Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features
Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, com...
Saved in:
Published in | Journal of advanced transportation Vol. 2020; no. 2020; pp. 1 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection. |
---|---|
AbstractList | Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F-score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection. Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of intelligent maintenance systems. However, pavement cracks automated detection has been a challenging task, including strong nonuniformity, complex topology, and strong noise-like problems in the crack images, and so on. To address these challenges, we propose the CrackSeg—an end-to-end trainable deep convolutional neural network for pavement crack detection, which is effective in achieving pixel-level, and automated detection via high-level features. In this work, we introduce a novel multiscale dilated convolutional module that can learn rich deep convolutional features, making the crack features acquired under a complex background more discriminant. Moreover, in the upsampling module process, the high spatial resolution features of the shallow network are fused to obtain more refined pixel-level pavement crack detection results. We train and evaluate the CrackSeg net on our CrackDataset, the experimental results prove that the CrackSeg achieves high performance with a precision of 98.00%, recall of 97.85%, F -score of 97.92%, and a mIoU of 73.53%. Compared with other state-of-the-art methods, the CrackSeg performs more efficiently, and robustly for automated pavement crack detection. |
Audience | Academic |
Author | Jia, Guohui Song, Weidong Gao, Lin Jia, Di Zhu, Hong |
Author_xml | – sequence: 1 fullname: Jia, Di – sequence: 2 fullname: Zhu, Hong – sequence: 3 fullname: Jia, Guohui – sequence: 4 fullname: Song, Weidong – sequence: 5 fullname: Gao, Lin |
BookMark | eNqFktFvFCEQxjemJl6rbz6bTXzUbYGFBR4vV6tNavTB-kpm2dkt595yAlvjfy_nNmrMGUOAMPl9A3wzp8XJ5CcsiueUnFMqxAUjjFw0nDLRsEfFihHOqppqcVKsCNWyaiTTT4rTGLeE1Fpovio-r-fkd5CwKz_CPe5wSuUmgP1SXsIOBiwvMaFNzk_lbXTTkM-4L9_PY3LRwojlxk_3fpwPBIzlFUKaA8anxeMexojPHvaz4vbqzafNu-rmw9vrzfqmsk3NU9WCZcS2gvZENxIEx4YoCYRxyRW1klJQHeWd1bYXXQZ0LXtUWrS8bgWp67PiesnbediafXA7CN-NB2d-BnwYDITk7IgmG0TBInRSK66UVr3qOmCyoT20SvOc6-WSax_81xljMls_h_yraBgnssmTikxVCzXk3xs39T5luwacMMCYy9G7HF43VNdEMK4yf36Ez6PDnbNHBa__ELRzdh1jXqIb7lIcYI7xKG6DjzFg_8sFSsyhK8yhK8xDV2Sc_YVbl-BQvfwsN_5L9GoR3bmpg2_uf1e8WGjMDPbwm6ZSKMnqHxbM0AY |
CitedBy_id | crossref_primary_10_1088_1757_899X_1141_1_012028 crossref_primary_10_1016_j_measurement_2023_113252 crossref_primary_10_1016_j_measen_2024_101080 crossref_primary_10_3390_app14104142 crossref_primary_10_1155_2024_8846470 crossref_primary_10_1111_mice_13128 crossref_primary_10_1016_j_autcon_2023_104895 crossref_primary_10_1061_JCEMD4_COENG_13077 crossref_primary_10_1016_j_aei_2020_101182 crossref_primary_10_1016_j_autcon_2021_103755 crossref_primary_10_1016_j_oceaneng_2025_120582 crossref_primary_10_1177_14759217221150376 crossref_primary_10_1155_2022_1822585 crossref_primary_10_1155_2022_8965842 crossref_primary_10_1016_j_dsp_2020_102907 crossref_primary_10_32604_cmc_2023_035165 crossref_primary_10_1038_s41598_024_77173_4 crossref_primary_10_3390_rs14164037 crossref_primary_10_3390_s21030824 crossref_primary_10_1061__ASCE_ST_1943_541X_0003140 crossref_primary_10_3390_app10124230 crossref_primary_10_1080_10298436_2023_2255359 crossref_primary_10_1080_10298436_2024_2402838 crossref_primary_10_1016_j_conbuildmat_2024_134867 crossref_primary_10_1093_comjnl_bxac029 crossref_primary_10_1109_ACCESS_2024_3481649 crossref_primary_10_1007_s10489_024_05788_1 crossref_primary_10_1109_TITS_2023_3307286 crossref_primary_10_3390_asi7010011 crossref_primary_10_1016_j_compind_2022_103698 crossref_primary_10_1080_10298436_2023_2173754 crossref_primary_10_1007_s10209_021_00837_9 crossref_primary_10_1049_itr2_12173 crossref_primary_10_1109_TCYB_2021_3103885 crossref_primary_10_3390_s22229019 crossref_primary_10_1109_JIOT_2020_3024885 crossref_primary_10_48175_IJARSCT_3526 crossref_primary_10_1016_j_autcon_2021_103989 crossref_primary_10_1007_s10489_022_04212_w crossref_primary_10_1016_j_engappai_2023_106142 crossref_primary_10_1061__ASCE_CF_1943_5509_0001652 crossref_primary_10_1155_2023_2069044 crossref_primary_10_3390_app12189156 crossref_primary_10_3390_s23073772 crossref_primary_10_1155_2020_5054740 crossref_primary_10_1016_j_autcon_2022_104190 crossref_primary_10_1088_1742_6596_2560_1_012045 crossref_primary_10_3390_rs15092400 crossref_primary_10_1109_ACCESS_2021_3125703 crossref_primary_10_3389_fmats_2022_1058407 crossref_primary_10_1155_2020_8829715 crossref_primary_10_3390_a15080281 crossref_primary_10_3390_math10132354 crossref_primary_10_1016_j_dsp_2024_104661 crossref_primary_10_1016_j_commatsci_2020_109996 crossref_primary_10_1016_j_ijtst_2023_11_005 crossref_primary_10_3390_infrastructures9120213 crossref_primary_10_1049_tje2_12317 crossref_primary_10_30932_1992_3252_2022_20_4_5 crossref_primary_10_1061__ASCE_AE_1943_5568_0000564 crossref_primary_10_1139_cjce_2022_0137 crossref_primary_10_1016_j_aej_2024_09_050 crossref_primary_10_1007_s11042_025_20729_x crossref_primary_10_1155_2020_4190682 crossref_primary_10_30932_1992_3252_2024_22_2_5 crossref_primary_10_1109_TITS_2022_3171433 crossref_primary_10_1016_j_autcon_2021_103973 crossref_primary_10_1016_j_rineng_2022_100657 crossref_primary_10_1016_j_engappai_2023_107328 crossref_primary_10_3390_app132212299 crossref_primary_10_1016_j_eswa_2022_117980 crossref_primary_10_1109_TNNLS_2021_3062070 crossref_primary_10_1080_10298436_2023_2286461 crossref_primary_10_1155_2021_5586615 crossref_primary_10_3390_infrastructures8120170 crossref_primary_10_1007_s11042_022_13422_w crossref_primary_10_3390_rs16060986 crossref_primary_10_3390_infrastructures10010023 crossref_primary_10_1186_s12938_022_01008_4 crossref_primary_10_1007_s10064_024_03710_0 crossref_primary_10_1117_1_JEI_31_3_033019 crossref_primary_10_1016_j_jtte_2023_02_001 |
Cites_doi | 10.3390/s18061796 10.1109/TIP.2018.2878966 10.1061/(ASCE)CP.1943-5487.0000271 10.1111/mice.12297 10.1016/j.imavis.2011.10.003 10.1016/j.aei.2015.01.008 10.1109/TGRS.2018.2878510 10.1007/s11831-016-9194-z 10.1109/tits.2019.2891167 10.1109/TPAMI.2017.2699184 10.1177/0278364917710542 10.1016/j.optlaseng.2019.01.016 10.1016/j.cageo.2019.02.002 10.1186/s13640-017-0187-0 10.1109/tits.2015.2477675 10.1145/3065386 10.1109/5.726791 10.3390/s18093042 10.3390/s18103452 10.1016/j.patrec.2011.11.004 10.1061/(ASCE)TE.1943-5436.0000051 10.1155/2017/2823617 10.1155/2018/2365414 10.1109/TITS.2016.2552248 10.1109/TPAMI.2016.2644615 10.1109/TPAMI.2016.2572683 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Weidong Song et al. COPYRIGHT 2020 John Wiley & Sons, Inc. Copyright © 2020 Weidong Song et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2020 Weidong Song et al. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: Copyright © 2020 Weidong Song et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI DOA |
DOI | 10.1155/2020/6412562 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global (OCUL) Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2042-3195 |
Editor | Di Pace, Roberta |
Editor_xml | – sequence: 1 givenname: Roberta surname: Di Pace fullname: Di Pace, Roberta |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_1551acead79848898f8dda2761fab894 A619305248 10_1155_2020_6412562 1175872 |
GeographicLocations | China New Jersey |
GeographicLocations_xml | – name: New Jersey – name: China |
GrantInformation_xml | – fundername: Key Natural Science Plan Fund of Liaoning Province grantid: 20170520141 – fundername: National Natural Science Foundation of China grantid: 41871379; 61601213 – fundername: Public Welfare Research Fund in Liaoning Province grantid: 20170003 |
GroupedDBID | -~X ..I 05W 0R~ 1OC 24P 29J 31~ 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAEVG AAFWJ AAJEY AAONW AAZKR ABDBF ABDPE ABJCF ABUWG ACBWZ ACIWK ACNCT ACXQS ADBBV ADIZJ ADJCN AEIMD AENEX AFBPY AFKRA AFPKN AFRAH AHFXO AI. AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZFZN AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS EJD ESX FEDTE FRNLG G-S GODZA GROUPED_DOAJ H13 HCIFZ HVGLF HZ~ I-F IAO ICW IOF ITC LITHE LPU M0C M7S MY~ N95 O9- OK1 P2P PIMPY PQBIZ PQBZA PTHSS PV9 RHX RIWAO RJQFR RZL SUPJJ TN5 TUS VH1 WBKPD WH7 WIH XI7 RHU RHW AAYXX ACCMX ACUHS AEUYN CITATION PHGZM PHGZT PMFND 3V. 7ST 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c634t-bac20cb51f0967a54e6087a0247481c711a8d14dc9cf5d7a5937fe895b43b5033 |
IEDL.DBID | RHX |
ISSN | 0197-6729 |
IngestDate | Wed Aug 27 01:22:59 EDT 2025 Sun Jul 13 03:52:24 EDT 2025 Fri Jun 13 00:05:36 EDT 2025 Tue Jun 10 21:03:02 EDT 2025 Fri May 23 02:36:21 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Tue Jul 01 00:34:08 EDT 2025 Sun Jun 02 18:55:01 EDT 2024 Tue Nov 26 16:44:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2020 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c634t-bac20cb51f0967a54e6087a0247481c711a8d14dc9cf5d7a5937fe895b43b5033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1871-8187 0000-0002-0245-8109 0000-0001-8402-5245 0000-0003-3527-9315 0000-0003-4631-4964 |
OpenAccessLink | https://dx.doi.org/10.1155/2020/6412562 |
PQID | 2407640715 |
PQPubID | 1006382 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1551acead79848898f8dda2761fab894 proquest_journals_2407640715 gale_infotracgeneralonefile_A619305248 gale_infotracacademiconefile_A619305248 gale_businessinsightsgauss_A619305248 crossref_primary_10_1155_2020_6412562 crossref_citationtrail_10_1155_2020_6412562 hindawi_primary_10_1155_2020_6412562 emarefa_primary_1175872 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: London |
PublicationTitle | Journal of advanced transportation |
PublicationYear | 2020 |
Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 22 23 25 26 27 28 29 30 10 32 11 13 35 14 15 37 16 17 18 1 2 3 4 5 9 20 |
References_xml | – ident: 28 doi: 10.3390/s18061796 – ident: 30 doi: 10.1109/TIP.2018.2878966 – ident: 14 doi: 10.1061/(ASCE)CP.1943-5487.0000271 – ident: 26 doi: 10.1111/mice.12297 – ident: 5 doi: 10.1016/j.imavis.2011.10.003 – ident: 1 doi: 10.1016/j.aei.2015.01.008 – ident: 32 doi: 10.1109/TGRS.2018.2878510 – ident: 3 doi: 10.1007/s11831-016-9194-z – ident: 27 doi: 10.1109/tits.2019.2891167 – ident: 35 doi: 10.1109/TPAMI.2017.2699184 – ident: 23 doi: 10.1177/0278364917710542 – ident: 13 doi: 10.1016/j.optlaseng.2019.01.016 – ident: 18 doi: 10.1016/j.cageo.2019.02.002 – ident: 2 doi: 10.1186/s13640-017-0187-0 – ident: 10 doi: 10.1109/tits.2015.2477675 – ident: 16 doi: 10.1145/3065386 – ident: 22 doi: 10.1109/5.726791 – ident: 29 doi: 10.3390/s18093042 – ident: 25 doi: 10.3390/s18103452 – ident: 11 doi: 10.1016/j.patrec.2011.11.004 – ident: 4 doi: 10.1061/(ASCE)TE.1943-5436.0000051 – ident: 9 doi: 10.1155/2017/2823617 – ident: 17 doi: 10.1155/2018/2365414 – ident: 15 doi: 10.1109/TITS.2016.2552248 – ident: 37 doi: 10.1109/TPAMI.2016.2644615 – ident: 20 doi: 10.1109/TPAMI.2016.2572683 |
SSID | ssj0039594 |
Score | 2.4869072 |
Snippet | Road pavement cracks automated detection is one of the key factors to evaluate the road distress quality, and it is a difficult issue for the construction of... |
SourceID | doaj proquest gale crossref hindawi emarefa |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alliances Artificial neural networks Asphalt pavements Automation Computer vision Cracks Damage detection Deep learning Flaw detection Maintenance and repair Modules Neural networks Noise Nonuniformity Pavements Pixels Semantics Spatial discrimination Spatial resolution Topology Transportation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SEPQgWr_WVsmh6kGGbiYfkxzXbUsRFA9Wegv5miq2s6UzW_9938tk1y4qvXgZyPAgycvLe--Xj18I2TNJOsabWHmlIgAUFisHOKOqZainXCsvWgSKHz-p4xPx4VSe3njqC8-EjfTAo-L2MaS7AP1tjAZjM7rVMboa0HfrvDaZCRRi3gpMjT6YG2lGVm_TVAryx9WRdykR7U_3lYDAruqNYJQ5-_PFXAdlt_bRd78hOv75_Q9vnUPQ0UPyoOSOdDa2-RG5k7ptcv8Go-Bj8nW2HBaQhKZIP7tMBT7Q-ZULP-iBuwDXQQ_SkA9fdTQfFoByuqT5Fm4Po5XofNFdF2uEqjBBXAIgf0JOjg6_zI-r8nRCFRQXQ-WReTF4yVqAKI2TIqmpbhwE5EZoFhrGnI5MxGBCKyMIQJbSJm2kF9zjzuZTstUtuvScUOmc0kbFeuqliIo5zj1eLvSMMyV5mJB3Kx3aUHjF8XmLc5vxhZQWNW6Lxifk9Vr6cuTT-IfcexyOtQyyYOcfYBu22Ia9zTYm5FkZzN91QbqkG2wGDq4tL33Cp8e1kP7MLfvezgBVgh-shZ6Qt1kOZzt0KrhyaQFUg7xZG5JvNiTPRtbwvwnuFYO6RQG7K2uzxa30FuE37rwy-eJ_6GeH3MMqxxWlXbI1XC3TS8ixBv8qT6dfIAocTg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZgExI8IO4rDJSHAQ8oWp3Yjv2Eum7ThMQ0IYb2ZvmWDsGa0qTw9znHcToqbi-V0hwlrY_P5_P58h1C9lTghpaVz60QHggK9bkBnpEX3BXjUgrLaiSK70_FyTl7d8Ev0oRbm7ZVDpgYgdo3DufI95F54KIT5W8X33KsGoWrq6mExk2yDRAsgXxtHxydnn0YsLhUXPXq3qrKBeSRw9Z3zpH1j_cFgwFeFBuDUtTujwd0DVybNVbfukSW_OPzb6gdh6Lje-RuyiGzSe_0--RGmD8gd35RFnxIPk1WXQPJaPDZmYmS4F02XRr3JTs0VwAh2WHo4iaseRY3DcB1WGTxNG4LXgvZtJl_T70SXoWJ4gqI-SNyfnz0cXqSpxIKuRMl63KLCozOcloDVakMZ0GMZWVgYK6YpK6i1EhPmXfK1dyDAWQrdZCKW1ZaXOF8TLbmzTzskIwbI6QSvhhbzrygpiwtHjK0tKSCl25E3gxtqF3SF8cyF1915Bmca2xxnVp8RF6urRe9rsZf7A7QHWsbVMOOXzTLmU7BpTHtMw5iolISAEnJWnpvikrQ2lip2Ig8Sc68fhekTbLCn4HO1aniJ3y0OCfSzsyqbfUE2CXgYcHkiLyOdhj18KecSYcXoGlQP2vD8tWG5axXD_-T4V7qUP9pgN2ht-kEL62-Doan_779jNzGh_VzRrtkq1uuwnPIojr7IoXKT6QgFNs priority: 102 providerName: ProQuest |
Title | Automated Pavement Crack Damage Detection Using Deep Multiscale Convolutional Features |
URI | https://search.emarefa.net/detail/BIM-1175872 https://dx.doi.org/10.1155/2020/6412562 https://www.proquest.com/docview/2407640715 https://doaj.org/article/1551acead79848898f8dda2761fab894 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCIk9IL5XGFUeBjygiDqxHfux61YqJKYJMdQ3y18Z07Z0WlL497lz3EIZCF4iObok7d357n7--JmQPRW4oWXlcyuEB4BCfW4AZ-QFd8WolMKyGoHixyMxO2Ef5nyeSJLam1P4kO0Qno_eCQaZGGPtbXAwBOWz-SrgloqrnsJbVbmAYnG1vv23ZzcyTyToj7twDbTNOiDf_YpQ-PvZjdAc8830AbmfCsVs3Fv2IbkVmkdk-xf6wMfky3jZLaDiDD47NpH3u8sm18adZwfmEuJEdhC6uNKqyeLKAGiHqyxuuW3BNCGbLJpvyfXgU1gNLgF9PyEn08PPk1mezknInShZl1ukWXSW0xrwSGU4C2IkKwPZt2KSuopSIz1l3ilXcw8CUJLUQSpuWWlxGvMp2WoWTdghGTdGSCV8MbKceUFNWVrcSWhpSQUv3YC8XelQu0QijmdZXOgIJjjXqHGdND4gr9bSVz15xl_k9tEcaxmkvI43wA106kEaazvjwPErJSHqKFlL701RCVobKxUbkGfJmD-_BbWRrPBnoHF1OtYTLi0OfLSnZtm2egwQEoJeweSAvIly2LXhTzmTdiiAapAka0Py9YbkaU8R_ifBveRQ_1DA7srbdIohrUasjdOslD__v7e8IPew2Q8Q7ZKt7noZXkLJ1NkhdJvp-yG5s394dPxpGAcehrET_QCznAyk |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEG8CBXxo4YCsZu3d9e4BoZAQUvoQhxb1ZvbltAKSEDtU_Cl-IzNrOyXiderFku2RH7Pz3N35hpBN5bmmaeZiI4SDBIW6WEOeESfcJt1UCsMKTBT3D8ToiL075sdr5EdbC4PbKlubGAy1m1qcI9_GzAMXnSh_NfsaY9coXF1tW2jUYrHrv59Byla-3BnA-G4lyfDNYX8UN10FYitSVsUGQQmt4bSA6D3TnHnRlZkGX5UxSW1GqZaOMmeVLbgDAnDghZeKG5YaXPSD514il1maKtQoOXzbWv5UcVVjiassFhC1thvtOcc5hu62YBBOiGTFBYZOAaEcWMO5XnqGKyeYk5-d_uYjguMb3iQ3mog16tUidous-cltcv0XHMM75ENvUU0h9PUueq8DAHkV9efafooG-gsYrGjgq7DlaxKFLQpw7mdRqP0tQUZ81J9OvjU6AK_CsHQx9-VdcnQhrL1H1ifTiX9AIq61kEq4pGs4c4LqNDVY0mhoSgVPbYe8aHmY2wbNHJtqfM5DVsN5jhzPG453yNaSelajePyF7jUOx5IGsbfDhel8nDeqnGOQqS1oYKYkmD8lC-mcTjJBC22kYh1yvxnM83dBkCYz_Awc3LzpLwqHEmdgyrFelGXeg1wWrG_CZIc8D3RoY-CnrG5KJYA1iNa1QvlshXJcY5X_iXCzEaj_MGCjlba8MWZlfq56D_99-ym5Ojrc38v3dg52H5Fr-OB6tmqDrFfzhX8M8VtlngSlicjHi9bSn2-2T10 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxA8IO4rDMjDBg8oap3EjvOAUNeu2hhUFWJob55jO2UC2tKkTPw1fh3nOE5Hxe1pL5XSHiXp8bl8xz4XQnYyyxSNUxPmnBsIUKgJFcQZYcR01I0Fz5MCA8W3I35wnLw-YScb5EdTC4NplY1NdIbazDTukXcw8sBDJ8o6hU-LGA-Gr-ZfQ5wghSetzTiNWkSO7PdzCN_Kl4cDWOvdKBruv-8fhH7CQKh5nFRhjg0Kdc5oAUg-VSyxvCtSBX4rTQTVKaVKGJoYnemCGSAAZ15YkbE8iXM8AIT7XiGbKbxXt0U29_ZH43eNH4gzltWdxbM05IBhm7R7xnDHodvhCYALHq05RDc3wBUHK7hWKz9x9SNG6Odnv3kM5waHt8hNj1-DXi1wt8mGnd4hN37paniXfOgtqxkAYWuCsXLtyKugv1D6UzBQX8B8BQNbuQSwaeASFuDazgNXCVyCxNigP5t-8xoBj0KQulzY8h45vhTm3iet6Wxqt0jAlOIi4ybq5iwxnKo4zrHAMacx5SzWbfKi4aHUvrc5jtj4LF2Mw5hEjkvP8TbZXVHP654ef6Hbw-VY0WAnbvfFbDGRXrElQk6lQR_TTIAxzEQhjFFRymmhcpElbfLAL-bFswCyiRRfAxdX-mmj8FHifkw5UcuylD2IbMEWR4lok-eODi0O_CmtfOEEsAZ7d61RPlujnNSdy_9EuOMF6j8M2G6kTXrTVsoLRXz475-fkmugofLN4ejoEbmO9623rrZJq1os7WMAc1X-xGtNQE4vW1F_Ah-vVO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Pavement+Crack+Damage+Detection+Using+Deep+Multiscale+Convolutional+Features&rft.jtitle=Journal+of+advanced+transportation&rft.au=Song%2C+Weidong&rft.au=Jia%2C+Guohui&rft.au=Zhu%2C+Hong&rft.au=Jia%2C+Di&rft.date=2020&rft.issn=0197-6729&rft.eissn=2042-3195&rft.volume=2020&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2020%2F6412562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2020_6412562 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |