dBkCYz_Awc3LzpLwqHEmdgyrFelGXeg1wWrG_CZIc8D3RoY-CnrG5KJYA1iNa1QvlshXJcY5X_iXCzEaj_MGCjlba8MWZlfq56D_99-ym5Ojrc38v3dg52H5Fr-OB6tmqDrFfzhX8M8VtlngSlicjHi9bSn2-2T10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxA8IO4rDMjDBg8oap3EjvOAUNeu2hhUFWJob55jO2UC2tKkTPw1fh3nOE5Hxe1pL5XSHiXp8bl8xz4XQnYyyxSNUxPmnBsIUKgJFcQZYcR01I0Fz5MCA8W3I35wnLw-YScb5EdTC4NplY1NdIbazDTukXcw8sBDJ8o6hU-LGA-Gr-ZfQ5wghSetzTiNWkSO7PdzCN_Kl4cDWOvdKBruv-8fhH7CQKh5nFRhjg0Kdc5oAUg-VSyxvCtSBX4rTQTVKaVKGJoYnemCGSAAZ15YkbE8iXM8AIT7XiGbKbxXt0U29_ZH43eNH4gzltWdxbM05IBhm7R7xnDHodvhCYALHq05RDc3wBUHK7hWKz9x9SNG6Odnv3kM5waHt8hNj1-DXi1wt8mGnd4hN37paniXfOgtqxkAYWuCsXLtyKugv1D6UzBQX8B8BQNbuQSwaeASFuDazgNXCVyCxNigP5t-8xoBj0KQulzY8h45vhTm3iet6Wxqt0jAlOIi4ybq5iwxnKo4zrHAMacx5SzWbfKi4aHUvrc5jtj4LF2Mw5hEjkvP8TbZXVHP654ef6Hbw-VY0WAnbvfFbDGRXrElQk6lQR_TTIAxzEQhjFFRymmhcpElbfLAL-bFswCyiRRfAxdX-mmj8FHifkw5UcuylD2IbMEWR4lok-eODi0O_CmtfOEEsAZ7d61RPlujnNSdy_9EuOMF6j8M2G6kTXrTVsoLRXz475-fkmugofLN4ejoEbmO9623rrZJq1os7WMAc1X-xGtNQE4vW1F_Ah-vVO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Pavement+Crack+Damage+Detection+Using+Deep+Multiscale+Convolutional+Features&rft.jtitle=Journal+of+advanced+transportation&rft.au=Song%2C+Weidong&rft.au=Jia%2C+Guohui&rft.au=Zhu%2C+Hong&rft.au=Jia%2C+Di&rft.date=2020&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2020&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2020%2F6412562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2020_6412562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon